WO2014103974A1 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
WO2014103974A1
WO2014103974A1 PCT/JP2013/084390 JP2013084390W WO2014103974A1 WO 2014103974 A1 WO2014103974 A1 WO 2014103974A1 JP 2013084390 W JP2013084390 W JP 2013084390W WO 2014103974 A1 WO2014103974 A1 WO 2014103974A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
discharge
vane
rotor
vane groove
Prior art date
Application number
PCT/JP2013/084390
Other languages
French (fr)
Japanese (ja)
Inventor
津田 昌宏
俊勝 宮地
貴之 飯盛
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012283143A external-priority patent/JP5963667B2/en
Priority claimed from JP2012283142A external-priority patent/JP5963666B2/en
Priority claimed from JP2013241196A external-priority patent/JP5878157B2/en
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2014103974A1 publication Critical patent/WO2014103974A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • F01C21/0872Vane tracking; control therefor by fluid means the fluid being other than the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/108Stators; Members defining the outer boundaries of the working chamber with an axial surface, e.g. side plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/001Radial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a gas compressor, and more particularly, to an improvement of a vane rotary type gas compressor.
  • a gas compressor for compressing a gas such as a refrigerant gas and circulating the gas in the air conditioning system (air conditioning system) is used.
  • This gas compressor discharges the high-pressure gas compressed by the compressor body housed inside the housing to the outside.
  • a vane rotary type gas compressor is known as such a gas compressor (for example, refer to Patent Document 1).
  • the vane rotary type gas compressor has a substantially cylindrical rotor whose compressor body rotates integrally with a rotation shaft, and a cylinder having a contour-shaped inner peripheral surface surrounding the rotor from the outside of the peripheral surface. And a plurality of plate-like vanes that are accommodated in vane grooves formed in the rotor and protrude outwardly from the circumferential surface of the rotor, and the outer circumferential surface of the rotor and the inner circumferential surface of the cylinder, etc.
  • a cylinder chamber which is a space in which gas is sucked, compressed, and discharged, is formed.
  • This cylinder chamber is partitioned into a plurality of compression chambers, with the protruding tip of each vane protruding outward from the outer peripheral surface of the rotor in contact with the inner peripheral surface of the cylinder.
  • each compression chamber The gas compressed to a high pressure in each compression chamber is discharged from the compressor body, and after the oil (such as refrigeration oil) mixed in the discharged gas is separated, it is discharged to the outside.
  • oil such as refrigeration oil
  • the oil separated from the gas is stored at the bottom of the discharge chamber, receives the pressure of the discharged high-pressure gas, is supplied to the vane groove through the oil passage, and functions as a back pressure that causes the vane to protrude.
  • the pressure in the compression chamber before and after the vane may be increased, and the pressure acting on the vane becomes very high. As a result, a very high pressure is required.
  • Patent Document 1 since what is described in Patent Document 1 is a structure that uses an oil component having a pressure corresponding to the pressure of the discharged gas as a back pressure, the back pressure is the pressure (high pressure) of the discharged gas. It does not exceed, and a very high pressure exceeding the pressure of the discharged gas cannot be supplied as a back pressure.
  • the present invention has been made in view of the above circumstances, and is a gas compressor capable of supplying a high pressure exceeding the pressure of the compressed gas discharged from the compression chamber as the back pressure of the vane in the final stage of the compression stroke or in the discharge stroke.
  • the purpose is to provide.
  • the gas compressor according to the present invention cuts off the communication between the rotor vane groove (back pressure space) and the oil passage after the middle stage of the compression stroke, so that the back pressure space is filled with oil (completely oil content). Not only in a state of being filled with only gas, but also in a state where a slight amount of gas is mixed), and as the compression process proceeds, the back pressure space is brought into a liquid compression state by a vane. Thus, a high pressure exceeding the pressure of the compressed gas is obtained as the back pressure of the vane in the final stage of the compression stroke or in the discharge stroke.
  • the gas compressor according to the present invention includes a substantially cylindrical rotor that rotates about an axis, and an inner peripheral surface having a contour shape that surrounds the rotor from the outer peripheral surface with a clearance from the outer peripheral surface of the rotor. And a cylinder that is inserted into a vane groove formed in the rotor, and is provided so as to protrude outwardly from the outer peripheral surface of the rotor by receiving a back pressure from refrigeration oil supplied to the vane groove from a predetermined oil passage.
  • a compressor body having a plurality of plate-like vanes and having a compression chamber formed therein that compresses gas at a rate of once during one rotation of the rotor. Is formed so as to block communication with the vane groove within a predetermined rotation angle range of the rotor.
  • a high pressure exceeding the pressure of the compressed gas discharged from the compression chamber can be supplied to the vane as a back pressure at the end of the compression stroke.
  • FIG. 2 is a cross-sectional view of the compressor body of the vane rotary compressor illustrated in FIG. 1 taken along line AA.
  • FIG. 9B is a sectional view taken along line BB in FIG. 9A.
  • FIG. 13C is a cross-sectional view taken along the line CC of FIG. 13A.
  • FIG. 17D is a sectional view taken along line DD of FIG. 17A.
  • a vane rotary compressor (hereinafter simply referred to as a “compressor”) 1 which is an embodiment of a gas compressor according to the present invention includes an evaporator, a gas compressor, a condenser, and an expansion valve (all of which are installed in an automobile or the like). It is used as a gas compressor in an air conditioning system having (not shown). This air conditioning system constitutes a refrigeration cycle by circulating a refrigerant gas G (gas).
  • the compressor 1 mainly includes a motor 90, a compressor body 60, and an oil separator 70 housed in a housing 10 including a body case 11 and a front cover 12. It is a configuration.
  • the main body case 11 has a substantially cylindrical shape, and is formed such that one end of the cylindrical shape is closed, and the other end is opened.
  • the front cover 12 is formed in a lid shape so as to close the opening while being in contact with the opening-side end portion of the main body case 11. In this state, the front cover 12 is fastened to the main body case 11 by a fastening member. And a housing 10 having a space inside is formed.
  • the front cover 12 is formed with a suction port 12a through which the low-pressure refrigerant gas G is introduced into the housing 10 from an evaporator (not shown) of the air conditioning system through the inside and the outside of the housing 10.
  • the main body case 11 is formed with a discharge port 11a through which the high pressure refrigerant gas G is discharged from the inside of the housing 10 to the condenser (not shown) of the air conditioning system through the inside and the outside of the housing 10. Yes.
  • the motor 90 provided inside the main body case 11 constitutes a multiphase brushless DC motor including a permanent magnet rotor 90a and an electromagnet stator 90b.
  • the stator 90b is fitted and fixed to the inner peripheral surface of the main body case 11, and the rotating shaft 51 is fixed to the rotating rotor 90a.
  • the rotor 90a is rotationally driven by exciting the electromagnet of the stator 90b with the electric power supplied via the power connector 90c attached to the front cover 12.
  • the rotary shaft 51 is driven to rotate about its axis.
  • the compressor 1 of the present embodiment is an electric type using the motor 90, but the gas compressor according to the present invention is not limited to the electric type, and is a mechanical type. May be.
  • the compressor 1 of this embodiment is a mechanical type
  • the rotary shaft 51 is extended from the front cover 12 to the outside and protrudes from the front cover 12. What is necessary is just to set it as the structure provided in the front-end
  • the compressor main body 60 accommodated in the housing 10 together with the motor 90 is arranged side by side with the motor 90 along the direction in which the rotating shaft 51 extends, and is fixed to the main body case 11 by a fastening member 15 such as a bolt. Has been.
  • the compressor main body 60 accommodated in the housing 10 includes a rotating shaft 51 that is rotatable about an axis, a substantially cylindrical rotor 50 that rotates integrally with the rotating shaft 51, and a rotating shaft 51 that rotates integrally with the rotating shaft 51, as shown in FIG.
  • the rotor 50 is inserted into a cylinder 40 having a contoured inner peripheral surface 41 that surrounds the outer peripheral surface 52 from the outside, and a vane groove 59 formed in the rotor 50, respectively.
  • the five plate-like vanes 58 provided to protrude from the outer peripheral surface 52 of the rotor 50 toward the inner peripheral surface 41 of the cylinder 40 under the back pressure by the supplied refrigerating machine oil R, the rotor 50 and the cylinder 40.
  • the two side blocks front side block 20 and rear side block 30
  • the rotating shaft 51 is rotatably supported by bearings 12b formed on the front cover 12 and bearings 27 and 37 formed on the side blocks 20 and 30 of the compressor main body 60, respectively.
  • the compressor main body 60 partitions the space inside the housing 10 into a left space and a right space sandwiching the compressor main body 60.
  • the space on the left side with respect to the compressor body 60 is supplied with the low-pressure refrigerant gas G from the evaporator through the suction port 12a, and the low-pressure refrigerant gas G is compressed.
  • the suction chamber 13 is in a low-pressure atmosphere that passes before being sucked into the machine main body 60, and the motor 90 is disposed in the suction chamber 13.
  • the space on the right side of the compressor body 60 passes before the high-pressure refrigerant gas G discharged from the compressor body 60 via the oil separator 70 is discharged from the discharge port 11a to the condenser.
  • the discharge chamber 14 is a high-pressure atmosphere.
  • the compressor main body 60 has a substantially C-shaped single body surrounded by an inner peripheral surface 41 of the cylinder 40, an outer peripheral surface 52 of the rotor 50, and both side blocks 20 and 30.
  • a cylinder chamber 42 is formed.
  • the cylinder 40 is arranged such that the inner circumferential surface 41 of the cylinder 40 and the outer circumferential surface 52 of the rotor 50 are close to each other in a range of one round (an angle of 360 degrees) around the axis of the rotating shaft 51.
  • the contour shape of the inner peripheral surface 41 is set, and thereby the cylinder chamber 42 forms a single space.
  • the remote portion 49 formed as a portion where the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 are closest to each other (the distance from the outer peripheral surface 52 of the rotor 50 is minimized).
  • 48 is formed at a position biased upstream in the rotational direction W of the rotor 50 (clockwise direction in FIG. 2).
  • the rotation angle is greater than 180 degrees along the rotation direction W of the rotor 50 (in this embodiment, the angle is 270 degrees or more (less than 360 degrees), but the degree of the bias is 58.
  • the proximity portion 48 is formed at a position that can be changed as appropriate according to the number of sheets.
  • the contour shape of the inner peripheral surface 41 of the cylinder 40 is such that the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 41 of the cylinder 40 extend from the remote portion 49 to the proximity portion 48 along the rotation direction W of the rotating shaft 51 and the rotor 50.
  • the shape is set such that the distance between and gradually decreases.
  • the vane 58 is accommodated in a vane groove 59 formed in the rotor 50, and protrudes outward from the outer peripheral surface 52 of the rotor 50 by back pressure due to the refrigerating machine oil R supplied to the vane groove 59 from an oil passage described later. To do.
  • the vane 58 partitions the single cylinder chamber 42 into a plurality of compression chambers 43, and one compression chamber 43 is provided by two vanes 58 that move back and forth along the rotation direction W of the rotating shaft 51 and the rotor 50. Is formed.
  • the proximity portion 48 and the one vane 58 constitute one closed space, so that the two vanes 58 are provided.
  • the compression chamber 43 in which the proximity portion 48 exists is divided into two compression chambers 43, 43 by the proximity portion 48, so that there are six compression chambers 43 even for five vanes. Is formed.
