WO2017213468A1 - 열선 및 이를 포함하는 면상 발열 시트 - Google Patents

열선 및 이를 포함하는 면상 발열 시트 Download PDF

Info

Publication number
WO2017213468A1
WO2017213468A1 PCT/KR2017/006046 KR2017006046W WO2017213468A1 WO 2017213468 A1 WO2017213468 A1 WO 2017213468A1 KR 2017006046 W KR2017006046 W KR 2017006046W WO 2017213468 A1 WO2017213468 A1 WO 2017213468A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
compound layer
present
metal
dopamine
Prior art date
Application number
PCT/KR2017/006046
Other languages
English (en)
French (fr)
Inventor
임동찬
홍기현
김민경
임재홍
정재훈
최승목
이주열
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160106729A external-priority patent/KR101812024B1/ko
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to US15/562,471 priority Critical patent/US20180199400A1/en
Publication of WO2017213468A1 publication Critical patent/WO2017213468A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs

Definitions

  • the present invention relates to a heating wire and a planar heating sheet including the same, and more particularly, to a planar heating sheet having excellent heat generation characteristics and improved water resistance.
  • the surface heating sheet is used as a heating material for residential, such as apartments, houses, as it blocks the maximum from the risk of safety, noise and electromagnetic waves.
  • Conventional planar heating sheets are generally formed by arranging the heating wires at dense intervals and coating the heating wires with a transparent thermal resin or the like.
  • the heating wire acts as a resistance to generate heat and uses the generated heat as a heat source.
  • the general household goods such as carpet or weaving fabric is required to form a flexible sheet that can be folded or bent smoothly
  • the conventional planar heating sheet has a problem that can not be used for this purpose.
  • the heating wires are generally arranged in a zigzag form or the like, and therefore, the length thereof is actually longer than the width.
  • the problem to be solved by the present invention is to solve the problems of the prior art described above, and to provide a planar heating sheet having a wide range of use by implementing a flexible characteristic.
  • the present invention provides a metal nanowire; An organic compound layer coated on the metal nanowires; And a metal oxide layer coated on the organic compound layer.
  • the present invention provides a hot wire that the organic compound layer is catecholamine (catecholamine) or a derivative thereof.
  • the present invention is the catecholamine (catecholamine) dopamine (dopamine), dopamine-quinone (dopamine-quinone), alpha-methyldopamine (alphamethyldopamine), norepinephrine, epinephrine (epinephrine), alpha-methyldopa (alphamethyldopa)
  • catecholamine catecholamine
  • dopamine dopamine
  • dopamine-quinone dopamine-quinone
  • alpha-methyldopamine alphamethyldopamine
  • norepinephrine epinephrine
  • epinephrine epinephrine
  • alpha-methyldopa alphamethyldopa
  • It provides a hot wire, characterized in that at least any one or more selected from the group consisting of, hydroxydopa (droxidopa), and 5-hydroxydopamine (5-Hydroxydopamine).
  • the present invention provides a heating wire that the metal oxide layer is molybdenum (Mo) oxide or tungsten (W) oxide.
  • the present invention also includes a linear heating material including a single fiber body and a plurality of heating wires surrounding the single fiber body, wherein the heating wire is a metal nanowire; An organic compound layer coated on the metal nanowires; And it provides a planar heating sheet comprising a metal oxide layer coated on the organic compound layer.
  • the present invention provides a planar heating sheet, characterized in that a plurality of the linear heating material, the plurality of linear heating material is irregularly arranged.
  • the present invention includes a first electrode connected to one side of the plurality of linear heating materials and a second electrode connected to the other side of the plurality of linear heating materials, by applying power to the first electrode and the second electrode It provides a planar heating sheet that the heating wire generates heat.
  • the present invention provides a planar heating sheet having a length of the metal nanowire is 10 to 50 ⁇ m.
  • the present invention provides a surface heating sheet of the organic compound layer is catecholamine (catecholamine) or a derivative thereof.
  • the present invention is the catecholamine (catecholamine) is dopamine (dopamine), dopamine-quinone (dopamine-quinone), alpha-methyldopamine (alphamethyldopamine), norepinephrine, epinephrine (epinephrine), alpha-methyldopa (alphamethyldopa)
  • a planar heating sheet characterized in that at least any one or more selected from the group consisting of, droxidopa, and 5-hydroxydopamine (5-Hydroxydopamine).
  • the present invention provides a planar heating sheet, the metal oxide layer is molybdenum (Mo) oxide or tungsten (W) oxide.
  • the present invention is a base substrate; A first organic compound layer on the base substrate; And a heating material positioned on the first organic compound layer, wherein the heating material comprises: metal nanowires; A second organic compound layer on the metal nanowire; And a metal oxide layer on the second organic compound layer.
  • the present invention also provides a planar heating sheet, wherein the first organic compound layer and the second organic compound layer are catecholamine or a derivative thereof.
  • the present invention is the catecholamine (catecholamine) dopamine (dopamine), polydopamine (PDA), dopamine-quinone (dopamine-quinone), alpha-methyldopamine (alphamethyldopamine), norepinephrine (erephinephrine), epinephrine (epinephrine), alpha
  • a planar heating sheet characterized in that it is at least one or more selected from the group consisting of -methyldopa, droxyopa, and 5-hydroxydopamine.
  • the present invention also provides a planar heating sheet which is a support structure made of a flexible material of vinyl, plastic, paper or fiber.
  • the present invention also provides a planar heating sheet in which the second organic compound layer covers the metal nanowire, and the interface of the second organic compound layer and the interface of the first organic compound layer are in contact with each other.
  • the present invention also provides a planar heating sheet including a first electrode connected to one side of the metal oxide layer and a second electrode disposed to face the first electrode and connected to the other side of the metal oxide layer.
  • the second organic compound layer is a form surrounding the outer surface of the metal nanowire
  • the metal oxide layer is a form surrounding the outer surface of the second organic compound layer
  • the outer surface of the metal oxide layer is the first Provided is a planar heating sheet in contact with the interface of the organic compound layer.
  • the present invention provides a planar heating sheet including a third organic compound layer positioned on the heating material.
  • the present invention also provides a planar heating sheet in which the third organic compound layer covers the heat generating material and the interface of the third organic compound layer and the interface of the first organic compound layer are in contact with each other.
  • the present invention also provides a planar heating sheet including a first electrode connected to one side of the third organic compound layer and a second electrode positioned to face the first electrode and connected to the other side of the third organic compound layer. .
  • such a hot wire structure that is, metal nanowires; An organic compound layer coated on the metal nanowires; And through the structure of the metal oxide layer coated on the organic compound layer, by lowering the resistance of the hot wire, it is possible to implement a high heat generation characteristics even through the application of a low current.
  • the present invention is a metal nanowire on a base substrate which is a support structure of a flexible material such as vinyl, plastic, paper, fiber; A second organic compound layer on the metal nanowire; And a planar heating sheet through a planar heating material or a linear heating material including a metal oxide layer positioned on the second organic compound layer, so that the sheet can be naturally folded or bent, and thus its use is very broad. .
  • the first organic compound layer is formed on the base substrate to improve the bonding characteristics between the base substrate and the metal nanowires, and also between the metal nanowires and the metal nanowires, thereby generating stable heat generation even when a higher voltage is applied. You can implement the property.
  • FIG. 1 is a view for explaining a planar heating sheet according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged photographic image showing the linear heating element according to the present invention.
  • FIG. 3 is an enlarged perspective view illustrating a plurality of hot wires according to the present invention
  • FIG. 4 is a cross-sectional view taken along the line I-I of FIG. 3.
  • 5 is a photograph showing the junction between the metal nanowires and the metal nanowires.
  • FIG. 6 is a graph showing the resistance characteristics of the planar heating sheet according to Example 1 and Comparative Examples 1 and 2.
  • FIG. 6 is a graph showing the resistance characteristics of the planar heating sheet according to Example 1 and Comparative Examples 1 and 2.
  • FIG 7 is an image image showing heat generation characteristics of the planar heating sheet according to the first embodiment.
  • FIG. 8 is a diagram showing a water resistance test result according to Comparative Example 1
  • FIG. 9 is a diagram showing a water resistance test result according to Comparative Example 2
  • FIG. 10 is a diagram showing a water resistance test result according to Example 1 .
  • FIG. 11 is a photograph showing an application example of the planar heating sheet according to the present invention.
  • FIG. 12 is a view for explaining the planar heating sheet according to the second embodiment of the present invention.
  • FIG. 13 is a view for explaining the planar heating sheet according to the third embodiment of the present invention.
  • FIG. 14 is a view for explaining the planar heating sheet according to the fourth embodiment of the present invention.
  • FIG. 15 is a photograph showing a general house vinyl made of polypropylene (PP) material as a base substrate
  • FIG. 16 is a photograph showing a planar heating sheet according to the present invention.
  • FIG. 17 is an image image showing an exothermic reaction characteristic according to Example 2
  • FIG. 18 is an image image showing an exothermic reaction characteristic according to Comparative Example 3
  • FIG. 19 is a diagram showing an exothermic reaction characteristic according to Comparative Example 4 It is an image image
  • FIG. 20 is an image image which shows the exothermic reaction characteristic which concerns on the comparative example 5.
  • FIG. 21 is a graph showing the resistance characteristics of Example 2, Comparative Example 4 and Comparative Example 5.
  • FIG. 21 is a graph showing the resistance characteristics of Example 2, Comparative Example 4 and Comparative Example 5.
  • FIG. 22 is a graph measuring transmittances of Example 2 and Comparative Examples 3 to 5.
  • FIG. 22 is a graph measuring transmittances of Example 2 and Comparative Examples 3 to 5.
  • FIG. 23 is an illustration of the case where dopamine is formed with the first organic compound layer on the base substrate
  • FIG. 24 is an illustration of the case where polydopamine is formed with the first organic compound layer on the base substrate.
  • 25 is an image image showing the exothermic reaction characteristic according to the third embodiment.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It can be used to easily describe a component's correlation with other components. Spatially relative terms are to be understood as including terms in different directions of components in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as “below” or “beneath” of another component may be placed “above” the other component. Can be. Thus, the exemplary term “below” can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
  • FIG. 1 is a view for explaining a planar heating sheet according to a first embodiment of the present invention.
  • the planar heating sheet 100 includes a plurality of linear heating materials 130, and is connected to one side of the plurality of linear heating materials 130.
  • An electrode 120a and a second electrode 120b connected to the other side of the plurality of linear heating materials.
  • the plurality of linear heating materials 130 are irregularly arranged.
  • the first linear heating material and the second linear heating material are arranged in an irregular shape, rather than being regularly woven, and the plurality of linear heating materials are irregularly connected to each other. This will be described later.
  • first electrode and the second electrode may be made of a general metal material, nickel (Ni), nickel-phosphorus (Ni-P) alloy, nickel-boron (Ni-B) alloy, nickel-gold (Ni At least one or more of -Au alloy, gold (Au), and copper (Cu) may be used, but materials of the first electrode and the second electrode are not limited in the present invention.
  • planar heating sheet 100 may further include a power supply unit (not shown) for applying power to the first electrode and the second electrode, that is, from the power supply unit (not shown)
  • the power is applied to the first electrode and the second electrode, the power is applied to the linear heating material connected to the first electrode and the second electrode, the linear heating material 130 can generate heat.
  • planar heating sheet according to the present invention may further include a base substrate (not shown) for supporting the linear heating material 130.
  • the base substrate even without the base substrate, it may serve as a planar heating sheet, by further comprising the base substrate, it is possible to support the linear heating material.
  • the base substrate (not shown) may be made of a support structure of rigid or flexible form, such as glass, plastic, paper, fiber, etc.
  • the base substrate may be limited. It is not.
  • linear heating material 130 according to the present invention will be described in more detail.
  • FIG. 2 is an enlarged photographic image showing the linear heating material 130 according to the present invention.
  • the linear heating material 130 includes a single fiber body 131 and a plurality of hot wires 140 surrounding the single fiber body 131.
  • the plurality of heating wires 140 are irregularly disposed on the surface of a single strand, a single fiber body 131, and the plurality of heating wires 140 are It may be configured to surround the surface of the single fiber body 131.
  • the single fiber body 131 may use a common fiber
  • the diameter of the single fiber body 131 may be several tens of micro to hundreds of micro, for example, may correspond to a diameter of 10 to 500 ⁇ m have.
  • the length of the single fiber body 131 can be configured in various ways, it can be used according to the size of the planar heating sheet according to the present invention.
  • FIG. 3 is an enlarged perspective view illustrating a plurality of hot wires according to the present invention
  • FIG. 4 is a cross-sectional view taken along the line I-I of FIG. 3.
  • the heating wire 140 according to the present invention is a metal nanowire 141; An organic compound layer 142 coated on the metal nanowires 141; And a metal oxide layer 143 coated on the organic compound layer 142.
  • the metal nanowire 141 may be a metal such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), platinum (Pt), nickel (Ni), and the like. Ag) nanowires are preferred.
  • the diameter of the metal nanowires 141 may be 30 to 50nm, the length of the metal nanowires 141 is preferably 10 to 50 ⁇ m.
  • the length of the metal nanowire 141 is preferably 10 to 50 ⁇ m.
  • the organic compound layer 142 is to prevent the oxidation of the metal nanowires, and also to improve the waterproofness of the planar heating sheet according to the present invention, the organic compound layer 142 may be used catecholamine (catecholamine) or derivatives thereof. Can be.
  • Catecholamine means a single molecule having a hydroxyl group (-OH) as the ortho-group of the benzene ring and various alkylamines as the para-group.
  • the catecholamine can be synthesized in various forms according to the selection of precursor materials, for example, dopamine, dopamine-quinone, alpha-methyldopamine, norepinephrine , Epinephrine (epinephrine), alpha-methyldopa (alphamethyldopa), droxidopa (droxidopa), and 5-hydroxydopamine (5-Hydroxydopamine) can be selected from the group consisting of, preferably the organic compound layer (142) Dopamine (C 8 H 11 NO 2 ) can be used.
  • the organic compound layer 142 may not only improve the bonding characteristics between the nanowires, but also may enter between the nanowires and the fiber body to serve as a mechanical support.
  • the organic compound layer may improve the bonding characteristics of the metal oxide coated in a later step.
  • the bonding properties between such nanowires and nanowires, between nanowires and fibrous bodies, and also between nanowires and metal oxides can be improved, thereby improving the electrical properties of the entire heating element.
  • the organic compound layer 142 in the present invention is dopamine (dopamine, C) because the dopamine can withstand high temperature, and even if the heat is generated and the temperature is increased, the waterproof property can be maintained. Preference is given to using 8 H 11 NO 2 ).
  • the waterproofness is related to the water resistance of the planar heating sheet, that is, when the planar heating sheet is applied to the product, since the waterproofness is improved, it is possible to prevent damage to the product due to the penetration of moisture, thus, the planar heating The water resistance of the sheet can be improved.
  • the metal oxide layer 143 is to improve the conductivity of the hot wire, silicon (Si) oxide, titanium (Ti) oxide, zirconium (Zr) oxide, strontium (Sr) oxide, zinc (Zn) oxide, indium ( In) oxide, lanthanum (La) oxide, vanadium (V) oxide, molybdenum (Mo) oxide, tungsten (W) oxide, tin (Sn) oxide, niobium (Nb) oxide, magnesium (Mg) oxide, At least one selected from the group consisting of aluminum (Al) oxide, yttrium (Y) oxide, scandium (Sc) oxide, samarium (Sm) oxide, gallium (Ga) oxide, and strontium titanium (SrTi) oxide, Preferably, the oxide is molybdenum (Mo) oxide or tungsten (W) oxide.
  • the type of the oxide is not limited in the present invention.
  • the metal oxide layer 143 may be coated on the metal nanowires to prevent oxidation of the metal nanowires, and may serve as an adhesive at the junction between the metal nanowires and the metal nanowires.
  • 5 is a photograph showing the junction between the metal nanowires and the metal nanowires.
  • the junction A between the metal nanowires 140a and the metal nanowires 140b causes a resistance and also corresponds to a site that causes a short circuit in the bending process.
  • the conductivity can be improved, and the adhesion property at the junction between the metal nanowires can be improved.
  • the planar heating sheet 100 includes a plurality of linear heating members 130 arranged irregularly, and the linear heating member 130 is a single fiber body 131. And a plurality of heating wires 140 surrounding the single fiber body 131, wherein the heating wires 140 are metal nanowires 141; An organic compound layer 142 coated on the metal nanowires 141; And a metal oxide layer 143 coated on the organic compound layer 142.
  • the first electrode 120a may be connected to one side of the plurality of linear heating materials 130, and the second electrode 120b may be connected to the other sides of the plurality of linear heating materials 130.
  • the heating wire 140 may generate heat by applying power to the two electrodes.
  • the conventional planar heating sheet is formed into a rigid shape because the outside of the heating wire is coated with a heat resin or the like. Therefore, its use is limited because it cannot be folded or bent naturally like a general fabric.
  • the hot wire that is, the metal nanowire 141; An organic compound layer 142 coated on the metal nanowires 141; And a metal oxide layer 143 coated on the organic compound layer 142 on a single fiber to form a linear heating material, and implement a planar heating sheet through the plurality of linear heating materials.
  • the hot wire that is, the metal nanowire 141; An organic compound layer 142 coated on the metal nanowires 141; And a metal oxide layer 143 coated on the organic compound layer 142 on a single fiber to form a linear heating material, and implement a planar heating sheet through the plurality of linear heating materials.
  • the above-described heating wire is coated on a single fiber body, and the single fiber body coated with the heating wire, that is, the linear heating material can be woven to be used as a general fabric. Since the planar heating sheet can maintain its flexible characteristics, its use range becomes very wide.
  • the linear heating element may be irregularly arranged on the base substrate to be used as a surface heating sheet, and may be implemented as a flexible surface heating sheet according to the material of the base substrate.
  • metal nanowires were coated on the fiber body.
  • the fiber body As the fiber body, a commercially available nonwoven fabric was used. Meanwhile, as a pretreatment for removing impurities on the nonwoven fabric, the nonwoven fabric may be immersed in acetone for 24 hours and then dried in a 40 degree oven for 5 hours.
  • Ag nanowires were used as metal nanowires, and Ag nanowires were used by purchasing a dispersion stock solution of Nanopix. At this time, Ag nanowires in the dispersion stock solution was 25 ⁇ 40 nm thick, about 25 ⁇ m length, the concentration was 0.5 wt%, the solvent was used as IPA (Isopropyl alcohol).
  • IPA Isopropyl alcohol
  • the stock solution was diluted 5 to 10 times with IPA: MeOH solution for uniform and clear coating, and spin-coated at 1000 rpm to coat the metal nanowires on the fibers.
  • a dip coating method may be used.
  • a dip coating method a nonwoven fabric is pushed down the solution into a booth containing a solution (30 ml of silver nanowire diluent), and then moved back and forth twice from side to side. It can be coated by slowly removing the nonwoven fabric in the direction and drying. Meanwhile, the coating can be coated by various methods such as spraying and slot die in addition to spin coating. After coating, natural drying was performed without heat treatment. However, hot air drying of less than 50 degrees is possible to speed up mass production.
  • an organic compound layer was formed on the metal nanowires coated on the fiber body.
  • the organic compound dopamine was used, and 2 mg of dopamine was dispersed in 10 mL of MeOH, and the dopamine solution was dropped and spin-coated onto the metal nanowires coated on the fiber.
  • the dip coating method can be used, and in the case of the dip coating, the dopamine solution (40 ml) was slowly pushed into the canyon containing the dopamine solution (40 ml) until the silver-coated fiber was slowly moved back and forth twice. , And slowly taken out in one direction and dried by a natural drying or a dryer. Next, a metal oxide layer was formed on the organic compound layer.
  • the metal oxide precursor solution was prepared by using an alcohol-based solvent (such as anhydrous methanol / isopropyl alcohol) in which phosphomolybdic acid or phosphotungstic acid was dissolved, and dissolving solutes between 1 mg and 5 mg per ml of solvent.
  • an alcohol-based solvent such as anhydrous methanol / isopropyl alcohol
  • Coating the metal oxide precursor solution on the organic compound layer may be coated using a coating method such as spin coating, dip coating or spraying, slot die, or the like in the atmosphere.
  • a metal oxide film having a thickness of about 10 to 20 nm was formed by coating a 4 ml drop based on 100 ⁇ 100 (mm) at 3000 rpm for 30 seconds.
  • MoOx molecular metal oxide
  • WOx tungsten oxide
  • the metal oxide layer may be coated on the metal nanowires to prevent oxidation of the metal nanowires and may also serve as an adhesive at the junction between the metal nanowires and the metal nanowires.
  • the protective film adhesives may be used only at room temperature drying or at low temperature drying by heat treatment below 50 ° C.
  • the role can be implemented, and thus, the present invention can be applied to materials susceptible to high temperatures such as paper, plastic, vinyl, and the like.
  • the first electrode and the second electrode were disposed to prepare a planar heating sheet according to the present invention.
  • the process was performed in the entire room temperature / atmosphere, and no separate heat treatment was performed.
  • current annealing may be performed, that is, by applying a pulse current to the first electrode and the second electrode as described above, a separate heat treatment may be replaced. have.
  • Applying the pulse current was repeated 10 times to turn off the current of 100mA for 1 minute ON / 30 seconds to perform the current annealing.
  • annealing the current using the first electrode and the second electrode included in the planar heating sheet according to the present invention can eliminate the separate heat treatment process.
  • FIG. 6 is a graph showing the resistance characteristics of the planar heating sheet according to Example 1 and Comparative Examples 1 and 2.
  • a represents Comparative Example 1
  • b represents Comparative Example 2
  • c represents Example 1.
  • the current application time means current annealing through the aforementioned pulse current application.
  • Comparative Example 1 consisting of metal nanowires and Comparative Example 2 in which only the organic compound layer is coated on the metal nanowires may be used. You can see that the resistance is very low.
  • FIG 7 is an image image showing heat generation characteristics of the planar heating sheet according to the first embodiment.
  • the temperature of the planar heating sheet increases according to the voltage and current applied for each specimen size.
  • a 9 V voltage and a current of 0.991 A are applied. It can also be confirmed that the temperature rise is possible up to 68.5 ° C, and also it can be confirmed that the temperature rise up to 108.0 ° C by application of a 13V voltage and 1.377A current.
  • FIG. 8 is a diagram showing a water resistance test result according to Comparative Example 1
  • FIG. 9 is a diagram showing a water resistance test result according to Comparative Example 2
  • FIG. 10 is a diagram showing a water resistance test result according to Example 1 .
  • Comparative Example 1 composed of metal nanowires
  • water gradually absorbs and eventually spreads widely over time. It can also be checked by measuring images.
  • dopamine has a great effect of preventing water absorption and increasing water resistance. As a result, water is not absorbed into the planar heating sheet, and thus it may be confirmed that the product is not damaged.
  • the metal nanowire 141 As described above, in the present invention, the metal nanowire 141; An organic compound layer 142 coated on the metal nanowires 141; And forming a linear heating element by coating a heating wire including the metal oxide layer 143 coated on the organic compound layer 142 on a single fiber body, and implementing a planar heating sheet through the plurality of linear heating elements.
  • a heating wire including the metal oxide layer 143 coated on the organic compound layer 142 on a single fiber body, and implementing a planar heating sheet through the plurality of linear heating elements.
  • FIG. 11 is a photograph showing an application example of the planar heating sheet according to the first embodiment of the present invention.
  • the planar heating sheet according to the first embodiment of the present invention, 1 can be used as a detachable ultra-thin sheet-type wall heater, it is possible to apply to the consumer's free size / design selection.
  • 2 It can be used as a USB type mini heating pad, and can be applied as a portable pad (clothing / cell phone, etc.) and a stationary type (desk / chair, etc.).
  • 3 It can be used for preventing microbial activity and house deity in the soil, and can be applied to agricultural fields that need low temperature and water repellency.
  • 4 can be used as a flexible heater with maximum flexibility, and heating of special type of curved material is possible.
  • the hot wire structure as described above that is, the metal nanowire 141; An organic compound layer 142 coated on the metal nanowires 141; And through the structure of the metal oxide layer 143 coated on the organic compound layer 142, by lowering the resistance of the hot wire, it is possible to implement a high heat generation characteristics even through the application of a low current.
  • the waterproofness can be improved and the durability of the planar heating sheet can be improved.
  • FIG. 12 is a view for explaining the planar heating sheet according to the second embodiment of the present invention.
  • the planar heating sheet 100 ′ includes a base substrate 110 ′.
  • the base substrate 110 ′ is a structure for supporting a heat generating material, which will be described later, and may be formed of a support structure made of a flexible material such as vinyl, plastic, paper, and fiber.
  • the base substrate 110 ′ may be a vinyl material, and more specifically, the vinyl material may be polypropylene (PP), polyvinyl chloride (PVC), polyethylene (PE), and vinyl acetate (EVA). It may be at least one material selected from the group consisting of.
  • PP polypropylene
  • PVC polyvinyl chloride
  • PE polyethylene
  • EVA vinyl acetate
  • the material of the base substrate is not limited in the present invention.
  • planar heating sheet 100 ′ includes a first organic compound layer 120 ′ positioned on the base substrate 110 ′.
  • the first organic compound layer 120 ′ may use catecholamine or a derivative thereof.
  • Catecholamine means a single molecule having a hydroxyl group (-OH) as the ortho-group of the benzene ring and various alkylamines as the para-group.
  • the catecholamine can be synthesized in various forms depending on the choice of precursor materials, for example, dopamine, dopamine, polydopamine (PDA), dopamine-quinone, alpha-methyldopamine Can be selected from the group consisting of norepinephrine, epinephrine, alphamethyldopa, droxidopa, and 5-hydroxydopamine, preferably 5-Hydroxydopamine.
  • the organic compound layer 142 may use dopamine (Dopamine, C 8 H 11 NO 2 ).
  • the first organic compound layer 120 ′ is for improving the bonding property of the heat generating material and the base substrate, which will be described later, which will be described later.
  • the planar heating sheet 100 ′ may include heat generating members 130 ′, 140 ′, 150 ′ positioned on the first organic compound layer 120 ′. It includes.
