WO2017213866A1 - Utilisation de composés de lanthanide solubles dans l'eau en tant que stabilisant dans des électrolytes pour le dépôt chimique de métal - Google Patents
Utilisation de composés de lanthanide solubles dans l'eau en tant que stabilisant dans des électrolytes pour le dépôt chimique de métal Download PDFInfo
- Publication number
- WO2017213866A1 WO2017213866A1 PCT/US2017/034380 US2017034380W WO2017213866A1 WO 2017213866 A1 WO2017213866 A1 WO 2017213866A1 US 2017034380 W US2017034380 W US 2017034380W WO 2017213866 A1 WO2017213866 A1 WO 2017213866A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal
- electrolyte
- stabilizer
- acid
- aqueous electrolyte
- Prior art date
Links
- 239000003792 electrolyte Substances 0.000 title claims abstract description 144
- 239000003381 stabilizer Substances 0.000 title claims abstract description 57
- 150000002601 lanthanoid compounds Chemical class 0.000 title claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 7
- 238000000454 electroless metal deposition Methods 0.000 title abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims abstract description 119
- 239000002184 metal Substances 0.000 claims abstract description 119
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 60
- 230000008021 deposition Effects 0.000 claims abstract description 31
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 239000010949 copper Substances 0.000 claims abstract description 15
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 13
- 239000010941 cobalt Substances 0.000 claims abstract description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 13
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052796 boron Inorganic materials 0.000 claims abstract description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052709 silver Inorganic materials 0.000 claims abstract description 10
- 239000004332 silver Substances 0.000 claims abstract description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052737 gold Inorganic materials 0.000 claims abstract description 9
- 239000010931 gold Substances 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 33
- 239000003638 chemical reducing agent Substances 0.000 claims description 25
- -1 aromatic carboxylic acids Chemical class 0.000 claims description 20
- 239000008139 complexing agent Substances 0.000 claims description 18
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910021645 metal ion Inorganic materials 0.000 claims description 16
- 150000003839 salts Chemical class 0.000 claims description 16
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 14
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 claims description 12
- 229910001379 sodium hypophosphite Inorganic materials 0.000 claims description 12
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 claims description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 8
- 150000001735 carboxylic acids Chemical class 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 239000004202 carbamide Substances 0.000 claims description 7
- 235000013877 carbamide Nutrition 0.000 claims description 7
- 229960002449 glycine Drugs 0.000 claims description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 6
- TVJORGWKNPGCDW-UHFFFAOYSA-N aminoboron Chemical compound N[B] TVJORGWKNPGCDW-UHFFFAOYSA-N 0.000 claims description 6
- UORVGPXVDQYIDP-UHFFFAOYSA-N borane Chemical class B UORVGPXVDQYIDP-UHFFFAOYSA-N 0.000 claims description 6
- 229910000085 borane Inorganic materials 0.000 claims description 6
- YPTUAQWMBNZZRN-UHFFFAOYSA-N dimethylaminoboron Chemical compound [B]N(C)C YPTUAQWMBNZZRN-UHFFFAOYSA-N 0.000 claims description 6
- 235000013905 glycine and its sodium salt Nutrition 0.000 claims description 6
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 claims description 6
- 229940091173 hydantoin Drugs 0.000 claims description 6
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 6
- KIWUVOGUEXMXSV-UHFFFAOYSA-N rhodanine Chemical compound O=C1CSC(=S)N1 KIWUVOGUEXMXSV-UHFFFAOYSA-N 0.000 claims description 6
- 150000002825 nitriles Chemical class 0.000 claims description 5
- HJSRRUNWOFLQRG-UHFFFAOYSA-N propanedioic acid Chemical compound OC(=O)CC(O)=O.OC(=O)CC(O)=O HJSRRUNWOFLQRG-UHFFFAOYSA-N 0.000 claims description 5
- 150000003464 sulfur compounds Chemical class 0.000 claims description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 4
- 229940065287 selenium compound Drugs 0.000 claims description 4
- 150000003343 selenium compounds Chemical class 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 3
- 239000000194 fatty acid Substances 0.000 claims description 3
- 229930195729 fatty acid Natural products 0.000 claims description 3
- 150000004665 fatty acids Chemical class 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- 150000001253 acrylic acids Chemical class 0.000 claims description 2
- 229940061720 alpha hydroxy acid Drugs 0.000 claims description 2
- 150000001280 alpha hydroxy acids Chemical class 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 claims description 2
- 150000004715 keto acids Chemical class 0.000 claims description 2
- 229920006395 saturated elastomer Polymers 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract description 31
- 150000002739 metals Chemical group 0.000 abstract description 20
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052763 palladium Inorganic materials 0.000 abstract description 8
- 229910045601 alloy Inorganic materials 0.000 abstract description 7
- 239000000956 alloy Substances 0.000 abstract description 7
- 238000005275 alloying Methods 0.000 abstract description 3
- 238000007747 plating Methods 0.000 description 33
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 150000001576 beta-amino acids Chemical class 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- 229910001385 heavy metal Inorganic materials 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 12
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 9
- 238000007772 electroless plating Methods 0.000 description 9
- 238000009472 formulation Methods 0.000 description 9
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 8
- 229910052787 antimony Inorganic materials 0.000 description 8
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052684 Cerium Inorganic materials 0.000 description 7
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 7
- 150000001450 anions Chemical class 0.000 description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 7
- OQEBBZSWEGYTPG-UHFFFAOYSA-N 3-aminobutanoic acid Chemical compound CC(N)CC(O)=O OQEBBZSWEGYTPG-UHFFFAOYSA-N 0.000 description 6
