WO2017213006A1 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
WO2017213006A1
WO2017213006A1 PCT/JP2017/020332 JP2017020332W WO2017213006A1 WO 2017213006 A1 WO2017213006 A1 WO 2017213006A1 JP 2017020332 W JP2017020332 W JP 2017020332W WO 2017213006 A1 WO2017213006 A1 WO 2017213006A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
check valve
compressor
suction port
spring load
Prior art date
Application number
PCT/JP2017/020332
Other languages
French (fr)
Japanese (ja)
Inventor
竜介 山田
英輝 柳川
圭佑 中澤
大騎 竹差
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2017213006A1 publication Critical patent/WO2017213006A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a gas compressor.
  • An air conditioning system uses a gas compressor on the circulation path of the cooling medium.
  • the gas compressor sucks low-pressure refrigerant gas (gas) through the suction port of the housing, and compresses the sucked refrigerant gas to high pressure by a compression mechanism portion housed inside the housing, and the resulting high-pressure refrigerant gas Is discharged outside through the discharge port.
  • the air conditioning system cools the refrigerant gas compressed by the gas compressor and liquefies it with a condenser, lowers the pressure with an expansion valve, sends it to the evaporator, and absorbs heat from the surrounding air to vaporize it with the evaporator. Cool the surrounding air by replacing it.
  • the vaporized low-pressure refrigerant gas is returned to the gas compressor and compressed again, and the air is cooled by repeating these steps.
  • an air-conditioning system repeats a drive and stop of a gas compressor suitably so that preset temperature may be maintained.
  • some gas compressors are provided with a check valve in the suction port in order to prevent backflow of refrigerant gas to the evaporator side when stopped (see, for example, Patent Document 1).
  • the check valve closes the suction port, and therefore the refrigerant gas can be prevented from flowing back to the evaporator through the suction port.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas compressor capable of preventing the backflow of refrigerant gas as soon as it is stopped.
  • the gas compressor of the present invention includes a housing that partitions an internal space and an external space, a suction port that serves as a gas passage from the outside to the inside of the housing, and the gas that passes through the suction port and enters the internal space of the housing. And a check valve that prevents backflow of the gas to the external space of the housing through the suction port, and compression that sucks, compresses, and discharges the gas that has flowed in through the check valve And a check valve that is moved between an open position that allows the gas to flow in and a closed position that prevents the gas from flowing back, and the valve body is directed toward the closed position.
  • a spring member that presses, and the check valve sets a spring load when the spring member is fully opened when the suction port is most opened to 0.4 (N) or more.
  • the gas compressor according to the present invention can prevent the backflow of the refrigerant gas as soon as it is stopped.
  • FIG. 3 is an explanatory diagram showing a surface of the front head 12 that faces the front side block 20.
  • FIG. 5 is an explanatory view showing a cross section taken along line II-II in FIG. 4.
  • surface which shows the relationship of the audibility test result with respect to the spring load P (N) at the time of full opening, and spring load mass ratio Ra (N / kg).
  • a vane rotary compressor 100 (hereinafter simply referred to as a compressor 100) as an example of a gas compressor according to the present invention will be described with reference to the drawings.
  • the compressor 100 is configured as a part of an air conditioning system (hereinafter simply referred to as an air conditioning system) for a vehicle that performs cooling using the heat of vaporization of a cooling medium, and is another component of the air conditioning system. Along with a condenser, an expansion valve, an evaporator, etc., it is provided on the circulation path of the cooling medium.
  • the compressor 100 takes in a refrigerant gas G (gas) as a gaseous cooling medium from an evaporator of the air conditioning system, compresses the introduced refrigerant gas G, and supplies the compressed refrigerant gas G to the condenser of the air conditioning system. To do.
  • the condenser radiates heat by exchanging heat between the compressed refrigerant gas and the surrounding air to liquefy the refrigerant gas, and sends the liquid refrigerant to the expansion valve at the high pressure.
  • the high-pressure liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator.
  • the low-pressure liquid refrigerant is vaporized by absorbing heat from ambient air in the evaporator, and cools the air around the evaporator by heat exchange accompanying this vaporization.
  • the vaporized low-pressure refrigerant gas G is again taken into the compressor 100 and compressed, and the above process is repeated thereafter.
  • the compressor 100 includes a compression mechanism 60 that sucks low-pressure refrigerant gas G into the interior, compresses the refrigerant gas G to high pressure, and discharges it, and a housing 10 that houses the compression mechanism 60 therein.
  • the housing 10 includes a case 11 whose one end is closed, and a front head 12 which covers the open end 11b of the case 11.
  • a space for accommodating the compression mechanism portion 60 is formed inside the front head 12 so as to cover the end portion 11 b of the case 11.
  • the compression mechanism section 60 includes a rotor 50 (rotating body), a rotating shaft 51, five vanes 58 (see FIG. 2), a cylinder 40, a front side block (FB) 20, and a rear side block (RB) 30.
  • the rotor 50 has a columnar shape, to which a rotating shaft 51 is attached, and is rotatable with the rotating shaft 51 around the axis C.
  • Each vane 58 is provided so as to be able to advance and retreat in five grooves provided at equiangular intervals when viewed in the rotation direction around the axis C in the rotor 50, and can protrude from the outer peripheral surface of the rotor 50.
  • the cylinder 40 has a cylindrical shape in which the cross-sectional contour shape of the inner peripheral surface 49 is formed in a substantially elliptical shape, and the outer peripheral surface of the rotor 50 is surrounded by the inner peripheral surface 49 from the outside (see FIG. 2).
  • the front side block 20 and the rear side block 30 are provided so as to cover each end surface of the cylindrical cylinder 40 and each end surface of the columnar rotor 50.
  • the compression mechanism 60 is provided in each vane in a space partitioned by the cylinder 40 and the front side block 20 at the end corresponding to one end face and the rear side block 30 at the end corresponding to the other end face.
  • the rotor 50 provided with 58 and a part of the rotating shaft 51 are accommodated.
  • two cylinder chambers 53 and 54 having a substantially crescent-shaped cross-sectional outline are formed in a rotational symmetry with the axis C (rotating shaft 51) as the center (see FIG. 2). .
  • a portion protruding from one end surface of the rotor 50 is rotatably supported by the bearing of the front side block 20 and is connected to the power transmission mechanism 80, and a portion protruding from the other end surface of the rotor 50 is
  • the bearings of the rear side block 30 are rotatably supported.
  • the power transmission mechanism 80 receives the driving force of the engine of the vehicle, for example, and rotates the rotating shaft 51 to rotate the rotor 50 provided with the vanes 58. Then, as shown in FIG. 2, each vane 58 protrudes from the outer peripheral surface of the rotor 50 and is pressed against the inner peripheral surface 49 of the cylinder 40.
  • each cylinder chamber 53, 54 is partitioned into a plurality of compression chambers 48 by each vane 58 provided at equiangular intervals in the rotor 50.
  • five (one of them) are defined by five vanes 58.
  • One is partitioned into compression chambers 48 that straddle both cylinder chambers 53, 54.
  • Each compression chamber 48 performs a series of cycles of a suction stroke, a compression stroke, and a discharge stroke by increasing or decreasing the volume during one rotation of the rotor 50 (rotating shaft 51) in each cylinder chamber 53, 54.
  • each compression chamber 48 performs a series of cycles of the suction stroke, the compression stroke, and the discharge stroke twice (two cycles) during one rotation around the axis C of the rotation shaft 51.
  • a discharge port 11 a that discharges a compressed high-pressure refrigerant gas G to the condenser is provided in the case 11, and the low-pressure refrigerant gas G from the evaporator is sucked into the case 11.
  • a suction port 12 a is provided in the front head 12. Inside the housing 10, a suction chamber 13 that is a space into which the low-pressure refrigerant gas G sucked through the suction port 12a is introduced, and a discharge that is a space through which the high-pressure refrigerant gas G discharged through the discharge port 11a passes.
  • a chamber 14 is provided.
  • the suction chamber 13 is formed by being partitioned by the front head 12 and the front side block 20 of the compression mechanism portion 60, and the discharge chamber 14 is formed by being partitioned by the case 11 and the rear side block 30 of the compression mechanism portion 60.
  • the suction chamber 13 and the cylinder chambers 53, 54 lead to a stroke in which the volume of each compression chamber 48 increases through the suction holes 22, 23 formed in the front side block 20.
  • the refrigerant gas G in the suction chamber 13 is supplied to the compression chamber 48 in the suction stroke (stroke in which the volume increases).
  • the discharge chamber 14 and each compression chamber 48 lead to a stroke in which the volume of each compression chamber 48 decreases through the discharge hole 44 formed in the cylinder 40 and the communication hole formed in the rear side block 30.
  • the high-pressure refrigerant gas G is discharged from the compression chambers 48 to the discharge chambers 14 in the discharge stroke corresponding to the final stage of the compression stroke.
  • an oil separator 65 for separating the refrigerating machine oil R mixed with the discharged refrigerant gas G is provided on the path of the refrigerant gas G between each compression chamber 48 and the discharge chamber 14.
  • the separated refrigerating machine oil R is increased in pressure by the pressure of the refrigerant gas G in the discharge chamber 14, and is supplied to the back (bottom) side of each groove of the rotor 50 provided with each vane 58. 58 is used for pressing against the inner peripheral surface 49 of the cylinder 40 (so-called vane back pressure).
  • a check valve 70 for preventing the backflow of the refrigerant gas G from the suction chamber 13 is provided in the suction port 12a of the front head 12.
  • the check valve 70 is provided on a cylindrical peripheral wall 17 formed in the suction port 12 a and includes a valve body 71, a coil spring 72 as a spring member, and a stopper member 73.
  • the valve body 71 is provided in contact with the peripheral wall 17 of the suction port 12a, and is movable in the direction of the axis C1 of the suction port 12a while maintaining the inscribed state.
  • the coil spring 72 extends most in an unloaded state and exerts an elastic force that resists the operation (compression) of bringing one end side (one end winding portion) and the other end side (the other end winding portion) closer to each other. Consists of springs.
  • the coil spring 72 is provided in a front view of FIG.
  • the stopper member 73 is provided on the upper side of the suction port 12a when viewed from the front in FIG. 5, and defines the upper limit position of the valve body 71 in the suction port 12a by contacting the valve body 71.
  • two openings 18 and 19 communicating with the suction chamber 13 are formed in the peripheral wall 17 of the suction port 12 a with which the valve body 71 is inscribed.
  • a first flow path 15 that communicates with the opening 18 and a second flow path 16 that communicates with the opening 19 are formed in the suction chamber 13.
  • the first flow path 15 is connected to the suction hole 22 (see FIG. 2) leading to one cylinder chamber 53 at the suction end 15a, and the second flow path 16 is connected to the suction hole 23 (leading to the other cylinder chamber 54). 2) and the suction end 16a.
  • the peripheral wall 17 of the suction port 12a has a path that leads from the opening 18 to the one cylinder chamber 53 through the first flow path 15 and the suction hole 22, and the other from the opening 19 through the second flow path 16 and the suction hole 23. And a path leading to the cylinder chamber 54.
  • valve body 71 of the check valve 70 is pressed against the stopper member 73 by the coil spring 72 when the compression mechanism 60 is not operating, and the portion (opening) of the peripheral wall 17 is branched. 18, 19). At this time, the valve body 71 closes the space above itself and the openings 18 and 19 (the opening degree is zero). This is hereinafter referred to as a closed position in the valve body 71.
  • the valve body 71 of the check valve 70 has a negative pressure in the suction chamber 13 when the compression mechanism 60 is operated, and moves downward to the axis C1 of the suction port 12a against the pushing force of the coil spring 72. Moved along.
  • the valve body 71 communicates the space above itself with the first flow path 15 and the second flow path 16 through the openings 18 and 19, and enters the cylinder chambers 53 and 54 through the suction holes 22 and 23. Let them communicate. This is hereinafter referred to as an open position in the valve body 71.
  • the pressure decreases as the rotational speed of the rotary shaft 51 of the compression mechanism unit 60 increases, and therefore the amount of the valve element 71 moving downward against the pressing force of the coil spring 72 increases. .
  • the valve body 71 moves downward as the rotational speed of the rotary shaft 51 of the compression mechanism section 60 increases, and the area of the openings 18 and 19 that is not substantially blocked (the opening degree of the valve body 71) is increased.
  • valve body 71 (check valve 70) is in the closed position when the compression mechanism 60 is not operating, and prevents the refrigerant gas G from going back and forth between the evaporator and the suction chamber 13. Further, the valve body 71 (check valve 70) is in an open position when the compression mechanism 60 is operated, and the opening degree of the valve body 71 is changed while allowing the refrigerant gas G to flow into the suction chamber 13 from the evaporator. Let For this reason, the valve body 71 (check valve 70) has a function of preventing the reverse flow of the refrigerant gas G to the evaporator when the compression mechanism 60 is not operated (closed position), and the compression mechanism 60 is operated. And a function of adjusting the flow rate of the refrigerant gas G to the suction chamber 13 when it is open (open position).
  • the problem of this technique is that even in the compressor 100 of the first embodiment, the fully open spring load P and the spring load mass ratio Ra (see FIG. 6) in the coil spring 72 of the check valve 70 must be set as described later. Since it has the same subject, it demonstrates using the compressor 100.
  • FIG. The compressor 100 constitutes a part of the air conditioning system described above, and is appropriately driven and stopped according to the operation. In the air conditioning system, when the compressor 100 is stopped, noise is generated immediately after the stop. This is considered to be caused by the following.
