WO2013183609A1 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
WO2013183609A1
WO2013183609A1 PCT/JP2013/065413 JP2013065413W WO2013183609A1 WO 2013183609 A1 WO2013183609 A1 WO 2013183609A1 JP 2013065413 W JP2013065413 W JP 2013065413W WO 2013183609 A1 WO2013183609 A1 WO 2013183609A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
pressure
rotor
discharge hole
peripheral surface
Prior art date
Application number
PCT/JP2013/065413
Other languages
French (fr)
Japanese (ja)
Inventor
津田 昌宏
博匡 島口
尾崎 達也
幸治 廣野
士津真 金子
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2013183609A1 publication Critical patent/WO2013183609A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • F04C29/124Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps
    • F04C29/126Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type
    • F04C29/128Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet with inlet and outlet valves specially adapted for rotary or oscillating piston pumps of the non-return type of the elastic type, e.g. reed valves

Definitions

  • the present invention relates to a gas compressor, and more particularly to an improvement of a vane rotary type gas compressor.
  • a vehicle such as an automobile is provided with an air conditioner for adjusting the temperature in the passenger compartment.
  • an air conditioner has a loop-shaped refrigerant cycle in which refrigerant (cooling medium) is circulated, and this refrigerant cycle is provided with an evaporator, a compressor, a condenser, and an expansion valve in this order.
  • the compressor (compressor) of the air conditioner compresses the gaseous refrigerant (refrigerant gas) evaporated by the evaporator into high-pressure refrigerant gas and sends it to the condenser.
  • a rotor having a plurality of vanes provided so as to protrude and be housed in a cylinder having a substantially elliptical inner peripheral surface, the tip of which is slidably in contact with the inner peripheral surface of the cylinder has been rotated.
  • a vane rotary type compressor that is freely supported is known (for example, see Patent Document 1).
  • This vane rotary type compressor has a compression chamber whose volume changes due to sliding contact with the inner circumferential surface of the rotating vane as the rotor rotates, and through the suction port as the volume of the compression chamber increases.
  • the refrigerant gas is sucked in, the sucked refrigerant gas is compressed as the volume of the compression chamber decreases, and the high-pressure refrigerant gas is discharged into the discharge chamber through the discharge port. Then, high-pressure refrigerant gas is sent from the discharge chamber to the condenser side.
  • the vane is slidably disposed in a slit-like vane groove exposed on the surface from the inside of the rotor. And this vane protrudes from the rotor surface by the back pressure (vane back pressure) by the oil supplied to the bottom of the vane groove through the vane back pressure space and the centrifugal force of the rotating rotor, and the tip of the vane Is maintained in contact with the inner peripheral surface of the cylinder.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas compressor capable of preventing the occurrence of over-compression in a compression chamber.
  • an invention according to claim 1 is directed to a substantially columnar rotor that rotates integrally with a rotation shaft, and an inner periphery having a contour shape that surrounds the rotor from the outside of the outer peripheral surface of the rotor.
  • a cylinder having a surface, a plurality of plate-like vanes provided in a vane groove formed in the rotor so as to protrude from an outer peripheral surface of the rotor toward an inner peripheral surface of the cylinder, and both ends of the rotor and the cylinder
  • Each of the two side blocks, and the vane forms a plurality of compression chambers by partitioning a space formed between the inner peripheral surface of the cylinder and the outer peripheral surface of the rotor,
  • Each of the formed compression chambers is a gas compressor in which the contour shape of the inner peripheral surface of the cylinder is set so that the medium is sucked, compressed, and discharged only during one cycle of the rotation of the rotor.
  • the inner circumferential surface of the cylinder and the outer circumferential surface of the rotor were compressed in the compression chamber on the upstream side in the rotation direction of the rotor with respect to the region closest to the circumference of the circumference of the rotation shaft.
  • the first discharge hole has a discharge valve that opens when the pressure of the medium compressed in the compression chamber reaches a predetermined discharge pressure, and closes when the pressure does not reach the predetermined discharge pressure. It is not provided, but is characterized by communicating with the outside.
  • the gas compressor according to claim 2 is compressed in a compression chamber facing the second discharge hole on the second discharge hole located on the upstream side in the rotation direction of the rotor from the first discharge hole.
  • a discharge valve is provided that opens when the pressure of the medium reaches the predetermined discharge pressure and closes when the medium pressure does not reach the predetermined discharge pressure.
  • the gas compressor according to claim 4 is compressed in the compression chamber facing the second discharge hole also on the second discharge hole located on the upstream side of the first discharge hole in the rotation direction of the rotor.
  • the valve opens when the pressure of the medium reaches the predetermined discharge pressure, and is not provided with a discharge valve that closes when the pressure does not reach the predetermined discharge pressure, and communicates with the outside. It is said.
  • the gas compressor on the front side of the two vanes is provided.
  • the vane passes through the second discharge hole, and the medium in the compression chamber reaching the predetermined discharge pressure is discharged to the outside from the second discharge hole.
  • the inner peripheral surface of the cylinder and the outer peripheral surface of the rotor are in the circumferential direction of the inner peripheral surface of the cylinder with respect to the region that is closest to the outer periphery of the rotary shaft around one axis.
  • At least the first discharge hole on the side closest to the closest region opens when the pressure of the medium compressed in the compression chamber reaches a predetermined discharge pressure, and reaches the predetermined discharge pressure.
  • the discharge valve that closes the valve is not provided, so that a collision noise (noise) accompanying the opening and closing of the discharge valve does not occur, and the cost can be reduced by reducing the number of parts.
  • FIG. 1 is a longitudinal sectional view showing a gas compressor (vane rotary type gas compressor) according to Embodiment 1 of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG. 1.
  • the cross-sectional view which shows the gas compressor (Vane rotary type gas compressor) which concerns on Embodiment 2 of this invention.
  • the cross-sectional view which shows the gas compressor (vane rotary type gas compressor) which concerns on Embodiment 3 of this invention.
  • Embodiment 1> 1 is a longitudinal sectional view showing a vane rotary type gas compressor (hereinafter referred to as “compressor”) as a gas compressor according to Embodiment 1 of the present invention, and FIG. 2 is taken along line AA in FIG. It is a figure which shows the cross section along.
  • the compressor of the present embodiment is an electric type that incorporates an electric motor.
  • the illustrated compressor 100 is configured, for example, as a part of an air conditioning system (hereinafter referred to as an “air conditioning system”) that performs cooling by using the heat of vaporization of a cooling medium, and condensing that is another component of the air conditioning system. It is provided on the circulation path of the cooling medium together with a condenser, an expansion valve, an evaporator, etc. (all not shown).
  • an air conditioning system the air conditioning apparatus for adjusting the temperature in the vehicle interior of a vehicle (automobile etc.) is mentioned, for example.
  • the compressor 100 compresses the refrigerant gas as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas to the condenser of the air conditioning system.
  • the condenser liquefies the compressed refrigerant gas and sends it to the expansion valve as a high-pressure liquid refrigerant.
  • the high-pressure and liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator.
  • the low-pressure liquid refrigerant absorbs heat from ambient air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange with the heat of vaporization.
  • the compressor 100 has a configuration in which a motor 90 and a compressor main body 60 are accommodated in a housing 10 mainly composed of a main body case 11 and a front cover 12.
  • the main body case 11 has a substantially cylindrical shape, and is formed such that one end (right side in FIG. 1) of the cylindrical shape is closed, and the other end (left side in FIG. 1) is open. Has been.
  • the front cover 12 is formed in a lid shape so as to close the opening while being in contact with the opening-side end portion of the main body case 11. In this state, the front cover 12 is fastened to the main body case 11 by a fastening member. And a housing 10 having a space inside is formed.
  • the front cover 12 is formed with a suction port 12a through which a low-pressure refrigerant gas G1 is introduced into the suction chamber 13 from an evaporator (not shown) of the air conditioning system.
  • a discharge port 11a for discharging the high-pressure refrigerant gas G2 obtained in the compressor main body 60 to a condenser (not shown) of the air conditioning system is formed in the discharge chamber 14 described later of the main body case 11.
  • the motor 90 provided inside the main body case 11 constitutes a multiphase brushless DC motor including a permanent magnet rotor 90a and an electromagnet stator 90b.
  • the stator 90b is fitted and fixed to the inner peripheral surface of the main body case 11, and the rotating shaft 51 is fixed to the rotor 90a.
  • the motor 90 drives the rotor 90a and the rotating shaft 51 to rotate around the axis by exciting the electromagnet of the stator 90b with the electric power supplied via the power connector 90c attached to the end face of the front cover 12.
  • the gas compressor according to the present invention is not limited to an electric type, and may be a mechanical type. If the compressor 100 of the present embodiment is of a mechanical type, instead of providing the motor 90, the rotating shaft 51 protrudes from the front cover 12 to the outside, and the front end of the protruding rotating shaft 51 is connected to the vehicle. What is necessary is just to set it as the structure provided with the pulley, the gearwheel, etc. which receive motive power transmission from this engine.
  • the compressor main body 60 accommodated in the housing 10 together with the motor 90 is arranged side by side with the motor 90 along the direction in which the rotating shaft 51 extends, and is inserted into the main body case 11 by a fastening member 15 such as a bolt. It is fixed.
  • the compressor body 60 includes the rotating shaft 51 rotated by the motor 90, a substantially cylindrical rotor 50 that rotates integrally with the rotating shaft 51, and the rotor 50 outside the outer peripheral surface 50a (see FIG. 2).
  • a cylinder 40 having a contour-shaped inner peripheral surface 40a surrounding from the side, five plate-like vanes 58 provided so as to protrude from the outer peripheral surface 50a of the rotor 50 toward the inner peripheral surface 40a of the cylinder 40, and the rotor 50 and two side blocks (front side block 20 and rear side block 30) that block both ends of the cylinder 40 are provided.
  • the rotary shaft 51 is rotatably supported by bearings 12b formed on the front cover 12 and bearings 27 and 37 formed on the side blocks 20 and 30 of the compressor main body 60, respectively.
  • sealing members such as O-rings are installed over the entire outer periphery, and the discharge chamber is formed in the main body case 11 on the rear side block 30 side.
  • 14 and the main body case 11 on the front side block 20 side and the suction chamber 13 formed in the front cover 12 are partitioned with good airtightness.
  • the oil separation unit 70 is attached to the outer surface of the rear side block 30 so as to be positioned in the discharge chamber 14.
  • the motor 90 is provided in the suction chamber 13 formed in the front cover 12.
  • the inner peripheral surface 41a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 are only one place (proximal portion 48 in FIG. 2) within a range of one rotation (angle 360 degrees) around the axis of the rotating shaft 51.
  • the contour shape of the inner peripheral surface 40a of the cylinder 40 is set so as to be in close contact (closest to the nearest), whereby the cylinder chamber 42 forms a single substantially crescent-shaped space.
  • the proximity portion 48 which is the region where the inner peripheral surface 40a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 are closest
  • the remote portion 49 is located at a position away from the remote portion 49, which is the farthest area from the outer peripheral surface 50a of the 50, along the rotational direction W (clockwise direction in FIG. 2) of the rotor 50 at an angle of about 270 degrees. Is set.
  • the contour shape of the inner peripheral surface 40a of the cylinder 40 is such that the distance between the outer peripheral surface 50a of the rotor 50 and the inner peripheral surface 40a of the cylinder 40 is monotonous from the remote portion 49 to the proximity portion 48 along the rotation direction W.
  • the shape is set to decrease.
  • the vane 58 is slidably fitted in a vane groove 59 formed in the rotor 50, and protrudes outward from the outer peripheral surface 50 a of the rotor 50 by back pressure due to the refrigerating machine oil supplied to the vane groove 59.
  • the vane 58 divides the single cylinder chamber 42 into a plurality of compression chambers 43, and one compression chamber 43 is formed by the two vanes 58 that move back and forth along the rotation direction W of the rotor 50. The Therefore, in the present embodiment in which five vanes 58 are installed around the rotation shaft 51 at equal angular intervals of 72 degrees, five compression chambers 43 are formed.
  • the volume in the compression chamber 43 obtained by partitioning the cylinder chamber 42 by the vane 58 monotonously decreases along the rotation direction W from the remote portion 49 to the proximity portion 48.
  • the vane 58 exposed to the cylinder chamber 42 is omitted.
  • the suction hole 23 (see FIG. 2) formed in the front side block 20 and leading to the suction chamber 13 faces the portion on the downstream side in the rotation direction of the rotor 50 with respect to the proximity portion 48 of the cylinder chamber 42.
  • the first discharge holes 45a and the first discharge holes 45a are arranged along the circumferential direction of the inner peripheral surface 40a.
  • Two discharge holes 45b are formed. The one closer to the proximity portion 48 along the rotation direction W of the rotor 50 is the first discharge hole 45a, and the first discharge hole 45a is located upstream of the first discharge port 45a along the rotation direction W of the rotor 50. Two discharge holes 45b are formed.
  • the first and second discharge holes 45a and 45b communicate with discharge chambers 46a and 46b as spaces formed between the outer peripheral surface of the cylinder 40 and the inner peripheral surface of the main body case 11, respectively. Further, the discharge passages 30a and 30b communicating with the rear side block 30 between the discharge chambers 46a and 46b and the oil separation portion 70 attached to the outer surface of the rear side block 30 (surface facing the discharge chamber 14). Is formed.
  • Two first and second discharge holes 45 a and 45 b formed on the inner peripheral surface 40 a of the cylinder 40 are formed along the width direction of the cylinder 40. Details of the first and second discharge holes 45a and 45b will be described later.
  • each compression chamber 43 during one rotation of the rotor 50, the refrigerant gas is sucked through the suction hole 23, the refrigerant gas is compressed, and the refrigerant gas is discharged into the first and second discharge holes 45a and 45b in one cycle.
  • the contour shape of the inner peripheral surface 40a of the cylinder 40 is set so as to perform only.
  • the cylinder 40 On the upstream side in the rotational direction of the rotor 50 with respect to the remote portion 49 of the cylinder chamber 42, the cylinder 40 has a gap so that the distance between the inner peripheral surface 40 a of the cylinder 40 and the outer peripheral surface 50 a of the rotor 50 increases rapidly from a small state.
  • the contour shape of the inner peripheral surface 40 a is set, and in the angle range including the remote portion 49, the volume of the compression chamber 43 increases as the rotor 50 rotates in the rotation direction W, and the compression chamber passes through the suction hole 23. This is a stroke (intake stroke) in which the low-pressure refrigerant gas G ⁇ b> 1 is sucked into 43.
  • the cylinder 40 is arranged such that the distance between the inner peripheral surface 40a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 gradually decreases toward the downstream side in the rotation direction of the rotor 50 with respect to the remote portion 49 of the cylinder chamber 42.
  • a contour shape of the inner peripheral surface 40a is set, and in that range, the volume of the compression chamber 43 decreases with the rotation of the rotor 50, and the stroke in which the refrigerant gas in the compression chamber 43 is compressed (compression stroke) Become.
  • the gap between the inner peripheral surface 40a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 is further reduced, so that the compression of the refrigerant gas further proceeds, and the refrigerant gas pressure becomes a predetermined discharge pressure.
  • the high-pressure refrigerant gas G2 becomes a stroke (discharge stroke) discharged to the first discharge hole 45a (and the second discharge hole 45b).
  • each compression chamber 43 repeats the suction stroke, the compression stroke, and the discharge stroke in this order, so that the low-pressure refrigerant gas sucked from the suction chamber 13 is increased to the first pressure.
  • the ink is discharged from the discharge hole 45a (and the second discharge hole 45b).
  • a discharge valve 61 and a valve support 62 are installed around the second discharge hole 45b.
  • the discharge valve 61 is elastically deformed so as to warp toward the discharge chamber 46b when the pressure of the refrigerant gas in the compression chamber 43 (the compression chamber 43b in FIG. 2) in the compression stroke becomes equal to or higher than a predetermined discharge pressure.
  • the second discharge hole 45b is closed by an elastic force.
  • the valve support 62 prevents the discharge valve 61 from excessively warping toward the discharge chamber 46b.
  • the first discharge hole 45a is not provided with these discharge valves and valve supports, and is always open.
  • the oil separator 70 separates the refrigeration oil mixed with the refrigerant gas (the vane back pressure oil leaked from the vane groove 59 formed in the rotor 50 into the cylinder chamber 42 (compression chamber 43)) from the refrigerant gas.
  • the high-pressure refrigerant gas discharged from the first and second discharge holes 45a and 45b and introduced through the discharge chambers 46a and 46b and the discharge passages 30a and 30b is spirally swirled to refrigerating machine oil. It is configured to centrifuge.
  • the refrigerating machine oil R (see FIG. 1) separated from the refrigerant gas is accumulated at the bottom of the discharge chamber 14, and the high-pressure refrigerant gas G2 after the refrigerating machine oil R is separated passes through the discharge port 11a from the top of the discharge chamber 14. And discharged to a condenser (not shown).
  • the refrigerating machine oil R stored in the bottom of the discharge chamber 14 is passed through the oil passage 38a formed in the rear side block 30 and the Sarai grooves 31 and 32, which are recesses for supplying back pressure, by the high pressure atmosphere in the discharge chamber 14, and the rear side.
  • the refrigerating machine oil oozes out from the gap between the vane 58 and the vane groove 59, the gap between the rotor 50 and each side block 20, 30, and the like. And the lubricating and cooling functions at the contact portion between the vane 58 and the contact portion between the vane 58 and the cylinder 40 or each of the side blocks 20 and 30, etc., and a part of the refrigerating machine oil is refrigerant gas in the compression chamber 43. Therefore, refrigerating machine oil is separated by the oil separation unit 70.
  • the medium pressure (suction chamber) lower than the high pressure (pressure close to the discharge pressure) that is the atmosphere of the discharge chamber 14 due to the pressure loss when passing through the narrow gap between the bearing 37 and the outer peripheral surface of the rotary shaft 51. 13 is a pressure higher than the suction pressure).
  • the refrigerating machine oil supplied to the salai groove 21 formed in the downstream portion in the rotation direction of the rotor 50 with respect to the proximity portion 48 of the cylinder chamber 42 As for the refrigeration oil supplied to the saray groove 31 as well, it becomes an intermediate pressure.
  • the two Sarai grooves 31 and 32 formed in the rear side block 30 it is formed in a portion upstream of the rotor 50 in the rotation direction with respect to the proximity portion 48 of the cylinder chamber 42 (mainly corresponding to the discharge stroke). Since the refrigerating machine oil supplied to the saray groove 32 is supplied without pressure loss from the oil passage 38a, it becomes a pressure close to a high pressure (pressure higher than the medium pressure) that is the atmosphere of the discharge chamber 14.
  • the salai grooves 22 are formed in the upstream portion of the rotor 50 in the rotation direction with respect to the proximity portion 48 of the cylinder chamber 42.
  • the refrigerating machine oil also has a high pressure similarly to the refrigerating machine oil supplied to the saray groove 32.
  • the first discharge hole 45a formed on the upstream side immediately before the proximity portion 48 along the rotation direction W of the rotor 50 allows only one cycle of suction, compression, and discharge during one rotation of the rotor 50.
  • the second discharge hole 45b formed so as to be positioned upstream of the first discharge hole 45a along the rotation direction W of the rotor 50 can be referred to as a sub discharge hole.
  • the pressure of the refrigerant gas in the compression chamber 43a facing the first discharge hole 45a becomes higher than a predetermined pressure (predetermined discharge pressure), and the high-pressure refrigerant gas G2 is It is configured to be discharged from one discharge hole 45a.
  • the high-pressure refrigerant gas G2 discharged from the first discharge hole 45a is introduced into the discharge chamber 14 through the oil separation portion 70 via the discharge chamber 46a and the discharge path 30a.
  • the compression chamber 43b adjacent to the compression chamber 43a on the upstream side of the compression chamber 43a along the rotation direction W of the rotor 50 is the volume of the compression chamber 43a when the compression chamber 43a faces the first discharge hole 45a.
  • the pressure of the refrigerant gas compressed in the compression chamber 43b reaches the predetermined pressure (predetermined discharge pressure) before the compression chamber 43b rotates to the position facing the first discharge hole 45a. It can happen.
  • the volume of the compression chamber 43b is further reduced with the rotation of the rotor 50, so that the compression chamber
  • the pressure of the refrigerant gas in 43b exceeds a predetermined pressure (predetermined discharge pressure), but exceeded the predetermined pressure (predetermined discharge pressure) before the compression chamber 43b rotates to the position facing the first discharge hole 45a.
  • the refrigerant gas is not discharged.
  • noise (hereinafter referred to as “chattering”) is generated when the vane 58 (in FIG. 2, the vane 58 b in FIG. 2) repeats the separation and the collision with the inner peripheral surface 40 a of the cylinder 40 during the operation of the compressor 100. .
  • the compressor 100 of the present embodiment described above is when the pressure of the refrigerant gas in the compression chamber 43b reaches a predetermined pressure (predetermined discharge pressure) at a stage before facing the first discharge hole 45a.
  • the second discharge hole 45b for discharging the high-pressure refrigerant gas G2 in the compression chamber 43b is provided upstream of the first discharge hole 45a in the rotor rotation direction.
  • the high pressure in the compression chamber 43b is reached.
  • the refrigerant gas G2 is introduced into the discharge chamber 14 from the second discharge hole 45b through the oil separation portion 70 via the discharge chamber 46b and the discharge path 30b.
  • the discharge valve 61 is elastically deformed and opened by the high-pressure refrigerant gas G2 discharged from the second discharge hole 45b.
  • the two first discharge holes 45a and the second discharge holes 45b are formed along the circumferential direction on the inner peripheral surface 40a of the cylinder 40, whereby the pressure of the refrigerant gas in the compression chamber 43b is increased. Even when the predetermined pressure (predetermined discharge pressure) is reached in the stage before facing the first discharge hole 45a, the refrigerant gas in the compression chamber 43b can be discharged from the second discharge hole 45b. Therefore, it is possible to prevent overcompression in which the pressure of the refrigerant gas in the compression chamber 43b exceeds a predetermined pressure (predetermined discharge pressure).
  • the protrusion-side tip of the vane 58 (vane 58b in FIG. 2) does not repeat separation and collision with the inner peripheral surface 40a of the cylinder 40, and chattering can be prevented.
  • the discharge valve 61 and the valve support 62 are provided on the discharge side of the second discharge hole 45b, and the pressure of the refrigerant gas in the compression chamber 43b faces the first discharge hole 45a.
  • a predetermined pressure predetermined discharge pressure
  • the discharge valve 61 is opened and high-pressure refrigerant gas is discharged from the second discharge hole 45b.
  • the discharge valve 61 of the second discharge hole 45b is closed when the pressure of the refrigerant gas in the compression chamber 43b has not reached the predetermined pressure (predetermined discharge pressure), and closes the second discharge hole 45b. It is out. This is because when the pressure of the refrigerant gas in the compression chamber 43b does not reach the predetermined pressure (predetermined discharge pressure), the high-pressure refrigerant gas flows backward from the discharge chamber 14 (discharge chamber 46b) side to the compression chamber 43b side. This is to prevent this.
  • the first discharge hole 45a is not provided with a discharge valve and a valve support provided on the second discharge hole 45b side, and is always open.
  • the refrigerant gas compressed in the compression chamber 43a (the compression chamber having the first discharge hole 45a) always reaches a predetermined pressure (predetermined discharge pressure) and is in a discharge state. Therefore, even if no discharge valve is provided in the first discharge hole 45a, the high-pressure refrigerant gas does not flow backward from the discharge chamber 14 (discharge chamber 46a) side to the compression chamber 43a side.
  • the refrigerant gas compressed in the compression chamber 43a always reaches a predetermined pressure (predetermined discharge pressure).
  • predetermined discharge pressure a predetermined pressure
  • the valve opens.
  • the discharge valve instantaneously The operation of closing and immediately opening the discharge valve may be repeated.
  • this discharge valve opens and closes and hits the periphery of the first discharge hole 45a, a collision sound (noise) may be generated.
  • the discharge valve is formed around the first discharge hole 45a. Therefore, such a collision noise (noise) of the discharge valve does not occur.
  • FIG. 3 is a cross-sectional view of a compressor (vane rotary type gas compressor) according to Embodiment 2 of the present invention.
  • symbol is attached
  • the five vanes 58 are slidably fitted in the vane grooves 59 of the rotor 50 at equal angular intervals.
  • a plurality of vanes 58a, 58b, and 58c are slidably fitted into the vane grooves 59 of the rotor 50 at equal angular intervals, and a plurality of compression chambers 43 partitioned by the vanes 58a, 58b, and 58c are formed in the cylinder chamber 42. ing.
  • the first discharge hole 45a is not provided with a discharge valve
  • the second discharge hole 45b is provided with a discharge valve 61.
  • FIG. both the first and second discharge holes 45a and 45b have a configuration in which neither a discharge valve nor a valve support is provided.
  • Other configurations are substantially the same as those of the first embodiment.
  • the compression chamber 43b formed by the two front vanes 58a and the rear vane 58b facing the second discharge hole 45b is as in the first embodiment. Compared with the case where there are five vanes, the interval between the vanes along the circumferential direction becomes longer, and the compression process becomes longer. Therefore, as the rotor 50 rotates, the volume of the compression chamber 43b becomes smaller, so that the refrigerant gas is further compressed and substantially reaches a predetermined discharge pressure near the second discharge hole 45b.
  • the front vane 58a moves to the downstream side of the second discharge hole 45b along the rotation direction of the rotor 50, but the refrigerant gas compressed in the compression chamber 43b is the predetermined discharge pressure.
  • the pressure reaches approximately, the front vane 58a is just before reaching the second discharge hole 45b. Therefore, immediately after the vane 58a passes through the second discharge hole 45b, the refrigerant gas G2 in the compression chamber 43b that has substantially reached the predetermined discharge pressure is discharged from the second discharge hole 45b.
  • the discharge is such that the compression ratio in the compression chamber 43b is 4 to 6 with respect to the suction pressure of the refrigerant gas G1 sucked into the compression chamber 43 through the suction hole 23.
  • the position of the second discharge hole 45b is set so that the front vane 58a reaches the second discharge hole 45b at the timing when the pressure is reached.
  • the high-pressure refrigerant gas G2 discharged from the second discharge hole 45b is introduced into the oil separation unit 70 and the discharge chamber 14 (see FIG. 1) through the discharge chamber 46b and the discharge path 30b.
  • residual gas a part of the high-pressure refrigerant gas (hereinafter referred to as “residual gas”) remaining in the compression chamber 43 b without being discharged from the second discharge hole 45 b is generated by the front vane 58 a as the rotor 50 rotates. After passing through the second discharge hole 45b, it is discharged from the first discharge hole 45a facing the compression chamber 43a.
  • the residual gas G2 'discharged from the first discharge hole 45a is introduced into the oil separation unit 70 and the discharge chamber 14 through the discharge path 30a. Therefore, in the present embodiment, the second discharge hole 45b is a main discharge hole and the first discharge hole 45a is a sub discharge hole, contrary to the case of the first embodiment.
  • the refrigerant gas in the compression chamber 43b can be discharged from the second discharge hole 45b when the pressure of the refrigerant gas in the compression chamber 43b substantially reaches a predetermined discharge pressure. Can be prevented from exceeding the predetermined pressure (predetermined discharge pressure).
  • the first and second discharge holes 45a and 45b are caused to discharge the refrigerant gas that has substantially reached a predetermined discharge pressure, whereby the first and second discharge holes are discharged.
  • Both of the holes 45a and 45b do not require a discharge valve and a valve support for preventing the backflow of the refrigerant gas.
  • a collision sound (noise) due to opening and closing of the discharge valve does not occur.
  • FIG. 4 is a cross-sectional view of a compressor (vane rotary type gas compressor) according to Embodiment 3 of the present invention.
  • symbol is attached
  • the three vanes 58a, 58b, and 58c shown in the second embodiment are provided, and neither the first or second discharge holes 45a and 45b are provided with a discharge valve or a valve support.
  • a third discharge hole 45c is formed in the inner peripheral surface 40a of the cylinder 40 located on the upstream side in the rotor rotation direction with respect to the second discharge hole 45b.
  • the third discharge hole 45c is provided at a position facing the vicinity of the intermediate position between the first and second discharge holes 45a and 45b with the rotation shaft 51 therebetween.
  • a discharge valve 61a and a valve support 62a are installed around the third discharge hole 45c.
  • the third discharge hole 45c communicates with the oil separation unit 70 and the discharge chamber 14 (see FIG. 1) through the discharge chamber 46c and the discharge path 30c.
  • the discharge passage 30c communicates with the discharge passages 30a and 30b.
  • the discharge valve 61a and the valve support 62a are provided in the discharge chamber 46c. Other configurations are the same as those of the second embodiment.
  • the pressure of the refrigerant gas in the compression chamber 43c formed by the two vanes 58b and the vanes 58c is a predetermined pressure before reaching the second discharge hole 45b.
  • the high-pressure refrigerant gas in the compression chamber 43c is introduced into the discharge chamber 14 from the third discharge hole 45c through the oil separation portion 70 via the discharge chamber 46c and the discharge path 30c.
  • the discharge valve 61a is elastically deformed by the high-pressure refrigerant gas discharged from the third discharge hole 45c and opens.
  • the pressure of the refrigerant gas in the compression chamber 43c reaches a predetermined pressure before reaching the second discharge hole 45b. Even if it exists, since the refrigerant gas in the compression chamber 43c can be discharged from the 3rd discharge hole 45c, the overcompression in which the pressure of the refrigerant gas in the compression chamber 43c exceeds predetermined pressure can be prevented.