- 229910052692 Dysprosium Inorganic materials 0.000 description 6
- 229910052691 Erbium Inorganic materials 0.000 description 6
- 229910052693 Europium Inorganic materials 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 6
- 229910052688 Gadolinium Inorganic materials 0.000 description 6
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 6
- 229910052779 Neodymium Inorganic materials 0.000 description 6
- 229910052773 Promethium Inorganic materials 0.000 description 6
- 229910052772 Samarium Inorganic materials 0.000 description 6
- 229910052771 Terbium Inorganic materials 0.000 description 6
- 229910052775 Thulium Inorganic materials 0.000 description 6
- 229910052769 Ytterbium Inorganic materials 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 6
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 6
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 6
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 6
- 150000002602 lanthanoids Chemical group 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 6
- 229910001960 metal nitrate Inorganic materials 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 6
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 6
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 6
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 6
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 6
- 229910052689 Holmium Inorganic materials 0.000 description 5
- 229910052765 Lutetium Inorganic materials 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 150000003842 bromide salts Chemical class 0.000 description 5
- 150000001805 chlorine compounds Chemical class 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 5
- 150000002222 fluorine compounds Chemical class 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 5
- 150000004694 iodide salts Chemical class 0.000 description 5
- 229910052747 lanthanoid Inorganic materials 0.000 description 5
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 5
- 229910001510 metal chloride Inorganic materials 0.000 description 5
- 150000002823 nitrates Chemical class 0.000 description 5
- 235000021317 phosphate Nutrition 0.000 description 5
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 5
- 229940081974 saccharin Drugs 0.000 description 5
- 235000019204 saccharin Nutrition 0.000 description 5
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 5
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000007859 condensation product Substances 0.000 description 4
- 150000002367 halogens Chemical class 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- GLUJNGJDHCTUJY-UHFFFAOYSA-N beta-leucine Chemical compound CC(C)C(N)CC(O)=O GLUJNGJDHCTUJY-UHFFFAOYSA-N 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RSDQBPGKMDFRHH-MJVIGCOGSA-N (3s,3as,5ar,9bs)-3,5a,9-trimethyl-3a,4,5,7,8,9b-hexahydro-3h-benzo[g][1]benzofuran-2,6-dione Chemical compound O=C([C@]1(C)CC2)CCC(C)=C1[C@@H]1[C@@H]2[C@H](C)C(=O)O1 RSDQBPGKMDFRHH-MJVIGCOGSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- BYDYILQCRDXHLB-UHFFFAOYSA-N 3,5-dimethylpyridine-2-carbaldehyde Chemical compound CC1=CN=C(C=O)C(C)=C1 BYDYILQCRDXHLB-UHFFFAOYSA-N 0.000 description 2
- IEDIKTABXQYWBL-UHFFFAOYSA-N 3-aminopropanoic acid Chemical compound NCCC(O)=O.NCCC(O)=O IEDIKTABXQYWBL-UHFFFAOYSA-N 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- RSDQBPGKMDFRHH-UHFFFAOYSA-N Taurin Natural products C1CC2(C)C(=O)CCC(C)=C2C2C1C(C)C(=O)O2 RSDQBPGKMDFRHH-UHFFFAOYSA-N 0.000 description 2
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- XQRLCLUYWUNEEH-UHFFFAOYSA-N diphosphonic acid Chemical compound OP(=O)OP(O)=O XQRLCLUYWUNEEH-UHFFFAOYSA-N 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000004310 lactic acid Substances 0.000 description 2
- 235000014655 lactic acid Nutrition 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229940078494 nickel acetate Drugs 0.000 description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 2
- 239000001230 potassium iodate Substances 0.000 description 2
- 235000006666 potassium iodate Nutrition 0.000 description 2
- 229940093930 potassium iodate Drugs 0.000 description 2
- IIQJBVZYLIIMND-UHFFFAOYSA-J potassium;antimony(3+);2,3-dihydroxybutanedioate Chemical compound [K+].[Sb+3].[O-]C(=O)C(O)C(O)C([O-])=O.[O-]C(=O)C(O)C(O)C([O-])=O IIQJBVZYLIIMND-UHFFFAOYSA-J 0.000 description 2
- 235000011091 sodium acetates Nutrition 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HOHIAEPXOHCCGW-UHFFFAOYSA-N 2-aminoethanesulfonic acid Chemical compound NCCS(O)(=O)=O.NCCS(O)(=O)=O HOHIAEPXOHCCGW-UHFFFAOYSA-N 0.000 description 1
- WBPWDGRYHFQTRC-UHFFFAOYSA-N 2-ethoxycyclohexan-1-one Chemical compound CCOC1CCCCC1=O WBPWDGRYHFQTRC-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229930182843 D-Lactic acid Natural products 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 229940120146 EDTMP Drugs 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical group OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical group NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 229910001096 P alloy Inorganic materials 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Natural products P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XKBDVFSIVDBRIW-UHFFFAOYSA-N [1-(methylamino)-2-phosphonoethyl]phosphonic acid Chemical compound CNC(P(O)(O)=O)CP(O)(O)=O XKBDVFSIVDBRIW-UHFFFAOYSA-N 0.000 description 1
- KIDJHPQACZGFTI-UHFFFAOYSA-N [6-[bis(phosphonomethyl)amino]hexyl-(phosphonomethyl)amino]methylphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCCCCCN(CP(O)(O)=O)CP(O)(O)=O KIDJHPQACZGFTI-UHFFFAOYSA-N 0.000 description 1
- IGOJDKCIHXGPTI-UHFFFAOYSA-N [P].[Co].[Ni] Chemical compound [P].[Co].[Ni] IGOJDKCIHXGPTI-UHFFFAOYSA-N 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- BWKOZPVPARTQIV-UHFFFAOYSA-N azanium;hydron;2-hydroxypropane-1,2,3-tricarboxylate Chemical compound [NH4+].OC(=O)CC(O)(C(O)=O)CC([O-])=O BWKOZPVPARTQIV-UHFFFAOYSA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- ZMMDPCMYTCRWFF-UHFFFAOYSA-J dicopper;carbonate;dihydroxide Chemical compound [OH-].[OH-].[Cu+2].[Cu+2].[O-]C([O-])=O ZMMDPCMYTCRWFF-UHFFFAOYSA-J 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- GQZXNSPRSGFJLY-UHFFFAOYSA-N hydroxyphosphanone Chemical compound OP=O GQZXNSPRSGFJLY-UHFFFAOYSA-N 0.000 description 1