  • the check valve 70 is provided in the suction port 12a to prevent the reverse flow of the refrigerant gas G. However, since the pressure in the suction chamber 13 is suddenly increased, the check valve 70 is sucked. It is considered that the reverse flow of the refrigerant gas G causing the pressure fluctuation occurs before closing the port 12a.
  • the compressor 100 of the present invention is configured such that the valve body 71 of the check valve 70 is immediately in the closed position in order to close the suction port 12a as soon as it is stopped.
  • the configuration is as follows.
  • the spring load P (N) when fully opened in the coil spring 72 of the check valve 70 is set to a predetermined value or more, which will be described later, from the viewpoint of immediately moving the valve body 71 to the closed position when stopped.
  • the fully open spring load P (N) is a state in which the valve body 71 is most retracted in the check valve 70 and the two openings 18 and 19, that is, the suction port 12a are most opened, in other words, the coil spring 72 is most bent.
  • the coil spring 72 refers to a force that pushes the valve element 71 toward the closed position when the coil spring 72 is in a fully open (collapsed) state (full open state).
  • a fully open (collapsed) state full open state
  • the compressor 100 when the compressor 100 is stopped, the negative pressure in the suction chamber 13 is weakened (pressure is increased) compared with that during operation, and the pressure in the space above the valve body 71 of the check valve 70 is reduced. The difference becomes smaller.
  • the fully open spring load P (N) in the coil spring 72 becomes larger than the pressure difference, the valve body 71 starts to move to the closed position, so the fully open spring load P (N) is increased.
  • the valve body 71 can be quickly moved to the closed position.
  • a compressor 100 is provided to configure a vehicle air conditioning system, and noise in the vehicle is confirmed by human hearing (hearing).
  • 0.8 g of the valve element 71 is used in the check valve 70 having the above-described configuration, and the fully open spring load P (N) in the coil spring 72 in a state of being bent (shrinked) until fully opened. Change in steps.
  • the test result (auditory test result) by this hearing (audibility) is shown in the table of FIG.
  • the spring load mass ratio Ra is a ratio of the fully open spring load P (N) in the coil spring 72 to the mass (kg) of the valve body 71, that is, a value obtained by dividing the fully open spring load P by the mass of the valve body 71.
  • the auditory test result is determined by the presence or absence of noise generated by human hearing in the car as described above. If noise is generated, the result is x. A triangle indicates that no noise can be confirmed. If you are not concerned about the noise ( ⁇ ), this hearing test is performed to confirm the noise, so it is sensitive to the noise, but it has been reduced to a level where it is difficult to understand. Say.
  • the compressor 100 of the present invention basically sets the fully open spring load P to 0.4 (N) or more in order to prevent the occurrence of substantial noise, and more preferably the fully open spring load P is set to 0. Generation of noise is more reliably prevented by setting it to 7 (N) or more.
  • the compressor 100 of the present invention basically has a spring load mass ratio Ra of 500 (N / kg) or more, more preferably a spring load mass ratio Ra of 875 (N / Kg) to prevent noise generation more reliably.
  • the fully open spring load P is a value obtained by multiplying the spring constant (N / mm) of the coil spring 72 by the amount of deflection (shrinkage) (the amount of fully open deflection) (mm) of the coil spring 72 in the fully open state. Can show. For this reason, the setting of the fully open spring load P can be realized by appropriately combining increasing the spring constant and increasing the fully opened deflection amount.
  • the compressor 100 (check valve 70) of the first embodiment increases the spring constant as compared with the conventional compressor (gas compressor), so that the fully open spring load P is the above-described predetermined value (0.4 (N)). , More preferably 0.7 (N)) or more.
  • the compressor 100 (check valve 70) of Example 1 raises a spring constant compared with the conventional compressor (gas compressor),
  • the spring load mass ratio Ra is the predetermined value (500 (N / kg)) mentioned above. And more preferably 875 (N / kg)) or more.
  • the fully open spring load P is set to 0.4 (N) and the spring load mass ratio Ra is set to 500 (N / kg). Both the fully open spring load P and the spring load mass ratio Ra are set together so that the spring load P is 0.7 (N) and the spring load mass ratio Ra is 875 (N / kg). May be.
  • Setting that combines both can be realized by setting the spring constant and the fully open deflection amount in view of the mass (kg) of the valve element 71.
  • the compressor 100 of the first embodiment sets the fully open spring load P to 0.4 (N) and the spring load mass ratio Ra to 500 (N / kg).
  • the valve body 71 is pressed against the stopper member 73 by the coil spring 72 in the check valve 70. Closed position.
  • the suction chamber 13 becomes negative pressure, so that the valve element 71 moves downward against the pushing force of the coil spring 72 in the check valve 70. Open position.
  • the compressor 100 causes the low-pressure refrigerant gas G to flow into the suction chamber 13 through the suction port 12a, compresses the refrigerant gas G by the compression mechanism unit 60, and discharges the refrigerant gas G to the discharge chamber 14.
  • the high-pressure refrigerant gas G Is discharged through the discharge port 11a.
  • the air conditioning system cools the inside of the vehicle by repeating the above process using the refrigerant gas G compressed by the compressor 100.
  • the air conditioning system repeats driving the compressor 100 again when the interior of the vehicle reaches a set temperature to stop the compressor 100 to prevent excessive cooling and when the interior of the vehicle reaches a temperature somewhat higher than the set temperature.
  • the compressor 100 sets the fully open spring load P (N) in the check valve 70 to be equal to or greater than the predetermined value described above. Therefore, as soon as the compressor 100 is stopped, the valve body 71 starts to move to the closed position. Immediately, the suction port 12a is shut off as a closed state. Thereby, in the air conditioning system using the compressor 100, it is possible to prevent noise from occurring when the compressor 100 is stopped.
  • the compressor 100 sets the fully open spring load P in the check valve 70 to 0.4 (N) or more, when the compressor 100 is stopped, the valve body 71 can be immediately moved to the closed position. Is immediately closed to block the suction port 12a. For this reason, as soon as the compressor 100 is stopped, the backflow of the high-pressure refrigerant gas G from the suction port 12a to the evaporator can be prevented, and the generation of noise in the used air conditioning system can be prevented.
  • the compressor 100 sets the fully open spring load P in the check valve 70 to 0.7 (N) or more as a more preferable example, the valve body 71 can be moved more quickly to the closed position when stopped.
  • the check valve 70 can be closed earlier, and the suction port 12a can be shut off.
  • the compressor 100 can more reliably prevent the reverse flow of the high-pressure refrigerant gas G from the suction port 12a immediately after being stopped to the evaporator, and can more reliably prevent the generation of noise in the used air conditioning system. .
  • the compressor 100 sets the spring load mass ratio Ra in the check valve 70 to 500 (N / kg) or more, the influence of the mass (kg) of the valve body 71 is also taken into consideration, so that the valve body when stopped The start of the movement of 71 to the closed position can be surely accelerated, and the check valve 70 can be immediately closed to shut off the suction port 12a. For this reason, as soon as the compressor 100 is stopped, the backflow of the high-pressure refrigerant gas G from the suction port 12a to the evaporator can be prevented, and the generation of noise in the used air conditioning system can be prevented.
  • the compressor 100 is stopped because the influence of the mass (kg) of the valve body 71 is also taken into account in order to set the spring load mass ratio Ra in the check valve 70 to 875 (N / kg) or more as a more preferable example.
  • the valve body 71 can be started to move to the closed position more reliably, and the check valve 70 can be closed earlier so that the suction port 12a can be shut off.
  • the compressor 100 can more reliably prevent the reverse flow of the high-pressure refrigerant gas G from the suction port 12a immediately after being stopped to the evaporator, and can more reliably prevent the generation of noise in the used air conditioning system. .
  • the compressor 100 has a spring constant (N / mm) of the coil spring 72 higher than that of a conventional compressor (gas compressor) in order to set the fully open spring load P in the check valve 70. For this reason, the compressor 100 can be realized by using only the coil spring 72 having a different spring constant without causing a design change from the conventional compressor, and can be prevented from becoming larger than the conventional compressor. Further, the compressor 100 can increase the pressing force (spring load when fully closed) of the valve element 71 at the closed position in the check valve 70 at the closed position, compared with the conventional compressor. It is possible to improve the protrusion of each vane 58 from the rotor 50. This is due to the following.
  • the compressor 100 When the conventional compressor is stopped, the pressure in the suction chamber 13 becomes higher than the vane back pressure, so that the vanes 58 may not be properly ejected even when the rotor 50 rotates.
  • the compressor 100 has a higher fully loaded spring load than the conventional compressor, so that the check valve 70 can be opened later than the conventional compressor when driven. Thereby, the compressor 100 can assist the suction chamber 13 to become negative pressure by the operation of the activated compression mechanism section 60, and the pressure in the suction chamber 13 can be made lower than the vane back pressure. Further, it is possible to improve the jump-out of each vane 58 from the rotor 50 at the time of startup.
  • the compressor 100 can set the fully open spring load P in the check valve 70 by increasing the fully open deflection amount (mm) of the coil spring 72 as compared with the conventional compressor (gas compressor). For this reason, the compressor 100 can be easily realized simply by adjusting the fully open deflection amount of the coil spring 72 in the check valve 70 from the conventional compressor.
  • the compressor 100 increases the fully open deflection (mm) while increasing the spring constant (N / mm) of the coil spring 72 as compared with the conventional compressor (gas compressor), so that the spring load when the check valve 70 is fully opened is increased. P can be set. Therefore, the compressor 100 can set the fully open spring load P by appropriately adjusting the spring constant and the fully open deflection amount in consideration of the fully closed spring load, the overall size, the strength of the stopper member 73, and the like. It is possible to search for the optimal combination while ensuring the degree of freedom.
  • the valve body 71 is brought into a closed position to prevent the reverse flow of the high-pressure refrigerant gas G from the suction port 12a to the evaporator, so that the efficiency of the air conditioning system used can be improved compared to the conventional compressor. Can be improved. This is due to the following. Since the high-pressure refrigerant gas G flowing backward from the suction port 12a is high in temperature, this refrigerant gas G causes an increase in the temperature of the evaporator and piping connected to the evaporator.
  • the air conditioning system the air is cooled by the evaporator, so there is a risk that the temperature in the vehicle will rise, and the timing for driving the compressor again is determined based on the temperature rise of the evaporator and the piping connected to it. There is a possibility that the timing is advanced. Further, in the air conditioning system, when the temperature of the evaporator or the piping connected to the evaporator rises, the temperature of the refrigerant gas G existing there increases, and the temperature of the refrigerant gas G sucked by the compressor when driving again is increased. As a result, the compression efficiency of the compressor may be reduced. For this reason, the compressor 100 can improve the efficiency of the air-conditioning system used compared with the conventional compressor.
  • the compressor 100 can prevent the backflow of the refrigerant gas G as soon as it is stopped.
  • Example 1 As mentioned above, although the gas compressor (compressor) of this invention has been demonstrated based on Example 1, it is not restricted to Example 1 about a concrete structure, The summary of invention which concerns on a claim and each claim As long as they do not deviate, design changes and additions are permitted.
  • the compressor 100 as an example of the gas compressor (compressor) according to the present invention has been described.
  • a housing that partitions the internal space and the external space, a suction port that serves as a gas passage from the outside to the inside of the housing, and allowing the gas to flow into the internal space of the housing through the suction port, and A check valve that prevents backflow of the gas to the external space of the housing through the suction port; and a compression mechanism that sucks, compresses, and discharges the gas that has flowed in via the check valve.
  • the check valve includes a valve body that is moved between an open position that allows the gas to flow in and a closed position that prevents the backflow of the gas, and a spring member that presses the valve body toward the closed position.
  • any gas compressor may be used as long as the fully open spring load in the spring member when the suction port is most opened is 0.4 (N) or more. Limited to Not.
  • the check valve 70 is provided with the openings 18 and 19 in the peripheral wall 17 forming the suction port 12a.
  • the check valve 70 has openings similar to the openings 18 and 19 and moves the valve body 71.
  • a cylindrical case that can be received may be provided in the suction port 12a, and may have other configurations, and is not limited to the configuration of the first embodiment.
  • the number of openings provided in the peripheral wall 17 may be set as appropriate, and is not limited to the configuration of the first embodiment.
  • the spring load mass ratio Ra was set to 875 (N / kg) or more by making the fully open spring load P 0.7 (N) or more using 0.8 g of the valve body 71.
  • the spring load mass ratio Ra is 875 (N / kg) or more
  • the mass of the valve element 71 and the fully open spring load P may be set as appropriate, and are not limited to the configuration of the first embodiment.
  • the check valve 70 as long as the spring load mass ratio Ra is 500 (N / kg) or more, the mass of the valve body 71 and the fully open spring load P may be appropriately set.
  • the configuration is not limited to one.
  • the compressor 100 is a vane rotary type gas compressor, but the gas compressor according to the present invention is, for example, a vane rotary type such as a swash plate type gas compressor, a scroll type gas compressor, or the like. Other types of gas compressors may be used, and the configuration is not limited to that of the first embodiment.