  • the volume inside the compression chamber 43 obtained by partitioning the cylinder chamber 42 by the vane 58 gradually decreases along the rotation direction W from the remote portion 49 to the proximity portion 48.
  • a portion of the cylinder chamber 42 on the most upstream side in the rotation direction W of the rotor 50 (the nearest portion on the downstream side with respect to the proximity portion 48 along the rotation direction W of the rotor 50) is formed in the front side block 20.
  • the discharge portion 45 formed in the cylinder 40 faces, and on the upstream side, the discharge hole 46b of the second discharge portion 46 formed in the cylinder 40 faces.
  • the contour shape of the inner peripheral surface 41 of the cylinder 40 is such that the refrigerant gas G is sucked into the compression chamber 43 from the suction chamber 13 through the suction hole 23 formed in the front side block 20, and the refrigerant gas G in the compression chamber 43 is drawn. It is set so that the refrigerant and the discharge of the refrigerant gas G from the compression chamber 43 to the discharge part 45 through the discharge hole 45 b are performed only for one cycle during one rotation of the rotor 50.
  • the cross-sectional contour shape of the inner peripheral surface 41 of the cylinder 40 ranges from the proximity portion 48 substantially in contact with the outer peripheral surface 52 of the rotor 50 to the remote portion 49 set within an angle of 90 degrees along the rotation direction W of the rotor 50.
  • the distance between the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 increases rapidly, and the angle from the remote portion 49 to the proximity portion 48 along the rotational direction W of the rotor 50
  • the distance between the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 is formed so as to be gradually reduced.
  • the pressure inside the compression chamber 43 reaches a predetermined discharge pressure. At that time, when the compression chamber 43 reaches the discharge portions 45 and 46 formed in front of the proximity portion 48, the compression is performed. This is a stroke (discharge stroke) in which the refrigerant gas G inside the chamber 43 is discharged to the discharge portions 45 and 46 through discharge holes 45b and 46b described later.
  • each compression chamber 43 repeats the suction stroke, the compression stroke, and the discharge stroke in this order, so that the low-pressure refrigerant gas G sucked from the suction chamber 13 becomes high pressure and is discharged.
  • the parts 45 and 46 are discharged into the discharge chamber 14 via the oil separator 70.
  • the oil separator 70 separates the refrigerating machine oil R from the refrigerant gas G mixed with the refrigerating machine oil R.
  • the refrigeration oil R is enclosed in order to supply the back pressure of the vane 58.
  • the refrigeration oil R may be a gap between the vane 58 and the vane groove 59, It begins to ooze from a gap between the rotor 50 and the side blocks 20 and 30.
  • the functions such as lubrication and cooling in the contact portion between the rotor 50 and both side blocks 20, 30 and the contact portion between the vane 58 and the cylinder 40 and both side blocks 20, 30 are also exhibited.
  • a part of the refrigerating machine oil R is mixed with the refrigerant gas G inside the compression chamber 43.
  • Each discharge part 45 and 46 has space (henceforth "discharge chamber") 45a and 46a enclosed by the outer peripheral surface of the cylinder 40, the internal peripheral surface of the main body case 11, and the rear side block 30.
  • the discharge chambers 45a and 46a are provided with discharge holes 45b and 46b through which the discharge chambers 45a and 46a and the compression chamber 43 pass, discharge valves 45c and 46c, and valve supports 45d and 46d.
  • the pressure of the refrigerant gas G in the compression chamber 43 is equal to or higher than the pressure in the discharge chambers 45a and 46a (the pressure of the refrigerant gas discharged to the discharge chamber 14 side (hereinafter referred to as “discharge pressure Pd”).
  • discharge pressure Pd the pressure of the refrigerant gas discharged to the discharge chamber 14 side
  • the discharge unit provided on the downstream side in the rotation direction W of the rotor 50 that is, the discharge unit 45 on the side close to the proximity unit 48 is set as the main discharge unit.
  • this discharge part 45 is called "main discharge part 45").
  • the main discharge portion 45 is a portion that always discharges the refrigerant gas G compressed in the compression chamber 43 because the pressure in the compression chamber 43 always reaches the discharge pressure Pd while the compression chamber 43 is facing. It is.
  • discharge part 46 the discharge part provided on the upstream side in the rotation direction W, that is, the discharge part 46 far from the proximity part 48 is defined as a secondary discharge part (hereinafter, referred to as “secondary discharge part”).
  • secondary discharge part 46 This discharge part 46 is referred to as “sub-discharge part 46”).
  • the sub-discharge section 46 is over-compressed in the compression chamber 43 (compressed to a pressure exceeding the discharge pressure Pd) when the discharge pressure Pd is reached before the compression chamber 43 faces the main discharge section 45. This is provided to prevent this. That is, as shown in FIG. 2, only when the pressure of the compression chamber 43 (43A) reaches the discharge pressure Pd during the period when the compression chamber 43 (43A) faces the sub-discharge portion 46, the compression chamber The refrigerant gas G inside 43 (43A) is discharged from the sub discharge part 46.
  • the refrigerant gas G inside the compression chamber 43 (43A) is not discharged from the sub discharge portion 46 but faces the main discharge portion 45. It is discharged from the main discharge part 45 during a certain period.
  • the discharge chamber 45a of the main discharge unit 45 is an oil separator attached to the outer surface of the rear side block 30 through a discharge passage 38 formed so as to penetrate to the outer surface of the rear side block 30 (the surface facing the discharge chamber 14). 70.
  • a communication passage 39 is formed on the outer peripheral portion of the cylinder 40 through the discharge chambers 45a and 46a.
  • the discharge chamber 46 a communicates with the oil separator 70 attached to the outer surface of the rear side block 30 via the communication passage 39, the discharge chamber 45 a and the discharge passage 38.
  • the oil separator 70 separates the refrigerating machine oil R mixed with the refrigerant gas G from the refrigerant gas G.
  • the oil separator 70 is discharged into the discharge chambers 45a and 46a.
  • the refrigerating machine oil R is centrifuged from the refrigerant gas G by centrifugal force generated by swirling spirally. It has a structure.
  • the refrigerating machine oil R separated from the refrigerant gas G is accumulated at the bottom of the discharge chamber 14, and the high-pressure refrigerant gas G after the refrigerating machine oil R is separated is discharged into the discharge chamber 14 and then passes through the discharge port 11a. And discharged to the condenser.
  • the refrigerating machine oil R stored at the bottom of the discharge chamber 14 passes through an oil passage 34a formed in the rear side block 30 by a high-pressure atmosphere due to the high-pressure (same as the discharge pressure Pd) refrigerant gas G discharged into the discharge chamber 14.
  • the rear side block 30 shown in FIG. 3 is supplied to the Sarai groove 31 which is a recess for supplying back pressure formed on the inner surface 35 facing the end surface 55b of the rotor 50.
  • FIG. 3 shows the rear side block 30, the front side block 20 can be expressed substantially symmetrically with respect to the rear side block 30.
  • the refrigerating machine oil R passes through the oil passages 34 a and 34 b formed in the rear side block 30, the oil passage 44 formed in the cylinder 40, and the oil passage 24 formed in the front side block 20. It is supplied to the Sarai groove 21, which is a recess for supplying back pressure, formed on the inner surface 25 facing the end surface 55 a of the rotor 50.
  • each of the Sarai grooves 21 and 31 is formed corresponding to a predetermined rotation angle range ⁇ (predetermined rotation angle range) along the rotation direction W of the rotor 50, and the oil passages 34 a and 34 b. , 44, 24 can be referred to as openings for expanding the outlets of the inner surfaces 25, 35 to a wide range ⁇ of rotation angles.
  • the rotation angle range ⁇ in which the Sarai grooves 21 and 31 are formed approaches the final stage of the compression stroke from when the compression chamber 43 is in the suction stroke (the compression chamber 43 is sub-discharged). Corresponds to the range up to the angular position).
  • the range ⁇ of the rotation angle is a position where the tip of the protruding side of the vane 58 positioned on the upstream side (rear side) in the rotation direction W of the compression chamber 43 is in contact with the proximity portion 48 of the cylinder 40 (rotation angle 0).
  • the specific range of the rotation angle range ⁇ is not limited to the illustrated range, and the cross-sectional contour shape of the inner peripheral surface 41 of the cylinder 40, the number of vanes 58, and the set discharge pressure Pd. It is set as appropriate depending on the value.
  • the oil passages 34a, 34b, 44, and 24 and the Sarai grooves 21 and 31 can be referred to as an oil passage that supplies the refrigerating machine oil R to the vane groove 59.
  • Each vane groove 59 is formed so as to penetrate to both end faces 55a and 55b of the rotor 50, and is open at these both end faces 55a and 55b.
  • the Sarai groove 21 and the vane groove 59 communicate with each other.
  • the refrigerating machine oil R is supplied from the salai groove 21 to the vane groove 59.
  • the vane groove 59 when the vane groove 59 is in the rotation angle range ⁇ (other rotation angle range) excluding the rotation angle range ⁇ in which the Sarai grooves 21 and 31 are formed, the Sarai grooves 21 and 31 and the vane groove 59 are provided. And the supply of the refrigerating machine oil R from the Sarai grooves 21 and 31 to the vane groove 59 is shut off, and the vane groove 59 becomes a closed space.
  • the refrigerating machine oil R supplied to the Sarai groove 31 of the rear side block 30 is very much between the bearing 37 of the rear side block 30 and the outer peripheral surface of the rotating shaft 51 supported by the bearing 37 from the oil passage 34a. It has passed through a narrow gap.
  • the refrigerating machine oil R has a high pressure (discharge pressure Pd) corresponding to the high pressure atmosphere in the discharge chamber 14 in the oil passage 34a, but reaches the salai groove 31 due to a pressure loss while passing through this narrow gap.
  • discharge pressure Pd discharge pressure
  • the pressure Pm is lower than the discharge pressure Pd inside the discharge chamber 14, which is an intermediate pressure Pm.
  • the intermediate pressure Pm is a pressure higher than the pressure of the refrigerant gas G (low pressure Ps) in the suction chamber 13 and lower than the pressure of the refrigerant gas G (discharge pressure Pd) in the discharge chamber 14 (Ps ⁇ Pm). ⁇ Pd).
  • the passage through which the refrigerating machine oil R passes between the oil passage 24 of the front side block 20 and the Sarai groove 21 is the bearing 27 of the front side block 20 and the outer peripheral surface of the rotary shaft 51 supported by the bearing 27. It is a very narrow gap between.
  • the refrigerating machine oil R has a high pressure (discharge pressure Pd) corresponding to the high pressure atmosphere in the discharge chamber 14 in the oil passage 24, but when it reaches the Saray groove 21 due to a pressure loss while passing through this narrow gap. Is a pressure (intermediate pressure Pm) lower than the discharge pressure Pd inside the discharge chamber 14.
  • the back pressure that is supplied from the Sarai grooves 21 and 31 to the vane groove 59 and causes the vane 58 to protrude toward the inner peripheral surface 41 of the cylinder 40 is the intermediate pressure Pm.
  • the Sarai grooves 21 and 31 are formed corresponding to a range (rotational angle range ⁇ ) from when the compression chamber 43 is in the suction stroke until it approaches the final stage of the compression stroke.
  • a range rotational angle range ⁇
  • the back pressure of the vane 58 is insufficient due to the refrigerating machine oil R having the medium pressure Pm supplied from the Sarai grooves 21 and 31 to the vane groove 59.