Abstract

Provided is a gas compressor that is able to prevent excess compression from occurring in a compression chamber. A region (a proximal section (48)) in which the inner peripheral surface (40a) of a cylinder (40) and the outer peripheral (50a) of a rotor (50) are closest within a range of one circuit of the axis of a rotary shaft (51) has at least two discharge holes for discharging a refrigerant gas compressed in the compression chamber (43) on the upstream side in the direction of rotation of the rotor (50) in the circumferential direction of the inner peripheral surface (40a) of the cylinder (40). The discharge holes are linked on the discharge chamber (14) side, without providing a discharge valve to a first discharge hole (45a), which is on the side closest to the proximal section (48), among the discharge holes, said discharge valve opening when the pressure of a medium compressed in the compression chamber has reached a prescribed discharge pressure, and closing when the prescribed discharge pressure has not been reached.

Description

気体圧縮機Gas compressor
 本発明は、気体圧縮機に関し、詳細にはベーンロータリー型の気体圧縮機の改良に関する。 The present invention relates to a gas compressor, and more particularly to an improvement of a vane rotary type gas compressor.
 例えば、自動車などの車両には、車室内の温度調整を行うための空調装置が設けられている。このような空調装置は、冷媒(冷却媒体)を循環させるようにしたループ状の冷媒サイクルを有しており、この冷媒サイクルは、蒸発器、圧縮機、凝縮器、膨張弁が順に設けられている。 For example, a vehicle such as an automobile is provided with an air conditioner for adjusting the temperature in the passenger compartment. Such an air conditioner has a loop-shaped refrigerant cycle in which refrigerant (cooling medium) is circulated, and this refrigerant cycle is provided with an evaporator, a compressor, a condenser, and an expansion valve in this order. Yes.
 前記空調装置の圧縮機(コンプレッサ)は、蒸発器で蒸発されたガス状の冷媒(冷媒ガス)を圧縮して高圧の冷媒ガスとし、凝縮器へ送出するものである。 The compressor (compressor) of the air conditioner compresses the gaseous refrigerant (refrigerant gas) evaporated by the evaporator into high-pressure refrigerant gas and sends it to the condenser.
 このような圧縮機として、従来より、略楕円状の内周面を有するシリンダ内に、先端部がシリンダの内周面に摺接し、突出収納自在に設けた複数枚のベーンを有するロータが回転自在に軸支されたベーンロータリー型の圧縮機が知られている(例えば、特許文献1参照)。 As such a compressor, a rotor having a plurality of vanes provided so as to protrude and be housed in a cylinder having a substantially elliptical inner peripheral surface, the tip of which is slidably in contact with the inner peripheral surface of the cylinder has been rotated. A vane rotary type compressor that is freely supported is known (for example, see Patent Document 1).
 このベーンロータリー型の圧縮機は、ロータの回転にともない回転するベーンのシリンダ内周面との摺接によって容積が変化する圧縮室を有し、この圧縮室の容積の増大にともない吸入口を介して冷媒ガスを吸入し、圧縮室の容積の減少にともない吸入した冷媒ガスを圧縮して、高圧の冷媒ガスを吐出口を通して吐出室に吐出する。そして、吐出室から高圧の冷媒ガスを凝縮器側へ送出する。 This vane rotary type compressor has a compression chamber whose volume changes due to sliding contact with the inner circumferential surface of the rotating vane as the rotor rotates, and through the suction port as the volume of the compression chamber increases. The refrigerant gas is sucked in, the sucked refrigerant gas is compressed as the volume of the compression chamber decreases, and the high-pressure refrigerant gas is discharged into the discharge chamber through the discharge port. Then, high-pressure refrigerant gas is sent from the discharge chamber to the condenser side.
 なお、前記ベーンは、ロータの内側から表面に露出するスリット状のベーン溝に摺動自在に配置されている。そして、このベーンは、ベーン背圧空間等を通してベーン溝内の底部に供給される油による背圧(ベーン背圧)、及び回転するロータの遠心力によって先端側がロータ表面から突出し、ベーンの先端部がシリンダ内周面に当接した状態を維持する。 The vane is slidably disposed in a slit-like vane groove exposed on the surface from the inside of the rotor. And this vane protrudes from the rotor surface by the back pressure (vane back pressure) by the oil supplied to the bottom of the vane groove through the vane back pressure space and the centrifugal force of the rotating rotor, and the tip of the vane Is maintained in contact with the inner peripheral surface of the cylinder.
特開昭54-28008号公報JP 54-28008 A
 ところで、ベーンロータリー形式の圧縮機は、冷媒ガスを急激に圧縮するために圧縮室内で過圧縮が生じやすく、その分、動力の損失が大きくなったり、隣接する圧縮室間の圧力差が大きくなって、回転方向下流側の圧縮室から回転方向上流側の圧縮室へ圧縮された冷媒ガスが漏れやすくなるなどの原因により、他の形式の気体圧縮機(例えばロータリーピストン型の圧縮機など)よりも効率(成績係数又はCOP(Coefficient of Performance:冷房能力/動力))が低くなる傾向にあった。 By the way, in a vane rotary type compressor, since the refrigerant gas is rapidly compressed, overcompression is likely to occur in the compression chamber, and accordingly, power loss is increased or the pressure difference between adjacent compression chambers is increased. From other types of gas compressors (for example, rotary piston type compressors) because the refrigerant gas compressed from the compression chamber downstream in the rotation direction to the compression chamber upstream in the rotation direction is likely to leak. However, the efficiency (coefficient of performance or COP (Coefficient of Performance)) tended to be low.
 そこで、本発明は上記事情に鑑みなされたものであって、圧縮室内での過圧縮の発生を防止することができる気体圧縮機を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a gas compressor capable of preventing the occurrence of over-compression in a compression chamber.
 前記課題を解決するために、請求項1に記載の発明は、回転軸と一体的に回転する略円柱状のロータと、前記ロータを該ロータの外周面の外方から取り囲む輪郭形状の内周面を有するシリンダと、前記ロータに形成したベーン溝に該ロータの外周面から前記シリンダの内周面に向けて突出自在に設けられた複数の板状のベーンと、前記ロータおよび前記シリンダの両端をそれぞれ塞ぐ2つのサイドブロックとを備え、前記ベーンは、前記シリンダの内周面と前記ロータの外周面との間に形成された空間を仕切ることにより複数の圧縮室を形成するものであり、これら形成された各圧縮室が前記ロータの1回転の期間に、媒体の吸入、圧縮及び吐出を1サイクルのみ行うように、前記シリンダの内周面の輪郭形状が設定された気体圧縮機であって、前記シリンダの内周面と前記ロータの外周面とが前記回転軸の軸周りの1周の範囲で最近接する領域に対して前記ロータの回転方向上流側に、前記圧縮室で圧縮された媒体を外部に吐出するための吐出孔を、前記シリンダの内周面の周方向に沿って少なくとも2つ以上有しており、前記各吐出孔のうち、少なくとも前記最近接する領域に最も近い側にある第1の吐出孔には、前記圧縮室で圧縮された媒体の圧力が所定の吐出圧力に達したときに開弁し、前記所定の吐出圧力に達していないときは閉弁する吐出弁を設けていなく、外部側に連通していることを特徴としている。 In order to solve the above-mentioned problems, an invention according to claim 1 is directed to a substantially columnar rotor that rotates integrally with a rotation shaft, and an inner periphery having a contour shape that surrounds the rotor from the outside of the outer peripheral surface of the rotor. A cylinder having a surface, a plurality of plate-like vanes provided in a vane groove formed in the rotor so as to protrude from an outer peripheral surface of the rotor toward an inner peripheral surface of the cylinder, and both ends of the rotor and the cylinder Each of the two side blocks, and the vane forms a plurality of compression chambers by partitioning a space formed between the inner peripheral surface of the cylinder and the outer peripheral surface of the rotor, Each of the formed compression chambers is a gas compressor in which the contour shape of the inner peripheral surface of the cylinder is set so that the medium is sucked, compressed, and discharged only during one cycle of the rotation of the rotor. The inner circumferential surface of the cylinder and the outer circumferential surface of the rotor were compressed in the compression chamber on the upstream side in the rotation direction of the rotor with respect to the region closest to the circumference of the circumference of the rotation shaft. There are at least two discharge holes for discharging the medium to the outside along the circumferential direction of the inner peripheral surface of the cylinder, and at least the side closest to the closest region of the discharge holes. The first discharge hole has a discharge valve that opens when the pressure of the medium compressed in the compression chamber reaches a predetermined discharge pressure, and closes when the pressure does not reach the predetermined discharge pressure. It is not provided, but is characterized by communicating with the outside.
 請求項2に記載の気体圧縮機は、前記第1の吐出孔よりも前記ロータの回転方向上流側に位置する第2の吐出孔には、該第2の吐出孔に臨む圧縮室で圧縮された媒体の圧力が前記所定の吐出圧力に達したときに開弁し、前記所定の吐出圧力に達していないときは閉弁する吐出弁が設けられていることを特徴としている。 The gas compressor according to claim 2 is compressed in a compression chamber facing the second discharge hole on the second discharge hole located on the upstream side in the rotation direction of the rotor from the first discharge hole. A discharge valve is provided that opens when the pressure of the medium reaches the predetermined discharge pressure and closes when the medium pressure does not reach the predetermined discharge pressure.
 請求項3に記載の気体圧縮機は、前記第1の吐出孔は圧縮機運転時においては前記所定の吐出圧力に達している、前記第1の吐出孔に臨む圧縮室内の媒体を常に外部に吐出させていることを特徴としている。 The gas compressor according to claim 3, wherein the first discharge hole reaches the predetermined discharge pressure during compressor operation, and the medium in the compression chamber facing the first discharge hole is always exposed to the outside. It is characterized by discharging.
 請求項4に記載の気体圧縮機は、前記第1の吐出孔よりも前記ロータの回転方向上流側に位置する第2の吐出孔にも、該第2の吐出孔に臨む圧縮室で圧縮された媒体の圧力が前記所定の吐出圧力に達したときに開弁し、前記所定の吐出圧力に達していないときは閉弁する吐出弁を設けていなく、外部側に連通していることを特徴としている。 The gas compressor according to claim 4 is compressed in the compression chamber facing the second discharge hole also on the second discharge hole located on the upstream side of the first discharge hole in the rotation direction of the rotor. The valve opens when the pressure of the medium reaches the predetermined discharge pressure, and is not provided with a discharge valve that closes when the pressure does not reach the predetermined discharge pressure, and communicates with the outside. It is said.
 請求項5に記載の気体圧縮機は、相前後する2つのベーンによって仕切られた圧縮室内で圧縮される媒体が前記所定の吐出圧力に略達したときに、前記2つのベーンのうちの前側のベーンが前記第2の吐出孔を通過して、前記所定の吐出圧力に達している前記圧縮室内の媒体が前記第2の吐出孔から外部に吐出されることを特徴としている。 According to a fifth aspect of the present invention, when the medium to be compressed in the compression chamber partitioned by the two adjacent vanes substantially reaches the predetermined discharge pressure, the gas compressor on the front side of the two vanes is provided. The vane passes through the second discharge hole, and the medium in the compression chamber reaching the predetermined discharge pressure is discharged to the outside from the second discharge hole.
 請求項6に記載の気体圧縮機は、前記第2の吐出孔から吐出されずに圧縮室内に残留した一部の残留媒体は、前記前側のベーンが前記第1の吐出孔を通過後に該第1の吐出孔から外部に吐出されることを特徴としている。 The gas compressor according to claim 6, wherein a part of the residual medium remaining in the compression chamber without being discharged from the second discharge hole is formed after the front vane passes through the first discharge hole. It is characterized by being discharged to the outside through one discharge hole.
 本発明に係る気体圧縮機によれば、シリンダの内周面とロータの外周面とが回転軸の軸周りの1周の範囲で最近接する領域に対して、シリンダの内周面の周方向に沿ってロータの回転方向上流側に、圧縮室で圧縮された媒体を外部に吐出するための吐出孔を少なくとも2つ有しているので、圧縮室内の冷媒ガスの圧力が、最近接する領域に最も近い側にある吐出孔に臨む以前の段階で所定の吐出圧力に達した場合であっても、圧縮室内の冷媒ガスを、最近接する領域に最も近い側にある吐出孔よりもロータの回転方向上流側に位置する吐出孔から吐出させることができるので、圧縮室内の冷媒ガスの圧力が所定の吐出圧力を超える過圧縮を防止することができ、動力の損失を抑えることができる。 According to the gas compressor of the present invention, the inner peripheral surface of the cylinder and the outer peripheral surface of the rotor are in the circumferential direction of the inner peripheral surface of the cylinder with respect to the region that is closest to the outer periphery of the rotary shaft around one axis. And at least two discharge holes for discharging the medium compressed in the compression chamber to the outside on the upstream side in the rotation direction of the rotor, so that the pressure of the refrigerant gas in the compression chamber is the highest in the closest region. Even when a predetermined discharge pressure is reached in the stage before facing the discharge hole on the near side, the refrigerant gas in the compression chamber is more upstream in the rotational direction of the rotor than the discharge hole on the side closest to the closest area. Since it can be made to discharge from the discharge hole located in the side, the overcompression in which the pressure of the refrigerant gas in the compression chamber exceeds a predetermined discharge pressure can be prevented, and power loss can be suppressed.
 更に、少なくとも最近接する領域に最も近い側にある第1の吐出孔には、圧縮室で圧縮された媒体の圧力が所定の吐出圧力に達したときに開弁し、所定の吐出圧力に達していないときは閉弁する吐出弁を設けていないので、吐出弁の開閉にともなう衝突音(騒音)が発生することはなく、かつ部品数の削減によってコストの低減を図ることができる。 Furthermore, at least the first discharge hole on the side closest to the closest region opens when the pressure of the medium compressed in the compression chamber reaches a predetermined discharge pressure, and reaches the predetermined discharge pressure. When there is no discharge valve, the discharge valve that closes the valve is not provided, so that a collision noise (noise) accompanying the opening and closing of the discharge valve does not occur, and the cost can be reduced by reducing the number of parts.