Abstract

Provided is a gas compressor that, when stopped, can immediately prevent a backflow of a refrigerant gas. The gas compressor (100) comprises: a housing (10) which separates an inner space from an outer space; a suction port (12a) which serves as a gas passage from an outer section to an inner section of the housing (10); a check valve (70) which allows the inflow of the gas through the suction port (12a) to the inner space of the housing (10) and prevents the backflow of the gas through the suction port (12a) to the outer space of the housing (10); and a compression mechanism unit (60) which suctions, compresses, and discharges the gas which has flowed in through the check valve (70). The check valve (70) comprises a valve body (71), which is movable to an open position allowing the inflow of the gas and to a closed position preventing the backflow of the gas, and a spring member (72) which pushes the valve body (71) toward the closed position. In the check valve (70), the fully open spring load (P) of the spring member when opening the suction port (12a) to the maximum open position is set to at least 0.4 (N).

Description

気体圧縮機Gas compressor
 本発明は、気体圧縮機に関する。 The present invention relates to a gas compressor.
 空気調和システム(以下、空調システムともいう)は、冷却媒体の循環経路上に気体圧縮機を用いている。その気体圧縮機は、ハウジングの吸入ポートを通じて、低圧の冷媒ガス(気体)を吸入し、吸入した冷媒ガスをハウジングの内部に収容した圧縮機構部で高圧に圧縮し、得られた高圧の冷媒ガスを吐出ポートを通じて外部に吐出する。 An air conditioning system (hereinafter also referred to as an air conditioning system) uses a gas compressor on the circulation path of the cooling medium. The gas compressor sucks low-pressure refrigerant gas (gas) through the suction port of the housing, and compresses the sucked refrigerant gas to high pressure by a compression mechanism portion housed inside the housing, and the resulting high-pressure refrigerant gas Is discharged outside through the discharge port.
 空調システムは、気体圧縮機で圧縮された冷媒ガスを凝縮器で冷やして液化し、それを膨張弁で低圧化して蒸発器に送り出し、蒸発器で周囲の空気から吸熱して気化させる際の熱交換により周囲の空気を冷却する。この空調システムは、その気化した低圧の冷媒ガスを気体圧縮機に戻して再び圧縮し、これらの行程を繰り返すことで空気を冷却する。そして、空調システムは、設定温度を維持するように気体圧縮機の駆動と停止とを適宜繰り返す。ここで、気体圧縮機は、停止された際、吐出ポート側の高温で高圧の冷媒ガスが圧縮機構部内を通り吸入ポートから蒸発器側へと逆流する虞がある。すると、空調システムでは、気体圧縮機から逆流する冷媒ガスにより蒸発器等が温められるので、再び駆動する際に気体圧縮機に吸入させる冷媒ガスの温度の上昇を招いてしまう。 The air conditioning system cools the refrigerant gas compressed by the gas compressor and liquefies it with a condenser, lowers the pressure with an expansion valve, sends it to the evaporator, and absorbs heat from the surrounding air to vaporize it with the evaporator. Cool the surrounding air by replacing it. In this air conditioning system, the vaporized low-pressure refrigerant gas is returned to the gas compressor and compressed again, and the air is cooled by repeating these steps. And an air-conditioning system repeats a drive and stop of a gas compressor suitably so that preset temperature may be maintained. Here, when the gas compressor is stopped, there is a possibility that the high-temperature and high-pressure refrigerant gas on the discharge port side flows back from the suction port to the evaporator side through the compression mechanism section. Then, in the air conditioning system, the evaporator and the like are warmed by the refrigerant gas that flows backward from the gas compressor, which causes an increase in the temperature of the refrigerant gas sucked into the gas compressor when it is driven again.
 このため、気体圧縮機では、停止された際の冷媒ガスの蒸発器側への逆流を防止すべく、吸入ポートに逆止弁を設けているものがある(例えば、特許文献1参照)。この気体圧縮機は、停止された際、逆止弁が吸入ポートを閉鎖するので、吸入ポートを通して蒸発器側へと冷媒ガスが逆流することを逆止弁で防止できる。 For this reason, some gas compressors are provided with a check valve in the suction port in order to prevent backflow of refrigerant gas to the evaporator side when stopped (see, for example, Patent Document 1). When the gas compressor is stopped, the check valve closes the suction port, and therefore the refrigerant gas can be prevented from flowing back to the evaporator through the suction port.
特開2003-166486号公報JP 2003-166486 A
 ところで、空調システムでは、気体圧縮機を停止すると、その直後に騒音が発生してしまう。これは、気体圧縮機において、停止に伴い吸入側の冷媒ガスの圧力が急激に上昇し、その高圧の冷媒ガスを吸入ポートから蒸発器へと逆流させることで、空調システムにおける蒸発器に繋がる配管の急激な圧力変動が生じ、それに伴い騒音が発生するものと考えられる。ここで、気体圧縮機では、吸入ポートに逆止弁を設けているが、上記した吸入側の圧力上昇が急激に生じるので、逆止弁が吸入ポートを閉鎖する前に圧力変動を招く冷媒ガスの逆流が生じていると考えられる。 By the way, in the air conditioning system, when the gas compressor is stopped, noise is generated immediately after that. This is because in the gas compressor, the pressure of the refrigerant gas on the suction side suddenly rises as it stops, and the high-pressure refrigerant gas flows backward from the suction port to the evaporator, thereby connecting to the evaporator in the air conditioning system It is considered that a sudden pressure fluctuation occurs and noise is generated accordingly. Here, in the gas compressor, a check valve is provided in the suction port. However, since the pressure increase on the suction side described above occurs abruptly, the refrigerant gas that causes pressure fluctuations before the check valve closes the suction port. It is thought that the reverse flow of has occurred.
 本発明は、上記の問題に鑑みて為されたもので、停止されると直ちに冷媒ガスの逆流を防止できる気体圧縮機を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas compressor capable of preventing the backflow of refrigerant gas as soon as it is stopped.
 本発明の気体圧縮機は、内部空間と外部空間とを仕切るハウジングと、前記ハウジングの外部から内部への気体の通路となる吸入ポートと、前記吸入ポートを通る前記ハウジングの内部空間への前記気体の流入を許し、かつ前記吸入ポートを通る前記ハウジングの外部空間への前記気体の逆流を防止する逆止弁と、前記逆止弁を介して流入した前記気体を吸入し圧縮して吐出する圧縮機構部と、を備え、前記逆止弁は、前記気体の流入を許す開放位置と前記気体の逆流を防止する閉鎖位置とで移動される弁体と、前記弁体を前記閉鎖位置へ向けて押し付けるばね部材と、を有し、前記逆止弁では、前記吸入ポートを最も開放するときの前記ばね部材における全開時ばね荷重を0.4(N)以上に設定することを特徴とする。 The gas compressor of the present invention includes a housing that partitions an internal space and an external space, a suction port that serves as a gas passage from the outside to the inside of the housing, and the gas that passes through the suction port and enters the internal space of the housing. And a check valve that prevents backflow of the gas to the external space of the housing through the suction port, and compression that sucks, compresses, and discharges the gas that has flowed in through the check valve And a check valve that is moved between an open position that allows the gas to flow in and a closed position that prevents the gas from flowing back, and the valve body is directed toward the closed position. A spring member that presses, and the check valve sets a spring load when the spring member is fully opened when the suction port is most opened to 0.4 (N) or more.
 本発明に係る気体圧縮機によれば、停止されると直ちに冷媒ガスの逆流を防止できる。 The gas compressor according to the present invention can prevent the backflow of the refrigerant gas as soon as it is stopped.
本発明に係る気体圧縮機の一実施形態に係る実施例1のコンプレッサ100の構成を縦断面で示す説明図である。It is explanatory drawing which shows the structure of the compressor 100 of Example 1 which concerns on one Embodiment of the gas compressor which concerns on this invention with a longitudinal cross-section. 図1のI-I線に沿って得られた断面で示す説明図である。It is explanatory drawing shown in the cross section obtained along the II line | wire of FIG. フロントヘッド12におけるフロントサイドブロック20に対向する面を示す説明図である。FIG. 3 is an explanatory diagram showing a surface of the front head 12 that faces the front side block 20. 図3に示す逆止弁70の周辺を拡大して示す説明図である。It is explanatory drawing which expands and shows the periphery of the non-return valve 70 shown in FIG. 図4のII-II線に沿って得られた断面で示す説明図である。FIG. 5 is an explanatory view showing a cross section taken along line II-II in FIG. 4. 全開時ばね荷重P(N)およびばね荷重質量比Ra(N/kg)に対する聴感試験結果の関係を示す表である。It is a table | surface which shows the relationship of the audibility test result with respect to the spring load P (N) at the time of full opening, and spring load mass ratio Ra (N / kg).
 以下、本発明に係る気体圧縮機の一例としてのベーンロータリ式コンプレッサ100(以下では単にコンプレッサ100という)について、図面を参照しつつ説明する。 Hereinafter, a vane rotary compressor 100 (hereinafter simply referred to as a compressor 100) as an example of a gas compressor according to the present invention will be described with reference to the drawings.
 実施例1のコンプレッサ100は、冷却媒体の気化熱を利用して冷却を行なう車両の空気調和システム(以下では単に空調システムという)の一部として構成され、この空調システムの他の構成要素である凝縮器、膨張弁、蒸発器等とともに、冷却媒体の循環経路上に設けられる。このコンプレッサ100は、空調システムの蒸発器から気体状の冷却媒体としての冷媒ガスG(気体)を取り入れ、その取り入れた冷媒ガスGを圧縮し、圧縮した冷媒ガスGを空調システムの凝縮器に供給する。凝縮器は、圧縮された冷媒ガスと周囲の空気等との間で熱交換することで放熱させて当該冷媒ガスを液化させ、その高圧で液状の冷媒を膨張弁に送り出す。高圧で液状の冷媒は、膨張弁で低圧化されて蒸発器に送り出される。その低圧の液状の冷媒は、蒸発器で周囲の空気から吸熱して気化し、この気化に伴う熱交換により蒸発器の周囲の空気を冷却する。気化した低圧の冷媒ガスGは、再びコンプレッサ100に取り入れられて圧縮され、以下、上記行程を繰り返す。 The compressor 100 according to the first embodiment is configured as a part of an air conditioning system (hereinafter simply referred to as an air conditioning system) for a vehicle that performs cooling using the heat of vaporization of a cooling medium, and is another component of the air conditioning system. Along with a condenser, an expansion valve, an evaporator, etc., it is provided on the circulation path of the cooling medium. The compressor 100 takes in a refrigerant gas G (gas) as a gaseous cooling medium from an evaporator of the air conditioning system, compresses the introduced refrigerant gas G, and supplies the compressed refrigerant gas G to the condenser of the air conditioning system. To do. The condenser radiates heat by exchanging heat between the compressed refrigerant gas and the surrounding air to liquefy the refrigerant gas, and sends the liquid refrigerant to the expansion valve at the high pressure. The high-pressure liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator. The low-pressure liquid refrigerant is vaporized by absorbing heat from ambient air in the evaporator, and cools the air around the evaporator by heat exchange accompanying this vaporization. The vaporized low-pressure refrigerant gas G is again taken into the compressor 100 and compressed, and the above process is repeated thereafter.
 そのコンプレッサ100は、図1に示すように、低圧の冷媒ガスGを内部に吸入し、高圧に圧縮して吐出する圧縮機構部60と、圧縮機構部60を内部に収容するハウジング10と、を備える。ハウジング10は、一方の端部が閉じたケース11と、ケース11の開放された端部11bを覆うフロントヘッド12と、を備える。このハウジング10では、フロントヘッド12がケース11の端部11bを覆う状態で、内部に圧縮機構部60を収容する空間を形成する。その圧縮機構部60は、ロータ50(回転体)と回転軸51と5枚のベーン58(図2参照)とシリンダ40とフロントサイドブロック(FB)20とリアサイドブロック(RB)30とを備える。 As shown in FIG. 1, the compressor 100 includes a compression mechanism 60 that sucks low-pressure refrigerant gas G into the interior, compresses the refrigerant gas G to high pressure, and discharges it, and a housing 10 that houses the compression mechanism 60 therein. Prepare. The housing 10 includes a case 11 whose one end is closed, and a front head 12 which covers the open end 11b of the case 11. In the housing 10, a space for accommodating the compression mechanism portion 60 is formed inside the front head 12 so as to cover the end portion 11 b of the case 11. The compression mechanism section 60 includes a rotor 50 (rotating body), a rotating shaft 51, five vanes 58 (see FIG. 2), a cylinder 40, a front side block (FB) 20, and a rear side block (RB) 30.
 そのロータ50は、円柱状を呈し、回転軸51が取り付けられ、その軸心Cを回転中心として回転軸51とともに回転可能とされる。各ベーン58は、ロータ50において軸心Cを中心とする回転方向で見て等角度間隔に設けられた5つの溝に進退可能に設けられ、そのロータ50の外周面から突出可能とされる。シリンダ40は、内周面49の断面輪郭形状が概略楕円形状に形成された筒状を呈し、その内周面49でロータ50の外周面を外方から囲む(図2参照)。フロントサイドブロック20とリアサイドブロック30とは、筒状のシリンダ40の各端面および円柱状のロータ50の各端面を覆って設けられる。 The rotor 50 has a columnar shape, to which a rotating shaft 51 is attached, and is rotatable with the rotating shaft 51 around the axis C. Each vane 58 is provided so as to be able to advance and retreat in five grooves provided at equiangular intervals when viewed in the rotation direction around the axis C in the rotor 50, and can protrude from the outer peripheral surface of the rotor 50. The cylinder 40 has a cylindrical shape in which the cross-sectional contour shape of the inner peripheral surface 49 is formed in a substantially elliptical shape, and the outer peripheral surface of the rotor 50 is surrounded by the inner peripheral surface 49 from the outside (see FIG. 2). The front side block 20 and the rear side block 30 are provided so as to cover each end surface of the cylindrical cylinder 40 and each end surface of the columnar rotor 50.
 このように、圧縮機構部60は、シリンダ40とその一方の端面に対応する端部のフロントサイドブロック20と他方の端面に対応する端部のリアサイドブロック30とで仕切られた空間に、各ベーン58が設けられたロータ50と回転軸51の一部とを収容して構成される。これにより、圧縮機構部60の内部では、軸心C(回転軸51)を中心とする回転対称に、断面輪郭が概略三日月状の2つのシリンダ室53、54が形成される(図2参照)。 In this way, the compression mechanism 60 is provided in each vane in a space partitioned by the cylinder 40 and the front side block 20 at the end corresponding to one end face and the rear side block 30 at the end corresponding to the other end face. The rotor 50 provided with 58 and a part of the rotating shaft 51 are accommodated. Thereby, in the compression mechanism part 60, two cylinder chambers 53 and 54 having a substantially crescent-shaped cross-sectional outline are formed in a rotational symmetry with the axis C (rotating shaft 51) as the center (see FIG. 2). .