  • the vane groove 59 shifts to the rotation angle range ⁇ beyond the rotation angle range ⁇ in which the Sarai grooves 21 and 31 are formed, the vane groove 59 does not communicate with the Sarai grooves 21 and 31 and is frozen.
  • Supply of machine oil R was shut off and filled with supplied refrigerating machine oil R (including not only a state where it was completely filled with refrigerating machine oil R but also a state where refrigerant gas G was slightly mixed) It becomes space.
  • the vane 58 enters the bottom side of the vane groove 59 as the compression proceeds, the closed space in the vane groove 59 is in a substantially liquid compression state.
  • the rotation angle range ⁇ corresponds to the range from the position approaching the end of the compression stroke (the angular position at which the compression chamber 43 starts to face the sub-discharge section 46) to the discharge stroke. For this reason, in this range, the pressure inside the compression chamber 43 starts to exceed the intermediate pressure Pm, and the back pressure acting on the vane 58 is maintained at the intermediate pressure Pm if the vane groove 59 continues to communicate with the Sarai grooves 21 and 31. If this is the case, the vane 58 may chatter due to the pressure inside the compression chamber 43.
  • the remote portion 49 is formed to be biased to the upstream side of the rotation direction W with respect to the proximity portion 48, and specifically, the rotation direction from the remote portion 49 to the proximity portion 48.
  • the angle along W is set as wide as 270 degrees or more. For this reason, the length of the compression stroke is further increased, and the internal pressures of the two compression chambers 43A and 43B that are adjacent to each other tend to be close to the discharge pressure Pd.
  • the vane 58 that partitions both the compression chambers 43A and 43B has a high direction opposite to the back pressure (the bottom direction of the vane groove 59). Pressure becomes easy to act. For this reason, the vane 58A may chatter, resulting in a decrease in efficiency and a problem such as abnormal noise.
  • the vane groove 59 is a closed space substantially filled with the refrigerating machine oil R having the medium pressure Pm, and the vane groove 59 as the compression proceeds.
  • the entry amount of the vane 58 entering the bottom side in 59 increases.
  • the pressure inside the vane groove 59 in the substantially liquid compression state rapidly increases.
  • the back pressure acting on the vane 58A causes the discharge pressures Pd of the compression chambers 43A and 43B to be reduced.
  • the pressure Ph exceeds (Pd ⁇ Ph).
  • the pressure inside the compression chambers 43 (compression chambers 43A and 43B in FIG. 2) reaches a high pressure of about the discharge pressure Pd. Even in this case, the pressure Ph exceeding the discharge pressure Pd can be supplied as the back pressure to the vane 58 (the vane 58A in FIG. 2).
  • the pressure inside the compression chamber 43 increases as the compression proceeds.
  • the amount of the vane 58 entering the vane groove 59 increases, and the vane 58 becomes the vane. It is pushed down to the bottom side of the groove 59.
  • the pressure inside the vane groove 59 back pressure of the vane 58
  • the increase in the pressure inside the compression chamber 43 and the increase in the back pressure of the vane 58 are always associated with each other. it can.
  • the compressor 1 of the first embodiment described above is a space in which the vane groove 59 is closed in other rotation angle ranges ⁇ except for the predetermined rotation angle range ⁇ .
  • a refrigerating machine oil R having a medium pressure Pm is supplied. Therefore, the pressure inside the vane groove 59 at the time when the vane groove 59 is closed is the intermediate pressure Pm. Therefore, the starting point of the increase in the back pressure due to the liquid compression of the refrigerator oil R is the intermediate pressure Pm.
  • the compressor of the second embodiment has the same configuration as the compressor 1 of the first embodiment shown in FIGS. 1 and 2 except that both side blocks 20 and 30 are changed from those shown in FIG. 3 to those shown in FIG.
  • the structure is redundant and redundant description is omitted.
  • the rear side block 30 has a rotation angle of the Sarai groove 31 (21) along which the refrigerating machine oil R of medium pressure Pm is supplied along the rotation direction W of the rotor 50 (see FIG. 2).
  • FIG. 4 shows the rear side block 30, the front side block 20 can be expressed substantially symmetrically with respect to the rear side block 30. Therefore, the Sarai groove 21 and the high-pressure oil passage 22 are also formed in the front side block 20 as in FIG.
  • the positions where the high-pressure oil passages 22 and 32 are formed are the width of the vane groove 59 from the downstream end edge of the Sarai grooves 21 and 31 along the rotation direction W of the rotating shaft 51 or slightly more than this width. It is a position separated by a large length.
  • the vane groove 59 of the rotor 50 rotating along the rotation direction W is positioned in the rotation angle range ⁇ (from the time when the compression chamber 43 is in the suction stroke, the end of the compression stroke is approached (the compression chamber is compressed).
  • the refrigerating machine oil R of medium pressure Pm is supplied to the vane groove 59 as in the first embodiment.
  • the vane groove 59 passes through the rotation angle range ⁇ , the vane groove 59 is instantaneously closed, but immediately thereafter, the vane groove 59 leads to the high-pressure oil passages 22 and 32.
  • high-pressure (discharge pressure Pd) refrigerating machine oil R is supplied to the vane groove 59.
  • the high-pressure oil passages 22 and 32 are, for example, branched from the oil passages 24 and 34 a and communicated with the Sarai grooves 21 and 31 (gap between the bearings 27 and 37 and the outer peripheral surface of the rotating shaft 51). It opens to inner surface 25, 35 (refer FIG. 1) of both the side blocks 20 and 30 by another path
  • the high-pressure oil passages 22 and 32 have no pressure loss in the gap between the bearings 27 and 37 and the outer peripheral surface of the rotary shaft 51, so that the refrigerating machine oil R having the discharge pressure Pd that is the atmospheric pressure of the discharge chamber 14 is supplied.
  • the vane groove 59 can be supplied.
  • the high pressure (discharge pressure Pd) refrigerating machine oil R is supplied to the vane groove 59 and the time from when the vane groove 59 passes the rotation angle range ⁇ until the next time the vane groove 59 communicates with the salai grooves 21 and 31.
  • the vane groove 59 is a closed space.
  • a back pressure of a higher pressure Ph ′ (Pd ⁇ Ph ⁇ Ph ′) can be supplied to the vane 58.
  • the pressure inside the vane groove 59 at the time when the vane groove 59 is closed is set to the discharge pressure Pd higher than the intermediate pressure Pm. it can.
  • the very high pressure Ph ′ supplied as the back pressure of the vane 58 is set to a pressure higher than the pressure Ph supplied as the back pressure of the vane 58 in the first embodiment. be able to.
  • the high-pressure oil passages 22 and 32 are formed at positions away from the downstream side edge of the Sarai grooves 21 and 31 by the width of the vane groove 59 or a length slightly larger than this width.
  • the Sarai grooves 21 and 31 to which the medium pressure Pm refrigerating machine oil R is supplied communicate with the high pressure oil passages 22 and 32 to which the high pressure (discharge pressure Pd) refrigerating machine oil R is supplied. This is to prevent it.
  • the tip of the vane 58 can be held in a stable sliding state without leaving the inner peripheral surface 41 of the cylinder 40.
  • the back pressure applied to the vane 58 is further increased due to, for example, a change in the viscosity of the refrigerating machine oil R
  • the pressing load on the inner peripheral surface 41 of the cylinder 40 at the tip of the vane 58 may be excessive.
  • the tip of the vane 58 is damaged due to wear, or unnecessary power is required when the rotor 50 is driven to rotate, resulting in operating efficiency. Decreases.
  • the entire surface of the inner peripheral surface 41 of the cylinder 40 is in the entire range between the vicinity of the end of the compression process and the vicinity of the proximity portion 48 along the rotation direction W of the rotor 50.
  • Fine recesses A are formed by well-known shot peening.
  • the formation range of the fine recesses A on the surface of the inner peripheral surface 41 of the cylinder 40 is such that the vane groove 59 is the salais of both side blocks 20 and 30 as shown in FIG.
  • the range of the rotation angle range ⁇ beyond the rotation angle range ⁇ in which the grooves 21 and 31 are formed corresponds to the range where the vane groove 59 is positioned in the rotation angle range ⁇ .
  • the fine recess A is not formed). That is, the formation range of the fine recess A corresponds to the closed space range in which the vane groove 59 is substantially filled with the refrigerating machine oil R of medium pressure Pm, and the back pressure acting on the vane 58 causes the discharge pressure Pd to be reduced. This is the region where the pressure Ph exceeds.
  • the formation range of the fine recesses A on the surface of the inner peripheral surface 41 of the cylinder 40 is such that the vane groove 59 is the salai groove 21 of both side blocks 20 and 30 as shown in FIG. , 31 exceeds the rotation angle range ⁇ formed and passes through the rotation angle range ⁇ communicated with the high-pressure oil passages 22, 32 to the rotation angle range from the point where the rotation angle reaches the salai grooves 21, 31.
  • the formation range of the fine recess A corresponds to the range of the closed space in which the vane groove 59 is in the liquid compression state with the refrigerating machine oil R having the medium pressure Pm, and the back pressure acting on the vane 58 is higher pressure Ph ′. This is the area.
  • the fine recess A on the surface of the inner peripheral surface 41 of the cylinder 40 causes a large number of hard shot materials having a particle size of several ⁇ m to several tens of ⁇ m to collide with the surface of the inner peripheral surface 41 at high speed.
  • the surface layer portion is work-hardened.
  • the shot material used is preferably molybdenum disulfide powder having high lubricating performance as a solid lubricant.
  • the formation range of the fine recesses A is formed so that the vane groove 59 is formed corresponding to only the range of the closed space in the liquid compression state with the refrigerating machine oil R having the medium pressure Pm. It is not necessary to provide the entire circumference, and the working time can be shortened and the working cost can be reduced.
  • FIG. 7A shows changes in the vane back pressure (a in the figure) acting on the vane 58 and changes in the pressure in the compression chamber 43 (b in the figure) in the intake stroke, compression stroke, and discharge stroke of the compressor 1 described above. It is a figure. 7A, Pd is the discharge pressure (high pressure) value, and Ps is the pressure (low pressure) value of the refrigerant gas sucked into the compression chamber 43.
  • the rotation angle of the rotor 50 is near 0 degrees (360 degrees) when the vane 58 is positioned near the proximity portion 48 along the rotation direction W of the compression chamber 43 (the discharge stroke and the discharge stroke).
  • the rotor 50 makes one rotation (the rotation angle is 0 to 360 degrees), whereby the one-stroke suction stroke, compression stroke, and discharge stroke are performed.
  • the back pressure (vane back pressure) acting on the vane 58 rises from near the end of the compression stroke (rotation angle of the rotor 50 is around 270 degrees), and immediately before the discharge stroke (rotation of the rotor 50).
  • the pressure Ph is reached at an angle of around 355 degrees.
  • the tip of the vane 58 can be satisfactorily brought into contact with the inner peripheral surface of the cylinder 40, but in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke). Then, since the pressure Ph that is significantly higher than the pressure in the compression chamber 43 (about the discharge pressure Pd) acts as the vane back pressure, the tip of the vane 58 abuts the inner peripheral surface of the cylinder 40 more strongly than necessary. There is.
  • a throttle hole 80 for releasing a part of the back pressure is formed in the inner surface 35 of the rear side block 30.