本発明の実施形態1に係る気体圧縮機(ベーンロータリー型の気体圧縮機)を示す縦断面図。1 is a longitudinal sectional view showing a gas compressor (vane rotary type gas compressor) according to Embodiment 1 of the present invention. 図1のA-A線断面図。FIG. 2 is a sectional view taken along line AA in FIG. 1. 本発明の実施形態2に係る気体圧縮機(ベーンロータリー型の気体圧縮機)を示す横断面図。The cross-sectional view which shows the gas compressor (Vane rotary type gas compressor) which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る気体圧縮機(ベーンロータリー型の気体圧縮機)を示す横断面図。The cross-sectional view which shows the gas compressor (vane rotary type gas compressor) which concerns on Embodiment 3 of this invention.
 以下、本発明を図示の実施形態に基づいて説明する。
<実施形態1>
 図1は、本発明の実施形態1に係る気体圧縮機としてのベーンロータリー型の気体圧縮機(以下、「コンプレッサ」という)を示す縦断面図、図2は、図1におけるA-A線に沿った横断面を示す図である。なお、本実施形態のコンプレッサは、電動モータを内蔵している電動式である。
Hereinafter, the present invention will be described based on illustrated embodiments.
<Embodiment 1>
1 is a longitudinal sectional view showing a vane rotary type gas compressor (hereinafter referred to as “compressor”) as a gas compressor according to Embodiment 1 of the present invention, and FIG. 2 is taken along line AA in FIG. It is a figure which shows the cross section along. Note that the compressor of the present embodiment is an electric type that incorporates an electric motor.
(コンプレッサの全体構成、動作)
 図示のコンプレッサ100は、例えば、冷却媒体の気化熱を利用して冷却を行なう空気調和システム(以下、「空調システム」という)の一部として構成され、この空調システムの他の構成要素である凝縮器、膨張弁、蒸発器等(いずれも図示を省略する)とともに冷却媒体の循環経路上に設けられている。なお、このような空調システムとしては、例えば、車両(自動車など)の車室内の温度調整を行うための空調装置が挙げられる。
(Overall configuration and operation of compressor)
The illustrated compressor 100 is configured, for example, as a part of an air conditioning system (hereinafter referred to as an “air conditioning system”) that performs cooling by using the heat of vaporization of a cooling medium, and condensing that is another component of the air conditioning system. It is provided on the circulation path of the cooling medium together with a condenser, an expansion valve, an evaporator, etc. (all not shown). In addition, as such an air conditioning system, the air conditioning apparatus for adjusting the temperature in the vehicle interior of a vehicle (automobile etc.) is mentioned, for example.
 コンプレッサ100は、空調システムの蒸発器から取り入れた気体状の冷却媒体としての冷媒ガスを圧縮し、この圧縮された冷媒ガスを空調システムの凝縮器に供給する。凝縮器は圧縮された冷媒ガスを液化させ、高圧で液状の冷媒として膨張弁に送出する。そして、高圧で液状の冷媒は、膨張弁で低圧化され、蒸発器に送出される。低圧の液状冷媒は、蒸発器において周囲の空気から吸熱して気化し、この気化熱との熱交換により蒸発器周囲の空気を冷却する。 The compressor 100 compresses the refrigerant gas as a gaseous cooling medium taken from the evaporator of the air conditioning system, and supplies the compressed refrigerant gas to the condenser of the air conditioning system. The condenser liquefies the compressed refrigerant gas and sends it to the expansion valve as a high-pressure liquid refrigerant. The high-pressure and liquid refrigerant is reduced in pressure by the expansion valve and sent to the evaporator. The low-pressure liquid refrigerant absorbs heat from ambient air and vaporizes in the evaporator, and cools the air around the evaporator by heat exchange with the heat of vaporization.
 コンプレッサ100は、図1に示すように、本体ケース11とフロントカバー12とから主に構成されているハウジング10の内部に、モータ90と圧縮機本体60とが収容された構成である。 As shown in FIG. 1, the compressor 100 has a configuration in which a motor 90 and a compressor main body 60 are accommodated in a housing 10 mainly composed of a main body case 11 and a front cover 12.
 本体ケース11は、略円筒形状であり、その円筒形状の一方(図1の右側)の端部が塞がれたように形成され、他方(図1の左側)の端部は開口して形成されている。 The main body case 11 has a substantially cylindrical shape, and is formed such that one end (right side in FIG. 1) of the cylindrical shape is closed, and the other end (left side in FIG. 1) is open. Has been.
 フロントカバー12は、この本体ケース11の開口側の端部に接した状態でこの開口を塞ぐように蓋状に形成されていて、この状態で締結部材により本体ケース11に締結されて本体ケース11と一体化され、内部に空間を有するハウジング10を形成する。 The front cover 12 is formed in a lid shape so as to close the opening while being in contact with the opening-side end portion of the main body case 11. In this state, the front cover 12 is fastened to the main body case 11 by a fastening member. And a housing 10 having a space inside is formed.
 フロントカバー12には、空調システムの蒸発器(不図示)から低圧の冷媒ガスG1を吸入室13内に導入する吸入ポート12aが形成されている。一方、本体ケース11の後述する吐出室14には、圧縮機本体60で得られた高圧の冷媒ガスG2を空調システムの凝縮器(不図示)に吐出する吐出ポート11aが形成されている。 The front cover 12 is formed with a suction port 12a through which a low-pressure refrigerant gas G1 is introduced into the suction chamber 13 from an evaporator (not shown) of the air conditioning system. On the other hand, a discharge port 11a for discharging the high-pressure refrigerant gas G2 obtained in the compressor main body 60 to a condenser (not shown) of the air conditioning system is formed in the discharge chamber 14 described later of the main body case 11.
 本体ケース11の内部に設けられたモータ90は、永久磁石のロータ90aと電磁石のステータ90bとを備えた多相ブラシレス直流モータを構成している。ステータ90bは本体ケース11の内周面に嵌め合わされて固定され、ロータ90aには回転軸51が固定されている。 The motor 90 provided inside the main body case 11 constitutes a multiphase brushless DC motor including a permanent magnet rotor 90a and an electromagnet stator 90b. The stator 90b is fitted and fixed to the inner peripheral surface of the main body case 11, and the rotating shaft 51 is fixed to the rotor 90a.
 そして、モータ90は、フロントカバー12の端面に取付けられた電源コネクタ90cを介して供給された電力によってステータ90bの電磁石を励磁することにより、ロータ90aおよび回転軸51をその軸心回りに回転駆動させる。 The motor 90 drives the rotor 90a and the rotating shaft 51 to rotate around the axis by exciting the electromagnet of the stator 90b with the electric power supplied via the power connector 90c attached to the end face of the front cover 12. Let
 なお、電源コネクタ90cとステータ90bとの間に、インバータ回路90dなどを備えた構成を採用することもできる。 It should be noted that a configuration including an inverter circuit 90d or the like can be employed between the power connector 90c and the stator 90b.
 なお、本実施形態のコンプレッサ100は上述したとおり電動式のものであるが、本発明に係る気体圧縮機は電動式のものに限定されるものではなく、機械式のものであってもよく、本実施形態のコンプレッサ100を仮に機械式のものとした場合は、モータ90を備える代わりに、回転軸51をフロントカバー12から外部へ突出させて、その突出した回転軸51の先端部に、車両のエンジン等から動力の伝達を受けるプーリーや歯車等を備えた構成とすればよい。 Although the compressor 100 of the present embodiment is an electric type as described above, the gas compressor according to the present invention is not limited to an electric type, and may be a mechanical type. If the compressor 100 of the present embodiment is of a mechanical type, instead of providing the motor 90, the rotating shaft 51 protrudes from the front cover 12 to the outside, and the front end of the protruding rotating shaft 51 is connected to the vehicle. What is necessary is just to set it as the structure provided with the pulley, the gearwheel, etc. which receive motive power transmission from this engine.
 モータ90とともにハウジング10の内部に収容された圧縮機本体60は、回転軸51の延びた方向に沿ってモータ90と並んで配置されており、ボルト等の締結部材15により、本体ケース11内に固定されている。 The compressor main body 60 accommodated in the housing 10 together with the motor 90 is arranged side by side with the motor 90 along the direction in which the rotating shaft 51 extends, and is inserted into the main body case 11 by a fastening member 15 such as a bolt. It is fixed.
 圧縮機本体60は、モータ90によって回転される前記回転軸51と、回転軸51と一体的に回転する略円柱状のロータ50と、このロータ50をその外周面50a(図2参照)の外方から取り囲む輪郭形状の内周面40aを有するシリンダ40と、ロータ50の外周面50aからシリンダ40の内周面40aに向けて突出自在に設けられた5枚の板状のベーン58と、ロータ50及びシリンダ40の両端を塞ぐ2つのサイドブロック(フロントサイドブロック20、リヤサイドブロック30)とを備えている。 The compressor body 60 includes the rotating shaft 51 rotated by the motor 90, a substantially cylindrical rotor 50 that rotates integrally with the rotating shaft 51, and the rotor 50 outside the outer peripheral surface 50a (see FIG. 2). A cylinder 40 having a contour-shaped inner peripheral surface 40a surrounding from the side, five plate-like vanes 58 provided so as to protrude from the outer peripheral surface 50a of the rotor 50 toward the inner peripheral surface 40a of the cylinder 40, and the rotor 50 and two side blocks (front side block 20 and rear side block 30) that block both ends of the cylinder 40 are provided.
 回転軸51は、フロントカバー12に形成された軸受12b、圧縮機本体60の各サイドブロック20,30にそれぞれ形成された軸受27,37により、回転自在に支持されている。 The rotary shaft 51 is rotatably supported by bearings 12b formed on the front cover 12 and bearings 27 and 37 formed on the side blocks 20 and 30 of the compressor main body 60, respectively.
 フロントサイドブロック20とリヤサイドブロック30の外周面には、それぞれOリング等のシール部材が外周面の全周に亘って設置されており、リヤサイドブロック30側の本体ケース11内に形成された吐出室14と、フロントサイドブロック20側の本体ケース11とフロントカバー12内に形成された吸入室13との間を気密性よく仕切っている。 On the outer peripheral surfaces of the front side block 20 and the rear side block 30, sealing members such as O-rings are installed over the entire outer periphery, and the discharge chamber is formed in the main body case 11 on the rear side block 30 side. 14 and the main body case 11 on the front side block 20 side and the suction chamber 13 formed in the front cover 12 are partitioned with good airtightness.
 リヤサイドブロック30の外面には、油分離部70が吐出室14内に位置するようにして取付けられている。なお、フロントカバー12内に形成された吸入室13内に、前記モータ90が設けられている。 The oil separation unit 70 is attached to the outer surface of the rear side block 30 so as to be positioned in the discharge chamber 14. The motor 90 is provided in the suction chamber 13 formed in the front cover 12.
 圧縮機本体60の内部には、図2に示すように、シリンダ40の内周面40aとロータ50の外周面50aと両サイドブロック20,30(図1参照)との間に単一のシリンダ室42が形成されている。 In the compressor main body 60, as shown in FIG. 2, there is a single cylinder between the inner peripheral surface 40a of the cylinder 40, the outer peripheral surface 50a of the rotor 50, and both side blocks 20, 30 (see FIG. 1). A chamber 42 is formed.
 具体的には、シリンダ40の内周面41aとロータ50の外周面50aとが、回転軸51の軸回りの1周(角度360度)の範囲で1箇所(図2の近接部48)だけ略接(最近接)するように、シリンダ40の内周面40aの輪郭形状が設定されていて、これにより、シリンダ室42は単一の略三日月形状の空間を形成している。 Specifically, the inner peripheral surface 41a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 are only one place (proximal portion 48 in FIG. 2) within a range of one rotation (angle 360 degrees) around the axis of the rotating shaft 51. The contour shape of the inner peripheral surface 40a of the cylinder 40 is set so as to be in close contact (closest to the nearest), whereby the cylinder chamber 42 forms a single substantially crescent-shaped space.
 なお、シリンダ40の内周面40aの輪郭形状のうちシリンダ40の内周面40aとロータ50の外周面50aとが最も近接した領域である近接部48は、シリンダ40の内周面40aとロータ50の外周面50aとが最も離れた領域である遠隔部49から、本実施形態ではロータ50の回転方向W(図2において時計回り方向)に沿って下流側に角度270度程度離れた位置に設定されている。 Of the contour shape of the inner peripheral surface 40a of the cylinder 40, the proximity portion 48, which is the region where the inner peripheral surface 40a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 are closest, In this embodiment, the remote portion 49 is located at a position away from the remote portion 49, which is the farthest area from the outer peripheral surface 50a of the 50, along the rotational direction W (clockwise direction in FIG. 2) of the rotor 50 at an angle of about 270 degrees. Is set.
 シリンダ40の内周面40aの輪郭形状は、遠隔部49から回転方向Wに沿って近接部48に至るまで、ロータ50の外周面50aとシリンダ40の内周面40aとの間の距離が単調に減少するような形状に設定されている。 The contour shape of the inner peripheral surface 40a of the cylinder 40 is such that the distance between the outer peripheral surface 50a of the rotor 50 and the inner peripheral surface 40a of the cylinder 40 is monotonous from the remote portion 49 to the proximity portion 48 along the rotation direction W. The shape is set to decrease.
 ベーン58は、ロータ50に形成されたベーン溝59に摺動自在に嵌め込まれていて、ベーン溝59に供給される冷凍機油による背圧により、ロータ50の外周面50aから外方に突出する。 The vane 58 is slidably fitted in a vane groove 59 formed in the rotor 50, and protrudes outward from the outer peripheral surface 50 a of the rotor 50 by back pressure due to the refrigerating machine oil supplied to the vane groove 59.
 また、ベーン58は、単一のシリンダ室42を複数の圧縮室43に区画するものであり、ロータ50の回転方向Wに沿って相前後する2つのベーン58によって1つの圧縮室43が形成される。従って、5枚のベーン58が回転軸51回りに角度72度の等角度間隔で設置された本実施形態においては、5つの圧縮室43が形成される。 The vane 58 divides the single cylinder chamber 42 into a plurality of compression chambers 43, and one compression chamber 43 is formed by the two vanes 58 that move back and forth along the rotation direction W of the rotor 50. The Therefore, in the present embodiment in which five vanes 58 are installed around the rotation shaft 51 at equal angular intervals of 72 degrees, five compression chambers 43 are formed.