 その回転軸51では、ロータ50の一方の端面から突出した部分がフロントサイドブロック20の軸受に回転自在に支持されるとともに動力伝達機構80に連結され、ロータ50の他方の端面から突出した部分がリアサイドブロック30の軸受に回転自在に支持される。その動力伝達機構80は、例えば車両のエンジンの駆動力を受けて回転軸51を回転させて、各ベーン58が設けられたロータ50を回転させる。すると、各ベーン58は、図2に示すように、ロータ50の外周面から突出されて、シリンダ40の内周面49に押し当てられる。これにより、各シリンダ室53、54は、ロータ50に等角度間隔に設けられた各ベーン58により複数の圧縮室48に仕切られ、実施例1では5枚のベーン58により5つ(そのうちの1つは両シリンダ室53、54に跨る)の圧縮室48に仕切られる。この各圧縮室48は、各シリンダ室53、54において、ロータ50(回転軸51)の1回転の間に容積が増減することで、吸入行程、圧縮行程、吐出行程という一連のサイクルを行う。その2つのシリンダ室53、54における各吸入行程、各圧縮行程および各吐出行程は、回転軸51の軸心Cを挟んで回転角度180[度]だけずれた範囲に設定されている。これにより、圧縮機構部60は、回転軸51の軸心C回りの1回転の間に、各圧縮室48が吸入行程、圧縮行程、吐出行程という一連のサイクルを2回(2サイクル)行う。 In the rotating shaft 51, a portion protruding from one end surface of the rotor 50 is rotatably supported by the bearing of the front side block 20 and is connected to the power transmission mechanism 80, and a portion protruding from the other end surface of the rotor 50 is The bearings of the rear side block 30 are rotatably supported. The power transmission mechanism 80 receives the driving force of the engine of the vehicle, for example, and rotates the rotating shaft 51 to rotate the rotor 50 provided with the vanes 58. Then, as shown in FIG. 2, each vane 58 protrudes from the outer peripheral surface of the rotor 50 and is pressed against the inner peripheral surface 49 of the cylinder 40. Thereby, each cylinder chamber 53, 54 is partitioned into a plurality of compression chambers 48 by each vane 58 provided at equiangular intervals in the rotor 50. In the first embodiment, five (one of them) are defined by five vanes 58. One is partitioned into compression chambers 48 that straddle both cylinder chambers 53, 54. Each compression chamber 48 performs a series of cycles of a suction stroke, a compression stroke, and a discharge stroke by increasing or decreasing the volume during one rotation of the rotor 50 (rotating shaft 51) in each cylinder chamber 53, 54. The suction strokes, the compression strokes, and the discharge strokes in the two cylinder chambers 53 and 54 are set within a range shifted by a rotation angle of 180 [degrees] with the axis C of the rotation shaft 51 interposed therebetween. Thus, in the compression mechanism section 60, each compression chamber 48 performs a series of cycles of the suction stroke, the compression stroke, and the discharge stroke twice (two cycles) during one rotation around the axis C of the rotation shaft 51.
 ハウジング10では、図1に示すように、圧縮して高圧とした冷媒ガスGを凝縮器へと吐出する吐出ポート11aがケース11に設けられ、蒸発器からの低圧の冷媒ガスGを内部に吸入する吸入ポート12aがフロントヘッド12に設けられる。このハウジング10の内部には、吸入ポート12aを通じて吸入した低圧の冷媒ガスGが導入される空間である吸入室13と、吐出ポート11aを通じて吐出される高圧の冷媒ガスGが通過する空間である吐出室14と、が設けられる。その吸入室13は、フロントヘッド12と圧縮機構部60のフロントサイドブロック20とにより仕切られて形成され、吐出室14は、ケース11と圧縮機構部60のリアサイドブロック30とにより仕切られて形成される。 In the housing 10, as shown in FIG. 1, a discharge port 11 a that discharges a compressed high-pressure refrigerant gas G to the condenser is provided in the case 11, and the low-pressure refrigerant gas G from the evaporator is sucked into the case 11. A suction port 12 a is provided in the front head 12. Inside the housing 10, a suction chamber 13 that is a space into which the low-pressure refrigerant gas G sucked through the suction port 12a is introduced, and a discharge that is a space through which the high-pressure refrigerant gas G discharged through the discharge port 11a passes. A chamber 14 is provided. The suction chamber 13 is formed by being partitioned by the front head 12 and the front side block 20 of the compression mechanism portion 60, and the discharge chamber 14 is formed by being partitioned by the case 11 and the rear side block 30 of the compression mechanism portion 60. The
 吸入室13と各シリンダ室53、54とは、図2に示すように、フロントサイドブロック20に形成した吸入孔22、23を介して、各圧縮室48の容積が増大する行程に通じる。これにより、吸入行程(容積が増大する行程)の圧縮室48に、吸入室13の冷媒ガスGが供給される。また、吐出室14と各圧縮室48とは、シリンダ40に形成した吐出孔44およびリアサイドブロック30に形成した連通孔を介して、各圧縮室48の容積が減少する行程に通じる。これにより、圧縮行程の終盤に相当する吐出行程で、各圧縮室48から高圧の冷媒ガスGが吐出室14に吐出される。図1に示すように、各圧縮室48と吐出室14との間の冷媒ガスGの経路上に、その吐出された冷媒ガスGに混ざった冷凍機油Rを分離するための油分離器65が設けられる。この分離された冷凍機油Rは、吐出室14の冷媒ガスGの圧力が作用して高圧とされ、各ベーン58が設けられたロータ50の各溝の奥(底)側に供給されて各ベーン58のシリンダ40の内周面49への押し当て(所謂ベーン背圧)に利用される。このハウジング10(コンプレッサ100)では、図3に示すように、フロントヘッド12の吸入ポート12aに、吸入室13からの冷媒ガスGの逆流を防止する逆止弁70が設けられる。 As shown in FIG. 2, the suction chamber 13 and the cylinder chambers 53, 54 lead to a stroke in which the volume of each compression chamber 48 increases through the suction holes 22, 23 formed in the front side block 20. As a result, the refrigerant gas G in the suction chamber 13 is supplied to the compression chamber 48 in the suction stroke (stroke in which the volume increases). Further, the discharge chamber 14 and each compression chamber 48 lead to a stroke in which the volume of each compression chamber 48 decreases through the discharge hole 44 formed in the cylinder 40 and the communication hole formed in the rear side block 30. Accordingly, the high-pressure refrigerant gas G is discharged from the compression chambers 48 to the discharge chambers 14 in the discharge stroke corresponding to the final stage of the compression stroke. As shown in FIG. 1, an oil separator 65 for separating the refrigerating machine oil R mixed with the discharged refrigerant gas G is provided on the path of the refrigerant gas G between each compression chamber 48 and the discharge chamber 14. Provided. The separated refrigerating machine oil R is increased in pressure by the pressure of the refrigerant gas G in the discharge chamber 14, and is supplied to the back (bottom) side of each groove of the rotor 50 provided with each vane 58. 58 is used for pressing against the inner peripheral surface 49 of the cylinder 40 (so-called vane back pressure). In the housing 10 (compressor 100), as shown in FIG. 3, a check valve 70 for preventing the backflow of the refrigerant gas G from the suction chamber 13 is provided in the suction port 12a of the front head 12.
 逆止弁70は、図5に示すように、吸入ポート12aに形成された円筒状の周壁17に設けられ、弁体71とばね部材としてのコイルスプリング72とストッパ部材73とを備える。その弁体71は、吸入ポート12aの周壁17に内接して設けられ、内接状態を維持しつつ吸入ポート12aの軸心C1方向に移動可能とされる。コイルスプリング72は、無負荷状態において最も伸びて、一端側(一端座巻部)と他端側(他端座巻部)とを接近させる動作(圧縮)に抗する弾性力を発揮する圧縮コイルスプリングで構成される。このコイルスプリング72は、図5を正面視して、下端が吸入ポート12aの底面に接しつつ上端が弁体71に接して設けられ、上方へと押す力を弁体71に付与する。ストッパ部材73は、図5を正面視して、吸入ポート12aの上側に設けられ、弁体71と接することで吸入ポート12a内での当該弁体71の上側の限界位置を規定する。 As shown in FIG. 5, the check valve 70 is provided on a cylindrical peripheral wall 17 formed in the suction port 12 a and includes a valve body 71, a coil spring 72 as a spring member, and a stopper member 73. The valve body 71 is provided in contact with the peripheral wall 17 of the suction port 12a, and is movable in the direction of the axis C1 of the suction port 12a while maintaining the inscribed state. The coil spring 72 extends most in an unloaded state and exerts an elastic force that resists the operation (compression) of bringing one end side (one end winding portion) and the other end side (the other end winding portion) closer to each other. Consists of springs. The coil spring 72 is provided in a front view of FIG. 5, with the lower end in contact with the bottom surface of the suction port 12 a and the upper end in contact with the valve body 71, and gives the valve body 71 a pressing force. The stopper member 73 is provided on the upper side of the suction port 12a when viewed from the front in FIG. 5, and defines the upper limit position of the valve body 71 in the suction port 12a by contacting the valve body 71.
 弁体71が内接する吸入ポート12aの周壁17には、図4に示すように、吸入室13に通じる2つの開口18、19が形成される。その吸入室13では、開口18に通じる第1流路15と、開口19に通じる第2流路16と、が形成される。その第1流路15は、一方のシリンダ室53に通じる吸入孔22(図2参照)と吸入端部15aで接続し、第2流路16は、他方のシリンダ室54に通じる吸入孔23(図2参照)と吸入端部16aで接続する。このため、吸入ポート12aの周壁17は、開口18から第1流路15および吸入孔22を経て一方のシリンダ室53に通じる経路と、開口19から第2流路16および吸入孔23を経て他方のシリンダ室54に通じる経路と、に分岐させている。 As shown in FIG. 4, two openings 18 and 19 communicating with the suction chamber 13 are formed in the peripheral wall 17 of the suction port 12 a with which the valve body 71 is inscribed. In the suction chamber 13, a first flow path 15 that communicates with the opening 18 and a second flow path 16 that communicates with the opening 19 are formed. The first flow path 15 is connected to the suction hole 22 (see FIG. 2) leading to one cylinder chamber 53 at the suction end 15a, and the second flow path 16 is connected to the suction hole 23 (leading to the other cylinder chamber 54). 2) and the suction end 16a. Therefore, the peripheral wall 17 of the suction port 12a has a path that leads from the opening 18 to the one cylinder chamber 53 through the first flow path 15 and the suction hole 22, and the other from the opening 19 through the second flow path 16 and the suction hole 23. And a path leading to the cylinder chamber 54.
 逆止弁70の弁体71は、図5に示すように、圧縮機構部60が作動していないときは、コイルスプリング72によりストッパ部材73に押し当てられて、周壁17の分岐させる箇所(開口18、19)よりも上方に位置する。このとき、弁体71は、自らよりも上方の空間と、開口18、19と、を閉鎖(開度がゼロである)する。これを、以下では弁体71における閉鎖位置という。そして、逆止弁70の弁体71は、圧縮機構部60が作動すると、吸入室13が負圧になり、コイルスプリング72の押す力に抗して下方へと吸入ポート12aの軸心C1に沿って移動される。すると、弁体71は、自らよりも上方の空間を、開口18、19を介して第1流路15や第2流路16と通じさせ、吸入孔22、23を経てシリンダ室53、54に通じさせる。これを、以下では弁体71における開放位置という。ここで、吸入室13では、圧縮機構部60の回転軸51の回転速度が速くなるほど圧力が低下するので、コイルスプリング72の押す力に抗して弁体71が下方に移動する量が大きくなる。すると、弁体71は、圧縮機構部60の回転軸51の回転速度が速くなるほど下方に移動し、開口18、19のうちの実質的に遮っていない面積(弁体71の開度)を増大させる。 As shown in FIG. 5, the valve body 71 of the check valve 70 is pressed against the stopper member 73 by the coil spring 72 when the compression mechanism 60 is not operating, and the portion (opening) of the peripheral wall 17 is branched. 18, 19). At this time, the valve body 71 closes the space above itself and the openings 18 and 19 (the opening degree is zero). This is hereinafter referred to as a closed position in the valve body 71. The valve body 71 of the check valve 70 has a negative pressure in the suction chamber 13 when the compression mechanism 60 is operated, and moves downward to the axis C1 of the suction port 12a against the pushing force of the coil spring 72. Moved along. Then, the valve body 71 communicates the space above itself with the first flow path 15 and the second flow path 16 through the openings 18 and 19, and enters the cylinder chambers 53 and 54 through the suction holes 22 and 23. Let them communicate. This is hereinafter referred to as an open position in the valve body 71. Here, in the suction chamber 13, the pressure decreases as the rotational speed of the rotary shaft 51 of the compression mechanism unit 60 increases, and therefore the amount of the valve element 71 moving downward against the pressing force of the coil spring 72 increases. . Then, the valve body 71 moves downward as the rotational speed of the rotary shaft 51 of the compression mechanism section 60 increases, and the area of the openings 18 and 19 that is not substantially blocked (the opening degree of the valve body 71) is increased. Let
 このように、弁体71(逆止弁70)は、圧縮機構部60が作動していないときは閉鎖位置となり、蒸発器と吸入室13との間での冷媒ガスGの行き来を防止する。また、弁体71(逆止弁70)は、圧縮機構部60が作動すると開放位置となり、冷媒ガスGの蒸発器から吸入室13への流入を可能としつつ、弁体71の開度を変化させる。このため、弁体71(逆止弁70)は、圧縮機構部60が作動していないとき(閉鎖位置)の冷媒ガスGの蒸発器への逆流を防止する機能と、圧縮機構部60が作動しているとき(開放位置)の冷媒ガスGの吸入室13への流量を調整する機能と、を有する。 Thus, the valve body 71 (check valve 70) is in the closed position when the compression mechanism 60 is not operating, and prevents the refrigerant gas G from going back and forth between the evaporator and the suction chamber 13. Further, the valve body 71 (check valve 70) is in an open position when the compression mechanism 60 is operated, and the opening degree of the valve body 71 is changed while allowing the refrigerant gas G to flow into the suction chamber 13 from the evaporator. Let For this reason, the valve body 71 (check valve 70) has a function of preventing the reverse flow of the refrigerant gas G to the evaporator when the compression mechanism 60 is not operated (closed position), and the compression mechanism 60 is operated. And a function of adjusting the flow rate of the refrigerant gas G to the suction chamber 13 when it is open (open position).
 ここで、従来の気体圧縮機(コンプレッサ)の技術の課題について説明する。この技術の課題は、実施例1のコンプレッサ100であっても逆止弁70のコイルスプリング72における全開時ばね荷重Pやばね荷重質量比Ra(図6参照)を後述するように設定しなければ同様の課題を有するので、コンプレッサ100を用いて説明する。コンプレッサ100は、上述した空調システムの一部を構成しており、その動作に応じて適宜駆動および停止される。その空調システムでは、コンプレッサ100が停止されると、その停止の直後に騒音が発生してしまう。これは、次のことが原因と考えられる。 Here, the technical problems of the conventional gas compressor (compressor) will be described. The problem of this technique is that even in the compressor 100 of the first embodiment, the fully open spring load P and the spring load mass ratio Ra (see FIG. 6) in the coil spring 72 of the check valve 70 must be set as described later. Since it has the same subject, it demonstrates using the compressor 100. FIG. The compressor 100 constitutes a part of the air conditioning system described above, and is appropriately driven and stopped according to the operation. In the air conditioning system, when the compressor 100 is stopped, noise is generated immediately after the stop. This is considered to be caused by the following.