  • the throttle hole 80 is in the rotation angle range ⁇ excluding the rotation angle range ⁇ in which the salai groove 31 is formed, and is near the end of the compression stroke (near the discharge stroke in the main discharge portion 45). It is formed corresponding to the region.
  • the throttle hole 80 communicates with the oil discharge port 81 formed in the outer surface 36 of the rear side block 30 through a passage 82.
  • the passage 82 is included in a part of the throttle hole 80, and the throttle hole 80 and the passage 82 constitute the entire throttle hole.
  • an oil separator (not shown) is installed at the oil discharge port 81 of the outer surface 36 of the rear side block 30.
  • the oil discharge port 81 communicates with the discharge path 38 via an oil flow path groove 83.
  • the throttle hole 80 communicates with the bottom 59 a in the vane groove 59.
  • the refrigerating machine oil R refrigerant gas is mixed
  • the oil separator 70 see FIG. 1 from the oil discharge port 81.
  • the refrigerating machine oil discharged to the oil separator 70 is returned to the bottom in the discharge chamber 14.
  • a part of the refrigerating machine oil that is supplied to the bottom 59a in the vane groove 59 and is in a liquid compressed state passes through the passage 82 in the rear side block 30 from the throttle hole 80 to the oil separator 81.
  • 70 discharge chamber 14
  • the same hole is formed on the front side block 20 side, and the hole is discharged from the hole to the suction chamber 13 through a passage formed in the front side block 20. It may be.
  • the back pressure (vane back pressure) acting on the vane 58 increases from the vicinity of the end of the compression stroke (rotation angle of the rotor 50 is about 270 degrees), and immediately before the discharge stroke (the rotation of the rotor 50).
  • the pressure Ph is reached at a rotation angle of around 355 degrees.
  • the tip of the vane 58 can be satisfactorily brought into contact with the inner peripheral surface of the cylinder 40, but in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke). Then, since the pressure Ph that is significantly higher than the pressure in the compression chamber 43 (about the discharge pressure Pd) acts as the vane back pressure, the tip of the vane 58 abuts the inner peripheral surface of the cylinder 40 more strongly than necessary. There is.
  • a hole 100 for releasing a part of the back pressure is formed in the inner surface 35 of the rear side block 30.
  • This hole 100 is a region that is in the vicinity of the end of the compression stroke (near the immediately before the discharge stroke in the main discharge portion 45) in the rotation angle range ⁇ excluding the rotation angle range ⁇ in which the salai groove 31 is formed. It is formed corresponding to.
  • the hole 100 further has a discharge stroke in the main discharge section 45 from the vicinity of the final stage of the compression stroke within a rotation angle range ⁇ excluding the rotation angle range ⁇ in which the salai groove 31 is formed. It is provided near one end (in the vicinity of the right end of the communication groove 81 in FIG. 11) in the concave communication groove 84 formed corresponding to the nearby region.
  • FIG. 12 shows the positional relationship among the hole 100, the communication groove 84, and the vane groove 59.
  • the hole 100 communicates with the oil discharge port 81 formed in the outer surface 36 of the rear side block 30 through the passage 82.
  • the passage 82 is included in a part of the hole 100, and the hole 100 and the passage 82 constitute the whole hole.
  • an oil separator (not shown) is installed at the oil discharge port 81 on the outer surface 36 of the rear side block 30.
  • the oil discharge port 81 communicates with the discharge path 38 through an oil passage groove 83.
  • a trigger valve type pressure regulating valve (hereinafter referred to as “first relief valve”) 85 is disposed in the large diameter portion formed on the oil discharge port 81 side of the passage 82.
  • the first relief valve 85 includes a spherical valve body 86 and a spring member 87, and normally the valve body 86 is urged by the urging force (spring force) of the spring member 87 to close the small diameter side of the passage 82. The valve is closed.
  • the first relief valve 85 has a pressure between the vane groove 59 (vane back pressure) and a discharge pressure (a discharge pressure of high-pressure gas (refrigerant gas) discharged into the discharge chamber 14 through the discharge path 38 in the discharge stroke).
  • a predetermined pressure Pa ⁇ Ph
  • the valve is closed.
  • the valve is opened against the biasing force of the spring member 87. It is configured as follows.
  • the communication groove 84 communicates with the bottom 59 a in the vane groove 59 from the vicinity of the end of the compression stroke to the vicinity of the end of the compression stroke (nearly immediately after the discharge stroke). It is in a positional relationship.
  • the hole 100 is in communication with the bottom 59a in the vane groove 59 through the communication groove 84, so that one of the vane back pressures (refrigerating machine oil R supplied to the bottom 59a in the vane groove 59 and in a liquid compression state). The portion is discharged from the hole 100 to the passage 82 side.
  • the first relief valve 85 is opened against the urging force of the spring member 87 when the differential pressure becomes a predetermined pressure Pa or more, and a part of the refrigerating machine oil R in the liquid compression state is oil discharge port 81.
  • the refrigerating machine oil discharged to the oil separator 70 is returned to the bottom in the discharge chamber 14. And in a discharge process, since a vane back pressure falls, the 1st relief valve 85 will be in a valve closing state.
  • a hole 101 for releasing a part of the back pressure is formed in the inner surface 35 of the rear side block 30.
  • This hole 101 is a region that is in the rotation angle range ⁇ excluding the rotation angle range ⁇ in which the salai groove 31 is formed, and is near the end of the compression stroke (near the discharge stroke in the main discharge portion 45). It is formed corresponding to.
  • the hole 101 is in the vicinity of the discharge stroke at the main discharge portion 45 from the vicinity of the end of the compression stroke within the rotation angle range ⁇ excluding the rotation angle range ⁇ in which the saray grooves 31 are formed. It is provided in the vicinity of the other end in the concave communication groove 84 formed corresponding to the region (in FIG. 16, in the vicinity of the left end of the communication groove 84).
  • the hole 101 communicates with the outer surface 36 (that is, the discharge chamber 14: see FIG. 1) through a passage 82a formed in the rear side block 30.
  • the passage 82a is included in a part of the hole 110, and the hole 110 and the passage 82a constitute the entire hole.
  • an oil separator (not shown) is installed at the oil discharge port 81 of the outer surface 36 of the rear side block 30. Further, the oil discharge port 81 communicates with the discharge path 38 via the oil flow path groove 83.
  • a reed valve type pressure regulating valve (hereinafter referred to as “second relief valve”) 88 is disposed in a region where the passage 82a of the outer surface 36 of the rear side block 30 communicates.
  • the base end side of the second relief valve 88 is fixed to the outer surface 36 by a fixing screw 88a, and is normally in a closed state in which the passage 82a is closed by the urging force (elastic force) of the second relief valve 88.
  • the second relief valve 88 is a pressure between the pressure in the vane groove 59 (vane back pressure) and the discharge pressure (discharge pressure of the high-pressure gas (refrigerant gas) discharged into the discharge chamber 14 through the discharge path 38 in the discharge stroke).
  • the valve is operated with a differential pressure, and when the differential pressure is less than or equal to a predetermined pressure Pa ( ⁇ Ph), the valve is closed, and when the differential pressure exceeds the predetermined pressure Pa, the valve is opened.
  • the positional relationship is such that the communication groove 84 communicates with the bottom 59a in the vane groove 59 from the vicinity of the end of the compression stroke to the vicinity of the end of the compression stroke (from immediately before to immediately after the discharge stroke). is there. Accordingly, since the hole 101 is in communication with the bottom 59a in the vane groove 59 through the communication groove 84, one of the vane back pressures (refrigerating machine oil R supplied to the bottom 59a in the vane groove 59 and in a liquid compression state). The portion is discharged from the hole 101 toward the passage 82a.
  • the second relief valve 88 is opened when the differential pressure exceeds a predetermined pressure Pa, and a part of the refrigerating machine oil R in the liquid compression state passes through the passage 82a to the outer surface 36 of the rear side block 30 (that is, the discharge pressure). To the chamber 14). In addition, since the vane back pressure is reduced in the discharge stroke, the second relief valve 88 is closed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a gas compressor that supplies high-pressure back pressure to the vanes in the final stage of the compression step. A compressor main body (60) is provided in a housing (10) and has: a rotor (50) in which vane grooves (59) are formed; a cylinder (40) having an inner circumferential surface (41) the contour shape of which encloses the outer peripheral surface (52) of the rotor (50) from the outside; and five plate-like vanes (58), which are inserted into the vane grooves (59), and are provided so as to be capable of receiving back pressure from refrigerant oil (R) supplied from drain grooves (21, 31) to the vane grooves (59), and to protrude toward the inner circumferential surface (41) of the cylinder (40). A compression chamber (43), which compresses indrawn refrigerant gas (G) once per rotation of the rotor (50), is formed in the cylinder main body. The drain grooves (21, 31) communicate with the vane grooves (59) in a prescribed rotational angle range (α) of the rotor (50), and the vane grooves (59) form a closed space in another rotational angle range (β) that excludes the rotational angle range (α) wherein the drain grooves (21, 31) communicate with the vane grooves (59).

Description

気体圧縮機Gas compressor
 本発明は気体圧縮機に関し、詳細には、ベーンロータリー型の気体圧縮機の改良に関する。 The present invention relates to a gas compressor, and more particularly, to an improvement of a vane rotary type gas compressor.
 空気調和システムには,冷媒ガスなどの気体を圧縮して、空気調和システム(空調システム)に気体を循環させるための気体圧縮機が用いられている。 In the air conditioning system, a gas compressor for compressing a gas such as a refrigerant gas and circulating the gas in the air conditioning system (air conditioning system) is used.
 この気体圧縮機は、ハウジングの内部に収容された圧縮機本体によって圧縮された高圧の気体を外部に吐出するものである。 This gas compressor discharges the high-pressure gas compressed by the compressor body housed inside the housing to the outside.
 このような気体圧縮機として、従来より、ベーンロータリー型の気体圧縮機が知られている(例えば、特許文献1参照)。 Conventionally, a vane rotary type gas compressor is known as such a gas compressor (for example, refer to Patent Document 1).
 ベーンロータリー型の気体圧縮機は、圧縮機本体が、回転軸と一体的に回転する略円柱状のロータと、このロータを、その周面の外方から取り囲む輪郭形状の内周面を有するシリンダと、ロータに形成されたベーン溝に収容され、ロータの周面から外方に突出自在に設けられた複数枚の板状のベーンとを備え、ロータの外周面とシリンダの内周面などによって、気体の吸入、圧縮、吐出が行われる空間であるシリンダ室が形成されている。 The vane rotary type gas compressor has a substantially cylindrical rotor whose compressor body rotates integrally with a rotation shaft, and a cylinder having a contour-shaped inner peripheral surface surrounding the rotor from the outside of the peripheral surface. And a plurality of plate-like vanes that are accommodated in vane grooves formed in the rotor and protrude outwardly from the circumferential surface of the rotor, and the outer circumferential surface of the rotor and the inner circumferential surface of the cylinder, etc. A cylinder chamber, which is a space in which gas is sucked, compressed, and discharged, is formed.
 このシリンダ室は、ロータの外周面から外方に突出した各ベーンの突出側先端がシリンダの内周面に接することで、複数の圧縮室に区画される。 This cylinder chamber is partitioned into a plurality of compression chambers, with the protruding tip of each vane protruding outward from the outer peripheral surface of the rotor in contact with the inner peripheral surface of the cylinder.