- 229940046817 hypophosphorus acid Drugs 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- XQHAGELNRSUUGU-UHFFFAOYSA-M lithium chlorate Chemical compound [Li+].[O-]Cl(=O)=O XQHAGELNRSUUGU-UHFFFAOYSA-M 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- MBKDYNNUVRNNRF-UHFFFAOYSA-N medronic acid Chemical compound OP(O)(=O)CP(O)(O)=O MBKDYNNUVRNNRF-UHFFFAOYSA-N 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- OPUAWDUYWRUIIL-UHFFFAOYSA-N methanedisulfonic acid Chemical compound OS(=O)(=O)CS(O)(=O)=O OPUAWDUYWRUIIL-UHFFFAOYSA-N 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- NALMPLUMOWIVJC-UHFFFAOYSA-N n,n,4-trimethylbenzeneamine oxide Chemical compound CC1=CC=C([N+](C)(C)[O-])C=C1 NALMPLUMOWIVJC-UHFFFAOYSA-N 0.000 description 1
- KETUDCKOKOGBJB-UHFFFAOYSA-K neodymium(3+);triacetate Chemical compound [Nd+3].CC([O-])=O.CC([O-])=O.CC([O-])=O KETUDCKOKOGBJB-UHFFFAOYSA-K 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- MXXRJZJYTALZLW-UHFFFAOYSA-M potassium iodite Chemical compound [K+].[O-]I=O MXXRJZJYTALZLW-UHFFFAOYSA-M 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- LVSITDBROURTQX-UHFFFAOYSA-H samarium(3+);trisulfate Chemical compound [Sm+3].[Sm+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O LVSITDBROURTQX-UHFFFAOYSA-H 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011697 sodium iodate Substances 0.000 description 1
- 235000015281 sodium iodate Nutrition 0.000 description 1
- 229940032753 sodium iodate Drugs 0.000 description 1
- IUOAWALEYWGAFR-UHFFFAOYSA-M sodium iodite Chemical compound [Na+].[O-]I=O IUOAWALEYWGAFR-UHFFFAOYSA-M 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 229960003080 taurine Drugs 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/32—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
- C23C18/34—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
- C23C18/36—Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/42—Coating with noble metals
- C23C18/44—Coating with noble metals using reducing agents
Definitions
- the present invention relates to the use of water soluble lanthanide compounds as stabilizer in electrolytes for electroless metal deposition, an electrolyte as well as a method for the electroless deposition of metals, particularly layers of nickel, copper, cobalt, boron, silver, palladium or gold, as well as layers of alloys comprising at least one of the aforementioned metals as alloying metal.
- the present invention further relates to an organic stabilizer for electroless plating processes, and an electrolyte for the electroless deposition of a metal layer on a substrate, comprising a metal ion source for the metal to be deposited, a reducing agent, a complexing agent, a- stabilizer and preferably an accelerator, as well as a method for the electroless deposition of a metal layer on a surface from an electrolyte according to the invention.
- electroless plating methods have long been known from the state of the art.
- electroless plating also known as chemical plating
- the coating of almost every metal and a huge number of non-conductive substrate surfaces is possible.
- the electroless deposited metal layers differ from the galvanically deposited metal layers, i.e. those layers deposited by the use of an external current, in physical as well as mechanical aspects.
- metal alloy layers with non-metal elements like for example cobalt/phosphor, nickel/phosphor, nickel/boron or boron carbide layers are deposited by means of electroless deposition methods.
- electroless deposited layers in many cases differ also in their chemical nature from the galvanically deposited layers.
- One major advantage of the electroless deposited metal layer is the outline accuracy of the layer thickness of the deposited layer independent from the substrate geometry.
- electroless methods are also used for the coating of other non-conductive substrates, like for example plastic substrates, to render the surface of such substrates conductive and/or to change the appearance of the substrate in aesthetic respect.
- the material properties of the coated substrate can be improved or amended.
- the corrosion resistance or the hardness of the surface and/or the wear resistance of the substrate can be improved, e.g. for gas and/or oil industry applications.
- Electroless plating methods are based on an autocatalytic process, in which process the metal ions comprised in the electrolytes are reduced to the elemental metal by a reducing agent which is oxidized during this redox reaction.
- a reducing agent commonly used in the field of electroless deposition of metals on substrate surfaces is sodium hypophosphite. However, also other reducing agents are used in dependency of the metals to be deposited.
- U.S. Pat, No. 6,146,702 discloses an electroless nickel cobalt phosphorus composition and plating process. The process is provided for enhancing the wear resistance of aluminum and other materials by depositing on the substrate a nickel, cobalt, phosphorus alloy coating using an electroless plating bath to provide a plated alloy having a cobalt content of at least about 20% by weight and a % Co / % P weight ratio of at least about 5.
- European patent application EP 1 413 646 A2 discloses, for example, an electrolyte for the electroless deposition of nickel layers having internal compressive stress.
- the electrolyte disclosed in this application comprises a metal salt of the metal to be deposited, a reducing agent, a complexing agent, an accelerator, and a stabilizer.
- the accelerator is used to increase the deposition rate of the metal on the substrate surface,
- JP 2009-149965A discloses a silver-plating method, which does not need to form an unnecessary layer of a nickel layer in between a substrate which is difficult to be plated and a silver-plated film, and can form the silver-plated film having sufficient adhesiveness directly on the substrate which is difficult to be plated with the use of a halide-free plating bath under a satisfactory working environment.
- the silver-plating method disclosed is used for forming the silver-plated film on the substrate on which an oxide film is easily formed and the oxide film hinders the adhesiveness of a plated film, and comprises at least the steps of: (A) degreasing the substrate; (B) removing the oxide film with a strongly acidic solution; and subsequently to the step (B), (C) plating the substrate with silver by using a phosphine- containing acidic silver-plating bath which essentially does not contain a halide ion and a cyanide ion while skipping a step of nickel strike plating or nickel-alloy strike plating.
- CN 101348927 A discloses a cyanogen-free preplated copper solution.
- the solution adopts a nontoxic organic phosphine compound to replace cyanide as a complexing agent for the preplated copper, and is particularly suitable for preplated copper used to electroplate steel, aluminum, magnesium, zinc, titanium and titanium alloy.