 冷媒ガスGのような流体を循環させる循環経路では、その途中で循環が遮断されると、流体の運動エネルギーにより遮断された箇所の圧力が急激に上昇することが知られている。空調システムに用いられたコンプレッサ100では、停止されると、吸入室13の冷媒ガスGの圧力が急激に上昇し、吸入室13と吸入ポート12aの外側(蒸発器に繋がる配管)との間に圧力差が生じる。すると、コンプレッサ100では、その高圧の冷媒ガスGが吸入ポート12aから蒸発器へと逆流し、当該蒸発器に繋がる配管における圧力変動を招いてしまう。すると、その配管では、圧力変動により当該配管を震わせる加振力が発生することで衝撃音が発生し、この衝撃音を騒音として伝えてしまう。ここで、コンプレッサ100では、吸入ポート12aに逆止弁70を設けて冷媒ガスGの逆流を防止しているが、上記した吸入室13の圧力上昇が急激に生じるので、逆止弁70が吸入ポート12aを閉鎖する前に圧力変動を招く冷媒ガスGの逆流が生じていると考えられる。 In a circulation path for circulating a fluid such as the refrigerant gas G, it is known that when the circulation is interrupted in the middle of the circulation path, the pressure at the location interrupted by the kinetic energy of the fluid rapidly increases. When the compressor 100 used in the air conditioning system is stopped, the pressure of the refrigerant gas G in the suction chamber 13 suddenly increases, and between the suction chamber 13 and the outside of the suction port 12a (pipe connected to the evaporator). A pressure difference occurs. Then, in the compressor 100, the high-pressure refrigerant gas G flows backward from the suction port 12a to the evaporator, causing a pressure fluctuation in a pipe connected to the evaporator. Then, an impact sound is generated in the piping due to the generation of an excitation force that shakes the piping due to pressure fluctuation, and the impact sound is transmitted as noise. Here, in the compressor 100, the check valve 70 is provided in the suction port 12a to prevent the reverse flow of the refrigerant gas G. However, since the pressure in the suction chamber 13 is suddenly increased, the check valve 70 is sucked. It is considered that the reverse flow of the refrigerant gas G causing the pressure fluctuation occurs before closing the port 12a.
 本発明のコンプレッサ100は、このような騒音の発生を防止するために、停止されると直ちに吸入ポート12aを閉鎖すべく、逆止弁70の弁体71が直ちに閉鎖位置となるように構成する。具体的には、次のような構成とする。コンプレッサ100では、停止された際に弁体71を直ちに閉鎖位置へと動き出させる観点から、逆止弁70のコイルスプリング72における全開時ばね荷重P(N)を後述する所定値以上とする。その全開時ばね荷重P(N)とは、逆止弁70において弁体71が最も後退して2つの開口18、19すなわち吸入ポート12aが最も開放された状態、換言するとコイルスプリング72が最も撓んだ(縮んだ)状態である全開時(全開状態)において、コイルスプリング72が弁体71を閉鎖位置へ向けて押す力を言う。ここで、コンプレッサ100では、停止されると、動作時と比較して吸入室13の負圧が弱まり(圧力が高くなり)、逆止弁70の弁体71よりも上方の空間との圧力の差が小さくなる。このため、コンプレッサ100では、当該圧力の差よりもコイルスプリング72における全開時ばね荷重P(N)が大きくなると弁体71が閉鎖位置へと動き出すので、全開時ばね荷重P(N)を大きくすることで弁体71の閉鎖位置への動き出しを早めることができる。 In order to prevent the generation of such noise, the compressor 100 of the present invention is configured such that the valve body 71 of the check valve 70 is immediately in the closed position in order to close the suction port 12a as soon as it is stopped. . Specifically, the configuration is as follows. In the compressor 100, the spring load P (N) when fully opened in the coil spring 72 of the check valve 70 is set to a predetermined value or more, which will be described later, from the viewpoint of immediately moving the valve body 71 to the closed position when stopped. The fully open spring load P (N) is a state in which the valve body 71 is most retracted in the check valve 70 and the two openings 18 and 19, that is, the suction port 12a are most opened, in other words, the coil spring 72 is most bent. The coil spring 72 refers to a force that pushes the valve element 71 toward the closed position when the coil spring 72 is in a fully open (collapsed) state (full open state). Here, when the compressor 100 is stopped, the negative pressure in the suction chamber 13 is weakened (pressure is increased) compared with that during operation, and the pressure in the space above the valve body 71 of the check valve 70 is reduced. The difference becomes smaller. For this reason, in the compressor 100, when the fully open spring load P (N) in the coil spring 72 becomes larger than the pressure difference, the valve body 71 starts to move to the closed position, so the fully open spring load P (N) is increased. Thus, the valve body 71 can be quickly moved to the closed position.
 出願人は、この逆止弁70のコイルスプリング72における全開時ばね荷重P(N)の所定値の設定のために、次のように騒音の発生の有無の試験を行った。その試験は、車両の空調システムを構成すべくコンプレッサ100を設け、その車内における騒音の確認を人の聴覚(聴感)により行う。そのコンプレッサ100では、上記した構成の逆止弁70において0.8gの弁体71を用いるものとし、全開まで撓んだ(縮んだ)状態のコイルスプリング72における全開時ばね荷重P(N)を段階的に変化させる。この聴覚(聴感)による試験結果(聴感試験結果)を図6の表に示す。その図6の表は、左欄に段階的に変化させた全開時ばね荷重P(N)を示し、中欄にばね荷重質量比Ra(N/kg)を示し、右欄に聴感試験結果を示す。そのばね荷重質量比Raは、コイルスプリング72における全開時ばね荷重P(N)の弁体71の質量(kg)に対する比、すなわち全開時ばね荷重Pを弁体71の質量で除算した値とする。また、聴感試験結果は、上記したように車内での人の聴覚での騒音の発生の有無を判断したもので、騒音が発生している場合には×で、騒音が気にならない場合には△で、騒音を確認できない場合には○で、それぞれ示す。その騒音が気にならない(△)とは、この聴感試験は騒音の確認のために行っているため当該騒音に敏感になっているが、意識しなければなかなか解らない程度まで低減された状態をいう。 The applicant conducted a test for occurrence of noise as follows in order to set a predetermined value of the fully open spring load P (N) in the coil spring 72 of the check valve 70. In the test, a compressor 100 is provided to configure a vehicle air conditioning system, and noise in the vehicle is confirmed by human hearing (hearing). In the compressor 100, 0.8 g of the valve element 71 is used in the check valve 70 having the above-described configuration, and the fully open spring load P (N) in the coil spring 72 in a state of being bent (shrinked) until fully opened. Change in steps. The test result (auditory test result) by this hearing (audibility) is shown in the table of FIG. The table of FIG. 6 shows the fully open spring load P (N) that is changed stepwise in the left column, the spring load mass ratio Ra (N / kg) in the middle column, and the audibility test results in the right column. Show. The spring load mass ratio Ra is a ratio of the fully open spring load P (N) in the coil spring 72 to the mass (kg) of the valve body 71, that is, a value obtained by dividing the fully open spring load P by the mass of the valve body 71. . In addition, the auditory test result is determined by the presence or absence of noise generated by human hearing in the car as described above. If noise is generated, the result is x. A triangle indicates that no noise can be confirmed. If you are not concerned about the noise (△), this hearing test is performed to confirm the noise, so it is sensitive to the noise, but it has been reduced to a level where it is difficult to understand. Say.
 この聴感試験では、図6に示すように、全開時ばね荷重Pを、0.4(N)とすることで騒音が気にならなくなり(△)、このときのばね荷重質量比Raが500(N/kg)である。また、この聴感試験では、全開時ばね荷重Pを、0.7(N)とすることで騒音が確認できなくなり(○)、このときのばね荷重質量比Raが875(N/kg)である。このため、本発明のコンプレッサ100は、基本的に実質的な騒音の発生を防止すべく全開時ばね荷重Pを0.4(N)以上とし、より好適には全開時ばね荷重Pを0.7(N)以上とすることで騒音の発生をより確実に防止する。また、本発明のコンプレッサ100は、基本的に実質的な騒音の発生を防止すべくばね荷重質量比Raを500(N/kg)以上とし、より好適にはばね荷重質量比Raを875(N/kg)以上とすることで騒音の発生をより確実に防止する。 In this audibility test, as shown in FIG. 6, when the fully open spring load P is set to 0.4 (N), noise is not a concern (Δ), and the spring load mass ratio Ra at this time is 500 ( N / kg). Further, in this hearing test, when the fully open spring load P is set to 0.7 (N), noise cannot be confirmed (◯), and the spring load mass ratio Ra at this time is 875 (N / kg). . For this reason, the compressor 100 of the present invention basically sets the fully open spring load P to 0.4 (N) or more in order to prevent the occurrence of substantial noise, and more preferably the fully open spring load P is set to 0. Generation of noise is more reliably prevented by setting it to 7 (N) or more. The compressor 100 of the present invention basically has a spring load mass ratio Ra of 500 (N / kg) or more, more preferably a spring load mass ratio Ra of 875 (N / Kg) to prevent noise generation more reliably.
 ここで、全開時ばね荷重Pは、コイルスプリング72におけるばね定数(N/mm)と、全開状態のコイルスプリング72における撓み(縮み)量(全開撓み量)(mm)と、を乗算した値で示すことができる。このため、全開時ばね荷重Pの設定は、ばね定数を高めることと、全開撓み量を大きくすることと、を適宜組み合わせることで実現できる。実施例1のコンプレッサ100(逆止弁70)は、従来のコンプレッサ(気体圧縮機)に比べてばね定数を高めることで、全開時ばね荷重Pを上記した所定値(0.4(N)で、より好適には0.7(N))以上とする。また、実施例1のコンプレッサ100(逆止弁70)は従来のコンプレッサ(気体圧縮機)に比べてばね定数を高めることで、ばね荷重質量比Raを上記した所定値(500(N/kg)で、より好適には875(N/kg))以上とする。ここで、実施例1のコンプレッサ100(逆止弁70)は、全開時ばね荷重Pを0.4(N)としかつばね荷重質量比Raを500(N/kg)とすることや、全開時ばね荷重Pを0.7(N)としかつばね荷重質量比Raを875(N/kg)とすることのように、全開時ばね荷重Pとばね荷重質量比Raとの双方を併せて設定してもよい。この双方を併せた設定には、弁体71の質量(kg)を鑑みてばね定数や全開撓み量を設定することで実現できる。実施例1のコンプレッサ100は、一例として、全開時ばね荷重Pを0.4(N)としかつばね荷重質量比Raを500(N/kg)とする。 Here, the fully open spring load P is a value obtained by multiplying the spring constant (N / mm) of the coil spring 72 by the amount of deflection (shrinkage) (the amount of fully open deflection) (mm) of the coil spring 72 in the fully open state. Can show. For this reason, the setting of the fully open spring load P can be realized by appropriately combining increasing the spring constant and increasing the fully opened deflection amount. The compressor 100 (check valve 70) of the first embodiment increases the spring constant as compared with the conventional compressor (gas compressor), so that the fully open spring load P is the above-described predetermined value (0.4 (N)). , More preferably 0.7 (N)) or more. Moreover, the compressor 100 (check valve 70) of Example 1 raises a spring constant compared with the conventional compressor (gas compressor), The spring load mass ratio Ra is the predetermined value (500 (N / kg)) mentioned above. And more preferably 875 (N / kg)) or more. Here, in the compressor 100 (check valve 70) of the first embodiment, the fully open spring load P is set to 0.4 (N) and the spring load mass ratio Ra is set to 500 (N / kg). Both the fully open spring load P and the spring load mass ratio Ra are set together so that the spring load P is 0.7 (N) and the spring load mass ratio Ra is 875 (N / kg). May be. Setting that combines both can be realized by setting the spring constant and the fully open deflection amount in view of the mass (kg) of the valve element 71. As an example, the compressor 100 of the first embodiment sets the fully open spring load P to 0.4 (N) and the spring load mass ratio Ra to 500 (N / kg).
 この実施例1のコンプレッサ100では、上述したように、停止されて圧縮機構部60が作動していないときは、逆止弁70において弁体71がコイルスプリング72によりストッパ部材73に押し当てられた閉鎖位置となる。また、コンプレッサ100では、起動されて圧縮機構部60が作動すると、吸入室13が負圧になることで逆止弁70において弁体71がコイルスプリング72の押す力に抗して下方へ移動した開放位置となる。そして、コンプレッサ100は、吸入ポート12aを通じて低圧の冷媒ガスGを吸入室13に流入させ、その冷媒ガスGを圧縮機構部60で圧縮して吐出室14へと吐出し、その高圧の冷媒ガスGを吐出ポート11aを通じて吐出する。すると、空調システムは、コンプレッサ100で圧縮した冷媒ガスGを用いて上記行程を繰り返すことで車内の冷却を行う。 In the compressor 100 of the first embodiment, as described above, when stopped and the compression mechanism 60 is not operating, the valve body 71 is pressed against the stopper member 73 by the coil spring 72 in the check valve 70. Closed position. In the compressor 100, when the compression mechanism 60 is activated and activated, the suction chamber 13 becomes negative pressure, so that the valve element 71 moves downward against the pushing force of the coil spring 72 in the check valve 70. Open position. The compressor 100 causes the low-pressure refrigerant gas G to flow into the suction chamber 13 through the suction port 12a, compresses the refrigerant gas G by the compression mechanism unit 60, and discharges the refrigerant gas G to the discharge chamber 14. The high-pressure refrigerant gas G Is discharged through the discharge port 11a. Then, the air conditioning system cools the inside of the vehicle by repeating the above process using the refrigerant gas G compressed by the compressor 100.
 その空調システムは、車内が設定温度となるとコンプレッサ100を停止させて過度の冷却を防止し、車内が設定温度よりもある程度高い温度となると再びコンプレッサ100を駆動することを繰り返す。このとき、コンプレッサ100は、逆止弁70における全開時ばね荷重P(N)を上記した所定値以上としているので、停止されると直ちに弁体71が閉鎖位置へと動き出し、逆止弁70を直ちに閉鎖状態として吸入ポート12aを遮断する。これにより、このコンプレッサ100を用いた空調システムでは、コンプレッサ100を停止する際に騒音が発生することを防止できる。 The air conditioning system repeats driving the compressor 100 again when the interior of the vehicle reaches a set temperature to stop the compressor 100 to prevent excessive cooling and when the interior of the vehicle reaches a temperature somewhat higher than the set temperature. At this time, the compressor 100 sets the fully open spring load P (N) in the check valve 70 to be equal to or greater than the predetermined value described above. Therefore, as soon as the compressor 100 is stopped, the valve body 71 starts to move to the closed position. Immediately, the suction port 12a is shut off as a closed state. Thereby, in the air conditioning system using the compressor 100, it is possible to prevent noise from occurring when the compressor 100 is stopped.
 本発明に係る実施例1のコンプレッサ100では、以下の各効果を得ることができる。 In the compressor 100 according to the first embodiment of the present invention, the following effects can be obtained.
 コンプレッサ100は、逆止弁70における全開時ばね荷重Pを0.4(N)以上としているので、停止されると直ちに弁体71を閉鎖位置へと動き出させることができ、逆止弁70を直ちに閉鎖状態として吸入ポート12aを遮断できる。このため、コンプレッサ100は、停止されると直ちに吸入ポート12aから蒸発器への高圧の冷媒ガスGの逆流を防止でき、用いられた空調システムでの騒音の発生を防止できる。 Since the compressor 100 sets the fully open spring load P in the check valve 70 to 0.4 (N) or more, when the compressor 100 is stopped, the valve body 71 can be immediately moved to the closed position. Is immediately closed to block the suction port 12a. For this reason, as soon as the compressor 100 is stopped, the backflow of the high-pressure refrigerant gas G from the suction port 12a to the evaporator can be prevented, and the generation of noise in the used air conditioning system can be prevented.
 コンプレッサ100は、逆止弁70における全開時ばね荷重Pをより好適な例として0.7(N)以上とするので、停止された際の弁体71の閉鎖位置への動き出しをより早めることができ、逆止弁70をより早く閉鎖状態として吸入ポート12aを遮断できる。このため、コンプレッサ100は、停止された直後の吸入ポート12aから蒸発器への高圧の冷媒ガスGの逆流をより確実に防止でき、用いられた空調システムでの騒音の発生をより確実に防止できる。 Since the compressor 100 sets the fully open spring load P in the check valve 70 to 0.7 (N) or more as a more preferable example, the valve body 71 can be moved more quickly to the closed position when stopped. The check valve 70 can be closed earlier, and the suction port 12a can be shut off. For this reason, the compressor 100 can more reliably prevent the reverse flow of the high-pressure refrigerant gas G from the suction port 12a immediately after being stopped to the evaporator, and can more reliably prevent the generation of noise in the used air conditioning system. .