 そして、各圧縮室で高圧に圧縮された気体は、圧縮機本体から吐出され、吐出された気体に混ざっている油分(冷凍機油等)が分離された後に、外部に吐出される。 The gas compressed to a high pressure in each compression chamber is discharged from the compressor body, and after the oil (such as refrigeration oil) mixed in the discharged gas is separated, it is discharged to the outside.
 一方、気体から分離された油分は吐出室の底部に溜められ、吐出された高圧の気体の圧力を受け、油路を通じてベーン溝に供給され、ベーンを突出させる背圧として機能する。 On the other hand, the oil separated from the gas is stored at the bottom of the discharge chamber, receives the pressure of the discharged high-pressure gas, is supplied to the vane groove through the oil passage, and functions as a back pressure that causes the vane to protrude.
特開2009-228520号公報JP 2009-228520 A
 ところで、例えば圧縮行程が長く形成された気体圧縮機では、ベーンを挟んだ前後の圧縮室の圧力が共に高くなることがあり、そのベーンに作用する圧力は非常に高くなるため、ベーンの背圧として、非常に高い圧力が必要になる。 By the way, for example, in a gas compressor formed with a long compression stroke, the pressure in the compression chamber before and after the vane may be increased, and the pressure acting on the vane becomes very high. As a result, a very high pressure is required.
 しかしながら、上記特許文献1に記載されたものは、吐出された気体の圧力に応じた圧力の油分を背圧として使用する構造であるため、背圧は、吐出された気体の圧力(高圧)を超えることはなく、吐出された気体の圧力を超える非常に高い圧力を背圧として供給することはできない。 However, since what is described in Patent Document 1 is a structure that uses an oil component having a pressure corresponding to the pressure of the discharged gas as a back pressure, the back pressure is the pressure (high pressure) of the discharged gas. It does not exceed, and a very high pressure exceeding the pressure of the discharged gas cannot be supplied as a back pressure.
 本発明は上記事情に鑑みなされたものであって、圧縮室から吐出された圧縮気体の圧力を超える高圧を、圧縮行程の終盤や吐出行程においてベーンの背圧として供給することができる気体圧縮機を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a gas compressor capable of supplying a high pressure exceeding the pressure of the compressed gas discharged from the compression chamber as the back pressure of the vane in the final stage of the compression stroke or in the discharge stroke. The purpose is to provide.
 本発明に係る気体圧縮機は、圧縮行程の中盤以後においてロータのベーン溝(背圧空間)と油路との連通を遮断することで、背圧空間を油分で満たされた状態(完全に油分のみで満たされた状態だけでなく、僅かな気体が混入している状態であってもよい)で閉じた空間とし、圧縮行程の進行に伴って、ベーンにより背圧空間を液圧縮状態とすることで、圧縮行程の終盤や吐出行程においてベーンの背圧として圧縮気体の圧力を超える高圧を得るものである。 The gas compressor according to the present invention cuts off the communication between the rotor vane groove (back pressure space) and the oil passage after the middle stage of the compression stroke, so that the back pressure space is filled with oil (completely oil content). Not only in a state of being filled with only gas, but also in a state where a slight amount of gas is mixed), and as the compression process proceeds, the back pressure space is brought into a liquid compression state by a vane. Thus, a high pressure exceeding the pressure of the compressed gas is obtained as the back pressure of the vane in the final stage of the compression stroke or in the discharge stroke.
 即ち、本発明に係る気体圧縮機は、軸回りに回転する略円柱状のロータと、前記ロータを、その外周面の外方から前記ロータの外周面と隙間を以て取り囲む輪郭形状の内周面を有するシリンダと、前記ロータに形成されたベーン溝に挿入され、所定の油路から前記ベーン溝に供給された冷凍機油による背圧を受けて前記ロータの外周面から外方に突出自在に設けられた複数枚の板状のベーンとを有する、前記ロータの1回転の間に1回の割合で気体の圧縮を行う圧縮室が形成された圧縮機本体を、ハウジングの内部に備え、前記油路は、前記ロータの所定の回転角度範囲で、前記ベーン溝との連通を遮断するように形成されていることを特徴とする。 That is, the gas compressor according to the present invention includes a substantially cylindrical rotor that rotates about an axis, and an inner peripheral surface having a contour shape that surrounds the rotor from the outer peripheral surface with a clearance from the outer peripheral surface of the rotor. And a cylinder that is inserted into a vane groove formed in the rotor, and is provided so as to protrude outwardly from the outer peripheral surface of the rotor by receiving a back pressure from refrigeration oil supplied to the vane groove from a predetermined oil passage. A compressor body having a plurality of plate-like vanes and having a compression chamber formed therein that compresses gas at a rate of once during one rotation of the rotor. Is formed so as to block communication with the vane groove within a predetermined rotation angle range of the rotor.
 本発明に係る気体圧縮機によれば、圧縮行程の終盤に、圧縮室から吐出された圧縮気体の圧力を超える高圧を、ベーンに背圧として供給することができる。 According to the gas compressor of the present invention, a high pressure exceeding the pressure of the compressed gas discharged from the compression chamber can be supplied to the vane as a back pressure at the end of the compression stroke.
本発明の各実施形態に係る気体圧縮機としてのベーンロータリーコンプレッサの横断面図。The cross-sectional view of the vane rotary compressor as a gas compressor concerning each embodiment of the present invention. 図1に示したベーンロータリーコンプレッサの圧縮機本体のA-A線断面図。FIG. 2 is a cross-sectional view of the compressor body of the vane rotary compressor illustrated in FIG. 1 taken along line AA. 本発明の実施形態1における、リヤサイドブロックの内面におけるサライ溝が形成された回転角度の範囲、及びベーン溝が閉じた空間とされる回転角度の範囲を示す図。The figure which shows the range of the rotation angle in which the Saray groove was formed in the inner surface of a rear side block in Embodiment 1 of this invention, and the range of the rotation angle made into the space where the vane groove was closed. 本発明の実施形態2における、リヤサイドブロックの内面におけるサライ溝、高圧油路が形成された回転角度の範囲、及びベーン溝が閉じた空間とされる回転角度の範囲を示す図。The figure which shows the Sarai groove in the inner surface of a rear side block in Embodiment 2 of this invention, the range of the rotation angle in which the high pressure oil path was formed, and the range of the rotation angle made into the space where the vane groove was closed. 本発明の実施形態3における、シリンダ内周面に形成した微細凹部の範囲を示した図。The figure which showed the range of the fine recessed part formed in the cylinder internal peripheral surface in Embodiment 3 of this invention. シリンダ内周面に形成した微細凹部の拡大断面図である。It is an expanded sectional view of the fine recessed part formed in the cylinder internal peripheral surface. 本発明の実施形態4の、気体の吸入行程、圧縮行程、吐出行程時における、圧縮室内の圧力とベーンに作用させる昇圧された背圧の変化状態を示す図。The figure which shows the change state of the back pressure which acted on the pressure in a compression chamber, and a vane at the time of the suction process of gas, the compression process, and the discharge process of Embodiment 4 of this invention. 本発明の実施形態4において、昇圧された背圧を所定量だけ減圧させた状態を示す図。In Embodiment 4 of this invention, the figure which shows the state which pressure-reduced back pressure raised by predetermined amount. 本発明の実施形態4における、リヤサイドブロックの内面を示す図。The figure which shows the inner surface of the rear side block in Embodiment 4 of this invention. 本発明の実施形態4における、リヤサイドブロックの外面側を示す図。The figure which shows the outer surface side of the rear side block in Embodiment 4 of this invention. 図9AのB-B線断面図。FIG. 9B is a sectional view taken along line BB in FIG. 9A. 本発明の実施形態4における、リヤサイドブロックの外面に形成された穴がベーン溝に連通している状態を示す図。The figure which shows the state in which the hole formed in the outer surface of a rear side block is connecting with the vane groove | channel in Embodiment 4 of this invention. 本発明の実施形態5における、リヤサイドブロックの内面側を示す図。The figure which shows the inner surface side of the rear side block in Embodiment 5 of this invention. 本発明の実施形態5における、リヤサイドブロック側の穴、連通溝とベーン溝との位置関係を示した図。The figure which showed the positional relationship of the hole by the side of a rear side block, the communicating groove | channel, and a vane groove | channel in Embodiment 5 of this invention. 本発明の実施形態5における、リヤサイドブロックの外面側を示す図。The figure which shows the outer surface side of the rear side block in Embodiment 5 of this invention. 図13AのC-C線断面図。FIG. 13C is a cross-sectional view taken along the line CC of FIG. 13A. 本発明の実施形態5における、リヤサイドブロックの外面に形成された穴が連通溝を通してベーン溝に連通している状態を示す図。The figure which shows the state which the hole formed in the outer surface of the rear side block in Embodiment 5 of this invention is connected to the vane groove through the communication groove. 本発明の実施形態5において、昇圧された背圧を所定量だけ減圧させた状態を示す図。In Embodiment 5 of this invention, the figure which shows the state which pressure-reduced back pressure raised by predetermined amount. 本発明の実施形態6における、リヤサイドブロックの内面側を示す図。The figure which shows the inner surface side of the rear side block in Embodiment 6 of this invention. 本発明の実施形態6における、リヤサイドブロックの外面側を示す図。The figure which shows the outer surface side of the rear side block in Embodiment 6 of this invention. 図17AのD-D線断面図。FIG. 17D is a sectional view taken along line DD of FIG. 17A.
 以下、本発明に係る気体圧縮機の具体的な実施形態について、図面を参照して詳細に説明する。 Hereinafter, specific embodiments of the gas compressor according to the present invention will be described in detail with reference to the drawings.
<実施形態1>
 本発明に係る気体圧縮機の一実施形態であるベーンロータリーコンプレッサ(以下、単に「コンプレッサ」という)1は、自動車等に設置された、蒸発器、気体圧縮機、凝縮器及び膨張弁(いずれも不図示)を有する空気調和システムにおける気体圧縮機として用いられている。この空気調和システムは、冷媒ガスG(気体)を循環させることで冷凍サイクルを構成している。
<Embodiment 1>
A vane rotary compressor (hereinafter simply referred to as a “compressor”) 1 which is an embodiment of a gas compressor according to the present invention includes an evaporator, a gas compressor, a condenser, and an expansion valve (all of which are installed in an automobile or the like). It is used as a gas compressor in an air conditioning system having (not shown). This air conditioning system constitutes a refrigeration cycle by circulating a refrigerant gas G (gas).
 コンプレッサ1は、図1に示すように、主に、本体ケース11とフロントカバー12とから構成されているハウジング10の内部に、モータ90と圧縮機本体60と油分離器70とが収容された構成である。 As shown in FIG. 1, the compressor 1 mainly includes a motor 90, a compressor body 60, and an oil separator 70 housed in a housing 10 including a body case 11 and a front cover 12. It is a configuration.
 本体ケース11は、略円筒形状であり、その円筒形状の一方の端部が塞がれたように形成され、他方の端部は開口して形成されている。 The main body case 11 has a substantially cylindrical shape, and is formed such that one end of the cylindrical shape is closed, and the other end is opened.
 フロントカバー12は、この本体ケース11の開口側の端部に接した状態でこの開口を塞ぐように蓋状に形成されていて、この状態で締結部材により本体ケース11に締結されて本体ケース11と一体化され、内部に空間を有するハウジング10を形成する。 The front cover 12 is formed in a lid shape so as to close the opening while being in contact with the opening-side end portion of the main body case 11. In this state, the front cover 12 is fastened to the main body case 11 by a fastening member. And a housing 10 having a space inside is formed.