- the cyanogen-free preplated copper solution has the following main technical characteristic that the solution consists of (a) one sort of copper sulphate, basic cupric carbonate or copper nitrate with the volume concentration of between 30 and 60 g/L; (b) one sort or two sorts of compounds selected from methylene diphosphonic acid, 1-hydroxyethylidene 1.1 diphosphonic acid and 1- hydroxybutyleneidene 1.1 diphosphonic acid with the volume concentration of between 120 and 160 g/L; (c) one sort or two sorts of compounds selected from methylamino dimethylene diphosphonic acid, hexamethylene diamine tetramethylene phosphonic acid and ethylenediamine tetramethylene phosphonic acid with the volume concentration of between 2 and 5 g/L; (d) one sort of potassium citrate, amine citrate or s pizzate salt with the volume concentration of between 6 and 12 g/L, and (e) polyethyleneimine alkyl slat or aliphatic amine eth
- an aqueous electrolyte for the electroless deposition of a metal layer on a substrate comprising a metal ion source for the metal to be deposited, a reducing agent, a complexing agent, an accelerator, and a stabilizer, characterized in that the electrolyte comprises as stabilizer a water-soluble lanthanide compound.
- water-soluble lanthanide compounds are capable to replace heavy metal stabilizers, cyanides, selenium compounds as well as sulfur compounds comprising sulfur in an oxidation state between -2 and +5 in electrolytes for the electroless deposition of metal layers, totally.
- Lanthanide compounds in the meaning of this invention shall refer to compounds of the elements of the lanthanide group of the periodic system, i.e. lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holroium, erbium, thulium, ytterbium, and lutetium.
- Compounds in the meaning of this invention shall refer to salts, organic compounds, metal organic compounds or complexes. Examples for salts are, e.g.
- halides like fluorides, chlorides, bromides, or iodides, sulfates, phosphates, or nitrates.
- Examples for complexes may be (NH 4 ) 2 [Ln(N0 3 ) 6 ], (NH 4 ) 2 [Ln(S0 4 ) 3 ] or [Ln(N0 3 ) 4 (OPPh 3 ) 2 ].
- Water soluble in the meaning of the invention shall mean that the Ln compound is soluble in an aqueous system to an extent of at least 0.007 mmol/L or 1 mg/L of Ln.
- water-soluble lanthanide compounds are capable to at least temporarily jam the active centers on the substrate surface which are responsible for the uncontrolled deposition. So, the wild deposition of the metals can be avoided.
- a further benefit of the inventive electrolyte is that an effect known as edge weakness can be avoided.
- edge weakness When using electrolytes for the electroless deposition of metal layers which comprise heavy metal ions as stabilizers at high convection of the electrolyte a decreased deposition of metal at the edges of the substrate occurs. This is deemed to be related to an increased assembly of the heavy metal ions used as stabilizers in these areas. This effect deteriorates the outline accuracy of the plating.
- this edge weakening effect can be avoided which significantly increases the overall outline accuracy of the plating especially when plating large substrates.
- the use of a water-soluble lanthanide compounds as stabilizer results in a more even deposition having less nodules.
- a further benefit of the inventive electrolyte is that a significant reduction of deposition on components of the plating equipment, especially on the heating systems used in the plating equipment, occurs. By this, the need for maintenance is significantly reduced which in turn results in a notable economic benefit to the plating shops due to less down time.
- an electrolytic bath with a single class of metal, containing the stabilizer of the present invention leads to deposited metal layers, having properties like an amorphous metal. These properties are, for example, that these layers have no edge weakness effect; they are very passive; have a good resistance against corrosion; wear-resistance; and good compressive stress properties.
- a stabilizer according to the present invention provides a deposit having significantly better corrosion resistance including excellent resistance vs. nitric acid; is more environmental friendly (less toxic additive); and lower plating temperatures can be used to achieve the same plating speed.
- plating electrolytes for the electroless deposition become less sensitive to foreign metal carry-over, like e.g. palladium ions resulting from the activation pretreatment of the substrate to be plated.
- foreign metal carry-over like e.g. palladium ions resulting from the activation pretreatment of the substrate to be plated.
- non- conductive substrates like e.g. plastics
- noble metal colloids for seeding the surfaces.
- the known plating electrolytes turned out to be quit sensitive to foreign metals and therefore required intensive rinse steps after the activation, the inventive plating electrolytes does not show any significant deterioration even at Pd-concentrations » 2mg/L.
- water-soluble lanthanide compounds according to the general formula preferably 2 to 4, like e.g. ( are found to be very effective as stabilizers in electroless plating electrolytes.
- neodymium(III)acetate is a preferred embodiment of a water-soluble lanthanide compound.
- the water-soluble lanthanide compounds can be comprised in the inventive electrolyte within a range of >0.05 mg/L and ⁇ 100 mg/L, preferably between >0.1 mg/L and ⁇ 80 mg/L, most preferably between >1 mg/L and ⁇ 50 mg/L calculated on the lanthanide metal.
- the inventive electrolyte at least one reducing agent of the group consisting of sodium hypophosphite, formaldehyde, dimethylaminoborane, aminoborane, or other organic boranes can be comprised.
- the reducing agent may be comprised in the electrolyte in a concentration of between 0.08 mol/L and 0.5 mol/L, preferably, 0.1 mol/L and 0.3 mol/L.
- the electrolyte may comprises e,g, sodium hypophosphite (mono hydrate) with a concentration of 10 to 40 g/1, and even more preferably with a concentration of 12 to 30 g/1.
- a metal ion source in the inventive electrolyte advantageously a metal compound of the group consisting metal chloride, metal sulfate, metal acetate, metal nitrate, metal propionate, metal forrniate, metal oxalate, metal citrate, and metal ascorbinate can be used, i.e., the source of cations of the metal to be deposited may comprise the counter anion of any of such salts.