  • the heat generating members 130 ′, 140 ′, and 150 ′ are planarly positioned on the first organic compound layer 120 ′, and the heat generating material according to the second embodiment of the present invention is defined as a planar heating material. can do.
  • the heating materials 130 ′, 140 ′, and 150 ′ include metal nanowires 130 ′ positioned on the first organic compound layer 120 ′.
  • the diameter of the metal nanowires 130 ' may be 30 to 50 nm, and the length of the metal nanowires 130' may be 10 to 50 ⁇ m, but in the present invention, the diameter of the metal nanowires And length do not limit.
  • the metal nanowire 130 ′ may be a metal such as gold (Au), silver (Ag), copper (Cu), aluminum (Al), platinum (Pt), nickel (Ni), and the like. It is preferable that it is silver (Ag) nanowire at.
  • the metal nanowires 130 ' may be irregularly arranged.
  • the plurality of metal nanowires may be regularly arranged in a stripe type on the first organic compound layer 120 ', but, alternatively, the plurality of metal nanowires may be arranged in the first organic compound layer ( The metal nanowires may be irregularly connected to each other on the first organic compound layer 120 '.
  • the heating elements 130 ′, 140 ′, and 150 ′ may form the second organic compound layer 140 ′ positioned on the metal nanowire 130 ′. Include.
  • the second organic compound layer 140 ′ may use catecholamine or a derivative thereof.
  • Catecholamine means a single molecule having a hydroxyl group (-OH) as the ortho-group of the benzene ring and various alkylamines as the para-group.
  • the second organic compound layer 140 ' is located on the metal nanowire 130', while the second organic compound layer 140 'covers the metal nanowire 130', An interface of the second organic compound layer 140 ′ and an interface of the first organic compound layer 120 ′ may be in contact with each other.
  • the second organic compound layer 140 ' is formed of the metal in a state where the upper surface of the first organic compound layer 120' and the lower surface of the second organic compound layer 140 'are in contact with each other. May be located on the nanowires 130 ′.
  • the second organic compound layer 140 ′ may not only improve bonding properties between metal nanowires, but also have an interface between the interface of the second organic compound layer 140 ′ and the first organic compound layer 120 ′. By contacting each other, it may serve as a support for supporting the metal nanowires positioned on the first organic compound layer 120 ′.
  • the second organic compound layer 140 ′ may improve the bonding property of the metal oxide layer coated in a later step.
  • the second organic compound layer has excellent bonding properties between the metal nanowires and the metal nanowires, between the metal nanowires and the first organic compound layer, and also between the metal nanowires and the metal oxide layer.
  • the overall electrical characteristics can be improved.
  • the electrical channeling role is also possible, it is possible to further improve the electrical properties of the metal nanowires.
  • the organic compound layers 120 'and 140' are dopamine in the present invention because the dopamine may withstand high temperatures and thus maintain heat resistance even when the heat is generated and the temperature increases. Preference is given to using (dopamine, C 8 H 11 NO 2 ).
  • the waterproofness is related to the water resistance of the planar heating sheet, that is, when the planar heating sheet is applied to the product, since the waterproofness is improved, it is possible to prevent damage to the product due to the penetration of moisture, thus, the planar heating The water resistance of the sheet can be improved.
  • the heating materials 130 ′, 140 ′, and 150 ′ may form the metal oxide layer 150 ′ positioned on the second organic compound layer 140 ′. Include.
  • the metal oxide layer 150 ′ is to improve conductivity of the metal nanowires, and includes silicon (Si) oxide, titanium (Ti) oxide, zirconium (Zr) oxide, strontium (Sr) oxide, and zinc (Zn) oxide.
  • the oxide may be molybdenum (Mo) oxide or tungsten (W) oxide.
  • the type of the oxide is not limited in the present invention.
  • the metal oxide layer 150 ′ may be coated on the metal nanowires to prevent oxidation of the metal nanowires and may serve as an adhesive at a junction between the metal nanowires and the metal nanowires.
  • the planar heating sheet according to the second embodiment of the present invention as described above includes a base substrate 110 ′ and a first organic compound layer 120 ′ positioned on the base substrate 110 ′.
  • the heat generating material positioned on the organic compound layer 120 ′ more specifically, includes a planar heat generating material.
  • the heat generating material the metal nanowires 130 'positioned on the first organic compound layer 120'; A second organic compound layer 140 'positioned on the metal nanowire 130'; And a metal oxide layer 150 'positioned on the second organic compound layer 140'.
  • the metal nanowires 130 ' may be irregularly arranged, and more specifically, a plurality of metal nanowires may be irregularly connected to each other on the first organic compound layer 120'.
  • the second organic compound layer 140 ′ covers the metal nanowire 130 ′, and the interface of the second organic compound layer 140 ′ and the interface of the first organic compound layer 120 ′ are in contact with each other. May be in a state.
  • the second organic compound layer 140 ′ may not only improve the bonding property between metal nanowires, but also the interface between the second organic compound layer 140 ′ and the interface between the first organic compound layer 120 ′ may be improved. By contacting each other, it may serve as a support for supporting the metal nanowires positioned on the first organic compound layer 120 ′.
  • the heating material more specifically, a first electrode (not shown) connected to one side of the metal oxide layer and the first It may include a second electrode (not shown) positioned opposite to the electrode and connected to the heat generating material, more specifically, the other side of the metal oxide layer.
  • the first electrode and the second electrode may be made of a general metal material, nickel (Ni), nickel-phosphorus (Ni-P) alloy, nickel- boron (Ni-B) alloy, nickel-gold (Ni-Au At least one of an alloy, gold (Au), and copper (Cu) may be used, but materials of the first electrode and the second electrode are not limited in the present invention.
  • planar heating sheet 100 ′ may further include a power supply unit (not shown) for applying power to the first electrode and the second electrode, that is, from the power supply unit (not shown).
  • the applied power is applied to the first electrode and the second electrode, and power is applied to the heating material connected to the first electrode and the second electrode through the metal oxide layer, so that the heating material can generate heat.
  • planar heating sheet according to the third embodiment of the present invention is a view for explaining the planar heating sheet according to the third embodiment of the present invention.
  • the planar heating sheet according to the third embodiment of the present invention may refer to the above-described second embodiment.
  • the planar heating sheet 200 includes a base substrate 210.
  • the base substrate 110 ′ is a structure for supporting a heat generating material, which will be described later, and may be formed of a support structure made of a flexible material such as vinyl, plastic, paper, and fiber. Since this is the same as the second embodiment described above, a detailed description thereof will be omitted.
  • planar heating sheet 200 includes a first organic compound layer 220 positioned on the base substrate 210.
  • the first organic compound layer 220 may be used catecholamine (catecholamine) or its derivatives, which is the same as the second embodiment described above, a detailed description thereof will be omitted.
  • the planar heating sheet 200 includes heat generating materials 230, 240, and 250 positioned on the first organic compound layer 220.
  • the heat generating material according to the third embodiment of the present invention may be defined as a linear heating material.
  • the heat generating material is positioned on the first organic compound layer in plan view, while in the third embodiment according to the present invention, Since the organic compound layer may be linearly positioned, the heat generating material according to the third embodiment of the present invention may be defined as a linear heat generating material.
  • the heating materials 230, 240, and 250 according to the third embodiment of the present invention include metal nanowires 230.
  • the diameter of the metal nanowires 130 ' may be 30 to 50 nm, and the length of the metal nanowires 130' may be 10 to 50 ⁇ m, but in the present invention, the diameter of the metal nanowires And length do not limit. Since it is as described above, a detailed description thereof will be omitted.
  • the heat generating material 230, 240, 250 includes a second organic compound layer 240 positioned on the metal nanowire 230.
  • the second organic compound layer 240 may use catecholamine or a derivative thereof. Since it is the same as the first organic compound layer 220 described above, a detailed description thereof will be omitted.
  • the second organic compound layer 240 is located on the metal nanowires 230, so that the second organic compound layer 240 is the metal nanowires 230. It may mean that the position surrounding the outer surface of the.
  • the metal nanowire corresponds to a state in which the interface of the second organic compound layer and the interface of the first organic compound layer are in contact with each other while the second organic compound layer covers the metal nanowire.
  • a part of the wire is in contact with the first organic compound layer, but in the third embodiment, since the second organic compound layer 240 is positioned to surround the outer surface of the metal nanowire 230, the metal nano It can be seen that the wire is not in direct contact with the first organic compound layer 220.
  • the heat generating material 230, 240, 250 includes the metal oxide layer 250 positioned on the second organic compound layer 240. Since the material of the metal oxide layer is the same as that of the second embodiment, a detailed description thereof will be omitted below.
  • the metal oxide layer 250 is located on the second organic compound layer 240, the metal oxide layer 250 is the second organic compound layer 240 It may mean that the position surrounding the outer surface of the.
  • the metal oxide layer is formed on the second organic compound layer so that the interface of the second organic compound layer and the interface of the first organic compound layer are in contact with each other.
  • the metal oxide layer 250 is positioned to surround the outer surface of the second organic compound layer 240, the second organic compound layer 240 is in contact with the first organic compound layer 220.
  • the outer surface of the metal oxide layer 250 may be in contact with the interface of the first organic compound layer 220.
  • the heating materials 230, 240, and 250 may be irregularly arranged.
  • the plurality of heating materials 230, 240, 250 may be regularly arranged in a stripe type on the first organic compound layer 220, and, alternatively, the plurality of heating materials 230, 240 and 250 may be disposed in an irregular shape on the first organic compound layer 220, and the plurality of heat generating materials 230, 240 and 250 may be irregularly connected to each other on the first organic compound layer 220.
  • the planar heating sheet according to the third embodiment of the present invention is located opposite to the first electrode (not shown) and the first electrode connected to one side of the heating material, the other side of the heating material It may include a second electrode (not shown) connected to the.
  • planar heating sheet 200 may further include a power supply unit (not shown) for applying power to the first electrode and the second electrode, that is, the power supply unit ( The power applied from the second electrode may be applied to the first electrode and the second electrode, and power is applied to the heating material connected to the first electrode and the second electrode, thereby generating heat.
  • a power supply unit not shown for applying power to the first electrode and the second electrode
  • the power applied from the second electrode may be applied to the first electrode and the second electrode, and power is applied to the heating material connected to the first electrode and the second electrode, thereby generating heat.
  • the planar heating sheet according to the third embodiment of the present invention as described above includes a base substrate 210 and a first organic compound layer 220 positioned on the base substrate 210, and the first organic compound layer (The heating material located on the 220, more specifically, a linear heating material.
  • the heating material the metal nanowires 230; A second organic compound layer 240 positioned on the metal nanowire 230; And a metal oxide layer 250 positioned on the second organic compound layer 240.
  • the heating elements 230, 240, 250 may be irregularly arranged, and more specifically, a plurality of heating elements 230, 240, 250 are irregular on the first organic compound layer 220. Arranged in a shape, the plurality of heating materials 230, 240, 250 may be irregularly connected to each other on the first organic compound layer 220.
  • the second organic compound layer 240 may be positioned to surround the outer surface of the metal nanowire 230, and the metal oxide layer 250 may be formed of the second organic compound layer 240. It may be positioned to surround the outer surface.
  • the second organic compound layer 240 is positioned to surround the outer surface of the metal nanowire 230, and the metal oxide layer 250 is the second organic compound layer 240. Since the second organic compound layer 240 is not in contact with the first organic compound layer 220, the outer surface of the metal oxide layer 250 is formed on the outer surface of the first organic compound layer. It may have a form in contact with the interface of the 220.
  • planar heating sheet according to the fourth embodiment of the present invention is a view for explaining the planar heating sheet according to the fourth embodiment of the present invention.
  • the planar heating sheet according to the fourth embodiment of the present invention may refer to the above-described third embodiment.
  • the planar heating sheet 300 includes a base substrate 310.
  • a first organic compound layer 320 disposed on the base substrate 310, and includes a heating material located on the first organic compound layer 320, wherein the heating material, the metal nanowires 330; A second organic compound layer 340 positioned on the metal nanowire 330; And a metal oxide layer 350 positioned on the second organic compound layer 340.
  • the planar heating sheet 300 according to the fourth embodiment of the present invention includes a third organic compound layer 360 positioned on the heating materials 330, 340, and 350.
  • the third organic compound layer 360 may use catecholamine or a derivative thereof. Since this is the same as the first organic compound layer 320 described above, a detailed description thereof will be omitted.
  • the third organic compound layer 360 is positioned on the heat generating materials 330, 340, and 350 while the third organic compound layer 360 covers the heating materials 330, 340, and 350.
  • the interface of the third organic compound layer 360 and the interface of the first organic compound layer 320 may be in contact with each other.
  • the third organic compound layer 360 is the heat generating material 330. , 340 and 350.
  • the third organic compound layer 360 is disposed on the first organic compound layer 320 by contacting the interface of the third organic compound layer 360 and the interface of the first organic compound layer 320 with each other. It may serve as a support for supporting the ash (330, 340, 350).
  • planar heating sheet according to the fourth embodiment of the present invention is positioned to face the first electrode (not shown) and the first electrode connected to one side of the third organic compound layer, It may include a second electrode (not shown) connected to the other side of the third organic compound layer.
  • planar heating sheet 300 may further include a power supply unit (not shown) for applying power to the first electrode and the second electrode, that is, the power supply unit ( Power is applied to the first electrode and the second electrode, and power is applied to a heating material connected to the first electrode and the second electrode through the third organic compound layer, thereby generating heat. Ash can fever.
  • a power supply unit (not shown) for applying power to the first electrode and the second electrode, that is, the power supply unit ( Power is applied to the first electrode and the second electrode, and power is applied to a heating material connected to the first electrode and the second electrode through the third organic compound layer, thereby generating heat. Ash can fever.
  • the planar heating sheet according to the fourth embodiment of the present invention as described above includes a base substrate 310 and a first organic compound layer 320 positioned on the base substrate 310, and the first organic compound layer ( It includes a heat generating material, more specifically, a linear heating material located on the 320.
  • the heating material the metal nanowires (330); A second organic compound layer 340 positioned on the metal nanowire 330; And a metal oxide layer 350 positioned on the second organic compound layer 340.
  • the heating elements 330, 340, 350 may be irregularly arranged. More specifically, the plurality of heating elements 330, 340, 350 are irregular on the first organic compound layer 320. Arranged in a shape, the plurality of heat generating materials 330, 340, and 350 may be irregularly connected to each other on the first organic compound layer 320.
  • the second organic compound layer 340 may be positioned to surround the outer surface of the metal nanowire 330, and the metal oxide layer 350 may be formed of the second organic compound layer 340. It may mean that the position surrounding the outer surface.
  • the second organic compound layer 340 is positioned to surround the outer surface of the metal nanowire 330, and the metal oxide layer 350 is the second organic compound layer 340. Since the second organic compound layer 340 is not in contact with the first organic compound layer 320, the outer surface of the metal oxide layer 350 may be formed to surround the outer surface of the first organic compound layer. It may have a form in contact with the interface of the 320.
  • the fourth exemplary embodiment includes a third organic compound layer 360 positioned on the heat generating materials 330, 340, and 350, and the third organic compound layer 360 includes the heating materials 330, 340, and the like. Covering 350, the interface of the third organic compound layer 360 and the interface of the first organic compound layer 320 may be in contact with each other.
  • the heat generating material positioned on the first organic compound layer 320 by contacting the interface of the third organic compound layer 360 and the interface of the first organic compound layer 320 with each other. It may serve as a support for supporting the (330, 340, 350).
  • the conventional planar heating sheet is formed into a rigid shape because the outside of the heating wire is coated with a heat resin or the like. Therefore, it can not be folded or used naturally, its use is limited.
  • a metal nanowire on a base substrate which is a support structure made of a flexible material such as vinyl, plastic, paper, and fiber;
  • a base substrate As a base substrate, a general house vinyl (100 * 100 mm 2) made of polypropylene (PP) was prepared. The base substrate was pretreated, and the pretreatment was immersed in isopropyl alcohol (Isopropyl alcohol, IPA) for 1 minute, dried through hot air drying, and then ozonated for 5 minutes. However, the pretreatment step may not be performed.
  • Isopropyl alcohol, IPA isopropyl alcohol
  • a first organic compound layer was formed on the pretreated vinyl as the base substrate.
  • Dopamine was used as the material of the first organic compound layer, and the formation of the first organic compound layer on the base substrate was performed through a dip-sliding method. Specifically, a dopamine solution (6 mg of dopamine hydrochloride was dispersed in 30 mL of MeOH) in a 12 * 12 * 1.7 cm3 bath, and the pretreated vinyl was immersed in the dopamine solution.
  • metal nanowires were formed on the first organic compound layer.
  • Ag nanowires were used as the metal nanowires, and Ag nanowires were used by purchasing a dispersion stock solution of Nanopix.
  • Ag nanowires in the dispersion stock solution was 25 ⁇ 40 nm thick, about 25 ⁇ m length, the concentration was 0.5 wt%, the solvent was used as IPA (Isopropyl alcohol). Meanwhile, the stock solution may be diluted 5 to 10 times with IPA: MeOH solution for uniform and clean coating.
  • the metal nanowires were coated on the first organic compound layer by a dip coating method.
  • a base substrate including the first organic compound layer is placed below the solution in a booth containing a solution (30 ml of silver nanowires: AgNW (5.45 ml): IPA (12.27 ml): MeOH (12.27 ml)). After pushing back and forth twice from side to side, the base substrate may be slowly removed and dried in one direction to coat it.
  • the coating can be coated in various ways, such as spin coating, spray, slot die, etc. in addition to dip coating. After coating, natural drying was performed without heat treatment. However, hot air drying of less than 50 degrees is possible to speed up mass production.
  • a second organic compound layer was formed on the metal nanowires.
  • dopamine was used, and the formation of the second organic compound layer on the metal nanowires was formed through a deep-sliding method. Specifically, a dopamine solution (2 mg of dopamine hydrochloride was dispersed in 10 mL of MeOH) in a 12 * 12 * 1.7 cm 3 bath, and the base substrate containing the metal nanowires was immersed in the dopamine solution.
  • a metal oxide layer was formed on the second organic compound layer.
  • an alcohol-based solvent such as anhydrous methanol / isopropyl alcohol
  • phosphotungstic acid (TWA) was dissolved was used, and 75 mg of Phosphotungstic acid hydrate was dispersed in 30 ml of MeOH.
  • Coating the metal oxide precursor solution on the organic compound layer may be coated using a coating method such as spin coating, dip coating or spraying, slot die, or the like in the atmosphere.
  • a metal oxide film having a thickness of about 10 to 20 nm was formed by coating a 4 ml drop based on 100 ⁇ 100 (mm) at 3000 rpm for 30 seconds.
  • MoOx molecular metal oxide
  • WOx tungsten oxide
  • the metal oxide layer may be coated on the metal nanowires to prevent oxidation of the metal nanowires and may also serve as an adhesive at the junction between the metal nanowires and the metal nanowires.
  • the protective film adhesives may be used only at room temperature drying or at low temperature drying by heat treatment below 50 ° C.
  • the role of the present invention can be implemented, and thus, the present invention can be applied to a material of a base substrate vulnerable to high temperature such as paper, plastic, vinyl, and the like.
  • the planar heating sheet according to the present invention was prepared by disposing the first electrode and the second electrode on the base substrate including the metal oxide layer thus prepared.
  • Example 2 it corresponds to a laminated structure of vinyl / dopamine / AgNW / dopamine / TWA.
  • the process was performed in the entire room temperature / atmosphere, and no separate heat treatment was performed.
  • current annealing may be performed, that is, by applying a pulse current to the first electrode and the second electrode as described above, a separate heat treatment may be replaced. have.
  • Applying the pulse current was repeated 10 times to turn off the current of 100mA for 1 minute ON / 30 seconds to perform the current annealing.
  • annealing the current using the first electrode and the second electrode included in the planar heating sheet according to the present invention can eliminate the separate heat treatment process.
  • FIG. 15 is a photograph showing a general house vinyl made of polypropylene (PP) material as a base substrate
  • FIG. 16 is a photograph showing a planar heating sheet according to the present invention.
  • planar heating sheet according to the present invention exhibits the same transmittance and bending characteristics as the general house vinyl.
  • Example 2 The same process as in Example 2 was performed except that only silver nanowires were formed on a general house vinyl made of polypropylene (PP), which is a base substrate.
  • PP polypropylene
  • the comparative example 3 corresponds to the laminated structure of vinyl / AgNW.
  • Example 2 Same as Example 2 except that a dopamine layer, which is a first organic compound layer, was formed on a general house vinyl made of polypropylene (PP), which is a base substrate, and only silver nanowires were formed on the first organic compound layer. It was carried out.
  • PP polypropylene
  • the comparative example 4 corresponds to the laminated structure of vinyl / dopamine / AgNW.
  • a dopamine layer which is a first organic compound layer, is formed on a general house vinyl made of polypropylene (PP), which is a base substrate, and a silver nanowire is formed on the first organic compound layer, and then a second is formed on the silver nanowire.
  • PP polypropylene
  • Example 2 The same process as in Example 2 was carried out except that only the dopamine layer, which was an organic compound layer, was formed.
  • the comparative example 5 corresponds to the laminated structure of vinyl / dopamine / AgNW / dopamine.
  • FIG. 17 is an image image showing an exothermic reaction characteristic according to Example 2
  • FIG. 18 is an image image showing an exothermic reaction characteristic according to Comparative Example 3
  • FIG. 19 is a diagram showing an exothermic reaction characteristic according to Comparative Example 4 It is an image image
  • FIG. 20 is an image image which shows the exothermic reaction characteristic which concerns on the comparative example 5.
  • Example 2 according to the present invention exhibits the highest exothermic reaction (temperature rise to 53.3 ° C. when a voltage of 5.5V is applied) compared to Comparative Examples 3 to 5. It can be seen that it can withstand high voltage of 5.5V.
  • Comparative Example 4 and Comparative Example 5 that is, Comparative Example 4, which forms the first organic compound layer and the silver nanowires on the base substrate, the first organic compound layer, silver nanowires and the second organic compound layer on the base substrate
  • Comparative Example 5 As can be seen through Comparative Example 5 to form a, in the case of Comparative Example 5, by further forming a second organic compound layer on the silver nanowire, it can be seen that the voltage stability and exothermic uniformity is increased.
  • FIG. 21 is a graph showing the resistance characteristics of Example 2, Comparative Example 4 and Comparative Example 5.
  • Comparative Example 3 since no breakdown occurred after applying a voltage of 4 V, no further voltage was applied. For example, the resistance characteristic measurement of Comparative Example 3 was omitted.
  • Example 2 according to the present invention can be seen that the resistance characteristics are significantly superior to Comparative Example 4 and Comparative Example 5, which is consistent with the exothermic reaction characteristics of FIG. In the case of Example 2, the resistance is reduced, it can be seen that the exothermic reaction characteristics are excellent.
  • FIG. 22 is a graph measuring transmittances of Example 2 and Comparative Examples 3 to 5.
  • FIG. 22 is a graph measuring transmittances of Example 2 and Comparative Examples 3 to 5.
  • Example 2 in the case of Example 2 and Comparative Examples 3 to 5, it can be seen that the overall transmittance is high, which is a real picture of FIGS. 15 and 16 described above. It can be seen that the same transmittance as the vinyl for the house.
  • the metal nanowire on the base substrate which is a support structure made of a flexible material such as vinyl, plastic, paper, fiber; A second organic compound layer on the metal nanowire; And a planar heating sheet through a planar heating material or a linear heating material including a metal oxide layer positioned on the second organic compound layer, so that the sheet can be naturally folded or bent, and thus its use is very broad.
  • the first organic compound layer is formed on the base substrate, thereby improving the bonding characteristics between the base substrate and the metal nanowires, and also between the metal nanowires and the metal nanowires, thereby generating stable heat generation even when a higher voltage is applied. You can implement the property.
  • Example 2 The same procedure as in Example 2 was carried out except that polydopamine (PDA) was used as the material of the first organic compound layer.
  • PDA polydopamine
  • Example 3 it corresponds to a laminated structure of vinyl / polydopamine (PDA) / AgNW / dopamine / TWA.
  • FIG. 23 is an illustration of the case where dopamine is formed with the first organic compound layer on the base substrate
  • FIG. 24 is an illustration of the case where polydopamine is formed with the first organic compound layer on the base substrate.
  • FIG. 23 corresponds to a laminated structure of vinyl / dopamine / AgNW / dopamine / TWA
  • FIG. 24 corresponds to a laminated structure of vinyl / polydopamine (PDA) / AgNW / dopamine / TWA.
  • PDA polydopamine
  • 25 is an image image showing the exothermic reaction characteristic according to the third embodiment.
  • the second embodiment in comparison with FIG. 17 described above, in the case of applying the same voltage of 5.5V, the second embodiment generates heat up to a temperature of 53.3 ° C., while in the third embodiment, the temperature of 30.5 ° C. It can be seen that it heats up to temperature.
  • Example 2 and Example 3 it can be seen that the heat generation characteristics are partially different depending on the material of the first organic compound layer formed on the base substrate.
  • Example 3 compared with Example 2, although the heating temperature measured at the same voltage is low, it can be seen that it can stably generate heat up to the application of a voltage of 8V.
  • dopamine as the material of the first organic compound layer in the exothermic characteristics, but it may be preferable to use polydopamine in terms of stability at high voltage.