 コンプレッサ100は、逆止弁70におけるばね荷重質量比Raを500(N/kg)以上としているため、弁体71の質量(kg)の影響も考慮しているので、停止された際の弁体71の閉鎖位置への動き出しを確実に早めることができ、逆止弁70を直ちに閉鎖状態として吸入ポート12aを遮断できる。このため、コンプレッサ100は、停止されると直ちに吸入ポート12aから蒸発器への高圧の冷媒ガスGの逆流を防止でき、用いられた空調システムでの騒音の発生を防止できる。加えて、コンプレッサ100は、逆止弁70において、全開時ばね荷重Pを0.4(N)以上としかつばね荷重質量比Raを500(N/kg)以上とすることで、停止された際の弁体71の閉鎖位置への動き出しをより確実に早めることができる。 Since the compressor 100 sets the spring load mass ratio Ra in the check valve 70 to 500 (N / kg) or more, the influence of the mass (kg) of the valve body 71 is also taken into consideration, so that the valve body when stopped The start of the movement of 71 to the closed position can be surely accelerated, and the check valve 70 can be immediately closed to shut off the suction port 12a. For this reason, as soon as the compressor 100 is stopped, the backflow of the high-pressure refrigerant gas G from the suction port 12a to the evaporator can be prevented, and the generation of noise in the used air conditioning system can be prevented. In addition, when the compressor 100 is stopped in the check valve 70 by setting the fully open spring load P to 0.4 (N) or more and the spring load mass ratio Ra to 500 (N / kg) or more. The start of movement of the valve body 71 to the closed position can be accelerated more reliably.
 コンプレッサ100は、逆止弁70におけるばね荷重質量比Raをより好適な例として875(N/kg)以上とするため、弁体71の質量(kg)の影響も考慮しているので、停止された際の弁体71の閉鎖位置への動き出しをより確実に早めることができ、逆止弁70をより早く閉鎖状態として吸入ポート12aを遮断できる。このため、コンプレッサ100は、停止された直後の吸入ポート12aから蒸発器への高圧の冷媒ガスGの逆流をより確実に防止でき、用いられた空調システムでの騒音の発生をより確実に防止できる。加えて、コンプレッサ100は、逆止弁70において、全開時ばね荷重Pを0.7(N)以上としかつばね荷重質量比Raを875(N/kg)以上とすることで、停止された際の弁体71の閉鎖位置への動き出しをより確実に早めることができる。 The compressor 100 is stopped because the influence of the mass (kg) of the valve body 71 is also taken into account in order to set the spring load mass ratio Ra in the check valve 70 to 875 (N / kg) or more as a more preferable example. In this case, the valve body 71 can be started to move to the closed position more reliably, and the check valve 70 can be closed earlier so that the suction port 12a can be shut off. For this reason, the compressor 100 can more reliably prevent the reverse flow of the high-pressure refrigerant gas G from the suction port 12a immediately after being stopped to the evaporator, and can more reliably prevent the generation of noise in the used air conditioning system. . In addition, when the compressor 100 is stopped in the check valve 70 by setting the fully open spring load P to 0.7 (N) or more and the spring load mass ratio Ra to 875 (N / kg) or more. The start of movement of the valve body 71 to the closed position can be accelerated more reliably.
 コンプレッサ100は、逆止弁70における全開時ばね荷重Pを設定するために、従来のコンプレッサ(気体圧縮機)に比べてコイルスプリング72のばね定数(N/mm)を高めている。このため、コンプレッサ100は、ばね定数の異なるコイルスプリング72を用いるだけで従来のコンプレッサからの設計変更を招くことなく実現でき、従来のコンプレッサから大きくなることを防止できる。また、コンプレッサ100は、従来のコンプレッサに比べて、逆止弁70において閉鎖位置での弁体71のストッパ部材73への押し当て力(全閉時ばね荷重)を高めることができるので、起動時の各ベーン58のロータ50からの飛び出しを向上させることができる。これは、以下のことによる。従来のコンプレッサでは、停止されていると吸入室13の圧力がベーン背圧よりも高くなることで、ロータ50が回転しても各ベーン58が適切に飛び出さなくなることがある。これに対し、コンプレッサ100は、従来のコンプレッサに比べて全閉時ばね荷重が高いため、駆動された際の逆止弁70の開くタイミングを従来のコンプレッサよりも遅くできる。これにより、コンプレッサ100は、起動された圧縮機構部60の作動により吸入室13が負圧となることを補助することができ、吸入室13の圧力をベーン背圧よりも低くすることができるので、起動時の各ベーン58のロータ50からの飛び出しを向上させることができる。 The compressor 100 has a spring constant (N / mm) of the coil spring 72 higher than that of a conventional compressor (gas compressor) in order to set the fully open spring load P in the check valve 70. For this reason, the compressor 100 can be realized by using only the coil spring 72 having a different spring constant without causing a design change from the conventional compressor, and can be prevented from becoming larger than the conventional compressor. Further, the compressor 100 can increase the pressing force (spring load when fully closed) of the valve element 71 at the closed position in the check valve 70 at the closed position, compared with the conventional compressor. It is possible to improve the protrusion of each vane 58 from the rotor 50. This is due to the following. When the conventional compressor is stopped, the pressure in the suction chamber 13 becomes higher than the vane back pressure, so that the vanes 58 may not be properly ejected even when the rotor 50 rotates. On the other hand, the compressor 100 has a higher fully loaded spring load than the conventional compressor, so that the check valve 70 can be opened later than the conventional compressor when driven. Thereby, the compressor 100 can assist the suction chamber 13 to become negative pressure by the operation of the activated compression mechanism section 60, and the pressure in the suction chamber 13 can be made lower than the vane back pressure. Further, it is possible to improve the jump-out of each vane 58 from the rotor 50 at the time of startup.
 コンプレッサ100は、従来のコンプレッサ(気体圧縮機)に比べてコイルスプリング72の全開撓み量(mm)を大きくすることで、逆止弁70における全開時ばね荷重Pを設定することができる。このため、コンプレッサ100は、従来のコンプレッサから逆止弁70におけるコイルスプリング72の全開撓み量を調整するだけで容易に実現できる。 The compressor 100 can set the fully open spring load P in the check valve 70 by increasing the fully open deflection amount (mm) of the coil spring 72 as compared with the conventional compressor (gas compressor). For this reason, the compressor 100 can be easily realized simply by adjusting the fully open deflection amount of the coil spring 72 in the check valve 70 from the conventional compressor.
 コンプレッサ100は、従来のコンプレッサ(気体圧縮機)に比べてコイルスプリング72のばね定数(N/mm)を高めつつ全開撓み量(mm)を大きくすることで、逆止弁70における全開時ばね荷重Pを設定することができる。このため、コンプレッサ100は、全閉時ばね荷重や全体の大きさやストッパ部材73の強度等を鑑みて、適宜ばね定数と全開撓み量とを調整して全開時ばね荷重Pを設定できるので、設計の自由度を確保して最適な組み合わせを模索できる。 The compressor 100 increases the fully open deflection (mm) while increasing the spring constant (N / mm) of the coil spring 72 as compared with the conventional compressor (gas compressor), so that the spring load when the check valve 70 is fully opened is increased. P can be set. Therefore, the compressor 100 can set the fully open spring load P by appropriately adjusting the spring constant and the fully open deflection amount in consideration of the fully closed spring load, the overall size, the strength of the stopper member 73, and the like. It is possible to search for the optimal combination while ensuring the degree of freedom.
 コンプレッサ100は、停止されると直ちに弁体71を閉鎖位置として吸入ポート12aから蒸発器への高圧の冷媒ガスGの逆流を防止できるので、従来のコンプレッサに比べて用いられた空調システムの効率を向上できる。これは、以下のことによる。吸入ポート12aから逆流する高圧の冷媒ガスGは高温であるため、この冷媒ガスGが蒸発器やそこに繋がる配管の温度上昇を招く。ここで、空調システムでは、蒸発器で空気の冷却を行うので車内の温度上昇を招く虞があるとともに、蒸発器やそこに繋がる配管の温度上昇に基づきコンプレッサを再び駆動するタイミングを判断するので当該タイミングが早まる虞がある。また、空調システムでは、蒸発器やそこに繋がる配管の温度が上昇すると、そこに存在する冷媒ガスGの温度上昇を招き、再び駆動する際にコンプレッサが吸入する冷媒ガスGの温度の上昇を招いてしまうので、コンプレッサでの圧縮効率等を低下させる虞がある。このため、コンプレッサ100は、従来のコンプレッサに比べて用いられた空調システムの効率を向上できる。 As soon as the compressor 100 is stopped, the valve body 71 is brought into a closed position to prevent the reverse flow of the high-pressure refrigerant gas G from the suction port 12a to the evaporator, so that the efficiency of the air conditioning system used can be improved compared to the conventional compressor. Can be improved. This is due to the following. Since the high-pressure refrigerant gas G flowing backward from the suction port 12a is high in temperature, this refrigerant gas G causes an increase in the temperature of the evaporator and piping connected to the evaporator. Here, in the air conditioning system, the air is cooled by the evaporator, so there is a risk that the temperature in the vehicle will rise, and the timing for driving the compressor again is determined based on the temperature rise of the evaporator and the piping connected to it. There is a possibility that the timing is advanced. Further, in the air conditioning system, when the temperature of the evaporator or the piping connected to the evaporator rises, the temperature of the refrigerant gas G existing there increases, and the temperature of the refrigerant gas G sucked by the compressor when driving again is increased. As a result, the compression efficiency of the compressor may be reduced. For this reason, the compressor 100 can improve the efficiency of the air-conditioning system used compared with the conventional compressor.
 したがって、コンプレッサ100は、停止されると直ちに冷媒ガスGの逆流を防止できる。 Therefore, the compressor 100 can prevent the backflow of the refrigerant gas G as soon as it is stopped.
 以上、本発明の気体圧縮機(コンプレッサ)を実施例1に基づき説明してきたが、具体的な構成については実施例1に限られるものではなく、請求の範囲や各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As mentioned above, although the gas compressor (compressor) of this invention has been demonstrated based on Example 1, it is not restricted to Example 1 about a concrete structure, The summary of invention which concerns on a claim and each claim As long as they do not deviate, design changes and additions are permitted.
 なお、実施例1では、本発明に係る気体圧縮機(コンプレッサ)の一例としてのコンプレッサ100について説明した。しかしながら、内部空間と外部空間とを仕切るハウジングと、前記ハウジングの外部から内部への気体の通路となる吸入ポートと、前記吸入ポートを通る前記ハウジングの内部空間への前記気体の流入を許し、かつ前記吸入ポートを通る前記ハウジングの外部空間への前記気体の逆流を防止する逆止弁と、前記逆止弁を介して流入した前記気体を吸入し圧縮して吐出する圧縮機構部と、を備え、前記逆止弁は、前記気体の流入を許す開放位置と前記気体の逆流を防止する閉鎖位置とで移動される弁体と、前記弁体を前記閉鎖位置へ向けて押し付けるばね部材と、を有し、前記逆止弁では、前記吸入ポートを最も開放するときの前記ばね部材における全開時ばね荷重を0.4(N)以上に設定する気体圧縮機であればよく、実施例1の構成に限定されない。 In the first embodiment, the compressor 100 as an example of the gas compressor (compressor) according to the present invention has been described. However, a housing that partitions the internal space and the external space, a suction port that serves as a gas passage from the outside to the inside of the housing, and allowing the gas to flow into the internal space of the housing through the suction port, and A check valve that prevents backflow of the gas to the external space of the housing through the suction port; and a compression mechanism that sucks, compresses, and discharges the gas that has flowed in via the check valve. The check valve includes a valve body that is moved between an open position that allows the gas to flow in and a closed position that prevents the backflow of the gas, and a spring member that presses the valve body toward the closed position. In the check valve, any gas compressor may be used as long as the fully open spring load in the spring member when the suction port is most opened is 0.4 (N) or more. Limited to Not.
 また、実施例1では、逆止弁70において吸入ポート12aを形成する周壁17に開口18、19を設ける構成としているが、例えば、開口18、19と同様の開口を有し弁体71を移動可能に受け入れる円筒状のケースを吸入ポート12aに設けてもよく、他の構成でもよく、実施例1の構成に限定されない。また、周壁17(ケースの場合も同様)に設ける開口の数は適宜設定すればよく、実施例1の構成に限定されない。 In the first embodiment, the check valve 70 is provided with the openings 18 and 19 in the peripheral wall 17 forming the suction port 12a. For example, the check valve 70 has openings similar to the openings 18 and 19 and moves the valve body 71. A cylindrical case that can be received may be provided in the suction port 12a, and may have other configurations, and is not limited to the configuration of the first embodiment. Further, the number of openings provided in the peripheral wall 17 (the same applies to the case) may be set as appropriate, and is not limited to the configuration of the first embodiment.
 さらに、実施例1では、0.8gの弁体71を用いて全開時ばね荷重Pを0.7(N)以上することでばね荷重質量比Raを875(N/kg)以上としていたが、ばね荷重質量比Raを875(N/kg)以上とするものであれば、弁体71の質量や全開時ばね荷重Pは適宜設定してもよく、実施例1の構成に限定されない。同様に、逆止弁70において、ばね荷重質量比Raを500(N/kg)以上とするものであれば、弁体71の質量や全開時ばね荷重Pは適宜設定してもよく、実施例1の構成に限定されない。 Furthermore, in Example 1, the spring load mass ratio Ra was set to 875 (N / kg) or more by making the fully open spring load P 0.7 (N) or more using 0.8 g of the valve body 71. As long as the spring load mass ratio Ra is 875 (N / kg) or more, the mass of the valve element 71 and the fully open spring load P may be set as appropriate, and are not limited to the configuration of the first embodiment. Similarly, in the check valve 70, as long as the spring load mass ratio Ra is 500 (N / kg) or more, the mass of the valve body 71 and the fully open spring load P may be appropriately set. The configuration is not limited to one.
 実施例1では、コンプレッサ100をベーンロータリ形式の気体圧縮機としているが、本発明に係る気体圧縮機は、例えば、斜板式の気体圧縮機、スクロール形式の気体圧縮機等のようにベーンロータリ形式以外の形式の気体圧縮機でもよく、実施例1の構成に限定されない。 In the first embodiment, the compressor 100 is a vane rotary type gas compressor, but the gas compressor according to the present invention is, for example, a vane rotary type such as a swash plate type gas compressor, a scroll type gas compressor, or the like. Other types of gas compressors may be used, and the configuration is not limited to that of the first embodiment.
関連出願への相互参照Cross-reference to related applications
 本出願は、2016年6月8日に日本国特許庁に出願された特願2016-114738に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2016-114738 filed with the Japan Patent Office on June 8, 2016, the entire disclosure of which is fully incorporated herein by reference.