 ベーン58によりシリンダ室42を仕切って得られた圧縮室43内の容積は、回転方向Wに沿って圧縮室43が遠隔部49から近接部48に至るまで単調に小さくなる。なお、図1では、シリンダ室42に露出しているベーン58は省略している。 The volume in the compression chamber 43 obtained by partitioning the cylinder chamber 42 by the vane 58 monotonously decreases along the rotation direction W from the remote portion 49 to the proximity portion 48. In FIG. 1, the vane 58 exposed to the cylinder chamber 42 is omitted.
 このシリンダ室42の近接部48に対してロータ50の回転方向下流側の部分には、フロントサイドブロック20に形成された、吸入室13に通じる吸入孔23(図2参照)が臨んでいる。 The suction hole 23 (see FIG. 2) formed in the front side block 20 and leading to the suction chamber 13 faces the portion on the downstream side in the rotation direction of the rotor 50 with respect to the proximity portion 48 of the cylinder chamber 42.
 一方、シリンダ室42の近接部48に対してロータ50の回転方向上流側の、シリンダ40の内周面40aには、その内周面40aの周方向に沿って第1の吐出孔45aと第2の吐出孔45bが形成されている。なお、ロータ50の回転方向Wに沿って近接部48により近接している方が第1の吐出孔45aであり、ロータ50の回転方向Wに沿って第1の吐出口45aの上流側に第2の吐出孔45bが形成されている。 On the other hand, on the inner peripheral surface 40a of the cylinder 40 upstream of the proximity portion 48 of the cylinder chamber 42 in the rotation direction of the rotor 50, the first discharge holes 45a and the first discharge holes 45a are arranged along the circumferential direction of the inner peripheral surface 40a. Two discharge holes 45b are formed. The one closer to the proximity portion 48 along the rotation direction W of the rotor 50 is the first discharge hole 45a, and the first discharge hole 45a is located upstream of the first discharge port 45a along the rotation direction W of the rotor 50. Two discharge holes 45b are formed.
 第1、第2の各吐出孔45a,45bは、シリンダ40の外周面側に本体ケース11の内周面との間に形成された空間としての吐出チャンバ46a,46bにそれぞれ連通している。また、リヤサイドブロック30には、各吐出チャンバ46a,46bとリヤサイドブロック30の外面(吐出室14に向いた面)に取付けられた油分離部70との間を連通している吐出路30a,30bが形成されている。 The first and second discharge holes 45a and 45b communicate with discharge chambers 46a and 46b as spaces formed between the outer peripheral surface of the cylinder 40 and the inner peripheral surface of the main body case 11, respectively. Further, the discharge passages 30a and 30b communicating with the rear side block 30 between the discharge chambers 46a and 46b and the oil separation portion 70 attached to the outer surface of the rear side block 30 (surface facing the discharge chamber 14). Is formed.
 なお、シリンダ40の内周面40aに形成された第1、第2の各吐出孔45a,45bは、シリンダ40の幅方向に沿ってそれぞれ2つ形成されている。第1、第2の各吐出孔45a,45bの詳細については後述する。 Two first and second discharge holes 45 a and 45 b formed on the inner peripheral surface 40 a of the cylinder 40 are formed along the width direction of the cylinder 40. Details of the first and second discharge holes 45a and 45b will be described later.
 各圧縮室43において、ロータ50の1回転の期間に、吸入孔23を通しての冷媒ガスの吸入、冷媒ガスの圧縮及び第1、第2の吐出孔45a,45bへの冷媒ガスの吐出を1サイクルだけ行うように、シリンダ40の内周面40aの輪郭形状が設定されている。 In each compression chamber 43, during one rotation of the rotor 50, the refrigerant gas is sucked through the suction hole 23, the refrigerant gas is compressed, and the refrigerant gas is discharged into the first and second discharge holes 45a and 45b in one cycle. The contour shape of the inner peripheral surface 40a of the cylinder 40 is set so as to perform only.
 シリンダ室42の遠隔部49に対してロータ50の回転方向上流側では、シリンダ40の内周面40aとロータ50の外周面50aとの間隔が小さい状態から急激に大きくなるように、シリンダ40の内周面40aの輪郭形状が設定されていて、遠隔部49を含んだ角度範囲ではロータ50の回転方向Wへの回転に伴って圧縮室43の容積が拡大して、吸入孔23を通じて圧縮室43内に低圧の冷媒ガスG1が吸入される行程(吸入行程)となる。 On the upstream side in the rotational direction of the rotor 50 with respect to the remote portion 49 of the cylinder chamber 42, the cylinder 40 has a gap so that the distance between the inner peripheral surface 40 a of the cylinder 40 and the outer peripheral surface 50 a of the rotor 50 increases rapidly from a small state. The contour shape of the inner peripheral surface 40 a is set, and in the angle range including the remote portion 49, the volume of the compression chamber 43 increases as the rotor 50 rotates in the rotation direction W, and the compression chamber passes through the suction hole 23. This is a stroke (intake stroke) in which the low-pressure refrigerant gas G <b> 1 is sucked into 43.
 次いで、シリンダ室42の遠隔部49に対してロータ50の回転方向下流側に向かって、シリンダ40の内周面40aとロータ50の外周面50aとの間隔が徐々に小さくなるように、シリンダ40の内周面40aの輪郭形状が設定されていて、その範囲ではロータ50の回転に伴って圧縮室43の容積が減少し、圧縮室43内の冷媒ガスが圧縮される行程(圧縮行程)となる。 Next, the cylinder 40 is arranged such that the distance between the inner peripheral surface 40a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 gradually decreases toward the downstream side in the rotation direction of the rotor 50 with respect to the remote portion 49 of the cylinder chamber 42. A contour shape of the inner peripheral surface 40a is set, and in that range, the volume of the compression chamber 43 decreases with the rotation of the rotor 50, and the stroke in which the refrigerant gas in the compression chamber 43 is compressed (compression stroke) Become.
 そして、ロータ50の回転にともなってシリンダ40の内周面40aとロータ50の外周面50aとの間隔がさらに小さくなることで冷媒ガスの圧縮がさらに進み、冷媒ガスの圧力が所定の吐出圧力に達すると、高圧の冷媒ガスG2は第1吐出孔45a(及び第2の吐出孔45b)に吐出される行程(吐出行程)となる。 As the rotor 50 rotates, the gap between the inner peripheral surface 40a of the cylinder 40 and the outer peripheral surface 50a of the rotor 50 is further reduced, so that the compression of the refrigerant gas further proceeds, and the refrigerant gas pressure becomes a predetermined discharge pressure. When reaching, the high-pressure refrigerant gas G2 becomes a stroke (discharge stroke) discharged to the first discharge hole 45a (and the second discharge hole 45b).
 このように、ロータ50の回転にともなって、各圧縮室43が吸入行程、圧縮行程、吐出行程をこの順序で繰り返すことにより、吸入室13から吸入された低圧の冷媒ガスを高圧にして第1吐出孔45a(及び第2の吐出孔45b)から吐出させる。 Thus, as the rotor 50 rotates, each compression chamber 43 repeats the suction stroke, the compression stroke, and the discharge stroke in this order, so that the low-pressure refrigerant gas sucked from the suction chamber 13 is increased to the first pressure. The ink is discharged from the discharge hole 45a (and the second discharge hole 45b).
 また、前記第2の吐出孔45bの周囲には、吐出弁61と弁サポート62が設置されている。吐出弁61は、前記圧縮行程における圧縮室43(図2では、圧縮室43b)内の冷媒ガスの圧力が所定の吐出圧力以上になると吐出チャンバ46b側に反るように弾性変形して第2の吐出孔45bを開き、冷媒ガスの圧力が前記所定の吐出圧力に達していないときは弾性力により第2の吐出孔45bを閉じる。弁サポート62は、吐出弁61が吐出チャンバ46b側に過度に反るのを防止する。なお、第1の吐出孔45aには、これらの吐出弁と弁サポートは設けられておらず、常に開いている。 In addition, a discharge valve 61 and a valve support 62 are installed around the second discharge hole 45b. The discharge valve 61 is elastically deformed so as to warp toward the discharge chamber 46b when the pressure of the refrigerant gas in the compression chamber 43 (the compression chamber 43b in FIG. 2) in the compression stroke becomes equal to or higher than a predetermined discharge pressure. When the refrigerant gas pressure does not reach the predetermined discharge pressure, the second discharge hole 45b is closed by an elastic force. The valve support 62 prevents the discharge valve 61 from excessively warping toward the discharge chamber 46b. The first discharge hole 45a is not provided with these discharge valves and valve supports, and is always open.
 油分離部70は、冷媒ガスと混ざった冷凍機油(ロータ50に形成されたベーン溝59からシリンダ室42(圧縮室43)に漏れたベーン背圧用の油)を冷媒ガスから分離するものであり、第1、第2の吐出孔45a,45bから吐出されて、吐出チャンバ46a,46b、吐出路30a,30bを通って導入された高圧の冷媒ガスを、螺旋状に旋回させることで冷凍機油を遠心分離するように構成されている。 The oil separator 70 separates the refrigeration oil mixed with the refrigerant gas (the vane back pressure oil leaked from the vane groove 59 formed in the rotor 50 into the cylinder chamber 42 (compression chamber 43)) from the refrigerant gas. The high-pressure refrigerant gas discharged from the first and second discharge holes 45a and 45b and introduced through the discharge chambers 46a and 46b and the discharge passages 30a and 30b is spirally swirled to refrigerating machine oil. It is configured to centrifuge.
 そして、冷媒ガスから分離された冷凍機油R(図1参照)は吐出室14の底部に溜まり、冷凍機油Rが分離された後の高圧の冷媒ガスG2は吐出室14の上部から吐出ポート11aを通って凝縮器(不図示)に吐出される。 The refrigerating machine oil R (see FIG. 1) separated from the refrigerant gas is accumulated at the bottom of the discharge chamber 14, and the high-pressure refrigerant gas G2 after the refrigerating machine oil R is separated passes through the discharge port 11a from the top of the discharge chamber 14. And discharged to a condenser (not shown).
 吐出室14の底部に溜められた冷凍機油Rは、吐出室14の高圧雰囲気により、リヤサイドブロック30に形成された油路38a及び背圧供給用の凹部であるサライ溝31,32を通じて、並びにリヤサイドブロック30に形成された油路38a,38b、シリンダ40に形成された油路44、フロントサイドブロック20に形成された油路24及びフロントサイドブロック20に形成された背圧供給用の凹部であるサライ溝21,22を通じて、それぞれロータ50のベーン溝59に供給され、ベーン58を外方に突出させる背圧となる。 The refrigerating machine oil R stored in the bottom of the discharge chamber 14 is passed through the oil passage 38a formed in the rear side block 30 and the Sarai grooves 31 and 32, which are recesses for supplying back pressure, by the high pressure atmosphere in the discharge chamber 14, and the rear side. These are oil passages 38 a and 38 b formed in the block 30, an oil passage 44 formed in the cylinder 40, an oil passage 24 formed in the front side block 20, and a back pressure supply recess formed in the front side block 20. It is supplied to the vane groove 59 of the rotor 50 through the Sarai grooves 21 and 22, respectively, and becomes a back pressure that causes the vane 58 to protrude outward.
 なお、この冷凍機油は、ベーン58とベーン溝59との間の隙間や、ロータ50と各サイドブロック20,30との間の隙間等から滲みだして、ロータ50と各サイドブロック20,30との間の接触部分や、ベーン58とシリンダ40や各サイドブロック20,30との間の接触部分などにおける潤滑や冷却の機能も発揮し、その冷凍機油の一部が圧縮室43内の冷媒ガスと混ざるため、油分離部70により冷凍機油の分離が行われる。 The refrigerating machine oil oozes out from the gap between the vane 58 and the vane groove 59, the gap between the rotor 50 and each side block 20, 30, and the like. And the lubricating and cooling functions at the contact portion between the vane 58 and the contact portion between the vane 58 and the cylinder 40 or each of the side blocks 20 and 30, etc., and a part of the refrigerating machine oil is refrigerant gas in the compression chamber 43. Therefore, refrigerating machine oil is separated by the oil separation unit 70.
 リヤサイドブロック30に形成された2つのサライ溝31,32のうち、シリンダ室42の近接部48に対してロータ50の回転方向下流側の部分(吸入行程及び圧縮行程に対応する部分)に形成されたサライ溝31に供給される冷凍機油は、油路38aから軸受37と回転軸51の外周面との間の狭い隙間を通過してサライ溝31に供給される。このため、軸受37と回転軸51の外周面との間の狭い隙間を通過する際の圧力損失により、吐出室14の雰囲気である高圧(吐出圧力に近い圧力)よりも低い中圧(吸入室13の雰囲気である吸入圧よりも高い圧力)となる。 Of the two Sarai grooves 31 and 32 formed in the rear side block 30, a portion downstream of the rotor 50 in the rotational direction with respect to the proximity portion 48 of the cylinder chamber 42 (a portion corresponding to the suction stroke and the compression stroke) is formed. The refrigerating machine oil supplied to the Saray groove 31 is supplied to the Saray groove 31 from the oil passage 38 a through a narrow gap between the bearing 37 and the outer peripheral surface of the rotary shaft 51. For this reason, the medium pressure (suction chamber) lower than the high pressure (pressure close to the discharge pressure) that is the atmosphere of the discharge chamber 14 due to the pressure loss when passing through the narrow gap between the bearing 37 and the outer peripheral surface of the rotary shaft 51. 13 is a pressure higher than the suction pressure).
 フロントサイドブロック20に形成された2つのサライ溝21,22のうち、シリンダ室42の近接部48に対してロータ50の回転方向下流側の部分に形成されたサライ溝21に供給される冷凍機油についても、サライ溝31に供給される冷凍機油と同様に中圧となる。 Of the two salai grooves 21 and 22 formed in the front side block 20, the refrigerating machine oil supplied to the salai groove 21 formed in the downstream portion in the rotation direction of the rotor 50 with respect to the proximity portion 48 of the cylinder chamber 42. As for the refrigeration oil supplied to the saray groove 31 as well, it becomes an intermediate pressure.
 一方、リヤサイドブロック30に形成された2つのサライ溝31,32のうち、シリンダ室42の近接部48に対してロータ50の回転方向上流側の部分(主に吐出行程に対応する部分)に形成されたサライ溝32に供給される冷凍機油は、油路38aから圧力損失なく供給されるため、吐出室14の雰囲気である高圧に近い圧力(中圧よりも高い圧力)となる。 On the other hand, of the two Sarai grooves 31 and 32 formed in the rear side block 30, it is formed in a portion upstream of the rotor 50 in the rotation direction with respect to the proximity portion 48 of the cylinder chamber 42 (mainly corresponding to the discharge stroke). Since the refrigerating machine oil supplied to the saray groove 32 is supplied without pressure loss from the oil passage 38a, it becomes a pressure close to a high pressure (pressure higher than the medium pressure) that is the atmosphere of the discharge chamber 14.