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

본 발명은 단일 섬유체 및 상기 단일 섬유체를 감싸는 복수개의 열선을 포함하는 선상 발열재를 포함하고, 상기 열선은 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 면상 발열 시트에 관한 것으로, 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 열선을 단일 섬유체 상에 코팅하여 선상 발열재를 형성하고, 이러한 복수개의 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 일반적인 직물처럼 자연스럽게 접히거나 구부려 사용할 수 있다.

Description

열선 및 이를 포함하는 면상 발열 시트
본 발명은 열선 및 이를 포함하는 면상 발열 시트에 관한 것으로서, 더욱 상세하게는 발열 특성이 우수하고 내수성이 향상된 면상 발열 시트에 관한 것이다.
일반적으로 면상 발열 시트는 안전, 무소음, 전자파의 위험으로부터 최대한 차단해주어 아파트, 주택 등 주거 난방재료로 쓰인다.
이밖에 사무실, 상가 등 상업용 택지의 난방 재료로 쓰이기도 하며, 차, 창고, 각종 천막 등 산업용 난방과 각종 산업용 가열 장치로도 쓰이며, 플라스틱 천막과 농산품 건조 설비 등 농업용 설비, 도로와 정거장, 활주로, 교량의 제설 제빙 용도로도 쓰이고, 휴식, 방한 등 휴대용 보온 장비, 건강 용품, 가전제품, 축산 난방 장치로도 쓰인다.
종래의 면상 발열 시트는 열선을 조밀한 간격으로 배열시키고, 이러한 열선을 투명 열수지 등으로 코팅시켜 형성하는 것이 일반적이다.
따라서 이러한 면상 발열 시트에 전원을 인가하게 되면 열선이 저항으로 작용하여 열을 발생시키게 되고 발생된 열을 열원으로 이용하게 된다.
하지만 이러한 종래의 면상 발열 시트는 열수지 등으로 열선의 외부를 코팅시키기 때문에 딱딱한 형체로 형성된다. 따라서 일반적인 직물처럼 자연스럽게 접히거나 구부려 사용할 수 없어 그 쓰임이 제한적이다.
즉, 일반 생활용품 등에는 카페트나 직조원단처럼 부드럽고 잘접히거나 휠 수 있는 형체의 발열 시트가 필요하지만, 종래의 면상 발열 시트는 이러한 용도로는 사용할 수 없는 문제점이 있다.
또한, 열선은 지그재그 형태 등 촘촘하게 배열되는 것이 일반적이며, 따라서 실제 그 길이는 폭에 비해서 길게 된다.
때문에 딱딱한 형체의 면상 발열 시트가 접혀지는 경우 열선의 중간이 떨어지는 등 그 구조적으로도 많은 문제점이 문제점을 내포하고 있다.
본 발명이 해결하고자 하는 과제는 상술된 종래 기술의 문제를 해결하기 위한 것으로서, 플렉서블한 특성을 특성이 구현되어 사용범위가 광범위한 면상 발열 시트를 제공하고자 한다.
본 발명의 목적들은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 지적된 문제점을 해결하기 위해서 본 발명은 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 열선을 제공한다.
또한, 본 발명은 상기 유기화합물층은 카테콜아민 (catecholamine) 또는 그 유도체인 열선을 제공한다.
또한, 본 발명은 상기 카테콜아민 (catecholamine)은 도파민 (dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는 열선을 제공한다.
또한, 본 발명은 상기 금속산화물층은 몰리브데넘(Mo)산화물 또는 텅스텐(W)산화물인 열선을 제공한다.
또한, 본 발명은 단일 섬유체 및 상기 단일 섬유체를 감싸는 복수개의 열선을 포함하는 선상 발열재를 포함하고, 상기 열선은 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 선상 발열재는 복수개이고, 상기 복수개의 선상 발열재는 불규칙하게 배열되는 것을 특징으로 하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 복수개의 선상 발열재의 일측과 연결되는 제1전극 및 상기 복수개의 선상 발열재의 타측과 연결되는 제2전극을 포함하고, 상기 제1전극 및 상기 제2전극에 전원을 인가함으로써, 상기 열선이 발열하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 금속 나노와이어의 길이는 10 내지 50㎛인 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 유기화합물층은 카테콜아민 (catecholamine) 또는 그 유도체인 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 카테콜아민 (catecholamine)은 도파민 (dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 금속산화물층은 몰리브데넘(Mo)산화물 또는 텅스텐(W)산화물인 면상 발열 시트를 제공한다.
또한, 본 발명은 베이스 기재; 상기 베이스 기재 상에 위치하는 제1유기화합물층; 및 상기 제1유기화합물층 상에 위치하는 발열재를 포함하며, 상기 발열재는, 금속 나노와이어; 상기 금속 나노와이어 상에 위치하는 제2유기화합물층; 및 상기 제2유기화합물층 상에 위치하는 금속산화물층을 포함하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 제1유기화합물층 및 상기 제2유기화합물층은 카테콜아민 (catecholamine) 또는 그 유도체인 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 카테콜아민 (catecholamine)은 도파민 (dopamine), 폴리도파민(PDA), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 베이스 기재는 비닐, 플라스틱, 종이 또는 섬유의 플렉서블(Flexible)한 재질의 지지 구조물인 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 제2유기화합물층은 상기 금속 나노와이어를 커버하면서, 상기 제2유기화합물층의 계면과 상기 제1유기화합물층의 계면이 서로 접하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 금속산화물층의 일측과 연결되는 제1전극 및 상기 제1전극과 대향하여 위치하고, 상기 금속산화물층의 타측과 연결되는 제2전극을 포함하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 제2유기화합물층은 상기 금속 나노와이어의 외면을 둘러싸는 형태이고, 상기 금속산화물층은 상기 제2유기화합물층의 외면을 둘러싸는 형태이며, 상기 금속산화물층의 외면이 상기 제1유기화합물층의 계면과 서로 접하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 발열재 상에 위치하는 제3유기화합물층을 포함하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 제3유기화합물층은 상기 발열재를 커버하면서, 상기 제3유기화합물층의 계면과 상기 제1유기화합물층의 계면이 서로 접하는 면상 발열 시트를 제공한다.
또한, 본 발명은 상기 제3유기화합물층의 일측과 연결되는 제1전극 및 상기 제1전극과 대향하여 위치하고, 상기 제3유기화합물층의 타측과 연결되는 제2전극을 포함하는 면상 발열 시트를 제공한다.
상기한 바와 같은 본 발명에 따른 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 열선을 단일 섬유체 상에 코팅하여 선상 발열재를 형성하고, 이러한 복수개의 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 일반적인 직물처럼 자연스럽게 접히거나 구부려 사용할 수 있어, 그 쓰임이 매우 광범위하다.
또한, 상기와 같은 열선 구조, 즉, 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층의 구조를 통해, 상기 열선의 저항을 낮춤으로써, 낮은 전류의 인가를 통해서도 높은 발열 특성을 구현할 수 있다.
또한, 상기 열선 구조에서 도파민의 유기화합물층을 코팅함으로써, 방수성을 향상시켜, 면상 발열 시트의 내구성을 향상시킬 수 있다.
또한, 본 발명에서는 비닐, 플라스틱, 종이, 섬유 등의 플렉서블(Flexible)한 재질의 지지 구조물인 베이스 기재 상에 금속 나노와이어; 상기 금속 나노와이어 상에 위치하는 제2유기화합물층; 및 상기 제2유기화합물층 상에 위치하는 금속산화물층을 포함하는 면상 발열재 또는 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 자연스럽게 접히거나 구부려 사용할 수 있어, 그 쓰임이 매우 광범위하다고 할 수 있다.
또한, 본 발명에서는 베이스 기재 상에 제1유기화합물층을 형성하여, 베이스 기재와 금속 나노와이어 간, 또한, 금속 나노와이어와 금속 나노와이어 간의 접합특성을 개선하여, 보다 높은 전압의 인가 시에도 안정적인 발열특성을 구현할 수 있다.
도 1은 본 발명의 제1실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다.
도 2는 본 발명에 따른 선상 발열재를 도시하는 확대 실사진이다.
도 3은 본 발명에 따른 복수개의 열선을 도시하는 확대 실사진이고, 도 4는 도 3의 I-I 선에 따른 단면도이다.
도 5는 금속 나노와이어와 금속 나노와이어간의 접합부를 도시하는 실사진이다.
도 6은 실시예 1 및 비교예 1, 2에 따른 면상 발열 시트의 저항특성을 도시한 그래프이다.
도 7은 실시예 1에 따른 면상 발열 시트의 발열특성을 도시하는 화상이미지이다.
도 8은 비교예 1에 따른 내수성 테스트 결과를 도시하는 도면이고, 도 9는 비교예 2에 따른 내수성 테스트 결과를 도시하는 도면이며, 도 10은 실시예 1에 따른 내수성 테스트 결과를 도시하는 도면이다.
도 11은 본 발명에 따른 면상 발열 시트의 적용예를 도시한 실사진이다.
도 12는 본 발명의 제2실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다.
도 13은 본 발명의 제3실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다.
도 14는 본 발명의 제4실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다.
도 15는 베이스 기재인 폴리프로필렌(PP) 재질의 일반적인 하우스용 비닐을 도시하는 실사진이고, 도 16은 본 발명에 따른 면상 발열 시트를 도시하는 실사진이다.
도 17은 실시예 2에 따른 발열반응 특성을 도시하는 화상이미지이고, 도 18은 비교예 3에 따른 발열반응 특성을 도시하는 화상이미지이며, 도 19는 비교예 4에 따른 발열반응 특성을 도시하는 화상이미지이고, 도 20은 비교예 5에 따른 발열반응 특성을 도시하는 화상이미지이다.
도 21은 실시예 2, 비교예 4 및 비교예 5의 저항특성을 도시하는 그래프이다.
도 22는 실시예 2, 비교예 3 내지 비교예 5의 투과율을 측정한 그래프이다.
도 23은 베이스 기재 상에 제1유기화합물층으로 도파민을 형성한 경우의 실사진이고, 도 24는 베이스 기재 상에 제1유기화합물층으로 폴리도파민을 형성한 경우의 실사진이다.
도 25는 실시예 3에 따른 발열반응 특성을 도시하는 화상이미지이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
아래 첨부된 도면을 참조하여 본 발명의 실시를 위한 구체적인 내용을 상세히 설명한다. 도면에 관계없이 동일한 부재번호는 동일한 구성요소를 지칭하며, "및/또는"은 언급된 아이템들의 각각 및 하나 이상의 모든 조합을 포함한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소와 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작시 구성요소들의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 제1실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 제1실시예에 따른 면상 발열 시트(100)는 복수개의 선상 발열재(130)를 포함하며, 상기 복수개의 선상 발열재(130)의 일측과 연결되는 제1전극(120a) 및 상기 복수개의 선상 발열재의 타측과 연결되는 제2전극(120b)을 포함한다.
이때, 본 발명에서 상기 복수개의 선상 발열재(130)는 불규칙하게 배열되는 것을 특징으로 한다.
즉, 예를 들어, 제1선상 발열재와 제2선상 발열재가 규칙적으로 직조되는 것이 아닌, 불규칙한 형태로 배치되어, 복수개의 선상 발열재들은 상호 불규칙하게 연결된다. 이에 대해서는 후술하기로 한다.
또한, 상기 제1전극 및 상기 제2전극은 일반적인 금속재질로 이루어질 수 있으며, 니켈(Ni), 니켈-인(Ni-P)합금, 니켈-보론(Ni-B)합금, 니켈-금(Ni-Au)합금, 금(Au), 구리(Cu) 중 적어도 어느 하나 이상을 사용할 수 있고, 다만, 본 발명에서 상기 제1전극 및 상기 제2전극의 재질을 제한하는 것은 아니다.
또한, 본 발명에 따른 면상 발열 시트(100)는 상기 제1전극 및 상기 제2전극에 전원을 인가하기 위한 전원부(미도시)를 더 포함할 수 있으며, 즉, 상기 전원부(미도시)로부터 인가된 전원이 상기 제1전극 및 상기 제2전극에 인가되고, 상기 제1전극 및 상기 제2전극과 연결된 선상 발열재에 전원이 인가됨으로써, 상기 선상 발열재(130)는 발열할 수 있다.
한편, 도면에는 도시하지 않았으나, 본 발명에 따른 면상 발열 시트는, 상기 선상 발열재(130)를 지지하기 위한 베이스 기재(미도시)를 더 포함할 수 있다.
즉, 본 발명에서는 상기 베이스 기재가 없이도, 면상 발열 시트의 역할을 할 수 있으나, 상기 베이스 기재를 더 포함함으로써, 상기 선상 발열재를 지지할 수 있다.
이때, 상기 베이스 기재(미도시)는 유리, 플라스틱, 종이, 섬유 등 리지드(Rigid) 또는 플렉서블(Flexible)한 형태의 지지 구조물로 이루어질 수 있으며, 다만, 본 발명에서 상기 베이스 기재의 유무를 제한하는 것은 아니다.
이하에서는 본 발명에 따른 선상 발열재(130)를 더욱 상세하게 설명하기로 한다.
도 2는 본 발명에 따른 선상 발열재(130)를 도시하는 확대 실사진이다.
도 1 및 도 2를 참조하면, 본 발명에 따른 선상 발열재(130)는 단일 섬유체(131) 및 상기 단일 섬유체(131)를 감싸는 복수개의 열선(140)을 포함한다.
즉, 본 발명에 따른 선상 발열재(130)는 예를 들어 1가닥, 단일 섬유체(131)의 표면에 상기 복수개의 열선(140)이 불규칙적으로 배치되고, 상기 복수개의 열선(140)이 상기 단일 섬유체(131)의 표면을 감싸는 형태로 구성될 수 있다.
이때, 상기 단일 섬유체(131)는 일반적인 섬유를 사용할 수 있으며, 상기 단일 섬유체(131)의 직경은 수십 마이크로 내지 수백 마이크로일 수 있으며, 예를 들어, 10 내지 500㎛의 직경에 해당할 수 있다.
한편, 상기 단일 섬유체(131)의 길이는 다양하게 구성할 수 있으며, 본 발명에 따른 면상 발열 시트의 크기에 따라 적정한 길이를 사용할 수 있다.
도 3은 본 발명에 따른 복수개의 열선을 도시하는 확대 실사진이고, 도 4는 도 3의 I-I 선에 따른 단면도이다.
도 1, 도 3 및 도 4를 참조하면, 본 발명에 따른 열선(140)은 금속 나노와이어(141); 상기 금속 나노 와이어(141) 상에 코팅되는 유기화합물층(142); 및 상기 유기 화합물층(142) 상에 코팅되는 금속산화물층(143)을 포함한다.
상기 금속 나노와이어(141)는 금(Au), 은(Ag), 구리(Cu), 알루미늄(Al), 백금(Pt), 니켈(Ni) 등의 금속이 사용될 수 있으며, 본 발명에서는 은(Ag) 나노와이어인 것이 바람직하다.
이때, 상기 금속 나노와이어(141)의 직경은 30 내지 50nm일 수 있으며, 상기 금속 나노와이어(141)의 길이는 10 내지 50㎛인 것이 바람직하다.
상기 금속 나노와이어의 길이가 10㎛ 미만인 경우는 도전성이 미비할 수 있으며, 상기 금속 나노와이어의 길이가 50㎛를 초과하는 경우는 상기 금속 나노와이어가 상기 단일 섬유체를 감싸는 것이 어려울 수 있으므로, 따라서, 본 발명에서 상기 금속 나노와이어(141)의 길이는 10 내지 50㎛인 것이 바람직하다.
상기 유기화합물층(142)은 상기 금속 나노와이어의 산화를 방지하고, 또한, 본 발명에 따른 면상 발열 시트의 방수성을 향상시키기 위한 것으로, 상기 유기화합물층(142)는 카테콜아민 (catecholamine) 또는 그 유도체를 사용할 수 있다.
"카테콜아민(Catecholamine)"이란 벤젠 고리의 오쏘(ortho)-그룹으로 하이드록시 그룹 (-OH)을 가지고 파라(para)-그룹으로 다양한 알킬아민을 가지는 단분자를 의미한다.
상기 카테콜아민(Catecholamine)은 전구체 물질의 선택에 따라 다양한 형태로 합성될 수 있으며, 예를 들어, 도파민 (dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되어질 수 있으며, 바람직하게는 상기 유기화합물층(142)은 도파민(dopamine, C8H11NO2)을 사용할 수 있다.
한편, 상기 유기화합물층(142)은 우선 나노와이어 들간의 접합 특성을 향상시킬 뿐만 아니라, 나노와이어와 섬유체의 사이에 들어가 기계적인 지지체 역할을 수행할 수 있다.
또한, 상기 유기화합물층은 이후 단계에서 코팅되는 금속산화물의 접합특성을 향상시킬 수 있다.
결과적으로, 이러한 나노와이어와 나노와이어 간, 또한, 나노와이어와 섬유체 간, 또한, 나노와이어와 금속산화물 간의 접합 특성을 우수하게 하여, 발열체 전체의 전기적 특성을 향상시킬 수 있다.