Claims (6)

  1.  内部空間と外部空間とを仕切るハウジングと、
     前記ハウジングの外部から内部への気体の通路となる吸入ポートと、
     前記吸入ポートを通る前記ハウジングの内部空間への前記気体の流入を許し、かつ前記吸入ポートを通る前記ハウジングの外部空間への前記気体の逆流を防止する逆止弁と、
     前記逆止弁を介して流入した前記気体を吸入し圧縮して吐出する圧縮機構部と、を備え、
     前記逆止弁は、前記気体の流入を許す開放位置と前記気体の逆流を防止する閉鎖位置とで移動される弁体と、前記弁体を前記閉鎖位置へ向けて押し付けるばね部材と、を有し、
     前記逆止弁では、前記吸入ポートを最も開放するときの前記ばね部材における全開時ばね荷重を0.4(N)以上に設定することを特徴とする気体圧縮機。
    A housing that partitions the internal space from the external space;
    A suction port serving as a gas passage from the outside to the inside of the housing;
    A check valve that allows the gas to flow into the interior space of the housing through the suction port and prevents backflow of the gas into the outer space of the housing through the suction port;
    A compression mechanism that sucks in, compresses, and discharges the gas flowing in through the check valve;
    The check valve has a valve body that is moved between an open position that allows the gas to flow in and a closed position that prevents the backflow of the gas, and a spring member that presses the valve body toward the closed position. And
    In the check valve, the fully open spring load in the spring member when the suction port is most opened is set to 0.4 (N) or more.
  2.  前記逆止弁では、前記ばね部材における前記全開時ばね荷重を0.7(N)以上に設定することを特徴とする請求項1に記載の気体圧縮機。 2. The gas compressor according to claim 1, wherein in the check valve, the fully open spring load of the spring member is set to 0.7 (N) or more.
  3.  前記逆止弁では、前記ばね部材における前記全開時ばね荷重の前記弁体の質量に対する比で示すばね荷重質量比を500(N/kg)以上に設定することを特徴とする請求項1に記載の気体圧縮機。 2. The check valve according to claim 1, wherein a spring load mass ratio indicated by a ratio of the fully open spring load in the spring member to a mass of the valve body is set to 500 (N / kg) or more. Gas compressor.
  4.  内部空間と外部空間とを仕切るハウジングと、
     前記ハウジングの外部から内部への気体の通路となる吸入ポートと、
     前記吸入ポートを通る前記ハウジングの内部空間への前記気体の流入を許し、かつ前記吸入ポートを通る前記ハウジングの外部空間への前記気体の逆流を防止する逆止弁と、
     前記逆止弁を介して流入した前記気体を吸入し圧縮して吐出する圧縮機構部と、を備え、
     前記逆止弁は、前記気体の流入を許す開放位置と前記気体の逆流を防止する閉鎖位置とで移動される弁体と、前記弁体を前記閉鎖位置へ向けて押し付けるばね部材と、を有し、
     前記逆止弁では、前記吸入ポートを最も開放するときの前記ばね部材における全開時ばね荷重の前記弁体の質量に対する比で示すばね荷重質量比を875(N/kg)以上に設定することを特徴とする気体圧縮機。
    A housing that partitions the internal space from the external space;
    A suction port serving as a gas passage from the outside to the inside of the housing;
    A check valve that allows the gas to flow into the interior space of the housing through the suction port and prevents backflow of the gas into the outer space of the housing through the suction port;
    A compression mechanism that sucks in, compresses, and discharges the gas flowing in through the check valve;
    The check valve has a valve body that is moved between an open position that allows the gas to flow in and a closed position that prevents the backflow of the gas, and a spring member that presses the valve body toward the closed position. And
    In the check valve, a spring load mass ratio indicated by a ratio of a fully open spring load in the spring member when the suction port is most opened to a mass of the valve body is set to 875 (N / kg) or more. Characteristic gas compressor.
  5.  前記逆止弁では、前記ばね部材における前記全開時ばね荷重を0.7(N)以上に設定することを特徴とする請求項4に記載の気体圧縮機。 5. The gas compressor according to claim 4, wherein in the check valve, the fully open spring load in the spring member is set to 0.7 (N) or more.
  6.  前記逆止弁では、前記ばね部材のばね定数を設定することで前記全開時ばね荷重の設定を満たすことを特徴とする請求項1から請求項5のいずれか1項に記載の気体圧縮機。 The gas compressor according to any one of claims 1 to 5, wherein the check valve satisfies the setting of the fully open spring load by setting a spring constant of the spring member.
PCT/JP2017/020332 2016-06-08 2017-05-31 Gas compressor WO2017213006A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-114738 2016-06-08
JP2016114738A JP2017218995A (en) 2016-06-08 2016-06-08 Gas compressor