 フロントカバー12には、ハウジング10の内部と外部とを通じさせて、空気調和システムの蒸発器(不図示)から低圧の冷媒ガスGをハウジング10の内部に導入する吸入ポート12aが形成されている。 The front cover 12 is formed with a suction port 12a through which the low-pressure refrigerant gas G is introduced into the housing 10 from an evaporator (not shown) of the air conditioning system through the inside and the outside of the housing 10.
 一方、本体ケース11には、ハウジング10の内部と外部とを通じさせて、高圧の冷媒ガスGをハウジング10の内部から空気調和システムの凝縮器(不図示)に吐出する吐出ポート11aが形成されている。 On the other hand, the main body case 11 is formed with a discharge port 11a through which the high pressure refrigerant gas G is discharged from the inside of the housing 10 to the condenser (not shown) of the air conditioning system through the inside and the outside of the housing 10. Yes.
 本体ケース11の内部に設けられたモータ90は、永久磁石のロータ90aと電磁石のステータ90bとを備えた多相ブラシレス直流モータを構成している。 The motor 90 provided inside the main body case 11 constitutes a multiphase brushless DC motor including a permanent magnet rotor 90a and an electromagnet stator 90b.
 ステータ90bは本体ケース11の内周面に嵌め合わされて固定され、回転するロータ90aには回転軸51が固定されている。 The stator 90b is fitted and fixed to the inner peripheral surface of the main body case 11, and the rotating shaft 51 is fixed to the rotating rotor 90a.
 そして、モータ90は、フロントカバー12に取付けられた電源コネクタ90cを介して供給された電力によってステータ90bの電磁石を励磁することにより、ロータ90aが回転駆動される。これにより、回転軸51をその軸心回りに回転駆動させる。 In the motor 90, the rotor 90a is rotationally driven by exciting the electromagnet of the stator 90b with the electric power supplied via the power connector 90c attached to the front cover 12. As a result, the rotary shaft 51 is driven to rotate about its axis.
 なお、電源コネクタ90cとステータ90bとの間に、インバータ回路90dなどを備えた構成を採用することもできる。 It should be noted that a configuration including an inverter circuit 90d or the like can be employed between the power connector 90c and the stator 90b.
 本実施形態のコンプレッサ1は上述したとおり、モータ90を使った電動式のものであるが、本発明に係る気体圧縮機は電動式のものに限定されるものではなく、機械式のものであってもよい。 As described above, the compressor 1 of the present embodiment is an electric type using the motor 90, but the gas compressor according to the present invention is not limited to the electric type, and is a mechanical type. May be.
 例えば、仮に本実施形態のコンプレッサ1を機械式のものとした場合は、モータ90を備える代わりに、回転軸51をフロントカバー12から外部へ突出するまで延長して、そのフロントカバー12から突出した回転軸51の先端部に、車両のエンジン等から動力の伝達を受けるプーリーや歯車等を備えた構成とすればよい。 For example, if the compressor 1 of this embodiment is a mechanical type, instead of providing the motor 90, the rotary shaft 51 is extended from the front cover 12 to the outside and protrudes from the front cover 12. What is necessary is just to set it as the structure provided in the front-end | tip part of the rotating shaft 51 with the pulley, gearwheel, etc. which receive motive power transmission from the engine etc. of a vehicle.
 モータ90とともにハウジング10の内部に収容された圧縮機本体60は、回転軸51の延びた方向に沿ってモータ90と並んで配置されており、ボルト等の締結部材15により、本体ケース11に固定されている。 The compressor main body 60 accommodated in the housing 10 together with the motor 90 is arranged side by side with the motor 90 along the direction in which the rotating shaft 51 extends, and is fixed to the main body case 11 by a fastening member 15 such as a bolt. Has been.
 ハウジング10の内部に収容された圧縮機本体60は、軸心回りに回転自在の回転軸51と、回転軸51と一体的に回転する略円柱状のロータ50と、図2に示すように、このロータ50を、その外周面52の外方から取り囲む輪郭形状の内周面41を有するシリンダ40と、ロータ50に形成されたベーン溝59にそれぞれ挿入され、所定の油路からベーン溝59に供給された冷凍機油Rによる背圧を受けてロータ50の外周面52からシリンダ40の内周面41に向けて突出自在に設けられた5枚の板状のベーン58と、ロータ50およびシリンダ40の各両端面に接してこれら各両端面を覆う2つのサイドブロック(フロントサイドブロック20、リヤサイドブロック30)とを備えている。 The compressor main body 60 accommodated in the housing 10 includes a rotating shaft 51 that is rotatable about an axis, a substantially cylindrical rotor 50 that rotates integrally with the rotating shaft 51, and a rotating shaft 51 that rotates integrally with the rotating shaft 51, as shown in FIG. The rotor 50 is inserted into a cylinder 40 having a contoured inner peripheral surface 41 that surrounds the outer peripheral surface 52 from the outside, and a vane groove 59 formed in the rotor 50, respectively. The five plate-like vanes 58 provided to protrude from the outer peripheral surface 52 of the rotor 50 toward the inner peripheral surface 41 of the cylinder 40 under the back pressure by the supplied refrigerating machine oil R, the rotor 50 and the cylinder 40. The two side blocks (front side block 20 and rear side block 30) are provided so as to be in contact with the both end surfaces of and cover the both end surfaces.
 ここで、回転軸51は、フロントカバー12に形成された軸受12b、圧縮機本体60の各サイドブロック20,30にそれぞれ形成された軸受27,37により、回転自在に支持されている。 Here, the rotating shaft 51 is rotatably supported by bearings 12b formed on the front cover 12 and bearings 27 and 37 formed on the side blocks 20 and 30 of the compressor main body 60, respectively.
 また、圧縮機本体60は、ハウジング10の内部の空間を、圧縮機本体60を挟んだ左側の空間と右側の空間とに仕切っている。 Further, the compressor main body 60 partitions the space inside the housing 10 into a left space and a right space sandwiching the compressor main body 60.
 これらハウジング10の内部に仕切られた2つの空間のうち圧縮機本体60に対して左側の空間は、吸入ポート12aを通じて蒸発器から低圧の冷媒ガスGが導入され、この低圧の冷媒ガスGが圧縮機本体60の内部に吸入される前に通過する低圧雰囲気の吸入室13であり、モータ90は吸入室13に配置されている。 Of the two spaces partitioned inside the housing 10, the space on the left side with respect to the compressor body 60 is supplied with the low-pressure refrigerant gas G from the evaporator through the suction port 12a, and the low-pressure refrigerant gas G is compressed. The suction chamber 13 is in a low-pressure atmosphere that passes before being sucked into the machine main body 60, and the motor 90 is disposed in the suction chamber 13.
 一方、圧縮機本体60に対して右側の空間は、圧縮機本体60から油分離器70を介して吐出された高圧の冷媒ガスGが、吐出ポート11aから凝縮器に吐出される前に通過する高圧雰囲気の吐出室14である。 On the other hand, the space on the right side of the compressor body 60 passes before the high-pressure refrigerant gas G discharged from the compressor body 60 via the oil separator 70 is discharged from the discharge port 11a to the condenser. The discharge chamber 14 is a high-pressure atmosphere.
 圧縮機本体60の内部には、図2に示すように、シリンダ40の内周面41とロータ50の外周面52と両サイドブロック20,30とに囲まれた略C字状の単一のシリンダ室42が形成されている。 As shown in FIG. 2, the compressor main body 60 has a substantially C-shaped single body surrounded by an inner peripheral surface 41 of the cylinder 40, an outer peripheral surface 52 of the rotor 50, and both side blocks 20 and 30. A cylinder chamber 42 is formed.
 具体的には、シリンダ40の内周面41とロータ50の外周面52とが、回転軸51の軸心回りの1周(角度360度)の範囲で1箇所だけ近接するように、シリンダ40の内周面41の輪郭形状が設定されていて、これにより、シリンダ室42は単一の空間を形成している。 Specifically, the cylinder 40 is arranged such that the inner circumferential surface 41 of the cylinder 40 and the outer circumferential surface 52 of the rotor 50 are close to each other in a range of one round (an angle of 360 degrees) around the axis of the rotating shaft 51. The contour shape of the inner peripheral surface 41 is set, and thereby the cylinder chamber 42 forms a single space.
 なお、シリンダ40の内周面41の輪郭形状のうち、シリンダ40の内周面41とロータ50の外周面52とが最も離れた(ロータ50の外周面52からの距離が最大となる)部分として形成された遠隔部49が、シリンダ40の内周面41とロータ50の外周面52とが最も近接した(ロータ50の外周面52からの距離が最小となる)部分として形成された近接部48に対して、ロータ50の回転方向W(図2において時計回り方向)の上流側に偏った位置に形成されている。 Of the contour shape of the inner peripheral surface 41 of the cylinder 40, the portion where the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 are farthest away (the distance from the outer peripheral surface 52 of the rotor 50 is maximum). The remote portion 49 formed as a portion where the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 are closest to each other (the distance from the outer peripheral surface 52 of the rotor 50 is minimized). 48 is formed at a position biased upstream in the rotational direction W of the rotor 50 (clockwise direction in FIG. 2).
 すなわち、遠隔部49から、ロータ50の回転方向Wに沿って角度180度を超える回転角度(本実施形態においては、角度270度以上(360度未満)であるが、偏りの程度は、ベーン58の枚数等に応じて適宜変更可能である)の位置に近接部48が形成されている。 That is, from the remote portion 49, the rotation angle is greater than 180 degrees along the rotation direction W of the rotor 50 (in this embodiment, the angle is 270 degrees or more (less than 360 degrees), but the degree of the bias is 58. The proximity portion 48 is formed at a position that can be changed as appropriate according to the number of sheets.
 シリンダ40の内周面41の輪郭形状は、回転軸51及びロータ50の回転方向Wに沿って遠隔部49から近接部48に至るまで、ロータ50の外周面52とシリンダ40の内周面41との間の距離が徐々に減少するような形状に設定されている。 The contour shape of the inner peripheral surface 41 of the cylinder 40 is such that the outer peripheral surface 52 of the rotor 50 and the inner peripheral surface 41 of the cylinder 40 extend from the remote portion 49 to the proximity portion 48 along the rotation direction W of the rotating shaft 51 and the rotor 50. The shape is set such that the distance between and gradually decreases.
 ベーン58は、ロータ50に形成されたベーン溝59に収容されていて、後述する油路からベーン溝59に供給される冷凍機油Rによる背圧により、ロータ50の外周面52から外方に突出する。 The vane 58 is accommodated in a vane groove 59 formed in the rotor 50, and protrudes outward from the outer peripheral surface 52 of the rotor 50 by back pressure due to the refrigerating machine oil R supplied to the vane groove 59 from an oil passage described later. To do.
 また、ベーン58は、単一のシリンダ室42を複数の圧縮室43に仕切るものであり、回転軸51及びロータ50の回転方向Wに沿って相前後する2つのベーン58によって1つの圧縮室43が形成される。 The vane 58 partitions the single cylinder chamber 42 into a plurality of compression chambers 43, and one compression chamber 43 is provided by two vanes 58 that move back and forth along the rotation direction W of the rotating shaft 51 and the rotor 50. Is formed.