 なお、フロントサイドブロック20に形成された2つのサライ溝21,22のうち、シリンダ室42の近接部48に対してロータ50の回転方向上流側の部分に形成されたサライ溝22に供給される冷凍機油についても、サライ溝32に供給される冷凍機油と同様に高圧となる。 Of the two salai grooves 21, 22 formed in the front side block 20, the salai grooves 22 are formed in the upstream portion of the rotor 50 in the rotation direction with respect to the proximity portion 48 of the cylinder chamber 42. The refrigerating machine oil also has a high pressure similarly to the refrigerating machine oil supplied to the saray groove 32.
 そして、ロータ50の両端面まで貫通したベーン溝59が、ロータ50の回転により、各サイドブロック20,30のサライ溝21,31、22,32にそれぞれ通じたときに、その通じたサライ溝21,31、22,32からベーン溝59に冷凍機油が供給されて、供給された冷凍機油の圧力がベーン58を突出させる背圧となる。 Then, when the vane groove 59 penetrating to both end faces of the rotor 50 communicates with the Sarai grooves 21, 31, 22, 32 of the side blocks 20, 30 due to the rotation of the rotor 50, the connected Saray grooves 21. , 31, 22, 32 are supplied with the refrigeration oil to the vane groove 59, and the pressure of the supplied refrigeration oil becomes a back pressure that causes the vane 58 to protrude.
(第1、第2の吐出孔45a,45bについての詳細な構成)
 次に、シリンダ40の内周面40aにその周方向に沿って形成された第1、第2の吐出孔45a,45bについて、図2を参照して詳しく説明する。
(Detailed configuration of the first and second discharge holes 45a and 45b)
Next, the first and second discharge holes 45a and 45b formed in the inner circumferential surface 40a of the cylinder 40 along the circumferential direction will be described in detail with reference to FIG.
 まず、ロータ50の回転方向Wに沿って近接部48の直前の上流側に形成された第1の吐出孔45aは、ロータ50の1回転の間に吸入、圧縮及び吐出というサイクルを1サイクルしか行わない、単一の吐出孔しか備えない構成の気体圧縮機における本来の単一の吐出孔に対応するものであり、主吐出孔ということができる。一方、ロータ50の回転方向Wに沿って第1の吐出孔45aよりも上流側に位置するように形成された第2の吐出孔45bを副吐出孔ということができる。 First, the first discharge hole 45a formed on the upstream side immediately before the proximity portion 48 along the rotation direction W of the rotor 50 allows only one cycle of suction, compression, and discharge during one rotation of the rotor 50. This corresponds to the original single discharge hole in the gas compressor having a configuration including only a single discharge hole, and can be called a main discharge hole. On the other hand, the second discharge hole 45b formed so as to be positioned upstream of the first discharge hole 45a along the rotation direction W of the rotor 50 can be referred to as a sub discharge hole.
 そして、ロータ50の回転にともなって第1の吐出孔45aに臨んだ圧縮室43a内の冷媒ガスの圧力が所定圧力(所定の吐出圧力)以上の高圧になり、この高圧の冷媒ガスG2が第1の吐出孔45aから吐出されるように構成されている。第1の吐出孔45aから吐出された高圧の冷媒ガスG2は、吐出チャンバ46a、吐出路30aを介し油分離部70を通して吐出室14に導入される。 As the rotor 50 rotates, the pressure of the refrigerant gas in the compression chamber 43a facing the first discharge hole 45a becomes higher than a predetermined pressure (predetermined discharge pressure), and the high-pressure refrigerant gas G2 is It is configured to be discharged from one discharge hole 45a. The high-pressure refrigerant gas G2 discharged from the first discharge hole 45a is introduced into the discharge chamber 14 through the oil separation portion 70 via the discharge chamber 46a and the discharge path 30a.
 ロータ50の回転方向Wに沿って圧縮室43aの上流側で、この圧縮室43aに隣接する圧縮室43bは、圧縮室43aが第1の吐出孔45aに臨んでいるときは圧縮室43aの容積よりも大きいが、圧縮室43bが第1の吐出孔45aに臨む位置まで回転する以前に、その圧縮室43b内で圧縮された冷媒ガスの圧力が、前記所定圧力(所定の吐出圧力)に達する場合も起こりうる。 The compression chamber 43b adjacent to the compression chamber 43a on the upstream side of the compression chamber 43a along the rotation direction W of the rotor 50 is the volume of the compression chamber 43a when the compression chamber 43a faces the first discharge hole 45a. The pressure of the refrigerant gas compressed in the compression chamber 43b reaches the predetermined pressure (predetermined discharge pressure) before the compression chamber 43b rotates to the position facing the first discharge hole 45a. It can happen.
 このような場合、仮に吐出孔が1つ(第1の吐出孔45aのみ)しか形成されていない気体圧縮機では、ロータ50の回転にともなって圧縮室43bの容積がさらに小さくなるため、圧縮室43b内の冷媒ガスの圧力が所定圧力(所定の吐出圧力)を超えるが、圧縮室43bが第1の吐出孔45aに臨む位置まで回転する以前は、所定圧力(所定の吐出圧力)を超えた冷媒ガスが吐出されない。 In such a case, in a gas compressor in which only one discharge hole (only the first discharge hole 45a) is formed, the volume of the compression chamber 43b is further reduced with the rotation of the rotor 50, so that the compression chamber The pressure of the refrigerant gas in 43b exceeds a predetermined pressure (predetermined discharge pressure), but exceeded the predetermined pressure (predetermined discharge pressure) before the compression chamber 43b rotates to the position facing the first discharge hole 45a. The refrigerant gas is not discharged.
 この際、この圧縮室43bを仕切っている2つのベーン(図2では、ベーン58a,58b)のうち回転方向上流側のベーン58bには、冷凍機油によるベーン溝59からの背圧とこのベーン58bに作用する遠心力との合力によるシリンダ40の内周面40aへの押付力が作用している。そして、圧縮室43bの内部圧力による、ベーン58bの先端側をシリンダ40の内周面40aから押し戻す力が上回ると、そのベーン58bの突出側先端部がシリンダ40の内周面40aから離れる。その後、圧縮室43b内の冷媒ガスが吐出孔(第1の吐出孔45a)から吐出されると、ベーン58bがシリンダ40の内周面40aに衝突する。 At this time, of the two vanes (in FIG. 2, vanes 58a and 58b) partitioning the compression chamber 43b, the back pressure from the vane groove 59 by the refrigerating machine oil and the vane 58b A pressing force is applied to the inner peripheral surface 40a of the cylinder 40 due to the resultant force with the centrifugal force acting on the cylinder 40. And if the force which pushes back the front end side of the vane 58b from the internal peripheral surface 40a of the cylinder 40 by the internal pressure of the compression chamber 43b exceeds, the protrusion side front-end | tip part of the vane 58b will leave | separate from the internal peripheral surface 40a of the cylinder 40. Thereafter, when the refrigerant gas in the compression chamber 43b is discharged from the discharge hole (first discharge hole 45a), the vane 58b collides with the inner peripheral surface 40a of the cylinder 40.
 このように、コンプレッサ100の運転時にベーン58(図2では、ベーン58b)がシリンダ40の内周面40aとの間で、離間と衝突を繰り返すことで騒音(以下「チャタリング」という)が発生する。 In this way, noise (hereinafter referred to as “chattering”) is generated when the vane 58 (in FIG. 2, the vane 58 b in FIG. 2) repeats the separation and the collision with the inner peripheral surface 40 a of the cylinder 40 during the operation of the compressor 100. .
 これに対して、上記した本実施形態のコンプレッサ100は、圧縮室43b内の冷媒ガスの圧力が第1の吐出孔45aに臨む以前の段階で所定圧力(所定の吐出圧力)に達したときに、その圧縮室43b内の高圧の冷媒ガスG2を吐出させる第2の吐出孔45bが、第1の吐出孔45aよりもロータ回転方向上流側に設けられている。 On the other hand, the compressor 100 of the present embodiment described above is when the pressure of the refrigerant gas in the compression chamber 43b reaches a predetermined pressure (predetermined discharge pressure) at a stage before facing the first discharge hole 45a. The second discharge hole 45b for discharging the high-pressure refrigerant gas G2 in the compression chamber 43b is provided upstream of the first discharge hole 45a in the rotor rotation direction.
 このため、圧縮室43b内の冷媒ガスの圧力が、第1の吐出孔45aに臨む以前の段階で所定圧力(所定の吐出圧力)に達した場合であっても、その圧縮室43b内の高圧の冷媒ガスG2は、第2の吐出孔45bから吐出チャンバ46b、吐出路30bを介し油分離部70を通して吐出室14に導入される。この際、吐出弁61は、第2の吐出孔45bから吐出される高圧の冷媒ガスG2によって弾性変形して、開弁している。 For this reason, even if the pressure of the refrigerant gas in the compression chamber 43b reaches a predetermined pressure (predetermined discharge pressure) before reaching the first discharge hole 45a, the high pressure in the compression chamber 43b is reached. The refrigerant gas G2 is introduced into the discharge chamber 14 from the second discharge hole 45b through the oil separation portion 70 via the discharge chamber 46b and the discharge path 30b. At this time, the discharge valve 61 is elastically deformed and opened by the high-pressure refrigerant gas G2 discharged from the second discharge hole 45b.
 このように、シリンダ40の内周面40aに、その周方向に沿って2つの第1の吐出孔45aと第2の吐出孔45bを形成したことにより、圧縮室43b内の冷媒ガスの圧力が、第1の吐出孔45aに臨む以前の段階で所定圧力(所定の吐出圧力)に達した場合であっても、圧縮室43b内の冷媒ガスを第2の吐出孔45bから吐出させることができるので、圧縮室43b内の冷媒ガスの圧力が所定圧力(所定の吐出圧力)を超える過圧縮を防止することができる。 As described above, the two first discharge holes 45a and the second discharge holes 45b are formed along the circumferential direction on the inner peripheral surface 40a of the cylinder 40, whereby the pressure of the refrigerant gas in the compression chamber 43b is increased. Even when the predetermined pressure (predetermined discharge pressure) is reached in the stage before facing the first discharge hole 45a, the refrigerant gas in the compression chamber 43b can be discharged from the second discharge hole 45b. Therefore, it is possible to prevent overcompression in which the pressure of the refrigerant gas in the compression chamber 43b exceeds a predetermined pressure (predetermined discharge pressure).
 これにより、コンプレッサ100の運転時での動力の損失を抑えることができる。また、ベーン58(図2では、ベーン58b)の突出側先端部がシリンダ40の内周面40aとの間で、離間と衝突を繰り返すことなくなり、チャタリングの発生を防止することができる。 This can reduce power loss during operation of the compressor 100. Further, the protrusion-side tip of the vane 58 (vane 58b in FIG. 2) does not repeat separation and collision with the inner peripheral surface 40a of the cylinder 40, and chattering can be prevented.
 ところで、前記したように、第2の吐出孔45bの吐出側には吐出弁61と弁サポート62が設けられており、圧縮室43b内の冷媒ガスの圧力が、第1の吐出孔45aに臨む以前の段階で所定圧力(所定の吐出圧力)に達した場合に、吐出弁61が開弁されて高圧の冷媒ガスを第2の吐出孔45bから吐出される。 Incidentally, as described above, the discharge valve 61 and the valve support 62 are provided on the discharge side of the second discharge hole 45b, and the pressure of the refrigerant gas in the compression chamber 43b faces the first discharge hole 45a. When a predetermined pressure (predetermined discharge pressure) is reached in the previous stage, the discharge valve 61 is opened and high-pressure refrigerant gas is discharged from the second discharge hole 45b.
 即ち、第2の吐出孔45bの吐出弁61は、圧縮室43b内の冷媒ガスの圧力が前記所定圧力(所定の吐出圧力)に達していないときは閉じて、第2の吐出孔45bを塞いでいる。これは、圧縮室43b内の冷媒ガスの圧力が前記所定圧力(所定の吐出圧力)に達していないときに、吐出室14(吐出チャンバ46b)側から高圧の冷媒ガスが圧縮室43b側へ逆流するのを防止するためである。 That is, the discharge valve 61 of the second discharge hole 45b is closed when the pressure of the refrigerant gas in the compression chamber 43b has not reached the predetermined pressure (predetermined discharge pressure), and closes the second discharge hole 45b. It is out. This is because when the pressure of the refrigerant gas in the compression chamber 43b does not reach the predetermined pressure (predetermined discharge pressure), the high-pressure refrigerant gas flows backward from the discharge chamber 14 (discharge chamber 46b) side to the compression chamber 43b side. This is to prevent this.
 一方、第1の吐出孔45aには、第2の吐出孔45b側に設けている吐出弁と弁サポートは設けられておらず、常時開いている。 On the other hand, the first discharge hole 45a is not provided with a discharge valve and a valve support provided on the second discharge hole 45b side, and is always open.
 これは、コンプレッサ100の運転時において、圧縮室43a(第1の吐出孔45aがある圧縮室)で圧縮される冷媒ガスは、常に所定圧力(所定の吐出圧力)に達して吐出状態にある。よって、第1の吐出孔45aに吐出弁を設けていなくても、吐出室14(吐出チャンバ46a)側から高圧の冷媒ガスが圧縮室43a側へ逆流することはない。 This is because during operation of the compressor 100, the refrigerant gas compressed in the compression chamber 43a (the compression chamber having the first discharge hole 45a) always reaches a predetermined pressure (predetermined discharge pressure) and is in a discharge state. Therefore, even if no discharge valve is provided in the first discharge hole 45a, the high-pressure refrigerant gas does not flow backward from the discharge chamber 14 (discharge chamber 46a) side to the compression chamber 43a side.
 このように、第1の吐出孔45a側の吐出弁と弁サポートを不要にすることができるので、これらの吐出弁と弁サポートの部品数の削減を図ることができ、これにより、コストの削減を図ることができる。 As described above, since the discharge valve and the valve support on the first discharge hole 45a side can be eliminated, the number of parts of the discharge valve and the valve support can be reduced, thereby reducing the cost. Can be achieved.