- the metal compounds having volatile ions like for example metal acetate, metal nitrate, metal propionate, and metal forrniate are preferred since the volatile character of the anion those anions leak out from the electrolyte in gaseous form which enables to reduce the amount of anions in the electrolyte,
- the word volatile anion should be understood as anions of volatile compounds, i.e. compounds having an initial boiling point in the range of 50°C to 250°C at a standard atmospheric pressure of 101.3 kPa, This enables to extend the lifetime of the electrolyte significantly, which under normal conditions is only limited. For example, by the use of volatile anions also at a metal turnover rate of 22 metal layers having internal compressive stress can be deposited.
- Volatile ions in the sense of this invention are ions which form together with according counter ion moieties which are volatile at the temperature the electrolyte is commonly used at.
- An example for such volatile ions is acetate which forms under the plating conditions acetic acid. Since acetic acid has a vapor pressure of 16hPa at 20 °C it will evaporate from the electrolyte under the plating conditions and can be recovered from the exhaust air system.
- the inventive electrolyte comprises a compound of the group consisting of 2-hydroxy propionic acid, propanedioic acid (malonic acid), EDTA, and amino acetic acid.
- the complexing agent may be comprised in the electrolyte in a concentration of between 0.05 mol/L and 0.5 mol/L, preferably 0.2 mol/L and 0.4 mol/L.
- the inventive electrolyte comprises an accelerator, which may preferably comprise a compound of the group consisting of saccharin, hydantoin, rhodanine, or carbamide and its deiivates.
- the accelerator may be comprised in the electrolyte in a concentration of between 0.05 mmol/L and 0.1 mol/L, preferably 0.005 mol/L and 0,025mol/L.
- the inventive electrolyte may comprise a metal of the group consisting of nickel, copper, cobalt, boron, silver, palladium and gold.
- the metal to be deposited also alloys like for example nickel/cobalt-alloys, nickel/phosphor-alloys, cobalt/phosphor-alloys nickel/boron or the like can be deposited.
- the deposition of nickel/PTFE-layers or nickel/boron carbide/graphite-layers from dispersion bathes is possible by the inventive electrolyte.
- the inventive electrolyte can have a pH-value within a range of between pH 4 and pH 7, preferably within pH 4 and pH 6. Hence, it is preferred that the inventive electrolyte is slightly acidic.
- the pH-value of the electrolyte it may comprise pH adjusting compounds, like e.g. acids, bases, and/or buffers.
- organic and inorganic acids may be comprised in the electrolyte, e.g. sulfuric acid, acetic acid, lactic acid, citric acid, hypophosphorus acid, sulfonic acids, methane sulfonic acid, methane disulfonic acid or combinations of these.
- electrolyte e.g. sulfuric acid, acetic acid, lactic acid, citric acid, hypophosphorus acid, sulfonic acids, methane sulfonic acid, methane disulfonic acid or combinations of these.
- bases e.g. sodium carbonate, potassium carbonate, ammonium hydroxide, sodium hydroxide, potassium hydroxide, Hthiuni hydroxide, or combination of these may be comprised in the electrolyte.
- the electrolyte may comprise e.g. an acetic acid/ acetate buffer, or a citric acid / citrate buffer.
- the electrolyte may comprise as an additional stabilizer a B-amino acid.
- ⁇ -amino acids having a pK a -value within a range of 4 to 8, preferably within a range of 5 to 7 seems to be suitable in this respect.
- 3-amino propionic acid ( ⁇ - alanin), 3-aminobutyric acid, 3-amino-4-methyl valeric acid and 2-aminoethane-sulfonic acid (Taurin) are usable as additional stabilizers.
- the ⁇ -amino acid may be comprised in the inventive electrolyte within a range of 1 mg/L to 5 g/L, preferably 100 mg/L to 2 g/L, and even more preferred 200 mg/L to 1.5 g/L.
- the formulation of the invention may comprises an organic stabilizer for electroless plating processes comprising an organic molecule which is the condensation product (adduct) of at least one ⁇ .-amino acid and at least one carboxyl component which may be introduced into the aqueous medium as, e.g., the free carboxylic acid or a salt thereof.
- the condensation product of the ⁇ -amino acid (e.g. ⁇ -alanine) and a carboxylic functional group as derived for the carboxylic acid or its salt, is a ⁇ -amide.
- the condensation product is present in a monomelic, oHgomeric and/or polymeric form, i.e., as the N-teiminal amide of a ⁇ -amino acid monomer, dimer, trimer, oligopeptide and polypeptide.
- the condensation product of the ⁇ -amino acid may be comprised in the inventive electrolyte within a range of 1 mg/L to 5 g/L, preferably 100 mg/L to 2 g/L, and even more preferred 200 mg/L to 1.5 g/L.
- a pre mixture of a ⁇ -amino acid, like e.g. ⁇ . -alanine, with a carboxylic acid, like e.g. lactic acid, glycine, or malic acid increases the stabilizing effect and can those beneficially be used as a second stabilizer in sense of the invention. It has been discovered that the carboxylic acid reacts with ⁇ -amino acids to form amide structures which is deemed to be the reason for the enhanced stabilizing effect.
- the carboxylic acid may be a compound of the group consisting of acrylic acids, aromatic carboxylic acids, fatty acids, aliphatic carboxylic acids, keto acids, dicarboxylic acids, tricarboxylic acids, straight chain carboxylic acids, heterocyclic carboxylic acids, saturated carboxylic acids, unsaturated carboxylic acids, and ⁇ -hydroxy acids. It is also possible to use other organic compounds having a carboxylic functional group. In particular, the salts of carboxylic acids (carboxylate anion -RC0 2 " ) can be used.
- the electrolyte according to this invention may additionally comprise an inorganic stabilizer, preferably antimony.
- an inorganic stabilizer may be comprised in a concentration of between 0.05 mg/L and 0.5 g/L, preferably 0.5 mg/L and 0.1 g/L.
- the electrolyte may comprise three different stabilizers, one being a lanthanide compound, i.e. at least one compound of a metal selected from the group consisting of lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, a second one being a ⁇ -amino acid, and a third one being an inorganic stabilizer, like e.g. antimony.
- a lanthanide compound i.e. at least one compound of a metal selected from the group consisting of lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium
- a further property of a metal layer deposited for an electrolyte according to the present invention is that it is very passive.