한편, 상기 도파민의 경우, 전기적인 채널링 역할도 가능하여, 발열체의 전기적 특성을 더욱 향상시킬 수 있다. 또한, 방수성과 관련하여, 상기 도파민의 경우, 고온에도 견딜 수 있어, 발열이 일어나 온도가 상승하더라도, 방수 특성을 그대로 유지할 수 있기 때문에, 본 발명에서 상기 유기화합물층(142)은 도파민(dopamine, C8H11NO2)을 사용하는 것이 바람직하다.
상기 방수성은 상기 면상 발열 시트의 내수성과 연관이 있으며, 즉, 면상 발열 시트가 제품에 적용되는 경우, 방수성이 향상되기 때문에, 수분의 침투에 따른 제품의 손상을 방지할 수 있고, 따라서, 면상 발열 시트의 내수성을 향상시킬 수 있다.
상기 금속산화물층(143)은 상기 열선의 전도성을 향상시키기 위한 것으로, 실리콘(Si)산화물, 타이타늄(Ti)산화물, 지르코늄(Zr)산화물, 스트론튬(Sr)산화물, 징크(Zn)산화물, 인듐(In)산화물, 란타넘(La)산화물, 바나듐(V)산화물, 몰리브데넘(Mo)산화물, 텅스텐(W)산화물, 틴(Sn)산화물, 나이오븀(Nb)산화물, 마그네슘(Mg)산화물, 알루미늄(Al)산화물, 이트늄(Y)산화물, 스칸듐(Sc)산화물, 사마륨(Sm)산화물, 갈륨(Ga)산화물, 및 스트론튬타이타늄(SrTi)산화물로 이루어진 군으로부터 1종 이상 선택될 수 있으며, 바람직하게 상기 산화물은 몰리브데넘(Mo)산화물 또는 텅스텐(W)산화물인 것이 바람직하다. 다만, 본 발명에서 상기 산화물의 종류를 제한하는 것은 아니다.
또한, 상기 금속산화물층(143)은 금속나노와이어 상에 코팅되어 금속나노와이어의 산화를 방지할 수 있을 뿐만 아니라, 금속 나노와이어와 금속 나노와이어간의 접합부에서 접착제 역할을 수행할 수 있다.
도 5는 금속 나노와이어와 금속 나노와이어간의 접합부를 도시하는 실사진이다.
도 5에 도시된 바와 같이, 금속 나노와이어(140a)와 금속 나노와이어간(140b)의 접합부(A)는 저항의 원인이 되며, 또한, 벤딩 과정에서 단락의 원인이 되는 부위에 해당한다.
따라서, 본 발명에서는 유기화합물층 상에 금속산화물층을 형성함으로써, 전도성을 향상시키고, 금속 나노와이어 간의 접합부에서의 접착 특성을 향상시킬 수 있다.
이를 정리하자면, 본 발명의 제1실시예에 따른 면상 발열 시트(100)는 불규칙하게 배열되는 복수개의 선상 발열재(130)를 포함하고, 상기 선상 발열재(130)는 단일 섬유체(131) 및 상기 단일 섬유체(131)를 감싸는 복수개의 열선(140)을 포함하며, 상기 열선(140)은 금속 나노와이어(141); 상기 금속 나노 와이어(141) 상에 코팅되는 유기화합물층(142); 및 상기 유기 화합물층(142) 상에 코팅되는 금속산화물층(143)을 포함한다.
또한, 상기 복수개의 선상 발열재(130)의 일측과 연결되는 제1전극(120a) 및 상기 복수개의 선상 발열재의 타측과 연결되는 제2전극(120b)을 포함하고, 상기 제1전극 및 상기 제2전극에 전원을 인가함으로써, 상기 열선(140)이 발열할 수 있다.
상술한 바와 같이, 종래의 면상 발열 시트는 열수지 등으로 열선의 외부를 코팅시키기 때문에 딱딱한 형체로 형성된다. 따라서 일반적인 직물처럼 자연스럽게 접히거나 구부려 사용할 수 없어 그 쓰임이 제한적이다.
하지만, 본 발명에서는 열선, 즉, 금속 나노와이어(141); 상기 금속 나노 와이어(141) 상에 코팅되는 유기화합물층(142); 및 상기 유기 화합물층(142) 상에 코팅되는 금속산화물층(143)을 단일 섬유체 상에 코팅하여 선상 발열재를 형성하고, 이러한 복수개의 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 일반적인 직물처럼 자연스럽게 접히거나 구부려 사용할 수 있어, 그 쓰임이 매우 광범위하다고 할 수 있다.
예를 들어, 본 발명에서는 단일의 섬유체 상에 상술한 열선을 코팅하고, 상기 열선이 코팅된 단일의 섬유체, 즉, 선상 발열재를 직조하여 일반적인 직물로써도 사용이 가능한 것이며, 따라서, 본 발명의 면상 발열 시트는 플렉서블한 특성을 유지할 수 있으므로, 그 사용범위가 매우 광범위하게 된다.
또한, 예를 들어, 본 발명에서는 상기 선상 발열재를 베이스 기재의 상에 불규칙적으로 배열하여 면상 발열 시트로 사용할 수 있는데, 상기 베이스 기재의 재질에 따라 플렉서블한 면상 발열 시트로도 구현이 가능하다.
이하에서는 본 발명에 따른 실시예 및 비교예를 통해 본 발명을 설명하기로 하며, 다만, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 제한되는 것은 아니다.
[실시예 1]
먼저, 섬유체 상에 금속 나노와이어를 코팅하였다.
상기 섬유체는 시중에서 판매되는 일반적인 부직포를 사용하였다. 한편, 부직포상의 불순물 제거를 위한 전처리로, 부직포를 아세톤에 24시간 담구어 놓았다가 40도 오븐에서 5시간 건조 시킨 후 사용할 수 있다.
금속 나노와이어로 Ag 나노와이어를 사용하였으며, Ag 나노와이어는 나노픽스사의 분산 원액을 구매해서 사용하였다. 이때, 분산 원액에서의 Ag 나노와어어는 두께 25 ~ 40 nm, 길이 약 25㎛이고, 농도는 0.5 wt%에 해당하였으며, 이때의 용매는 IPA(이소프로필알콜(Isopropyl alcohol))를 사용하였다.
균일하고 깨끗한 코팅을 위해서 상기 원액을 IPA:MeOH 용액으로 5배에서 10배 희석하고, 1000 rpm으로 스핀 코팅하여 섬유체상에 금속 나노와이어를 코팅하였다.
스핀코팅 방법으로는 500rpm에서 3초동안 100x100(mm) 기준 4ml 용액을 뿌리고 바로 이어 1000rpm에서 30초 진행하였고, 이후 자연 건조 혹은 드라이기로 건조하였다. 이 과정을 3회 반복하였다.
한편, 스핀코팅 방법이외에, 딥코팅 방법을 이용할 수 있으며, 딥코팅 방법으로는 용액 (실버나노와이어 희석액 30ml)이 담긴 샬레에 부직포를 용액 아래로 밀어 넣은 다음 좌우로 두 번 왔다 갔다 한 뒤, 한쪽 방향으로 부직포를 천천히 빼어 건조 하는 과정을 통해 코팅할 수 있다.한편, 코팅은 스핀 코팅 이외에 스프레이, 슬롯 다이 등과 같이 다양한 방법으로 코팅이 가능하다. 코팅 후에는 열처리 없이 자연건조를 진행하였다. 다만, 제품 양산 속도 향상을 위해서는 50도 미만의 열풍 건조도 가능하다.
다음으로, 상기 섬유체 상에 코팅된 상기 금속 나노와이어 상에 유기화합물층을 형성하였다. 유기화합물은 도파민을 사용하였으며, 도파민 2mg 을 MeOH 10㎖에 분산시켜, 상기 도파민 용액을 상기 섬유체 상에 코팅된 상기 금속 나노와이어 상에 드롭 및 스핀코팅하였다.
스핀코팅의 경우, 섬유기판 100x100(mm) 기준 도파민 4ml 드롭, 1000rpm 30초로 코팅하였다. 코팅 후에는 열처리 없이 자연건조를 진행하였다. 다만, 제품 양산 속도 향상을 위해서는 50도 미만의 열풍 건조도 가능하다.
한편, 스핀코팅 방법이외에, 딥코팅 방법을 이용할 수 있으며, 딥 코팅의 경우 실버용액과 마찬가지로 도파민 용액(40ml)을 담은 샬레에 실버까지 코팅 시킨 섬유체를 천천히 밀어 넣어 좌우로 두 번 왔다 갔다 한 뒤, 한쪽 방향으로 천천히 꺼내어 자연건조 또는 드라이기로 건조할 수 있다.다음으로, 상기 유기화합물층 상에 금속산화물층을 형성하였다. 금속 산화물 전구체 용액은 phosphomolybdic acid 또는 phosphotungstic acid가 용해된 알코올 기반 용매 (무수메탄올/이소프로필 알코올 등)를 사용하였으며, 용매 1㎖당 1mg에서 5mg 사이의 용질을 녹여서 제조하였다.
금속산화물 전구체 용액을 상기 유기화합물층에 코팅하는 것은 대기 중에서 스핀 코팅, 딥 코팅 또는 스프레이, 슬롯 다이 등과 같은 코팅 방법을 이용해 코팅이 가능다.
스핀 코팅의 경우, 100x100(mm) 기준 4ml 드롭, 3000 rpm 30초로 코팅하여 약 10 ~ 20 nm 사이의 두께를 가지는 금속산화물 막을 형성하였다.
또한, 딥 코팅의 경우 실버용액과 마찬가지로 용액(40ml)을 담은 샬레에 도파민까지 코팅 시킨 섬유체를 천천히 밀어 넣어 좌우로 두 번 왔다 갔다 한 뒤, 한쪽 방향으로 천천히 꺼내어 자연건조 또는 드라이기로 건조 하는 것이 가능하다.
또한, phosphomolybdic acid 또는 phosphotungstic acid를 사용할 경우 MoOx (몰리브데니움 옥사이드) 및 WOx (텅스텐 옥사이드)가 형성될 수 있다.
이때, 상술한 바와 같이, 금속산화물층은 역할은 금속나노와이어 상에 코팅되어 금속나노와이어의 산화를 방지할 수 있을 뿐만 아니라, 금속 나노와이어와 금속 나노와이어간의 접합부에서 접착제 역할을 수행할 수 있다.
한편, 일반적으로, 건식 또는 습식 공정을 이용하여 ZnO 계열의 금속산화물을 코팅하는 공정에서는 고온의 열처리가 추가로 필요하다.
하지만, phosphomolybdic acid 또는 phosphotungstic acid를 사용하여, MoOx (몰리브데니움 옥사이드) 또는 WOx (텅스텐 옥사이드)의 금속산화물을 코팅하는 경우, 상온 건조 또는 50도 미만의 열처리에 의한 저온 건조 만으로도 보호막, 접착제의 역할을 구현할 수 있으며, 따라서, 본 발명은, 종이, 플라스틱, 비닐 등과 같은 고온에 취약한 소재에도 적용이 가능하다.
이와 같이 제조된 선상 발열재(130)를 베이스 기재 상에 불규칙적으로 배치한 후, 제1전극 및 제2전극을 배치시켜 본 발명에 따른 면상 발열 시트를 제조하였다.
상술한 바와 공정은 전체 상온/대기 중에서 진행하였으며 별도의 열처리는 진행하지 않았다.
다만, 금속산화물층까지 형성한 전체 공정을 진행한 이후에, 전류 어닐링을 진행할 수 있으며, 즉, 상술한 바와 같은 제1전극 및 제2전극에 펄스 전류를 인가하여, 별도의 열처리를 대체할 수 있다.
펄스 전류를 인가하는 것은 100mA의 전류를 1분 ON / 30초 OFF하는 과정을 10회 반복하여 전류 어닐링을 진행하였다.
즉, 본 발명에 따른 면상 발열 시트에 포함되는 제1전극 및 제2전극을 활용하여 전류 어닐링을 하는 것만으로, 별도의 열처리 공정을 배제시킬 수 있다.
[비교예 1]
섬유체 상에 금속 나노와이어만을 코팅하였다. 즉, 유기화합물층 및 금속산화물층을 형성하지 않은 것을 제외하고는 상기 실시예 1와 동일하게 실시하였다.
[비교예 2]
섬유체 상에 금속 나노와이어만을 코팅하고, 상기 금속 나노와이어 상에 유기화합물층을 형성하였다. 즉, 금속산화물층을 형성하지 않은 것을 제외하고는 상기 실시예 1와 동일하게 실시하였다.
도 6은 실시예 1 및 비교예 1, 2에 따른 면상 발열 시트의 저항특성을 도시한 그래프이다. 도 6에서 a는 비교예 1, b는 비교예 2, c는 실시예 1를 나타내고 있다. 또한, 도 6에서 전류인가시간은 상술한 펄스 전류 인가를 통한 전류 어닐링을 의미한다.
도 6을 참조하면, 금속 나노와이어 상에 유기화합물층 및 금속 산화물층이 코팅된 실시예 1의 경우, 금속 나노와이어로 구성된 비교예 1, 금속 나노와이어 상에 유기화합물층만 코팅된 비교예 2에 비하여 저항이 매우 낮음을 확인할 수 있다.
한편, 도 6에서는 전류를 인가한 경우(1 min)와 전류를 인가하지 않은 경우(0 min)의 저항특성이 상이해 지는 것을 확인할 수 있으며, 즉, 본 발명에서는 별도의 열처리 공정을 배제하더라도, 펄스 전류 인가를 통한 전류 어닐링만으로 열처리 공정을 대체할 수 있음을 확인할 수 있다.
도 7은 실시예 1에 따른 면상 발열 시트의 발열특성을 도시하는 화상이미지이다.
도 7을 참조하면, 시편의 크기별로, 인가되는 전압 및 전류에 따라 면상 발열 시트의 온도가 상승하는 것을 확인할 수 있으며, 예를 들어, 시편 10cm×10cm의 경우, 9V 전압 및 0.991A의 전류 인가에 의해서도 68.5℃까지 온도 상승이 가능함을 확인할 수 있으며, 또한, 13V 전압 및 1.377A의 전류 인가에 의해서 108.0℃까지 온도 상승이 가능함을 확인할 수 있다.
도 8은 비교예 1에 따른 내수성 테스트 결과를 도시하는 도면이고, 도 9는 비교예 2에 따른 내수성 테스트 결과를 도시하는 도면이며, 도 10은 실시예 1에 따른 내수성 테스트 결과를 도시하는 도면이다.
먼저, 도 8을 참조하면, 금속 나노와이어로 구성된 비교예 1의 경우, 전극 젖음성 이미지에서 알 수 있는 바와 같이, 시간이 지남에 따라 물이 점점 흡수되고 결국 넓게 번지는 것을 확인할 수 있고, 이는 열측정 이미지로도 확인 가능하다.
결국, 면상 발열 시트에 물이 흡수됨에 의하여 제품에 손상이 감을 확인할 수 있다.
다음으로, 도 9 및 도 10을 참조하면, 금속 나노와이어 상에 유기화합물층만 코팅된 비교예 2 및 금속 나노와이어 상에 유기화합물층 및 금속 산화물층이 코팅된 실시예 1의 경우, 즉, 도파민으로 이루어지는 유기화합물층이 코팅된 경우, 1시간이 지났음에도 불구하고, 물방울이 흡수되지 않고 여전히 크게 맺혀있는 것을 확인 할 수 있으며, 이는 열측정 이미지로도 확인 가능하다.
이는 도파민이 물의 흡수를 막아 내수성을 증가시키는데 큰 효과를 가지는 것을 의미하며, 결국, 면상 발열 시트에 물이 흡수되지 않아, 제품에 손상이 가지 않음을 확인할 수 있다.
이상과 같이, 본 발명에서는 금속 나노와이어(141); 상기 금속 나노 와이어(141) 상에 코팅되는 유기화합물층(142); 및 상기 유기 화합물층(142) 상에 코팅되는 금속산화물층(143)을 포함하는 열선을 단일 섬유체 상에 코팅하여 선상 발열재를 형성하고, 이러한 복수개의 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 일반적인 직물처럼 자연스럽게 접히거나 구부려 사용할 수 있어, 그 쓰임이 매우 광범위하다.
도 11은 본 발명의 제1실시예에 따른 면상 발열 시트의 적용예를 도시한 실사진이다.
도 11을 참조하면, 본 발명의 제1실시예에 따른 면상 발열 시트는, ① 탈부착 가능한 초박 시트형 벽면 히터로 사용이 가능하며, 소비자의 자유로운 크기/디자인 선택 적용 가능이 가능하다. 또한, ② USB 타입 미니 히팅 패드로 사용이 가능하며, 이동형(의류/핸드폰 등) 및 거치형 (책상/의자 등) 미니 패드로의 적용이 가능하다. 또한, ③ 균토내 미생물 활성 및 하우스 성애 방지용으로 사용이 가능하며, 저온, 발수 특성을 필요로 하는 농업 분야에 적용이 가능하다. 또한, ④ 유연성이 극대화된 곡면 히터로 사용이 가능하며, 특수 형태의 곡면 소재의 히팅 적용이 가능하다.
또한, 상기와 같은 열선 구조, 즉, 금속 나노와이어(141); 상기 금속 나노 와이어(141) 상에 코팅되는 유기화합물층(142); 및 상기 유기 화합물층(142) 상에 코팅되는 금속산화물층(143)의 구조를 통해, 상기 열선의 저항을 낮춤으로써, 낮은 전류의 인가를 통해서도 높은 발열 특성을 구현할 수 있다.
또한, 상기 열선 구조에서 예를 들어, 도파민의 유기화합물층을 코팅함으로써, 방수성을 향상시켜, 면상 발열 시트의 내구성을 향상시킬 수 있다.
또한, 금속산화물층의 코팅을 통해, 전기저항 감소, 보호막, 접착제, 산화방지 특성을 부여할 수 있으며, 특히 기존과 달리 상온 또는 저온 열처리 공정으로 수 nm의 얇은 막을 형성할 수 있다.
도 12는 본 발명의 제2실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다.
도 12를 참조하면, 본 발명의 제2실시예에 따른 면상 발열 시트(100')는 베이스 기재(110')를 포함한다.
상기 베이스 기재(110')는 후술하는 발열재를 지지하기 위한 구조물로써, 비닐, 플라스틱, 종이, 섬유 등의 플렉서블(Flexible)한 재질의 지지 구조물로 이루어질 수 있다.
이때, 본 발명에서 상기 베이스 기재(110')는 비닐 재질일 수 있으며, 보다 구체적으로 상기 비닐 재질은 폴리프로필렌(PP), 폴리염화비닐(PVC), 폴리에틸렌(PE) 및 아세트산비닐(EVA)로 이루어지는 군에서 선택되는 적어도 어느 하나의 재질일 수 있다.
다만, 본 발명에서 상기 베이스 기재의 재질을 제한하는 것은 아니다.
또한, 본 발명의 제2실시예에 따른 면상 발열 시트(100')는 상기 베이스 기재(110') 상에 위치하는 제1유기화합물층(120')을 포함한다.
상기 제1유기화합물층(120')은 카테콜아민 (catecholamine) 또는 그 유도체를 사용할 수 있다.
"카테콜아민(Catecholamine)"이란 벤젠 고리의 오쏘(ortho)-그룹으로 하이드록시 그룹 (-OH)을 가지고 파라(para)-그룹으로 다양한 알킬아민을 가지는 단분자를 의미한다.
상기 카테콜아민(Catecholamine)은 전구체 물질의 선택에 따라 다양한 형태로 합성될 수 있으며, 예를 들어, 도파민 (dopamine), 폴리도파민 (PDA), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되어질 수 있으며, 바람직하게는 상기 유기화합물층(142)은 도파민(dopamine, C8H11NO2)을 사용할 수 있다.
이때, 상기 제1유기화합물층(120')은 후술하는 발열재와 상기 베이스 기재의 접합특성을 향상시키기 위한 것으로, 이에 대해서는 후술하기로 한다.
계속해서 도 12를 참조하면, 본 발명의 제2실시예에 따른 면상 발열 시트(100')는 상기 제1유기화합물층(120') 상에 위치하는 발열재(130', 140', 150')를 포함한다.
상기 발열재(130', 140', 150')는 상기 제1유기화합물층(120') 층 상에 면상으로 위치한다는 점에 있어서, 본 발명의 제2실시예에 따른 발열재는 면상 발열재로 정의할 수 있다.
이하, 본 발명의 제2실시예에 따른 발열재를 더욱 상세히 설명하면 다음과 같다.
본 발명의 제2실시예에 발열재(130', 140', 150')는 상기 제1유기화합물층(120') 상에 위치하는 금속 나노와이어(130')를 포함한다.