 したがって、5枚のベーン58が回転軸51回りに角度72度の等角度間隔で設置された本実施形態においては、5つ乃至6つの圧縮室43が形成される。 Therefore, in the present embodiment in which five vanes 58 are installed around the rotation shaft 51 at an equal angular interval of 72 degrees, five to six compression chambers 43 are formed.
 なお、2枚のベーン58,58の間に近接部48が存在する圧縮室43については、近接部48と1枚のベーン58とによって1つの閉じた空間を構成するため、2枚のベーン58,58の間に近接部48が存在する圧縮室43は、近接部48によって2つの圧縮室43,43に分割されることになり、5枚のベーンのものであっても6つの圧縮室43が形成される。 In addition, in the compression chamber 43 in which the proximity portion 48 exists between the two vanes 58 and 58, the proximity portion 48 and the one vane 58 constitute one closed space, so that the two vanes 58 are provided. , 58, the compression chamber 43 in which the proximity portion 48 exists is divided into two compression chambers 43, 43 by the proximity portion 48, so that there are six compression chambers 43 even for five vanes. Is formed.
 ベーン58によりシリンダ室42を仕切って得られた圧縮室43の内部の容積は、回転方向Wに沿って圧縮室43が遠隔部49から近接部48に至るまで徐々に小さくなる。 The volume inside the compression chamber 43 obtained by partitioning the cylinder chamber 42 by the vane 58 gradually decreases along the rotation direction W from the remote portion 49 to the proximity portion 48.
 このシリンダ室42の、ロータ50の回転方向Wの最上流側の部分(ロータ50の回転方向Wに沿って、近接部48に対する下流側の直近部分)には、フロントサイドブロック20に形成された、吸入室13に通じる吸入孔23(図2において、フロントサイドブロック20はこの図の手前側に位置するため、このフロントサイドブロック20に形成された吸入孔23は二点鎖線の想像線で記載している)が臨んでいる。 A portion of the cylinder chamber 42 on the most upstream side in the rotation direction W of the rotor 50 (the nearest portion on the downstream side with respect to the proximity portion 48 along the rotation direction W of the rotor 50) is formed in the front side block 20. , A suction hole 23 communicating with the suction chamber 13 (in FIG. 2, the front side block 20 is positioned on the front side of this figure, and therefore, the suction hole 23 formed in the front side block 20 is indicated by an imaginary line of a two-dot chain line. Is coming).
 一方、シリンダ室42の、ロータ50の回転方向Wの最下流側の部分(回転方向Wに沿って、近接部48に対する上流側の直近部分)には、シリンダ40に形成された吐出部45の吐出孔45bが臨み、その上流側には、シリンダ40に形成された2つ目の吐出部46の吐出孔46bが臨んでいる。 On the other hand, in the portion of the cylinder chamber 42 on the most downstream side in the rotation direction W of the rotor 50 (the portion closest to the upstream side with respect to the proximity portion 48 along the rotation direction W), the discharge portion 45 formed in the cylinder 40 The discharge hole 45b faces, and on the upstream side, the discharge hole 46b of the second discharge portion 46 formed in the cylinder 40 faces.
 シリンダ40の内周面41の輪郭形状は、吸入室13からフロントサイドブロック20に形成された吸入孔23を通じた冷媒ガスGの圧縮室43への吸入、圧縮室43内での冷媒ガスGの圧縮及び圧縮室43から吐出孔45bを通じた吐出部45への冷媒ガスGの吐出を、ロータ50の1回転の期間に1サイクルだけ行うように設定されている。 The contour shape of the inner peripheral surface 41 of the cylinder 40 is such that the refrigerant gas G is sucked into the compression chamber 43 from the suction chamber 13 through the suction hole 23 formed in the front side block 20, and the refrigerant gas G in the compression chamber 43 is drawn. It is set so that the refrigerant and the discharge of the refrigerant gas G from the compression chamber 43 to the discharge part 45 through the discharge hole 45 b are performed only for one cycle during one rotation of the rotor 50.
 即ち、シリンダ40の内周面41の断面輪郭形状は、ロータ50の外周面52に略接する近接部48から、ロータ50の回転方向Wに沿った角度90度以内に設定された遠隔部49までの範囲で、シリンダ40の内周面41とロータ50の外周面52との間の距離が、急激に大きくなり、ロータ50の回転方向Wに沿って遠隔部49から近接部48までの、角度270度以上の広い範囲で、シリンダ40の内周面41とロータ50の外周面52との間の距離が、徐々に小さくなるように形成されている。 That is, the cross-sectional contour shape of the inner peripheral surface 41 of the cylinder 40 ranges from the proximity portion 48 substantially in contact with the outer peripheral surface 52 of the rotor 50 to the remote portion 49 set within an angle of 90 degrees along the rotation direction W of the rotor 50. In this range, the distance between the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 increases rapidly, and the angle from the remote portion 49 to the proximity portion 48 along the rotational direction W of the rotor 50 In a wide range of 270 degrees or more, the distance between the inner peripheral surface 41 of the cylinder 40 and the outer peripheral surface 52 of the rotor 50 is formed so as to be gradually reduced.
 そして、圧縮室43の、ロータ50の回転方向Wの下流側に位置しているベーン58が、近接部48近くの吸入孔23を通過し始めてから、ロータ50の回転方向Wの上流側に位置しているベーン58が、吸入孔23を通過し終わるまでの範囲では、ロータ50の回転方向Wへの回転に伴って圧縮室43の容積が大きくなることによる負圧により、吸入孔23を通じて圧縮室43内に冷媒ガスGが吸入される行程(吸入行程)となる。 Then, after the vane 58 located on the downstream side in the rotation direction W of the rotor 50 in the compression chamber 43 starts to pass through the suction hole 23 near the proximity portion 48, the vane 58 is located on the upstream side in the rotation direction W of the rotor 50. In the range until the vane 58 is completely passed through the suction hole 23, it is compressed through the suction hole 23 due to the negative pressure due to the volume of the compression chamber 43 increasing as the rotor 50 rotates in the rotation direction W. This is a stroke (intake stroke) in which the refrigerant gas G is sucked into the chamber 43.
 ロータ50の回転が進み、圧縮室43の上流側のベーン58が、ロータ50の回転方向Wの下流に向かって、吸入孔23を通過し終わると、圧縮室43は閉じた空間となるとともに、遠隔部49から近接部48に向かう回転方向Wへの回転により、圧縮室43の容積が減少し、圧縮室43内に閉じこめられた冷媒ガスGが圧縮される行程(圧縮行程)となる。 When the rotation of the rotor 50 advances and the vane 58 on the upstream side of the compression chamber 43 finishes passing through the suction hole 23 toward the downstream in the rotation direction W of the rotor 50, the compression chamber 43 becomes a closed space, Due to the rotation in the rotation direction W from the remote portion 49 toward the proximity portion 48, the volume of the compression chamber 43 decreases, and a stroke (compression stroke) in which the refrigerant gas G confined in the compression chamber 43 is compressed.
 圧縮行程の終盤では、圧縮室43の内部の圧力が所定の吐出圧力に達し、そのとき圧縮室43が近接部48の手前に形成された吐出部45,46に到達しているときは、圧縮室43の内部の冷媒ガスGが後述する吐出孔45b,46bを通じて吐出部45,46に吐出される行程(吐出行程)となる。 At the end of the compression stroke, the pressure inside the compression chamber 43 reaches a predetermined discharge pressure. At that time, when the compression chamber 43 reaches the discharge portions 45 and 46 formed in front of the proximity portion 48, the compression is performed. This is a stroke (discharge stroke) in which the refrigerant gas G inside the chamber 43 is discharged to the discharge portions 45 and 46 through discharge holes 45b and 46b described later.
 そして、ロータ50の1回転の間に、各圧縮室43が吸入行程、圧縮行程、吐出行程をこの順序で繰り返すことにより、吸入室13から吸入された低圧の冷媒ガスGは高圧になり、吐出部45,46から油分離器70を介して吐出室14に吐出させる。 Then, during one rotation of the rotor 50, each compression chamber 43 repeats the suction stroke, the compression stroke, and the discharge stroke in this order, so that the low-pressure refrigerant gas G sucked from the suction chamber 13 becomes high pressure and is discharged. The parts 45 and 46 are discharged into the discharge chamber 14 via the oil separator 70.
 油分離器70は、冷凍機油Rが混ざった冷媒ガスGから冷凍機油Rを分離するものである。 The oil separator 70 separates the refrigerating machine oil R from the refrigerant gas G mixed with the refrigerating machine oil R.
 つまり、圧縮機本体60の内部には、ベーン58の背圧を供給するために冷凍機油Rが封入されているが、この冷凍機油Rは、ベーン58とベーン溝59との間の隙間や、ロータ50と両サイドブロック20,30との間の隙間等から滲みだす。そして、ロータ50と両サイドブロック20,30との間の接触部分や、ベーン58とシリンダ40や両サイドブロック20,30との間の接触部分などにおける潤滑や冷却等の機能も発揮し、その冷凍機油Rの一部が、圧縮室43の内部の冷媒ガスGと混ざる。 That is, inside the compressor main body 60, the refrigeration oil R is enclosed in order to supply the back pressure of the vane 58. However, the refrigeration oil R may be a gap between the vane 58 and the vane groove 59, It begins to ooze from a gap between the rotor 50 and the side blocks 20 and 30. And the functions such as lubrication and cooling in the contact portion between the rotor 50 and both side blocks 20, 30 and the contact portion between the vane 58 and the cylinder 40 and both side blocks 20, 30 are also exhibited. A part of the refrigerating machine oil R is mixed with the refrigerant gas G inside the compression chamber 43.
 大量の冷凍機油Rが混ざったままの冷媒ガスGが凝縮器に吐出されると、空気調和システムの効率が低下するため、冷媒ガスGから冷凍機油Rを分離する必要があり、遠心力を利用した油分離器70によって冷凍機油Rの分離が行われる。 When refrigerant gas G with a large amount of refrigerating machine oil R mixed is discharged to the condenser, the efficiency of the air conditioning system is lowered. Therefore, it is necessary to separate refrigerating machine oil R from refrigerant gas G and use centrifugal force. The refrigerating machine oil R is separated by the oil separator 70.
 各吐出部45,46は、シリンダ40の外周面、本体ケース11の内周面及びリヤサイドブロック30とによって囲まれた空間(以下、「吐出チャンバ」という)45a,46aを有している。そして、吐出チャンバ45a,46aには、該吐出チャンバ45a,46aと圧縮室43とを通じさせる吐出孔45b,46bと、吐出弁45c,46cと、弁サポート45d,46dを備えている。 Each discharge part 45 and 46 has space (henceforth "discharge chamber") 45a and 46a enclosed by the outer peripheral surface of the cylinder 40, the internal peripheral surface of the main body case 11, and the rear side block 30. FIG. The discharge chambers 45a and 46a are provided with discharge holes 45b and 46b through which the discharge chambers 45a and 46a and the compression chamber 43 pass, discharge valves 45c and 46c, and valve supports 45d and 46d.