- a further advantage of the metal layers deposited for an electrolyte according to the present invention is the good residual compressive stress. Furthermore, the metal layers exhibit an enhanced corrosion resistance.
- the electrolyte may comprise an alkali metal halogenide and/or an alkali metal halogenate, i.e. a salt of an alkali metal with a halogen or a conjugated base of a halogen acid wherein the halogen has an oxidation state of +5.
- halogen and/or halogen oxygen compounds may be comprised in the inventive electrolyte in a concentration of between > 0.05 g/L and ⁇ 5 g/L, preferably between > 0.1 g/L and ⁇ 2 g/L. While not being bound to this theory it is assumed that these compounds act as thermal stabilizers by which addition deposition of nickel on the heating elements or areas of local overheating is avoid.
- Example for alkali metal halogenides and/or an alkali metal halogenates are, e.g. potassium iodite, potassium iodate, sodium iodite, sodium iodate, potassium chloride, potassium chlorate, sodium bromide, lithium chloride, lithium iodate or lithium chlorate.
- the object of the invention is solved by a method for the electroless deposition of a metal layer on a substrate comprising the steps of contacting the substrate to be plated with an electrolyte comprising a metal ion source for the metal to be deposited, a reducing agent, a complexing agent, an accelerator, and a stabilizer, characterized in that the electrolyte comprises as stabilizer a water-soluble lanthanide compound.
- the substrate is contacted with the electiOlyte at a temperature within the range of between >20 °C and ⁇ 100 °C, preferably between >25 °C and ⁇ 95 °C, e.g. between >70 °C and ⁇ 91 °C.
- the substrate is contacted with the electrolyte for a time between > Is and ⁇ 480 min, preferably between > 10s and ⁇ 240 min.
- the formulation of the invention contains ions of at least one metal of the group consisting of nickel, copper, cobalt, boron, silver, palladium and gold.
- salts of the metals are comprised in the electrolyte, e.g. metal chloride, metal sulfate, metal acetate, metal nitrate, metal propionate, metal formiate, metal oxalate, metal citrate, and metal ascorbinate of the respective metals.
- the metal ions are comprised in the electiOlyte in a concentration between 0.01 mol/L and 0.5 mol/L, preferably between 0.02 mol/L and 0.2 mol/L.
- the electrolyte comprises at least one reducing agent of the group consisting of sodium hypophosphite, formaldehyde, dimethylaminoborane, amino borane, or other organic boranes.
- the reducing agent may be comprised in the electiOlyte in a concentration of between 0.08 mol/L and 0.5 mol/L, preferably, 0.1 mol/L and 0.3 mol/L.
- the electrolyte comprises a compound of the group consisting of 2-hydroxy propionic acid, propanediol acid (malonic acid), EDTA, and amino acetic acid.
- the complexing agent is comprised in the electrolyte in a concentration of between 0.05 mol/L and 0.5 mol/L, preferably 0.2 mol/L and 0.4mol/L.
- the electrolyte comprises a compound of the group consisting of saccharin, hydantoin, rhodanine, or carbamide and its derivates.
- the accelerator is comprised in the electrolyte in a concentration of between 0.05 mmol/L and 0.1 mol/L, preferably, 5 mmol/L and 0.25 mol/L.
- the electrolyte comprises at least a water-soluble lanthanide compound.
- Said lanthamde compound may be a least one compound selected from the group consisting of fluorides, chlorides, bromides, iodides, sulfates, phosphates, or nitrates, of at least on metal selected from the group consisting of lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
- Said stabilizer may be comprised in the electrolyte in a concentration within a range of >0.05 mg/L and ⁇ 100 mg/L, preferably between >0.1 mg/L and ⁇ 80 mg/L, most preferably between >1 mg/L and ⁇ 50 mg/L calculated on the lanthanide metal.
- the formulation of the invention contains ions of at least one metal of the group consisting of nickel, copper, cobalt, boron, silver, palladium and gold.
- salts of the metals are comprised in the electrolyte, e.g. metal chloride, metal sulfate, metal acetate, metal nitrate, metal propionate, metal formiate, metal oxalate, metal citrate, and metal ascorbinate of the respective metals.
- the metal ions are comprised in the electrolyte in a concentration between 0,01 mol/L and 2 mol/L, preferably between 0.02 mol/L and 0.5 mol/L.
- the electrolyte comprises at least one reducing agent of the group consisting of sodium hypophosphite, formaldehyde, dimethylaminoborane, aminoborane, or other organic boranes.
- the reducing agent may be comprised in the electrolyte in a concentration of between 0.08 mol/L and 0.5 mol/L, preferably, 0.1 mol/L and 0,3 mol/L.
- the electrolyte comprises a compound of the group consisting of 2-hydroxy propionic acid, propanedioic acid (malonic acid), EDTA, and amino acetic acid.
- the complexing agent is comprised in the electrolyte in a concentration of between 0.05 mol/L and 0,5 mol/L, preferably 0.2 mol/L and 0.4mol/L.
- the electrolyte comprises a compound of the group consisting of saccharin, hydantoin, rhodanine, or carbamide and its derivates.
- the accelerator is comprised in the electrolyte in a concentration of between 0.05 mmol/L and 0.1 mol/L, preferably, 5 mmol/L and 0.25 mol/L.
- the electrolyte comprises at least a water-soluble lanthanide compound. Said lanthanide compound may be a least one.
- compound selected from the group consisting of fluorides, chlorides, bromides, iodides, sulfates, phosphates, or nitrates, of at least on metal selected from the group consisting of lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
- Said stabilizer may be comprised in the electrolyte in a concentration within a range of >0.05 mg/L and ⁇ 100 mg/L, preferably between >0.1 mg/L and ⁇ 80 mg/L, most preferably between >1 mg/L and ⁇ 50 mg/L calculated on the lanthanide metal.
- the electrolyte comprises at least one ⁇ -amino acid having a pK a -value within a range of 4 to 8, preferably within a range of 5 to 7.
- the electrolyte comprises at least one ⁇ -amino acid of the group consisting of 3- amino propionic acid ( ⁇ -alanin), 3-aminobutyric acid, 3-amino-4-methyl valeric acid and 2- arninoethane-sulfonic acid (Taurin).