이때, 상기 금속 나노와이어(130')의 직경은 30 내지 50nm일 수 있고, 상기 금속 나노와이어(130')의 길이는 10 내지 50㎛일 수 있으며, 다만, 본 발명에서 상기 금속 나노와이어의 직경 및 길이를 제한하는 것은 아니다.
또한, 상기 금속 나노와이어(130')는 금(Au), 은(Ag), 구리(Cu), 알루미늄(Al), 백금(Pt), 니켈(Ni) 등의 금속이 사용될 수 있으며, 본 발명에서는 은(Ag) 나노와이어인 것이 바람직하다.
한편, 본 발명에서 상기 금속 나노와이어(130')는 불규칙하게 배열될 수 있다.
즉, 예를 들어, 복수개의 금속 나노와이어가 상기 제1유기화합물층(120') 상에 스트라이프 타입으로 규칙적으로 배열될 수 있을 뿐만 아니라, 이와는 달리, 복수개의 금속 나노와이어가 상기 제1유기화합물층(120') 상에 불규칙한 형태로 배치되어, 상기 복수개의 금속 나노와이어들은 상기 제1유기화합물층(120') 상에서 상호 불규칙하게 연결될 수 있다.
계속해서 도 12를 참조하면, 본 발명의 제2실시예에 발열재(130', 140', 150')는 상기 금속 나노와이어(130') 상에 위치하는 제2유기화합물층(140')을 포함한다.
상기 제2유기화합물층(140')은 카테콜아민 (catecholamine) 또는 그 유도체를 사용할 수 있다.
"카테콜아민(Catecholamine)"이란 벤젠 고리의 오쏘(ortho)-그룹으로 하이드록시 그룹 (-OH)을 가지고 파라(para)-그룹으로 다양한 알킬아민을 가지는 단분자를 의미한다.
이는 상술한 제1유기화합물층(120')과 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
이때, 상기 제2유기화합물층(140')이 상기 금속 나노와이어(130') 상에 위치한다 함은, 상기 제2유기화합물층(140')이 상기 금속 나노와이어(130')를 커버하면서, 상기 제2유기화합물층(140')의 계면과 상기 제1유기화합물층(120')의 계면이 서로 접하는 상태일 수 있다.
즉, 도면에 도시된 바와 같이, 상기 제1유기화합물층(120')의 상면과 상기 제2유기화합물층(140')의 하면이 상호 접한 상태에서, 상기 제2유기화합물층(140')이 상기 금속 나노와이어(130') 상에 위치할 수 있다.
한편, 상기 제2유기화합물층(140')은 우선 금속 나노와이어 들간의 접합 특성을 향상시킬 뿐만 아니라, 상기 제2유기화합물층(140')의 계면과 상기 제1유기화합물층(120')의 계면이 서로 접함에 의하여, 상기 제1유기화합물층(120') 상에 위치하는 상기 금속 나노와이어를 지지하기 위한 지지체 역할을 수행할 수 있다.
또한, 상기 제2유기화합물층(140')은 이후 단계에서 코팅되는 금속산화물층의 접합특성을 향상시킬 수 있다.
결과적으로, 상기 제2유기화합물층은 금속 나노와이어와 금속 나노와이어 간, 또한, 금속 나노와이어와 제1유기화합물층 간, 또한, 금속 나노와이어와 금속산화물층 간의 접합 특성을 우수하게 하여, 면상 발열 시트 전체의 전기적 특성을 향상시킬 수 있다.
한편, 상기 도파민의 경우, 전기적인 채널링 역할도 가능하여, 금속 나노와이어의 전기적 특성을 더욱 향상시킬 수 있다. 또한, 방수성과 관련하여, 상기 도파민의 경우, 고온에도 견딜 수 있어, 발열이 일어나 온도가 상승하더라도, 방수 특성을 그대로 유지할 수 있기 때문에, 본 발명에서 상기 유기화합물층(120', 140')은 도파민(dopamine, C8H11NO2)을 사용하는 것이 바람직하다.
상기 방수성은 상기 면상 발열 시트의 내수성과 연관이 있으며, 즉, 면상 발열 시트가 제품에 적용되는 경우, 방수성이 향상되기 때문에, 수분의 침투에 따른 제품의 손상을 방지할 수 있고, 따라서, 면상 발열 시트의 내수성을 향상시킬 수 있다.
계속해서 도 12를 참조하면, 본 발명의 제2실시예에 발열재(130', 140', 150')는 상기 제2유기화합물층(140') 상에 위치하는 금속산화물층(150')을 포함한다.
상기 금속산화물층(150')은 상기 금속 나노와이어의 전도성을 향상시키기 위한 것으로, 실리콘(Si)산화물, 타이타늄(Ti)산화물, 지르코늄(Zr)산화물, 스트론튬(Sr)산화물, 징크(Zn)산화물, 인듐(In)산화물, 란타넘(La)산화물, 바나듐(V)산화물, 몰리브데넘(Mo)산화물, 텅스텐(W)산화물, 틴(Sn)산화물, 나이오븀(Nb)산화물, 마그네슘(Mg)산화물, 알루미늄(Al)산화물, 이트늄(Y)산화물, 스칸듐(Sc)산화물, 사마륨(Sm)산화물, 갈륨(Ga)산화물, 및 스트론튬타이타늄(SrTi)산화물로 이루어진 군으로부터 1종 이상 선택될 수 있으며, 바람직하게 상기 산화물은 몰리브데넘(Mo)산화물 또는 텅스텐(W)산화물인 것이 바람직하다. 다만, 본 발명에서 상기 산화물의 종류를 제한하는 것은 아니다.
또한, 상기 금속산화물층(150')은 금속 나노와이어 상에 코팅되어 상기 금속 나노와이어의 산화를 방지할 수 있을 뿐만 아니라, 금속 나노와이어와 금속 나노와이어 간의 접합부에서 접착제 역할을 수행할 수 있다.
이상과 같은 본 발명의 제2실시예에 따른 면상 발열 시트는, 베이스 기재(110') 및 상기 베이스 기재(110') 상에 위치하는 제1유기화합물층(120')을 포함하며, 상기 제1유기화합물층(120') 상에 위치하는 발열재, 보다 구체적으로 면상 발열재를 포함한다.
이때, 상기 발열재는, 상기 제1유기화합물층(120') 상에 위치하는 금속 나노와이어(130'); 상기 금속 나노와이어(130') 상에 위치하는 제2유기화합물층(140'); 및 상기 제2유기화합물층(140') 상에 위치하는 금속산화물층(150')을 포함한다.
또한, 본 발명에서 상기 금속 나노와이어(130')는 불규칙하게 배열될 수 있으며, 보다 구체적으로, 복수개의 금속 나노와이어가 상기 제1유기화합물층(120') 상에서 상호 불규칙하게 연결될 수 있다.
또한, 상기 제2유기화합물층(140')이 상기 금속 나노와이어(130')를 커버하면서, 상기 제2유기화합물층(140')의 계면과 상기 제1유기화합물층(120')의 계면이 서로 접하는 상태일 수 있다.
이로써, 상기 제2유기화합물층(140')은 우선 금속 나노와이어 들간의 접합 특성을 향상시킬 뿐만 아니라, 상기 제2유기화합물층(140')의 계면과 상기 제1유기화합물층(120')의 계면이 서로 접함에 의하여, 상기 제1유기화합물층(120') 상에 위치하는 상기 금속 나노와이어를 지지하기 위한 지지체 역할을 수행할 수 있다.
한편, 도면에는 도시하지 않았으나, 본 발명의 제2실시예에 따른 면상 발열 시트는, 상기 발열재, 보다 구체적으로, 상기 금속산화물층의 일측과 연결되는 제1전극(미도시) 및 상기 제1전극과 대향하여 위치하고, 상기 발열재, 보다 구체적으로, 상기 금속산화물층의 타측과 연결되는 제2전극(미도시)을 포함할 수 있다.
상기 제1전극 및 상기 제2전극은 일반적인 금속재질로 이루어질 수 있으며, 니켈(Ni), 니켈-인(Ni-P)합금, 니켈-보론(Ni-B)합금, 니켈-금(Ni-Au)합금, 금(Au), 구리(Cu) 중 적어도 어느 하나 이상을 사용할 수 있고, 다만, 본 발명에서 상기 제1전극 및 상기 제2전극의 재질을 제한하는 것은 아니다.
또한, 본 발명에 따른 면상 발열 시트(100')는 상기 제1전극 및 상기 제2전극에 전원을 인가하기 위한 전원부(미도시)를 더 포함할 수 있으며, 즉, 상기 전원부(미도시)로부터 인가된 전원이 상기 제1전극 및 상기 제2전극에 인가되고, 상기 금속산화물층을 통해 상기 제1전극 및 상기 제2전극과 연결된 발열재에 전원이 인가됨으로써, 상기 발열재는 발열할 수 있다.
도 13은 본 발명의 제3실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다. 이하, 후술하는 바를 제외하고는 본 발명의 제3실시예에 따른 면상 발열 시트는 상술한 제2실시예를 참조할 수 있다.
도 13을 참조하면, 본 발명의 제3실시예에 따른 면상 발열 시트(200)는 베이스 기재(210)를 포함한다.
상기 베이스 기재(110')는 후술하는 발열재를 지지하기 위한 구조물로써, 비닐, 플라스틱, 종이, 섬유 등의 플렉서블(Flexible)한 재질의 지지 구조물로 이루어질 수 있다. 이는 상술한 제2실시예와 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
또한, 본 발명의 제3실시예에 따른 면상 발열 시트(200)는 상기 베이스 기재(210) 상에 위치하는 제1유기화합물층(220)을 포함한다.
상기 제1유기화합물층(220)은 카테콜아민 (catecholamine) 또는 그 유도체를 사용할 수 있으며, 이는 상술한 제2실시예와 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
계속해서 도 13을 참조하면, 본 발명의 제3실시예에 따른 면상 발열 시트(200)는 상기 제1유기화합물층(220) 상에 위치하는 발열재(230, 240, 250)를 포함한다.
상기 발열재(230, 240, 250)는 상기 제1유기화합물층(220) 상에 선상으로 위치한다는 점에 있어서, 본 발명의 제3실시예에 따른 발열재는 선상 발열재로 정의할 수 있다.
즉, 상술한 제2실시예와 비교하여, 상술한 제2실시예에서는 상기 발열재가 상기 제1유기화합물층 상에 면상으로 위치하는 반면에, 본 발명에 따른 제3실시예에서는 후술하는 발열재가 제1유기화합물층 상에 선상으로 위치할 수 있다는 점에서, 이를 구분하기 위하여 본 발명의 제3실시예에 따른 발열재는 선상 발열재로 정의할 수 있다.
다만, 본 발명에서 상기 "선상 발열재" 및 상기 "면상 발열재"의 의미에 제한되는 것은 아니다.
이하, 본 발명의 제3실시예에 따른 발열재를 더욱 상세히 설명하면 다음과 같다.
도 13을 참조하면, 본 발명의 제3실시예에 따른 발열재(230, 240, 250)는 금속 나노와이어(230)를 포함한다.
이때, 상기 금속 나노와이어(130')의 직경은 30 내지 50nm일 수 있고, 상기 금속 나노와이어(130')의 길이는 10 내지 50㎛일 수 있으며, 다만, 본 발명에서 상기 금속 나노와이어의 직경 및 길이를 제한하는 것은 아니다. 이는 상술한 바와 같으므로, 이하 구체적인 설명은 생략하기로 한다.
또한, 본 발명의 제3실시예에 따른 발열재(230, 240, 250)는 상기 금속 나노와이어(230) 상에 위치하는 제2유기화합물층(240)을 포함한다.
상기 제2유기화합물층(240)은 카테콜아민 (catecholamine) 또는 그 유도체를 사용할 수 있다. 이는 상술한 제1유기화합물층(220)과 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
이때, 본 발명의 제3실시예에서, 상기 제2유기화합물층(240)이 상기 금속 나노와이어(230) 상에 위치한다 함은, 상기 제2유기화합물층(240)이 상기 금속 나노와이어(230)의 외면을 둘러싸는 형태로 위치함을 의미할 수 있다.
즉, 상술한 제2실시예에서는, 상기 제2유기화합물층이 상기 금속 나노와이어를 커버하면서, 상기 제2유기화합물층의 계면과 상기 제1유기화합물층의 계면이 서로 접하는 상태에 해당하여, 상기 금속 나노와이어의 일부는 상기 제1유기화합물층과 접하는 형태이나, 본 제3실시예에서는 상기 제2유기화합물층(240)이 상기 금속 나노와이어(230)를 외면을 둘러싸는 형태로 위치하기 때문에, 상기 금속 나노와이어는 상기 제1유기화합물층(220)과 직접 접하는 형태는 아님을 확인할 수 있다.
또한, 본 발명의 제3실시예에 따른 발열재(230, 240, 250)는 상기 제2유기화합물층(240) 상에 위치하는 금속산화물층(250)을 포함한다. 상기 금속산화물층의 재질은 상술한 제2실시예와 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
이때, 본 발명의 제3실시예에서, 상기 금속산화물층(250)이 상기 제2유기화합물층(240) 상에 위치한다 함은, 상기 금속산화물층(250)이 상기 제2유기화합물층(240)의 외면을 둘러싸는 형태로 위치함을 의미할 수 있다.
즉, 상술한 제2실시예에서는, 상기 금속산화물층이 상기 제2유기화합물층 상에 형성되어, 상기 제2유기화합물층의 계면과 상기 제1유기화합물층의 계면이 서로 접하는 형태이나, 본 제3실시예에서는 상기 금속산화물층(250)이 상기 제2유기화합물층(240)의 외면을 둘러싸는 형태로 위치하기 때문에, 상기 제2유기화합물층(240)이 상기 제1유기화합물층(220)과 접하는 형태가 아닌, 상기 금속산화물층(250)의 외면이 상기 제1유기화합물층(220)의 계면과 서로 접하는 형태임을 확인할 수 있다.
한편, 본 발명의 제3실시예에서 상기 발열재(230, 240, 250)는 불규칙하게 배열될 수 있다.
즉, 예를 들어, 복수개의 발열재(230, 240, 250)가 상기 제1유기화합물층(220) 상에 스트라이프 타입으로 규칙적으로 배열될 수 있을 뿐만 아니라, 이와는 달리, 복수개의 발열재(230, 240, 250)가 상기 제1유기화합물층(220) 상에 불규칙한 형태로 배치되어, 상기 복수개의 발열재(230, 240, 250)들은 상기 제1유기화합물층(220) 상에서 상호 불규칙하게 연결될 수 있다.
한편, 도면에는 도시하지 않았으나, 본 발명의 제3실시예에 따른 면상 발열 시트는, 상기 발열재의 일측과 연결되는 제1전극(미도시) 및 상기 제1전극과 대향하여 위치하고, 상기 발열재의 타측과 연결되는 제2전극(미도시)을 포함할 수 있다.
또한, 본 발명의 제3실시예에 따른 면상 발열 시트(200)는 상기 제1전극 및 상기 제2전극에 전원을 인가하기 위한 전원부(미도시)를 더 포함할 수 있으며, 즉, 상기 전원부(미도시)로부터 인가된 전원이 상기 제1전극 및 상기 제2전극에 인가되고, 상기 제1전극 및 상기 제2전극과 연결된 발열재에 전원이 인가됨으로써, 상기 발열재는 발열할 수 있다.
이는 상술한 제2실시예와 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
이상과 같은 본 발명의 제3실시예에 따른 면상 발열 시트는, 베이스 기재(210) 및 상기 베이스 기재(210) 상에 위치하는 제1유기화합물층(220)을 포함하며, 상기 제1유기화합물층(220) 상에 위치하는 발열재, 보다 구체적으로 선상 발열재를 포함한다.
이때, 상기 발열재는, 금속 나노와이어(230); 상기 금속 나노와이어(230) 상에 위치하는 제2유기화합물층(240); 및 상기 제2유기화합물층(240) 상에 위치하는 금속산화물층(250)을 포함한다.
또한, 본 발명에서 상기 발열재(230, 240, 250)는 불규칙하게 배열될 수 있으며, 보다 구체적으로, 복수개의 발열재(230, 240, 250)가 상기 제1유기화합물층(220) 상에 불규칙한 형태로 배치되어, 상기 복수개의 발열재(230, 240, 250)들은 상기 제1유기화합물층(220) 상에서 상호 불규칙하게 연결될 수 있다.
또한, 본 발명에서 상기 제2유기화합물층(240)은 상기 금속 나노와이어(230)의 외면을 둘러싸는 형태로 위치할 수 있으며, 상기 금속산화물층(250)은 상기 제2유기화합물층(240)의 외면을 둘러싸는 형태로 위치할 수 있다.
따라서, 본 제3실시예에서는 상기 제2유기화합물층(240)은 상기 금속 나노와이어(230)의 외면을 둘러싸는 형태로 위치하고, 또한, 상기 금속산화물층(250)은 상기 제2유기화합물층(240)의 외면을 둘러싸는 형태로 위치하기 때문에, 상기 제2유기화합물층(240)이 상기 제1유기화합물층(220)과 접하는 형태가 아닌, 상기 금속산화물층(250)의 외면이 상기 제1유기화합물층(220)의 계면과 서로 접하는 형태일 수 있다.
도 14는 본 발명의 제4실시예에 따른 면상 발열 시트를 설명하기 위한 도면이다. 이하, 후술하는 바를 제외하고는 본 발명의 제4실시예에 따른 면상 발열 시트는 상술한 제3실시예를 참조할 수 있다.
도 14를 참조하면, 본 발명의 제4실시예에 따른 면상 발열 시트(300)는 베이스 기재(310)를 포함한다.
또한, 상기 베이스 기재(310) 상에 위치하는 제1유기화합물층(320)을 포함하며, 상기 제1유기화합물층(320) 상에 위치하는 발열재를 포함하고, 이때, 상기 발열재는, 금속 나노와이어(330); 상기 금속 나노와이어(330) 상에 위치하는 제2유기화합물층(340); 및 상기 제2유기화합물층(340) 상에 위치하는 금속산화물층(350)을 포함한다.
이는 상술한 제3실시예와 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
계속해서 도 14를 참조하면, 본 발명의 제4실시예에 따른 면상 발열 시트(300)는 상기 발열재(330, 340, 350) 상에 위치하는 제3유기화합물층(360)을 포함한다.
상기 제3유기화합물층(360)은 카테콜아민 (catecholamine) 또는 그 유도체를 사용할 수 있다. 이는 상술한 제1유기화합물층(320)과 동일하므로, 이하 구체적인 설명은 생략하기로 한다.
이때, 상기 제3유기화합물층(360)이 상기 발열재(330, 340, 350) 상에 위치한다 함은, 상기 제3유기화합물층(360)이 상기 발열재(330, 340, 350)를 커버하면서, 상기 제3유기화합물층(360)의 계면과 상기 제1유기화합물층(320)의 계면이 서로 접하는 상태일 수 있다.
즉, 도면에 도시된 바와 같이, 상기 제1유기화합물층(320)의 상면과 상기 제3유기화합물층(360)의 하면이 상호 접한 상태에서, 상기 제3유기화합물층(360)이 상기 발열재(330, 340, 350) 상에 위치할 수 있다.
상기 제3유기화합물층(360)은 상기 제3유기화합물층(360)의 계면과 상기 제1유기화합물층(320)의 계면이 서로 접함에 의하여, 상기 제1유기화합물층(320) 상에 위치하는 상기 발열재(330, 340, 350)를 지지하기 위한 지지체 역할을 수행할 수 있다.