 なお、第1の吐出孔45a側に仮に吐出弁を設けている構成の場合、圧縮室43aで圧縮される冷媒ガスは、常に所定圧力(所定の吐出圧力)に達しているので、吐出弁は開弁状態となる。しかしながら、圧縮室43aの体積が小さいために、第1の吐出孔45aからの冷媒ガスの吐出量が小さいので、ベーン58がこの第1の吐出孔45aを通り過ぎた直後に吐出弁が瞬間的に閉じ、すぐに吐出弁が開くような動作を繰り返すことがある。 In the case of a configuration in which a discharge valve is provided on the first discharge hole 45a side, the refrigerant gas compressed in the compression chamber 43a always reaches a predetermined pressure (predetermined discharge pressure). The valve opens. However, since the volume of the compression chamber 43a is small, the discharge amount of the refrigerant gas from the first discharge hole 45a is small. Therefore, immediately after the vane 58 passes through the first discharge hole 45a, the discharge valve instantaneously The operation of closing and immediately opening the discharge valve may be repeated.
 このため、この吐出弁が開閉して第1の吐出孔45aの周囲に当たったときに衝突音(騒音)が発生することがあるが、本発明では第1の吐出孔45aの周囲に吐出弁を設けていないので、このような吐出弁の衝突音(騒音)が発生することはない。 For this reason, when this discharge valve opens and closes and hits the periphery of the first discharge hole 45a, a collision sound (noise) may be generated. In the present invention, the discharge valve is formed around the first discharge hole 45a. Therefore, such a collision noise (noise) of the discharge valve does not occur.
<実施形態2>
 図3は、本発明の実施形態2に係るコンプレッサ(ベーンロータリー型の気体圧縮機)の横断面を示す図である。なお、図1、図2に示した前記実施形態1のコンプレッサと同一機能を有する部材には同一符号を付し、重複する説明は省略する。
<Embodiment 2>
FIG. 3 is a cross-sectional view of a compressor (vane rotary type gas compressor) according to Embodiment 2 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as the compressor of the said Embodiment 1 shown in FIG. 1, FIG. 2, and the overlapping description is abbreviate | omitted.
 実施形態1では、5枚のベーン58が等角度間隔でロータ50の各ベーン溝59に摺動自在に嵌め込まれている構成であったが、本実施形態では、図3に示すように、3枚のベーン58a,58b,58cが等角度間隔でロータ50の各ベーン溝59に摺動自在に嵌め込まれ、シリンダ室42に各ベーン58a,58b,58cで仕切られた圧縮室43を複数形成している。 In the first embodiment, the five vanes 58 are slidably fitted in the vane grooves 59 of the rotor 50 at equal angular intervals. However, in this embodiment, as shown in FIG. A plurality of vanes 58a, 58b, and 58c are slidably fitted into the vane grooves 59 of the rotor 50 at equal angular intervals, and a plurality of compression chambers 43 partitioned by the vanes 58a, 58b, and 58c are formed in the cylinder chamber 42. ing.
 更に、実施形態1では、第1の吐出孔45aには吐出弁は設けていなく、第2の吐出孔45bに吐出弁61を設けている構成であったが、本実施形態では、図3に示すように、第1、第2の各吐出孔45a,45bの両方とも吐出弁、弁サポートを設けていない構成である。他の構成は実施形態1と略同様である。 Furthermore, in the first embodiment, the first discharge hole 45a is not provided with a discharge valve, and the second discharge hole 45b is provided with a discharge valve 61. In the present embodiment, FIG. As shown, both the first and second discharge holes 45a and 45b have a configuration in which neither a discharge valve nor a valve support is provided. Other configurations are substantially the same as those of the first embodiment.
 本実施形態では、図3に示すように、2枚の前側のベーン58aと後側のベーン58bによって形成された、第2の吐出孔45bに臨んだ圧縮室43bは、実施形態1のようにベーンが5枚のときに比べて、周方向に沿ったベーン間の間隔が長くなることで圧縮工程が長くなる。よって、ロータ50の回転に伴い圧縮室43bの容積がより小さくなることで冷媒ガスがより圧縮されて、第2の吐出孔45bの手前付近で所定の吐出圧力に略達する。 In the present embodiment, as shown in FIG. 3, the compression chamber 43b formed by the two front vanes 58a and the rear vane 58b facing the second discharge hole 45b is as in the first embodiment. Compared with the case where there are five vanes, the interval between the vanes along the circumferential direction becomes longer, and the compression process becomes longer. Therefore, as the rotor 50 rotates, the volume of the compression chamber 43b becomes smaller, so that the refrigerant gas is further compressed and substantially reaches a predetermined discharge pressure near the second discharge hole 45b.
 図3では、前側のベーン58aがロータ50の回転方向に沿って第2の吐出孔45bよりも下流側まで移動しているが、圧縮室43b内で圧縮される冷媒ガスが前記所定の吐出圧力に略達した時点では、前側のベーン58aは第2の吐出孔45bに差しかかる直前である。よって、ベーン58aが第2の吐出孔45bを通過直後に、所定の吐出圧力に略達した圧縮室43b内の冷媒ガスG2が第2の吐出孔45bから吐出される。 In FIG. 3, the front vane 58a moves to the downstream side of the second discharge hole 45b along the rotation direction of the rotor 50, but the refrigerant gas compressed in the compression chamber 43b is the predetermined discharge pressure. When the pressure reaches approximately, the front vane 58a is just before reaching the second discharge hole 45b. Therefore, immediately after the vane 58a passes through the second discharge hole 45b, the refrigerant gas G2 in the compression chamber 43b that has substantially reached the predetermined discharge pressure is discharged from the second discharge hole 45b.
 なお、本実施形態では、図3において、吸入孔23を通して圧縮室43内に吸入される冷媒ガスG1の吸入圧力に対して、圧縮室43b内での圧縮比が4~6となるような吐出圧力となったタイミングで、前側のベーン58aが第2の吐出孔45bに差しかかるように、第2の吐出孔45bの位置が設定されている。 In this embodiment, in FIG. 3, the discharge is such that the compression ratio in the compression chamber 43b is 4 to 6 with respect to the suction pressure of the refrigerant gas G1 sucked into the compression chamber 43 through the suction hole 23. The position of the second discharge hole 45b is set so that the front vane 58a reaches the second discharge hole 45b at the timing when the pressure is reached.
 そして、第2の吐出孔45bから吐出された高圧の冷媒ガスG2は、吐出チャンバ46b、吐出路30bを通して油分離部70、吐出室14(図1参照)に導入される。 The high-pressure refrigerant gas G2 discharged from the second discharge hole 45b is introduced into the oil separation unit 70 and the discharge chamber 14 (see FIG. 1) through the discharge chamber 46b and the discharge path 30b.
 また、第2の吐出孔45bから吐出されずに圧縮室43b内に残留した一部の高圧の冷媒ガス(以下、「残ガス」という)は、ロータ50の回転にともなって前側のベーン58aが第2の吐出孔45bを通過後に、圧縮室43aに臨んだ第1の吐出孔45aから吐出される。第1の吐出孔45aから吐出された残ガスG2’は、吐出路30aを通して油分離部70、吐出室14に導入される。よって本実施形態では、実施形態1の場合とは逆に第2の吐出孔45bが主吐出孔であり、第1の吐出孔45aが副吐出孔である。 Further, a part of the high-pressure refrigerant gas (hereinafter referred to as “residual gas”) remaining in the compression chamber 43 b without being discharged from the second discharge hole 45 b is generated by the front vane 58 a as the rotor 50 rotates. After passing through the second discharge hole 45b, it is discharged from the first discharge hole 45a facing the compression chamber 43a. The residual gas G2 'discharged from the first discharge hole 45a is introduced into the oil separation unit 70 and the discharge chamber 14 through the discharge path 30a. Therefore, in the present embodiment, the second discharge hole 45b is a main discharge hole and the first discharge hole 45a is a sub discharge hole, contrary to the case of the first embodiment.
 このように、本実施形態では、圧縮室43b内の冷媒ガスの圧力が所定の吐出圧力に略達したときに第2の吐出孔45bから吐出させることができるので、圧縮室43b内の冷媒ガスの圧力が所定圧力(所定の吐出圧力)を超える過圧縮を防止することができる。 Thus, in the present embodiment, the refrigerant gas in the compression chamber 43b can be discharged from the second discharge hole 45b when the pressure of the refrigerant gas in the compression chamber 43b substantially reaches a predetermined discharge pressure. Can be prevented from exceeding the predetermined pressure (predetermined discharge pressure).
 更に、本実施形態では、コンプレッサの運転時において、第1、第2の各吐出孔45a,45bから所定の吐出圧力に略達した冷媒ガスを吐出させることで、第1、第2の各吐出孔45a,45bの両方とも、冷媒ガスの逆流を防止するための吐出弁、弁サポートが不要となる。このように、第1、第2の各吐出孔45a,45bに吐出弁を設けていないので、吐出弁の開閉による衝突音(騒音)が発生することはない。 Further, in the present embodiment, during the operation of the compressor, the first and second discharge holes 45a and 45b are caused to discharge the refrigerant gas that has substantially reached a predetermined discharge pressure, whereby the first and second discharge holes are discharged. Both of the holes 45a and 45b do not require a discharge valve and a valve support for preventing the backflow of the refrigerant gas. As described above, since no discharge valve is provided in each of the first and second discharge holes 45a and 45b, a collision sound (noise) due to opening and closing of the discharge valve does not occur.
<実施形態3>
 図4は、本発明の実施形態3に係るコンプレッサ(ベーンロータリー型の気体圧縮機)の横断面を示す図である。なお、図1、図2に示した前記実施形態1、及び図3に示した前記実施形態2のコンプレッサと同一機能を有する部材には同一符号を付し、重複する説明は省略する。
<Embodiment 3>
FIG. 4 is a cross-sectional view of a compressor (vane rotary type gas compressor) according to Embodiment 3 of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as the compressor of the said Embodiment 1 shown in FIG. 1, FIG. 2 and the said Embodiment 2 shown in FIG. 3, and the overlapping description is abbreviate | omitted.
 本実施形態では、前記実施形態2に示した3枚のベーン58a,58b,58cを有しかつ第1、第2の各吐出孔45a,45bの両方とも吐出弁、弁サポートを設けていない構成のコンプレッサにおいて、図4に示すように、前記第2の吐出孔45bに対してロータ回転方向上流側に位置するシリンダ40の内周面40aに、第3の吐出孔45cを形成している。 In the present embodiment, the three vanes 58a, 58b, and 58c shown in the second embodiment are provided, and neither the first or second discharge holes 45a and 45b are provided with a discharge valve or a valve support. In this compressor, as shown in FIG. 4, a third discharge hole 45c is formed in the inner peripheral surface 40a of the cylinder 40 located on the upstream side in the rotor rotation direction with respect to the second discharge hole 45b.
 この第3の吐出孔45cは、回転軸51を間にして第1、第2の各吐出孔45a,45bの中間位置付近と対向する位置に設けられている。第3の吐出孔45cの周囲には、吐出弁61aと弁サポート62aが設置されている。第3の吐出孔45cは、吐出チャンバ46cと吐出路30cを通して油分離部70、吐出室14(図1参照)に連通している。なお、この吐出路30cは、前記吐出路30a,30bに連通している。吐出弁61aと弁サポート62aは、吐出チャンバ46cに設けられている。他の構成は実施形態2と同様である。 The third discharge hole 45c is provided at a position facing the vicinity of the intermediate position between the first and second discharge holes 45a and 45b with the rotation shaft 51 therebetween. A discharge valve 61a and a valve support 62a are installed around the third discharge hole 45c. The third discharge hole 45c communicates with the oil separation unit 70 and the discharge chamber 14 (see FIG. 1) through the discharge chamber 46c and the discharge path 30c. The discharge passage 30c communicates with the discharge passages 30a and 30b. The discharge valve 61a and the valve support 62a are provided in the discharge chamber 46c. Other configurations are the same as those of the second embodiment.
 本実施形態では、図4に示したように、2枚のベーン58bとベーン58cによって形成された圧縮室43c内の冷媒ガスの圧力が、第2の吐出孔45bに臨む以前の段階で所定圧力に達した場合であっても、その圧縮室43c内の高圧の冷媒ガスは、第3の吐出孔45cから吐出チャンバ46c、吐出路30cを介し油分離部70を通して吐出室14に導入される。この際、吐出弁61aは、第3の吐出孔45cから吐出される高圧の冷媒ガスによって弾性変形して、開弁する。 In the present embodiment, as shown in FIG. 4, the pressure of the refrigerant gas in the compression chamber 43c formed by the two vanes 58b and the vanes 58c is a predetermined pressure before reaching the second discharge hole 45b. Even in this case, the high-pressure refrigerant gas in the compression chamber 43c is introduced into the discharge chamber 14 from the third discharge hole 45c through the oil separation portion 70 via the discharge chamber 46c and the discharge path 30c. At this time, the discharge valve 61a is elastically deformed by the high-pressure refrigerant gas discharged from the third discharge hole 45c and opens.
 このように、本実施形態では、実施形態2で得られる効果に加えて、圧縮室43c内の冷媒ガスの圧力が、第2の吐出孔45bに臨む以前の段階で所定圧力に達した場合であっても、圧縮室43c内の冷媒ガスを第3の吐出孔45cから吐出させることができるので、圧縮室43c内の冷媒ガスの圧力が所定圧力を超える過圧縮を防止することができる。 As described above, in this embodiment, in addition to the effects obtained in the second embodiment, the pressure of the refrigerant gas in the compression chamber 43c reaches a predetermined pressure before reaching the second discharge hole 45b. Even if it exists, since the refrigerant gas in the compression chamber 43c can be discharged from the 3rd discharge hole 45c, the overcompression in which the pressure of the refrigerant gas in the compression chamber 43c exceeds predetermined pressure can be prevented.
関連出願の相互参照Cross-reference of related applications
 本願は、2012年6月5日に日本国特許庁に出願された特願2012-127731および2013年5月31日に日本国特許庁に出願された特願2013-114737に基づく優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-127731 filed with the Japan Patent Office on June 5, 2012 and Japanese Patent Application No. 2013-114737 filed with the Japan Patent Office on May 31, 2013 The entire disclosure of which is hereby incorporated by reference in its entirety.
 10   ハウジング
 13   吸入室
 14   吐出室
 20   フロントサイドブロック
 30   リヤサイドブロック
 40   シリンダ
 42   シリンダ室
 43,43a,43b,43c   圧縮室
 45a  第1の吐出孔
 45b  第2の吐出孔
 45c  第3の吐出孔
 50   ロータ
 51   回転軸
 58,50a,50b,50c   ベーン
 60   圧縮機本体
 61,61a   吐出弁
 62,62a   弁サポート
 70   油分離部
 100  コンプレッサ(気体圧縮機)
DESCRIPTION OF SYMBOLS 10 Housing 13 Suction chamber 14 Discharge chamber 20 Front side block 30 Rear side block 40 Cylinder 42 Cylinder chamber 43, 43a, 43b, 43c Compression chamber 45a 1st discharge hole 45b 2nd discharge hole 45c 3rd discharge hole 50 Rotor 51 Rotating shaft 58, 50a, 50b, 50c Vane 60 Compressor body 61, 61a Discharge valve 62, 62a Valve support 70 Oil separation unit 100 Compressor (gas compressor)