- the ⁇ - amino acid is comprised in this embodiment of the inventive electrolyte within a range of 1 mg/L to 2 g/1, preferably 100 mg/L to 1 gfl, and even more preferred 200 mg/L to 400 mg/L.
- the use of a combination of two stabilizers beneficially results in a further improvement of the deposition by reduction of nodules.
- the formulation of the invention contains ions of at least one metal of the group consisting of nickel, copper, cobalt, boron, silver, palladium and gold.
- salts of the metals are comprised in the electrolyte, e.g. metal chloride, metal sulfate, metal acetate, metal nitrate, metal propionate, metal formiate, metal oxalate, metal citrate, and metal ascorbinate. of the respective metals.
- the metal ions are comprised in the electrolyte in a concentration between 0,01 mol/L and 0.5 mol/L, preferably between 0.02 mol/L and 0.2 mol/L.
- the electrolyte comprises at least one reducing agent of the group consisting of sodium hypophosphite, formaldehyde, dimethylaminoborane, aminoborane, or other organic boranes.
- the reducing agent may be comprised in the electrolyte in a concentration of between 0.08 mol/L and 0.5 mol/L, preferably, 0.1 mol/L and 0.3 mol/L.
- the electrolyte comprises a compound of the group consisting of 2-hydroxy propionic acid, propanedioic acid (malonic acid), EDTA, and amino acetic acid.
- the complexing agent is comprised in the electrolyte in a concentration of between 0.05 mol/L and 0.5 mol/L, preferably 0,2 mol/L and 0.4mol/L.
- the electrolyte comprises a compound of the group consisting of saccharin, hydantoin, rhodanine, or carbamide and its derivates.
- the accelerator is comprised in the electrolyte in a concentration of between 0.05 mmol/L and 0.1 mol/L, preferably, 5 mmol/L and 0.25 mol/L.
- the electrolyte comprises at least a water-soluble lanthanide compound
- Said lanthanide compound may be a least one compound selected from the group consisting of fluorides, chlorides, bromides, iodides, sulfates, phosphates, or nitrates, of at least on metal selected from the group consisting of lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and Iutetium.
- Said stabilizer may be comprised in the electrolyte in a concentration within a range of >0.05 mg/L and ⁇ 100 mg/L, preferably between >0.1 mg/L and ⁇ 80 mg/L, most preferably between >1 mg/L and ⁇ 50 mg/L calculated on the lanthanide metal.
- the electrolyte comprises antimony as an inorganic stabilizer.
- Antimony is comprised in a concentration of between 0.05 mg/L and 0,5 g/1, preferably 0.5 mg/L and 0.1 g/1.
- the antimony is added as water soluble salt, preferably as chloride, sulfate, acetate, nitrate, propionate, formiate, oxalate, citrate, ascorbinate, or a mixture of these.
- the formulation of the invention contains ions of at least one metal of the group consisting of nickel, copper, cobalt, boron, silver, and gold.
- salts of the metals are comprised in the electrolyte, e.g. metal chloride, metal sulfate, metal acetate, metal nitrate, metal propionate, metal formiate, metal oxalate, metal citrate, and metal ascorbinate of the respective metals.
- the metal ions are comprised in the electrolyte in a concentration between 0.01 mol/L and 2 mol/L, preferably between 0.02 mol/L and 0.5 mol/L.
- the electrolyte comprises at least one reducing agent of the group consisting of sodium hypophosphite, formaldehyde, dimethyl aminoborane, aminoborane, or other organic boranes.
- the reducing agent may be comprised in the electrolyte in a concentration of between 0.08 moI/L and 0.5 mol/L, preferably, 0.1 mol/L and 0.3 mol/L.
- the electrolyte comprises a compound of the group consisting of 2-hydroxy propionic acid, propanedioic acid (malonic acid), EDTA, and amino acetic acid.
- the complexing agent is comprised in the electrolyte in a concentration of between 0.05 rnol/L and 0.5 mol/L, preferably 0.2 mol/L and 0.4mol/L.
- the electrolyte comprises a compound of the group consisting of saccharin, hydantoin, rhodanine, or carbamide and its derivates.
- the accelerator is comprised in the electrolyte in a concentration of between 0.05 mmol/L and 0.1 mol/L, preferably, 5 mmol/L and 0.25 mol/L
- the electrolyte comprises at least a water-soluble lanthanide compound
- Said lanthanide compound may be a least one compound selected from the group consisting of fluorides, chlorides, bromides, iodides, sulfates, phosphates, or nitrates, of at least on metal selected from the group consisting of ' lanthanum, cerium, praeseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
- Said stabilizer may be comprised in the electrolyte in a concentration within a range of >0.05 mg/L and ⁇ 100 mg/L, preferably between >0.1 mg/L and ⁇ 80 mg/L, most preferably between >1 mg/L and ⁇ 50 mg/L calculated on the lanthanide metal.
- the electrolyte comprises at least one ⁇ -amino acid having a pK a -value within a range of 4 to 8, preferably within a range of 5 to 7.
- the electrolyte comprises at least one ⁇ -amino acid of the group consisting of 3- amino propionic acid (B-alanin), 3-aminobutyric acid, 3-amino-4-methyl valeric acid and 2- amino ethane-sulfonic acid (Taurin).
- the ⁇ -amino acid is comprised in this embodiment of the inventive electrolyte within a range of 1 mg/L to 2 g/1, preferably 100 mg/L to 1 g/1, and even more preferred 200 mg/L to 400 mg/L.
- the electrolyte comprises antimony as an inorganic stabilizer.
- Antimony is comprised in a concentration of between 0.05 mg/L and 0.5 g/1, preferably 0.5 mg/L and 0.1 g/1.
- the antimony is added as water soluble salt, preferably as chloride, sulfate, acetate, nitrate, propionate, formiate, oxalate, citrate, ascorbinate, or a mixture of these.
- the formulation of the invention contains a carboxyl component.