한편, 도면에는 도시하지 않았으나, 본 발명의 제4실시예에 따른 면상 발열 시트는, 상기 제3유기화합물층의 일측과 연결되는 제1전극(미도시) 및 상기 제1전극과 대향하여 위치하고, 상기 제3유기화합물층의 타측과 연결되는 제2전극(미도시)을 포함할 수 있다.
또한, 본 발명의 제4실시예에 따른 면상 발열 시트(300)는 상기 제1전극 및 상기 제2전극에 전원을 인가하기 위한 전원부(미도시)를 더 포함할 수 있으며, 즉, 상기 전원부(미도시)로부터 인가된 전원이 상기 제1전극 및 상기 제2전극에 인가되고, 상기 제3유기화합물층을 통해, 상기 제1전극 및 상기 제2전극과 연결된 발열재에 전원이 인가됨으로써, 상기 발열재는 발열할 수 있다.
이는 상술한 제2실시예제2실시예므로, 이하 구체적인 설명은 생략하기로 한다.
이상과 같은 본 발명의 제4실시예에 따른 면상 발열 시트는, 베이스 기재(310) 및 상기 베이스 기재(310) 상에 위치하는 제1유기화합물층(320)을 포함하며, 상기 제1유기화합물층(320) 상에 위치하는 발열재, 보다 구체적으로 선상 발열재를 포함한다.
이때, 상기 발열재는, 금속 나노와이어(330); 상기 금속 나노와이어(330) 상에 위치하는 제2유기화합물층(340); 및 상기 제2유기화합물층(340) 상에 위치하는 금속산화물층(350)을 포함한다.
또한, 본 발명에서 상기 발열재(330, 340, 350)는 불규칙하게 배열될 수 있으며, 보다 구체적으로, 복수개의 발열재(330, 340, 350)가 상기 제1유기화합물층(320) 상에 불규칙한 형태로 배치되어, 상기 복수개의 발열재(330, 340, 350)들은 상기 제1유기화합물층(320) 상에서 상호 불규칙하게 연결될 수 있다.
또한, 본 발명에서 상기 제2유기화합물층(340)은 상기 금속 나노와이어(330)의 외면을 둘러싸는 형태로 위치할 수 있으며, 상기 금속산화물층(350)은 상기 제2유기화합물층(340)의 외면을 둘러싸는 형태로 위치함을 의미할 수 있다.
따라서, 본 제4실시예에서는 상기 제2유기화합물층(340)은 상기 금속 나노와이어(330)의 외면을 둘러싸는 형태로 위치하고, 또한, 상기 금속산화물층(350)은 상기 제2유기화합물층(340)의 외면을 둘러싸는 형태로 위치하기 때문에, 상기 제2유기화합물층(340)이 상기 제1유기화합물층(320)과 접하는 형태가 아닌, 상기 금속산화물층(350)의 외면이 상기 제1유기화합물층(320)의 계면과 서로 접하는 형태일 수 있다.
또한, 본 제4실시예에서는 상기 발열재(330, 340, 350) 상에 위치하는 제3유기화합물층(360)을 포함하며, 상기 제3유기화합물층(360)이 상기 발열재(330, 340, 350)를 커버하면서, 상기 제3유기화합물층(360)의 계면과 상기 제1유기화합물층(320)의 계면이 서로 접하는 상태일 수 있다.
따라서, 본 제4실시예에서는 상기 제3유기화합물층(360)의 계면과 상기 제1유기화합물층(320)의 계면이 서로 접함에 의하여, 상기 제1유기화합물층(320) 상에 위치하는 상기 발열재(330, 340, 350)를 지지하기 위한 지지체 역할을 수행할 수 있다.
상술한 바와 같이, 종래의 면상 발열 시트는 열수지 등으로 열선의 외부를 코팅시키기 때문에 딱딱한 형체로 형성된다. 따라서 자연스럽게 접히거나 구부려 사용할 수 없어 그 쓰임이 제한적이다.
하지만, 본 발명에서는 비닐, 플라스틱, 종이, 섬유 등의 플렉서블(Flexible)한 재질의 지지 구조물인 베이스 기재 상에 금속 나노와이어; 상기 금속 나노와이어 상에 위치하는 제2유기화합물층; 및 상기 제2유기화합물층 상에 위치하는 금속산화물층을 포함하는 면상 발열재 또는 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 자연스럽게 접히거나 구부려 사용할 수 있어, 그 쓰임이 매우 광범위하다고 할 수 있다.
이하에서는 본 발명에 따른 실시예 및 비교예를 통해 본 발명을 설명하기로 하며, 다만, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 제한되는 것은 아니다.
[실시예 2]
베이스 기재로 폴리프로필렌(PP) 재질의 일반적인 하우스용 비닐(100*100 ㎟)을 준비하였다. 상기 베이스 기재를 전처리하였으며, 상기 전처리 공정은 이소프로필알콜(Isopropyl alcohol, IPA)에 1분간 침지한 후 핫에어 드라이를 통해 건조하고, 이후 5분간 오존처리를 실시하였다. 다만, 상기 전처리 공정은 실시하지 않아도 무방하다.
상기 베이스 기재인 전처리된 비닐 상에 제1유기화합물층을 형성하였다. 상기 제1유기화합물층의 재질은 도파민(Dopamine)을 사용하였으며, 베이스 기재 상에 제1유기화합물층을 형성하는 것은 딥-슬라이딩 법을 통해 형성하였다. 구체적으로, 12*12*1.7㎤의 욕조에 도파민 용액(dopamine hydrochloride 6mg을 MeOH 30㎖에 분산)을 포함하고, 상기 도파민 용액에 상기 전처리된 비닐을 침지하여 진행하였다.
다음으로, 상기 제1유기화합물층 상에 금속 나노와이어를 형성하였다. 상기 금속 나노와이어는 Ag 나노와이어를 사용하였으며, Ag 나노와이어는 나노픽스사의 분산 원액을 구매해서 사용하였다. 이때, 분산 원액에서의 Ag 나노와어어는 두께 25 ~ 40 nm, 길이 약 25㎛이고, 농도는 0.5 wt%에 해당하였으며, 이때의 용매는 IPA(이소프로필알콜(Isopropyl alcohol))를 사용하였다. 한편, 균일하고 깨끗한 코팅을 위해서 상기 원액을 IPA:MeOH 용액으로 5배에서 10배 희석할 수 있다. 이때, 상기 제1유기화합물층 상에 딥 코팅방법으로 금속 나노와이어를 코팅하였다.
딥코팅 방법은 용액 (실버나노와이어 희석액 30㎖ : AgNW(5.45㎖) : IPA(12.27㎖) :MeOH(12.27㎖))이 담긴 샬레에 상기 제1유기화합물층을 포함하는 베이스 기재를 상기 용액 아래로 밀어 넣은 다음 좌우로 두 번 왔다 갔다 한 뒤, 한쪽 방향으로 상기 베이스 기재를 천천히 빼어 건조하는 과정을 통해 코팅할 수 있다.
한편, 코팅은 딥 코팅 이외에 스핀코팅, 스프레이, 슬롯 다이 등과 같이 다양한 방법으로 코팅이 가능하다. 코팅 후에는 열처리 없이 자연건조를 진행하였다. 다만, 제품 양산 속도 향상을 위해서는 50도 미만의 열풍 건조도 가능하다.
다음으로, 상기 금속 나노와이어 상에 제2유기화합물층을 형성하였다. 상기 제2유기화합물층의 재질은 도파민(Dopamine)을 사용하였으며, 상기 금속 나노와이어 상에 제2유기화합물층을 형성하는 것은 딥-슬라이딩 법을 통해 형성하였다. 구체적으로, 12*12*1.7㎤의 욕조에 도파민 용액(dopamine hydrochloride 2mg을 MeOH 10㎖에 분산)을 포함하고, 상기 도파민 용액에 상기 금속 나노와이어를 포함하는 베이스 기재를 침지하여 진행하였다.
다음으로, 상기 제2유기화합물층 상에 금속산화물층을 형성하였다. 금속산화물 전구체 용액은 phosphotungstic acid(TWA)가 용해된 알코올 기반 용매 (무수메탄올/이소프로필 알코올 등)를 사용하였으며, Phosphotungstic acid hydrate 75mg을 MeOH 30㎖에 분산시켜 사용하였다.
금속산화물 전구체 용액을 상기 유기화합물층에 코팅하는 것은 대기 중에서 스핀 코팅, 딥 코팅 또는 스프레이, 슬롯 다이 등과 같은 코팅 방법을 이용해 코팅이 가능다.
스핀 코팅의 경우, 100x100(mm) 기준 4ml 드롭, 3000 rpm 30초로 코팅하여 약 10 ~ 20 nm 사이의 두께를 가지는 금속산화물 막을 형성하였다.
또한, 딥 코팅의 경우 실버용액과 마찬가지로 용액(40ml)을 담은 샬레에 도파민까지 코팅 시킨 섬유체를 천천히 밀어 넣어 좌우로 두 번 왔다 갔다 한 뒤, 한쪽 방향으로 천천히 꺼내어 자연건조 또는 드라이기로 건조 하는 것이 가능하다.
또한, phosphomolybdic acid 또는 phosphotungstic acid를 사용할 경우 MoOx (몰리브데니움 옥사이드) 및 WOx (텅스텐 옥사이드)가 형성될 수 있다.
이때, 상술한 바와 같이, 금속산화물층은 역할은 금속나노와이어 상에 코팅되어 금속나노와이어의 산화를 방지할 수 있을 뿐만 아니라, 금속 나노와이어와 금속 나노와이어간의 접합부에서 접착제 역할을 수행할 수 있다.
한편, 일반적으로, 건식 또는 습식 공정을 이용하여 ZnO 계열의 금속산화물을 코팅하는 공정에서는 고온의 열처리가 추가로 필요하다.
하지만, phosphomolybdic acid 또는 phosphotungstic acid를 사용하여, MoOx (몰리브데니움 옥사이드) 또는 WOx (텅스텐 옥사이드)의 금속산화물을 코팅하는 경우, 상온 건조 또는 50도 미만의 열처리에 의한 저온 건조 만으로도 보호막, 접착제의 역할을 구현할 수 있으며, 따라서, 본 발명은, 종이, 플라스틱, 비닐 등과 같은 고온에 취약한 베이스 기재의 소재에도 적용이 가능하다.
이와 같이 제조된 금속산화물층을 포함하는 베이스 기재 상에 제1전극 및 제2전극을 배치시켜 본 발명에 따른 면상 발열 시트를 제조하였다.
즉, 실시예 2의 경우, 비닐/도파민/AgNW/도파민/TWA의 적층 구조에 해당한다.
상술한 바와 공정은 전체 상온/대기 중에서 진행하였으며 별도의 열처리는 진행하지 않았다.
다만, 금속산화물층까지 형성한 전체 공정을 진행한 이후에, 전류 어닐링을 진행할 수 있으며, 즉, 상술한 바와 같은 제1전극 및 제2전극에 펄스 전류를 인가하여, 별도의 열처리를 대체할 수 있다.
펄스 전류를 인가하는 것은 100mA의 전류를 1분 ON / 30초 OFF하는 과정을 10회 반복하여 전류 어닐링을 진행하였다.
즉, 본 발명에 따른 면상 발열 시트에 포함되는 제1전극 및 제2전극을 활용하여 전류 어닐링을 하는 것만으로, 별도의 열처리 공정을 배제시킬 수 있다.
도 15는 베이스 기재인 폴리프로필렌(PP) 재질의 일반적인 하우스용 비닐을 도시하는 실사진이고, 도 16은 본 발명에 따른 면상 발열 시트를 도시하는 실사진이다.
도 15 및 도 16에 도시된 바와 같이, 본 발명에 따른 면상 발열 시트는 일반적인 하우스용 비닐과 같은 투과율과 굽힘특성을 보임을 확인할 수 있다.
[비교예 3]
베이스 기재인 폴리프로필렌(PP) 재질의 일반적인 하우스용 비닐 상에 은 나노 와이어 만을 형성한 것을 제외하고는 상기 실시예 2과 동일하게 실시하였다.
즉, 비교예 3의 경우, 비닐/AgNW의 적층 구조에 해당한다.
[비교예 4]
베이스 기재인 폴리프로필렌(PP) 재질의 일반적인 하우스용 비닐 상에 제1유기화합물층인 도파민층을 형성하고, 상기 제1유기화합물층 상에 은 나노와이어 만을 형성한 것을 제외하고는 상기 실시예 2와 동일하게 실시하였다.
즉, 비교예 4의 경우, 비닐/도파민/AgNW의 적층 구조에 해당한다.
[비교예 5]
베이스 기재인 폴리프로필렌(PP) 재질의 일반적인 하우스용 비닐 상에 제1유기화합물층인 도파민층을 형성하고, 상기 제1유기화합물층 상에 은 나노와이어를 형성한 후, 상기 은 나노와이어 상에 제2유기화합물층인 도파민층 만을 형성한 것을 제외하고는 상기 실시예 2와 동일하게 실시하였다.
즉, 비교예 5의 경우, 비닐/도파민/AgNW/도파민의 적층 구조에 해당한다.
상기 실시예 2, 비교예 3 내지 비교예 5의 발열반응 특성, 저항특성 및 투과도 특성을 측정하였다.
도 17은 실시예 2에 따른 발열반응 특성을 도시하는 화상이미지이고, 도 18은 비교예 3에 따른 발열반응 특성을 도시하는 화상이미지이며, 도 19는 비교예 4에 따른 발열반응 특성을 도시하는 화상이미지이고, 도 20은 비교예 5에 따른 발열반응 특성을 도시하는 화상이미지이다.
먼저, 도 17을 참조하면, 본 발명에 따른 실시예 2는 비교예 3 내지 비교예 5와 비교하여, 가장 높은 발열반응(5.5V의 전압인가 시 53.3℃까지 온도 상승)을 나타냄을 확인할 수 있으며, 5.5V의 높은 전압에도 견딜 수 있음을 확인할 수 있다.
하지만, 비교예 3의 경우, 4V의 전압인가 후 breakdown이 발생하여 더 이상의 전압인가가 불가하였다.
또한, 비교예 4의 경우, 베이스 기재 상에 제1유기화합물층을 형성한 경우에는 5V의 전압은 인가가능하였으나, 그 이상의 전압인가 후에는 Breakdown이 발생하여 더 이상의 전압인가가 불가하였다.
다만, 비교예 3 및 비교예 4를 통해 알 수 있는 바와 같이, 상기 베이스 기재 상에 제1유기화합물층을 형성하는 경우, 베이스 기재와 은 나노와이어 간, 또한, 은 나노와이어와 은 나노와이어 간의 접합특성이 개선되어, 제1유기화합물층을 포함하는 경우가 포함하지 않는 경우보다 보다 높은 전압의 인가가 가능함을 확인할 수 있다.
또한, 비교예 4 및 비교예 5, 즉, 상기 베이스 기재 상에 제1유기화합물층 및 은 나노와이어를 형성하는 비교예 4, 상기 베이스 기재 상에 제1유기화합물층, 은 나노와이어 및 제2유기화합물층을 형성하는 비교예 5를 통해 알 수 있는 바와 같이, 비교예 5의 경우, 은 나노와이어 상에 제2유기화합물층을 추가로 형성함으로써, 전압 안정성 및 발열 균일도가 증가함을 확인할 수 있다.
또한, 비교예 5 및 실시예 2를 통해 알 수 있는 바와 같이, 본 발명의 경우, 제2유기화합물층 상에 금속산화물층을 형성함으로써, 동일한 전압을 인가시 발열특성이 크게 개선됨을 확인할 수 있다.
도 21은 실시예 2, 비교예 4 및 비교예 5의 저항특성을 도시하는 그래프이다. 이때, 도 21에서는 비교예 3의 저항특성은 측정하지 않았으며, 상술한 바와 같이, 비교예 3의 경우, 4V의 전압인가 후 breakdown이 발생하여 더 이상의 전압인가가 불가하였기 때문에, 의미가 없는 실험예에 해당하여 비교예 3의 저항특성 측정은 생략하였다.
도 21을 참조하면, 본 발명에 따른 실시예 2는 비교예 4 및 비교예 5와 비교하여 저항특성이 현저하게 우수함을 확인할 수 있으며, 이는 상술한 도 5의 발열반응 특성과 일치하는 것으로, 즉, 실시예 2의 경우, 저항이 감소하여 발열반응 특성이 우수함을 확인할 수 있다.
도 22는 실시예 2, 비교예 3 내지 비교예 5의 투과율을 측정한 그래프이다.
도 22를 참조하면, 실시예 2, 비교예 3 내지 비교예 5의 경우 전체적으로 높은 투과율을 보임을 확인할 수 있으며, 이는 상술한 도 15 및 도 16의 실사진인, 본 발명에 따른 면상 발열 시트는 일반적인 하우스용 비닐과 같은 투과율을 보임을 확인할 수 있다.
이상과 같은 본 발명에 따르면, 상술한 바와 같이, 본 발명에서는 비닐, 플라스틱, 종이, 섬유 등의 플렉서블(Flexible)한 재질의 지지 구조물인 베이스 기재 상에 금속 나노와이어; 상기 금속 나노와이어 상에 위치하는 제2유기화합물층; 및 상기 제2유기화합물층 상에 위치하는 금속산화물층을 포함하는 면상 발열재 또는 선상 발열재를 통해 면상 발열 시트를 구현하기 때문에, 자연스럽게 접히거나 구부려 사용할 수 있어, 그 쓰임이 매우 광범위하다고 할 수 있다.
이때, 상술한 비교예 3 및 비교예 4에서 알 수 있는 바와 같이, 상기 베이스 기재 상에 곧바로 금속 나노와이어를 형성하는 것은, 일정 수준 이상의 전압을 인가하는 경우 Breakdown이 발생하여 더 이상의 전압인가가 불가하기 때문에 면상 발열 시트의 구현이 어려움을 확인할 수 있다.
따라서, 본 발명에서는 베이스 기재 상에 제1유기화합물층을 형성하여, 베이스 기재와 금속 나노와이어 간, 또한, 금속 나노와이어와 금속 나노와이어 간의 접합특성을 개선하여, 보다 높은 전압의 인가 시에도 안정적인 발열특성을 구현할 수 있다.
이하에서는 제1유기화합물층의 재질에 따른 특성을 비교하기 위하여, 하기의 실험을 추가로 진행하였다.
[실시예 3]
제1유기화합물층의 재질로 폴리도파민(PDA)을 사용한 것을 제외하고는 상기 실시예 2와 동일하게 실시하였다.
즉, 실시예 3의 경우, 비닐/폴리도파민(PDA)/AgNW/도파민/TWA의 적층 구조에 해당한다.
도 23은 베이스 기재 상에 제1유기화합물층으로 도파민을 형성한 경우의 실사진이고, 도 24는 베이스 기재 상에 제1유기화합물층으로 폴리도파민을 형성한 경우의 실사진이다. 이때, 도 23은 비닐/도파민/AgNW/도파민/TWA의 적층 구조에 해당하고, 도 24는 비닐/폴리도파민(PDA)/AgNW/도파민/TWA의 적층 구조에 해당한다.
또한, 도 25는 실시예 3에 따른 발열반응 특성을 도시하는 화상이미지이다.
먼저, 도 23을 참조하면, 베이스 기재 상에 제1유기화합물층으로 도파민을 형성한 경우는 금속 나노와이어인 은 나노와이어가 비교적 균일하게 코팅되어 있는 반면에, 도 24를 참조하면, 베이스 기재 상에 제1유기화합물층으로 폴리도파민을 형성한 경우는 금속 나노와이어인 은 나노와이어가 일부 영역에 집중되어 비교적 불균일하게 코팅되어 있음을 확인할 수 있다.
다음으로, 도 25를 참조하면, 상술한 도 17과 비교하여, 동일전압인 5.5V의 전압인가시, 실시예 2의 경우 53.3℃의 온도까지 발열한 반면에, 실시예 3의 경우 30.5℃의 온도까지 발열함을 확인할 수 있다.
즉, 실시예 2 및 실시예 3의 경우, 베이스 기재 상에 형성되는 제1유기화합물층의 재질에 따라 발열특성이 일부 상이함을 확인할 수 있다.
하지만, 실시예 3의 경우, 실시예 2와 비교하여, 동일전압에서 측정되는 발열온도는 낮기는 하나, 8V의 전압인가까지 안정적으로 발열할 수 있음을 확인할 수 있다.
따라서, 본 발명에서는 발열특성에 있어서는 상기 제1유기화합물층의 재질로 도파민을 사용하는 것이 바람직하다 할 수 있으며, 다만, 높은 전압에서의 안정성 측면에서는 폴리도파민을 사용하는 것이 바람직하다 할 수 있다.
이상과 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (11)