Publications (1)

Publication Number Publication Date
WO2017213006A1 true WO2017213006A1 (en) 2017-12-14

Family

ID=60577887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020332 WO2017213006A1 (en) 2016-06-08 2017-05-31 Gas compressor

Country Status (2)

Country Link
JP (1) JP2017218995A (en)
WO (1) WO2017213006A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166486A (en) * 2001-11-30 2003-06-13 Seiko Instruments Inc Gas compressor
JP2004322677A (en) * 2003-04-21 2004-11-18 Showa Corp Power steering device
US20090142199A1 (en) * 2007-11-29 2009-06-04 Halliburton Energy Services, Inc. Quick lift zero flutter oil service pump valve
JP2011169189A (en) * 2010-02-17 2011-09-01 Nippon Control Kogyo Co Ltd Fixed volume type electromagnetic pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166486A (en) * 2001-11-30 2003-06-13 Seiko Instruments Inc Gas compressor
JP2004322677A (en) * 2003-04-21 2004-11-18 Showa Corp Power steering device
US20090142199A1 (en) * 2007-11-29 2009-06-04 Halliburton Energy Services, Inc. Quick lift zero flutter oil service pump valve
JP2011169189A (en) * 2010-02-17 2011-09-01 Nippon Control Kogyo Co Ltd Fixed volume type electromagnetic pump

Also Published As

Publication number Publication date
JP2017218995A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US9745980B2 (en) Hermetic-type compressor and refrigeration cycle apparatus
US9765783B2 (en) Vane-rotary gas compressor
US20090007590A1 (en) Refrigeration System
JP5963667B2 (en) Gas compressor
US8366405B2 (en) Screw compressor with capacity control slide valve
US8920149B2 (en) Single-screw compressor having an adjustment mechanism for adjusting a compression ratio of the compression chamber
CN101151465A (en) Scroll fluid machine
JP6568841B2 (en) Hermetic rotary compressor and refrigeration air conditioner
JP2012127565A (en) Refrigeration cycle device
WO2013183609A1 (en) Gas compressor
WO2017213006A1 (en) Gas compressor
JP2009299523A (en) Scroll type fluid machine
JP6064563B2 (en) Compressor
KR100349478B1 (en) Scroll compressor
JP2008169810A (en) Gas compressor
WO2021171489A1 (en) Screw compressor and freezer
WO2022185956A1 (en) Compressor and refrigeration cycle device
WO2023182457A1 (en) Screw compressor and freezer
WO2015129169A1 (en) Compressor
WO2022157967A1 (en) Scroll compressor and refrigeration cycle device with scroll compressor
JP2009079538A (en) Variable displacement gas compressor
KR100724450B1 (en) Capacity modulation type rotary compressor
JP4995290B2 (en) Design method of scroll compressor
KR20220039298A (en) Oil separator, compressor and refrigeration cycle device including the same
JP2006144622A (en) Gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810184

Country of ref document: EP

Kind code of ref document: A1