Claims (6)

  1.  回転軸と一体的に回転する略円柱状のロータと、
     前記ロータを該ロータの外周面の外方から取り囲む輪郭形状の内周面を有するシリンダと、
     前記ロータに形成したベーン溝に該ロータの外周面から前記シリンダの内周面に向けて突出自在に設けられた複数の板状のベーンと、
     前記ロータおよび前記シリンダの両端をそれぞれ塞ぐ2つのサイドブロックとを備え、
     前記ベーンは、前記シリンダの内周面と前記ロータの外周面との間に形成された空間を仕切ることにより複数の圧縮室を形成するものであり、これら形成された各圧縮室が前記ロータの1回転の期間に、媒体の吸入、圧縮及び吐出を1サイクルのみ行うように、前記シリンダの内周面の輪郭形状が設定された気体圧縮機であって、
     前記シリンダの内周面と前記ロータの外周面とが前記回転軸の軸周りの1周の範囲で最近接する領域に対して前記ロータの回転方向上流側に、前記圧縮室で圧縮された媒体を外部に吐出するための吐出孔を、前記シリンダの内周面の周方向に沿って少なくとも2つ以上有しており、
     前記各吐出孔のうち、少なくとも前記最近接する領域に最も近い側にある第1の吐出孔には、前記圧縮室で圧縮された媒体の圧力が所定の吐出圧力に達したときに開弁し、前記所定の吐出圧力に達していないときは閉弁する吐出弁を設けていなく、外部側に連通していることを特徴とする気体圧縮機。
    A substantially cylindrical rotor that rotates integrally with the rotating shaft;
    A cylinder having an inner peripheral surface with a contour shape surrounding the rotor from the outside of the outer peripheral surface of the rotor;
    A plurality of plate-like vanes provided in a vane groove formed in the rotor so as to protrude from the outer peripheral surface of the rotor toward the inner peripheral surface of the cylinder;
    Two side blocks respectively closing both ends of the rotor and the cylinder,
    The vane forms a plurality of compression chambers by partitioning a space formed between an inner peripheral surface of the cylinder and an outer peripheral surface of the rotor, and each of the formed compression chambers is formed in the rotor. A gas compressor in which the contour shape of the inner peripheral surface of the cylinder is set so that the medium is sucked, compressed, and discharged in only one cycle during one rotation period,
    The medium compressed in the compression chamber on the upstream side in the rotation direction of the rotor with respect to a region where the inner peripheral surface of the cylinder and the outer peripheral surface of the rotor are closest to each other in a range of one circumference around the axis of the rotation shaft. Having at least two discharge holes for discharging to the outside along the circumferential direction of the inner peripheral surface of the cylinder;
    Among the discharge holes, at least the first discharge hole on the side closest to the closest region opens when the pressure of the medium compressed in the compression chamber reaches a predetermined discharge pressure, The gas compressor is characterized in that no discharge valve is provided to close the valve when the predetermined discharge pressure is not reached, and communicates with the outside.
  2.  前記第1の吐出孔よりも前記ロータの回転方向上流側に位置する第2の吐出孔には、該第2の吐出孔に臨む圧縮室で圧縮された媒体の圧力が前記所定の吐出圧力に達したときに開弁し、前記所定の吐出圧力に達していないときは閉弁する吐出弁が設けられていることを特徴とする請求項1に記載の気体圧縮機。 The pressure of the medium compressed in the compression chamber facing the second discharge hole is equal to the predetermined discharge pressure in the second discharge hole located upstream of the first discharge hole in the rotation direction of the rotor. The gas compressor according to claim 1, further comprising a discharge valve that opens when the pressure reaches the valve and closes when the predetermined discharge pressure is not reached.
  3.  前記第1の吐出孔は、圧縮機運転時においては前記所定の吐出圧力に達している、前記第1の吐出孔に臨む圧縮室内の媒体を常に外部に吐出させていることを特徴とする請求項1又は2に記載の気体圧縮機。 The first discharge hole constantly discharges the medium in the compression chamber facing the first discharge hole, which has reached the predetermined discharge pressure during compressor operation. Item 3. The gas compressor according to Item 1 or 2.
  4.  前記第1の吐出孔よりも前記ロータの回転方向上流側に位置する第2の吐出孔にも、該第2の吐出孔に臨む圧縮室で圧縮された媒体の圧力が前記所定の吐出圧力に達したときに開弁し、前記所定の吐出圧力に達していないときは閉弁する吐出弁を設けていなく、外部側に連通していることを特徴とする請求項1に記載の気体圧縮機。 The pressure of the medium compressed in the compression chamber facing the second discharge hole is also set to the predetermined discharge pressure in the second discharge hole located upstream of the first discharge hole in the rotation direction of the rotor. 2. The gas compressor according to claim 1, wherein the gas compressor is not provided with a discharge valve that opens when the pressure reaches, and closes when the predetermined discharge pressure is not reached, and communicates with the outside. .
  5.  相前後する2つのベーンによって仕切られた圧縮室内で圧縮される媒体が前記所定の吐出圧力に略達したときに、前記2つのベーンのうちの前側のベーンが前記第2の吐出孔を通過して、前記所定の吐出圧力に達している前記圧縮室内の媒体が前記第2の吐出孔から外部に吐出されることを特徴とする請求項4に記載の気体圧縮機。 When the medium compressed in the compression chamber partitioned by two adjacent vanes substantially reaches the predetermined discharge pressure, the front vane of the two vanes passes through the second discharge hole. The gas compressor according to claim 4, wherein the medium in the compression chamber that has reached the predetermined discharge pressure is discharged to the outside from the second discharge hole.
  6.  前記第2の吐出孔から吐出されずに圧縮室内に残留した一部の残留媒体は、前記前側のベーンが前記第1の吐出孔を通過後に該第1の吐出孔から外部に吐出されることを特徴とする請求項5に記載の気体圧縮機。 A part of the residual medium remaining in the compression chamber without being discharged from the second discharge hole is discharged to the outside from the first discharge hole after the front vane passes through the first discharge hole. The gas compressor according to claim 5.
PCT/JP2013/065413 2012-06-05 2013-06-03 Gas compressor WO2013183609A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012127731 2012-06-05
JP2012-127731 2012-06-05
JP2013114737A JP5913199B2 (en) 2012-06-05 2013-05-31 Gas compressor
JP2013-114737 2013-05-31