  1. 금속 나노와이어;
    상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및
    상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 열선.
  2. 제 1 항에 있어서,
    상기 유기화합물층은 카테콜아민 (catecholamine) 또는 그 유도체인 열선.
  3. 제 2 항에 있어서,
    상기 카테콜아민 (catecholamine)은 도파민 (dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는 열선.
  4. 제 1 항에 있어서,
    상기 금속산화물층은 몰리브데넘(Mo)산화물 또는 텅스텐(W)산화물인 열선.
  5. 단일 섬유체 및 상기 단일 섬유체를 감싸는 복수개의 열선을 포함하는 선상 발열재를 포함하고,
    상기 열선은 금속 나노와이어; 상기 금속 나노 와이어 상에 코팅되는 유기화합물층; 및 상기 유기 화합물층 상에 코팅되는 금속산화물층을 포함하는 면상 발열 시트.
  6. 제 5 항에 있어서,
    상기 선상 발열재는 복수개이고,
    상기 복수개의 선상 발열재는 불규칙하게 배열되는 것을 특징으로 하는 면상 발열 시트.
  7. 제 5 항에 있어서,
    상기 복수개의 선상 발열재의 일측과 연결되는 제1전극 및 상기 복수개의 선상 발열재의 타측과 연결되는 제2전극을 포함하고, 상기 제1전극 및 상기 제2전극에 전원을 인가함으로써, 상기 열선이 발열하는 면상 발열 시트.
  8. 제 5 항에 있어서,
    상기 금속 나노와이어의 길이는 10 내지 50㎛인 면상 발열 시트.
  9. 제 5 항에 있어서,
    상기 유기화합물층은 카테콜아민 (catecholamine) 또는 그 유도체인 면상 발열 시트.
  10. 제 9 항에 있어서,
    상기 카테콜아민 (catecholamine)은 도파민 (dopamine), 도파민퀴논 (dopamine-quinone), 알파-메틸도파민 (alphamethyldopamine), 노르에피네프린 (norepinephrine), 에피네프린(epinephrine), 알파-메틸도파(alphamethyldopa), 드록시도파 (droxidopa), 및 5-하이드록시도파민 (5-Hydroxydopamine)으로 구성된 군에서 선택되는 적어도 어느 하나 이상인 것을 특징으로 하는 면상 발열 시트.
  11. 제 5 항에 있어서,
    상기 금속산화물층은 몰리브데넘(Mo)산화물 또는 텅스텐(W)산화물인 면상 발열 시트.
PCT/KR2017/006046 2016-06-10 2017-06-09 열선 및 이를 포함하는 면상 발열 시트 WO2017213468A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/562,471 US20180199400A1 (en) 2016-06-10 2017-06-09 Heating wire and planar heating sheet including the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2016-0072477 2016-06-10
KR20160072477 2016-06-10
KR10-2016-0106729 2016-08-23
KR1020160106729A KR101812024B1 (ko) 2016-06-10 2016-08-23 열선 및 이를 포함하는 면상 발열 시트
KR10-2016-0153211 2016-11-17
KR1020160153211A KR101850709B1 (ko) 2016-06-10 2016-11-17 면상 발열 시트