- the electrolyte formulation may contain a monocarboxylic, dicarboxylic, or tricarboxylic organic acid. This component can comprise an aryl carboxylic acid, an aliphatic carboxylic acid, or a heterocyclic carboxylic acid.
- Suitable aliphatic carboxylic acids are fatty acids, ⁇ -hydroxycarboxylic acids, including ⁇ -hydroxy dicarboxylic acids particularly Ci to C 4t ⁇ - ⁇ -unsaturated carboxylic acids, particularly C 1 to C 4 and especially acrylic,
- pH is in a range of pH 4 to pH 7.
- a substrate (steel sheet) was brought into contact with an electrolyte comprising:
- ABS plaque 18 mg/L potassium antimony tartrate wherein the pH is in a range of pH 4.0 to pH 5 at a temperature between 80 °C and 94 °C an ABS plaque was plated in an electrolyte with the above mentioned composition.
- the ABS plaque was pre-treated in a standard POP (plating-on-plastic) pretreatment cycle before plating.
- a glossy nickel deposit could be plated from this electrolyte with a plating speed of 8 - 10 ⁇ m/h with a composition of 90 - 91 % by weight nickel and 9 - 10 % by weight of phosphorous.
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
Abstract
La présente invention concerne l'utilisation de composés de lanthanide solubles dans l'eau comme stabilisants dans des électrolytes pour le dépôt chimique de métal, un électrolyte ainsi qu'un procédé pour le dépôt chimique de métaux, en particulier des couches de nickel, de cuivre, de cobalt, de bore, d'argent, de palladium ou d'or, ainsi que des couches d'alliages comprenant au moins l'un des métaux susmentionnés en tant que métal d'alliage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16173403.3A EP3255175A1 (fr) | 2016-06-07 | 2016-06-07 | Utilisation de composés de lanthanide hydrosoluble en tant qu'agents de stabilisation dans des électrolytes de dépôt auto-catalytique de métal |
EP16173403.3 | 2016-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017213866A1 true WO2017213866A1 (fr) | 2017-12-14 |
Family
ID=56112892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/034380 WO2017213866A1 (fr) | 2016-06-07 | 2017-05-25 | Utilisation de composés de lanthanide solubles dans l'eau en tant que stabilisant dans des électrolytes pour le dépôt chimique de métal |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170350016A1 (fr) |
EP (1) | EP3255175A1 (fr) |
WO (1) | WO2017213866A1 (fr) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3650777A (en) * | 1971-02-11 | 1972-03-21 | Kollmorgen Corp | Electroless copper plating |
US20040253450A1 (en) * | 2001-05-24 | 2004-12-16 | Shipley Company, L.L.C. | Formaldehyde-free electroless copper plating process and solution for use in the process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2178146C (fr) | 1995-06-06 | 2002-01-15 | Mark W. Zitko | Depot autocatalytique d'un alliage de nickel-cobalt-phosphore |
DE10246453A1 (de) | 2002-10-04 | 2004-04-15 | Enthone Inc., West Haven | Verfahren zur stromlosen Abscheidung von Nickel |
JP5247142B2 (ja) | 2007-12-19 | 2013-07-24 | 株式会社大和化成研究所 | 銀めっき方法 |
CN101348927B (zh) | 2008-09-05 | 2010-10-06 | 江南机器(集团)有限公司 | 无氰预镀铜溶液 |
CN104846383B (zh) * | 2015-05-11 | 2017-09-26 | 山东汇川汽车部件有限公司 | 一种汽车助力转向泵阀芯的生产方法 |
-
2016
- 2016-06-07 EP EP16173403.3A patent/EP3255175A1/fr not_active Withdrawn
-
2017
- 2017-05-25 WO PCT/US2017/034380 patent/WO2017213866A1/fr active Application Filing
- 2017-06-07 US US15/616,540 patent/US20170350016A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3650777A (en) * | 1971-02-11 | 1972-03-21 | Kollmorgen Corp | Electroless copper plating |
US20040253450A1 (en) * | 2001-05-24 | 2004-12-16 | Shipley Company, L.L.C. | Formaldehyde-free electroless copper plating process and solution for use in the process |
Also Published As
Publication number | Publication date |
---|---|
EP3255175A1 (fr) | 2017-12-13 |
US20170350016A1 (en) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9249513B2 (en) | Beta-amino acid comprising plating formulation | |
WO2015020772A1 (fr) | Solution de nickelage autocatalytique, et procédé | |
EP3156517B1 (fr) | Utilisation de phosphaadamantanes solubles dans l'eau et stables dans l'air en tant qu'agents de stabilisation dans des électrolytes pour dépôt de métal auto-catalytique | |
JP6449335B2 (ja) | 水性無電解ニッケルめっき浴、及びその使用方法 | |
WO2017050662A1 (fr) | Composition de bain de placage pour dépôt autocatalytique d'or et procédé de dépôt d'une couche d'or | |
KR20180064378A (ko) | 무전해 은 도금욕 및 이를 이용하는 방법 | |
JP3972158B2 (ja) | 無電解パラジウムメッキ液 | |
CN118541509A (zh) | 用于在活化的涂布有铜的衬底上沉积钯涂层的组合物 | |
WO2017213866A1 (fr) | Utilisation de composés de lanthanide solubles dans l'eau en tant que stabilisant dans des électrolytes pour le dépôt chimique de métal | |
JP2007254793A (ja) | 無電解ニッケルめっき液 | |
JP6218473B2 (ja) | 無電解Ni−P−Snめっき液 | |
EP2270255A1 (fr) | Electrolyte comprenant de l'acide bêta-aminé et procédé de dépôt d'une couche métallique | |
JP2008506836A (ja) | ニッケルコーティングのハンダ付け特性改良方法 | |
KR101848227B1 (ko) | 인 함량이 높은 무전해 니켈 | |
KR101507452B1 (ko) | Pcb 제조를 위한 무전해 니켈-팔라듐-금 도금 방법 | |
JP2023539306A (ja) | 基板上にパラジウム被覆を析出させるための組成物 | |
JP2004217988A (ja) | 無電解金めっき浴 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17810706 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17810706 Country of ref document: EP Kind code of ref document: A1 |