Publications (1)

Publication Number Publication Date
WO2013183609A1 true WO2013183609A1 (en) 2013-12-12

Family

ID=49712000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065413 WO2013183609A1 (en) 2012-06-05 2013-06-03 Gas compressor

Country Status (2)

Country Link
JP (1) JP5913199B2 (en)
WO (1) WO2013183609A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879010B2 (en) * 2014-01-09 2016-03-08 カルソニックカンセイ株式会社 Gas compressor
WO2017164167A1 (en) * 2016-03-24 2017-09-28 株式会社ヴァレオジャパン Vane compressor
WO2017220141A1 (en) * 2016-06-22 2017-12-28 Pierburg Pump Technology Gmbh Motor vehicle vacuum pump arrangement
KR101964957B1 (en) * 2017-06-26 2019-04-02 엘지전자 주식회사 Compressor having micro groove

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100710A (en) * 1972-04-03 1973-12-19
JPS512015A (en) * 1974-06-21 1976-01-09 Maekawa Seisakusho Kk Atsushukukino hojotoshutsusochi
JPS5481113U (en) * 1977-11-18 1979-06-08
JP2002161882A (en) * 2000-11-28 2002-06-07 Seiko Instruments Inc Gas compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996496A (en) * 1982-11-22 1984-06-02 Toyoda Autom Loom Works Ltd Sliding vane compressor
JPS59173589A (en) * 1983-03-18 1984-10-01 Daikin Ind Ltd Compressor of multiple vane type
JPH0476285A (en) * 1990-07-16 1992-03-11 Mitsubishi Heavy Ind Ltd Scroll type compressor
JP2003155985A (en) * 2001-11-21 2003-05-30 Seiko Instruments Inc Gas compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100710A (en) * 1972-04-03 1973-12-19
JPS512015A (en) * 1974-06-21 1976-01-09 Maekawa Seisakusho Kk Atsushukukino hojotoshutsusochi
JPS5481113U (en) * 1977-11-18 1979-06-08
JP2002161882A (en) * 2000-11-28 2002-06-07 Seiko Instruments Inc Gas compressor

Also Published As

Publication number Publication date
JP2014013035A (en) 2014-01-23
JP5913199B2 (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5826692B2 (en) Gas compressor
WO2014030436A1 (en) Gas compressor
JP5963667B2 (en) Gas compressor
JP6320811B2 (en) Gas compressor
WO2013183436A1 (en) Gas compressor
JP5913199B2 (en) Gas compressor
JP5963548B2 (en) Gas compressor
JP2015180814A (en) gas compressor
JP5963544B2 (en) Gas compressor
JP4684832B2 (en) Gas compressor
JP5878112B2 (en) Gas compressor
JP2013194549A (en) Gas compressor
JP2014218985A (en) Gas compressor
JP5878157B2 (en) Gas compressor
JP5843729B2 (en) Gas compressor
JP5963666B2 (en) Gas compressor
JP4745044B2 (en) Gas compressor
WO2014103974A1 (en) Gas compressor
JP2008014227A (en) Gas compressor
JP5826709B2 (en) Gas compressor
JP6076861B2 (en) Gas compressor
JP2015206337A (en) gas compressor
JP2015090135A (en) Gas compressor
JP2013249788A (en) Gas compressor
JP2013249813A (en) Gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13799888

Country of ref document: EP

Kind code of ref document: A1