Publications (1)

Publication Number Publication Date
WO2017213468A1 true WO2017213468A1 (ko) 2017-12-14

Family

ID=60578012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006046 WO2017213468A1 (ko) 2016-06-10 2017-06-09 열선 및 이를 포함하는 면상 발열 시트

Country Status (1)

Country Link
WO (1) WO2017213468A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588987B2 (en) 2019-10-02 2023-02-21 Sensors Unlimited, Inc. Neuromorphic vision with frame-rate imaging for target detection and tracking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130122327A (ko) * 2012-04-30 2013-11-07 주식회사 대유신소재 면상발열체를 이용한 발열체 패드의 제조방법 및 발열체 패드가 적용된 발열시트
KR20150007574A (ko) * 2013-07-11 2015-01-21 전자부품연구원 산화아연 나노와이어 및 ito 입자를 이용한 면상 발열체 및 그 제조방법
KR101485858B1 (ko) * 2014-03-24 2015-01-27 한국기계연구원 금속 나노 와이어 투명전극의 제조 방법 및 이에 의해 제조된 금속 나노 와이어 투명전극
KR20150080368A (ko) * 2013-12-31 2015-07-09 삼성정밀화학 주식회사 금속의 나노와이어를 포함하는 적층 구조
JP2015156343A (ja) * 2014-02-21 2015-08-27 株式会社クラレ 面状発熱体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130122327A (ko) * 2012-04-30 2013-11-07 주식회사 대유신소재 면상발열체를 이용한 발열체 패드의 제조방법 및 발열체 패드가 적용된 발열시트
KR20150007574A (ko) * 2013-07-11 2015-01-21 전자부품연구원 산화아연 나노와이어 및 ito 입자를 이용한 면상 발열체 및 그 제조방법
KR20150080368A (ko) * 2013-12-31 2015-07-09 삼성정밀화학 주식회사 금속의 나노와이어를 포함하는 적층 구조
JP2015156343A (ja) * 2014-02-21 2015-08-27 株式会社クラレ 面状発熱体
KR101485858B1 (ko) * 2014-03-24 2015-01-27 한국기계연구원 금속 나노 와이어 투명전극의 제조 방법 및 이에 의해 제조된 금속 나노 와이어 투명전극

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588987B2 (en) 2019-10-02 2023-02-21 Sensors Unlimited, Inc. Neuromorphic vision with frame-rate imaging for target detection and tracking

Similar Documents

Publication Publication Date Title
WO2016080738A1 (ko) 필름 터치 센서 및 그의 제조 방법
WO2018034411A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2014161380A1 (en) Transparent conductive electrodes comprising merged metal nanowires, their structure design, and method of making such structures
WO2018164396A1 (en) Electronic dust collecting apparatus and method of manufacturing dust collector
WO2016171421A1 (ko) 터치 윈도우
WO2020040368A1 (ko) 발광 소자, 이를 포함하는 표시 장치 및 표시 장치의 제조 방법
WO2020222445A1 (ko) 디스플레이용 기판
WO2011040786A2 (ko) 태양광 발전장치 및 이의 제조방법
WO2016024760A1 (ko) 터치윈도우
WO2017069528A1 (ko) 편광판 일체형 윈도우 기판 및 이의 제조 방법
WO2017204584A1 (ko) 보호 컨택터
WO2018124459A1 (ko) 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
WO2020145568A1 (ko) 태양전지 제조 방법
WO2018043807A1 (ko) Pedot/pss 분산액, 상기 분산액으로 제조된 광경화형 대전 방지 코팅조성물, 및 상기 코팅조성물을 포함하는 집진통
WO2019083338A1 (ko) 산화물 반도체 박막 트랜지스터 및 그 제조방법
WO2017213468A1 (ko) 열선 및 이를 포함하는 면상 발열 시트
WO2022114501A1 (ko) 페로브스카이트 태양 전지 모듈 및 이의 제조 방법
WO2017119764A1 (ko) 필름 터치 센서 및 이의 제조 방법
WO2014133285A1 (ko) 전도성 박막, 이의 제조 방법 및 이를 포함한 전자 소자
WO2019235700A1 (ko) 태양 전지 및 태양 전지의 제조 방법
WO2018164353A1 (ko) 중합체 및 이를 포함하는 유기 태양 전지
WO2021020714A1 (ko) 쌍극자 정렬 장치, 쌍극자 정렬 방법 및 표시 장치의 제조 방법
WO2022220349A1 (ko) 양면 대전방지 실리콘 이형필름
WO2016175573A2 (ko) 화합물 및 이를 포함하는 유기 태양 전지
WO2019059720A2 (ko) 액정 배향용 필름의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810591

Country of ref document: EP

Kind code of ref document: A1