 吐出弁45c,46cは、圧縮室43内の冷媒ガスGの圧力が吐出チャンバ45a,46a内の圧力(吐出室14側に吐出される冷媒ガスの圧力(以下、「吐出圧力Pd」という)以上のとき、差圧により吐出チャンバ45a,46aの側に反るように弾性変形して吐出孔45b,46bを開く。一方、圧縮室43内の冷媒ガスGの圧力が吐出チャンバ45a,46a内の吐出圧力Pd未満のときは、吐出弁45c,46cの弾性力によって吐出孔45b,46bを閉じる。なお、弁サポート45d,46dは、吐出弁45c,46cが吐出チャンバ45a,46aの側に過度に反るのを防止する。 In the discharge valves 45c and 46c, the pressure of the refrigerant gas G in the compression chamber 43 is equal to or higher than the pressure in the discharge chambers 45a and 46a (the pressure of the refrigerant gas discharged to the discharge chamber 14 side (hereinafter referred to as “discharge pressure Pd”). At this time, the pressure difference of the refrigerant gas G in the compression chamber 43 causes the pressure in the discharge chambers 45a and 46a to be elastically deformed so as to warp toward the discharge chambers 45a and 46a due to the differential pressure. When the pressure is lower than the discharge pressure Pd, the discharge holes 45b and 46b are closed by the elastic force of the discharge valves 45c and 46c, and the valve supports 45d and 46d are excessively disposed on the discharge chambers 45a and 46a side. Prevent warping.
 本実施形態では、2つの吐出部45,46のうち、ロータ50の回転方向Wの下流側に設けられている吐出部、すなわち近接部48に近い側の吐出部45を、主たる吐出部とする(以下、この吐出部45を「主吐出部45」という)。 In the present embodiment, of the two discharge units 45 and 46, the discharge unit provided on the downstream side in the rotation direction W of the rotor 50, that is, the discharge unit 45 on the side close to the proximity unit 48 is set as the main discharge unit. (Hereafter, this discharge part 45 is called "main discharge part 45").
 この主吐出部45は、圧縮室43が臨んでいる期間中に、その圧縮室43内の圧力は必ず吐出圧力Pdに達して、圧縮室43内で圧縮された冷媒ガスGを必ず吐出する部分である。 The main discharge portion 45 is a portion that always discharges the refrigerant gas G compressed in the compression chamber 43 because the pressure in the compression chamber 43 always reaches the discharge pressure Pd while the compression chamber 43 is facing. It is.
 一方、2つの吐出部45,46のうち、回転方向Wの上流側に設けられている吐出部、すなわち近接部48から遠い側の吐出部46を、副次的な吐出部とする(以下、この吐出部46を「副吐出部46」という)。 On the other hand, of the two discharge parts 45 and 46, the discharge part provided on the upstream side in the rotation direction W, that is, the discharge part 46 far from the proximity part 48 is defined as a secondary discharge part (hereinafter, referred to as “secondary discharge part”). This discharge part 46 is referred to as “sub-discharge part 46”).
 この副吐出部46は、圧縮室43が主吐出部45に臨む以前の段階で吐出圧力Pdに達したときに、圧縮室43内の過圧縮(吐出圧力Pdを超える圧力に圧縮されること)を防止するために設けられたものである。即ち、図2に示すように、圧縮室43(43A)が副吐出部46に臨んでいる期間中にこの圧縮室43(43A)の圧力が吐出圧力Pdに達した場合に限って、圧縮室43(43A)の内部の冷媒ガスGを副吐出部46から吐出させる。また、この圧縮室43(43A)の圧力が吐出圧力Pdに達しない場合は、圧縮室43(43A)の内部の冷媒ガスGは副吐出部46から吐出されず、主吐出部45に臨んでいる期間中に主吐出部45から吐出される。 The sub-discharge section 46 is over-compressed in the compression chamber 43 (compressed to a pressure exceeding the discharge pressure Pd) when the discharge pressure Pd is reached before the compression chamber 43 faces the main discharge section 45. This is provided to prevent this. That is, as shown in FIG. 2, only when the pressure of the compression chamber 43 (43A) reaches the discharge pressure Pd during the period when the compression chamber 43 (43A) faces the sub-discharge portion 46, the compression chamber The refrigerant gas G inside 43 (43A) is discharged from the sub discharge part 46. In addition, when the pressure in the compression chamber 43 (43A) does not reach the discharge pressure Pd, the refrigerant gas G inside the compression chamber 43 (43A) is not discharged from the sub discharge portion 46 but faces the main discharge portion 45. It is discharged from the main discharge part 45 during a certain period.
 主吐出部45の吐出チャンバ45aは、リヤサイドブロック30の外面(吐出室14に向いた面)まで貫通して形成された吐出路38を介して、リヤサイドブロック30の外面に取り付けられた油分離器70に通じている。 The discharge chamber 45a of the main discharge unit 45 is an oil separator attached to the outer surface of the rear side block 30 through a discharge passage 38 formed so as to penetrate to the outer surface of the rear side block 30 (the surface facing the discharge chamber 14). 70.
 主吐出部45の吐出チャンバ45aと副吐出部46の吐出チャンバ46aとの間には、両吐出チャンバ45a,46aを通じさせる連通路39がシリンダ40の外周部に形成されていて、副吐出部46の吐出チャンバ46aは、この連通路39、吐出チャンバ45aおよび吐出路38を介して、リヤサイドブロック30の外面に取り付けられた油分離器70に通じている。 Between the discharge chamber 45a of the main discharge portion 45 and the discharge chamber 46a of the sub discharge portion 46, a communication passage 39 is formed on the outer peripheral portion of the cylinder 40 through the discharge chambers 45a and 46a. The discharge chamber 46 a communicates with the oil separator 70 attached to the outer surface of the rear side block 30 via the communication passage 39, the discharge chamber 45 a and the discharge passage 38.
 油分離器70は、前述したように、冷媒ガスGに混ざった冷凍機油Rを冷媒ガスGから分離するものであるが、本実施形態におけるものは、各吐出チャンバ45a,46aに吐出されて、吐出路38を通って導入された高温、高圧の冷媒ガスGを、吐出室14に吐出する以前に、螺旋状に旋回させることで生じる遠心力により、冷凍機油Rを冷媒ガスGから遠心分離する構造となっている。 As described above, the oil separator 70 separates the refrigerating machine oil R mixed with the refrigerant gas G from the refrigerant gas G. In the present embodiment, the oil separator 70 is discharged into the discharge chambers 45a and 46a, Before discharging the high-temperature and high-pressure refrigerant gas G introduced through the discharge passage 38 into the discharge chamber 14, the refrigerating machine oil R is centrifuged from the refrigerant gas G by centrifugal force generated by swirling spirally. It has a structure.
 そして、冷媒ガスGから分離された冷凍機油Rは吐出室14の底部に溜まり、冷凍機油Rが分離された後の高圧の冷媒ガスGは吐出室14に吐出された後、吐出ポート11aを通って凝縮器に吐出される。 The refrigerating machine oil R separated from the refrigerant gas G is accumulated at the bottom of the discharge chamber 14, and the high-pressure refrigerant gas G after the refrigerating machine oil R is separated is discharged into the discharge chamber 14 and then passes through the discharge port 11a. And discharged to the condenser.
 吐出室14の底部に溜められた冷凍機油Rは、吐出室14に吐出された高圧(吐出圧力Pdと同じ)の冷媒ガスGによる高圧雰囲気により、リヤサイドブロック30に形成された油路34aを通じて、図3に示すリヤサイドブロック30の、ロータ50の端面55bに対向する内面35に形成された背圧供給用の凹部であるサライ溝31に供給される。 The refrigerating machine oil R stored at the bottom of the discharge chamber 14 passes through an oil passage 34a formed in the rear side block 30 by a high-pressure atmosphere due to the high-pressure (same as the discharge pressure Pd) refrigerant gas G discharged into the discharge chamber 14. The rear side block 30 shown in FIG. 3 is supplied to the Sarai groove 31 which is a recess for supplying back pressure formed on the inner surface 35 facing the end surface 55b of the rotor 50.
 なお、図3は、リヤサイドブロック30を示しているが、フロントサイドブロック20は、リヤサイドブロック30に対して略線対称に表すことができる。 Although FIG. 3 shows the rear side block 30, the front side block 20 can be expressed substantially symmetrically with respect to the rear side block 30.
 また、この冷凍機油Rは、リヤサイドブロック30に形成された油路34a,34b、シリンダ40に形成された油路44及びフロントサイドブロック20に形成された油路24を通じて、フロントサイドブロック20の、ロータ50の端面55aに対向する内面25に形成された背圧供給用の凹部であるサライ溝21に供給される。 The refrigerating machine oil R passes through the oil passages 34 a and 34 b formed in the rear side block 30, the oil passage 44 formed in the cylinder 40, and the oil passage 24 formed in the front side block 20. It is supplied to the Sarai groove 21, which is a recess for supplying back pressure, formed on the inner surface 25 facing the end surface 55 a of the rotor 50.
 ここで、各サライ溝21,31はともに、ロータ50の回転方向Wに沿った所定の回転角度の範囲α(所定の回転角度範囲)に対応して形成されていて、各油路34a,34b,44,24の内面25,35における出口を、広い回転角度の範囲αに拡げるための開口ということができる。 Here, each of the Sarai grooves 21 and 31 is formed corresponding to a predetermined rotation angle range α (predetermined rotation angle range) along the rotation direction W of the rotor 50, and the oil passages 34 a and 34 b. , 44, 24 can be referred to as openings for expanding the outlets of the inner surfaces 25, 35 to a wide range α of rotation angles.
 サライ溝21,31が形成された回転角度の範囲αは、図2,3に示したように、圧縮室43が吸入行程にあるときから、圧縮行程の終盤に近づく(圧縮室43が副吐出部46に臨み始める)角度位置までの範囲に対応している。 As shown in FIGS. 2 and 3, the rotation angle range α in which the Sarai grooves 21 and 31 are formed approaches the final stage of the compression stroke from when the compression chamber 43 is in the suction stroke (the compression chamber 43 is sub-discharged). Corresponds to the range up to the angular position).
 この回転角度の範囲αは、圧縮室43の回転方向Wの上流側(後ろ側)に位置するベーン58の突出側の先端が、シリンダ40の近接部48に接する位置を基準位置(回転角度0度)としたときの、ロータ50の回転方向Wへの回転角度を表すものであり、回転角度の範囲αとしては、例えば、0~220度に設定されている。 The range α of the rotation angle is a position where the tip of the protruding side of the vane 58 positioned on the upstream side (rear side) in the rotation direction W of the compression chamber 43 is in contact with the proximity portion 48 of the cylinder 40 (rotation angle 0). Represents the rotation angle of the rotor 50 in the rotation direction W, and the rotation angle range α is set to, for example, 0 to 220 degrees.
 ただし、この回転角度の範囲αの具体的な範囲は、例示の範囲に限定されるものではなく、シリンダ40の内周面41の断面輪郭形状やベーン58の枚数、設定された吐出圧力Pdの値等によって適宜設定される。 However, the specific range of the rotation angle range α is not limited to the illustrated range, and the cross-sectional contour shape of the inner peripheral surface 41 of the cylinder 40, the number of vanes 58, and the set discharge pressure Pd. It is set as appropriate depending on the value.
 本実施形態のコンプレッサ1においては、各油路34a,34b,44,24とサライ溝21,31とを含めて、ベーン溝59に冷凍機油Rを供給する油路ということができる。 In the compressor 1 of the present embodiment, the oil passages 34a, 34b, 44, and 24 and the Sarai grooves 21 and 31 can be referred to as an oil passage that supplies the refrigerating machine oil R to the vane groove 59.
 各ベーン溝59は、ロータ50の両端面55a,55bまで貫通して形成されており、これら両端面55a,55bにおいて開口している。 Each vane groove 59 is formed so as to penetrate to both end faces 55a and 55b of the rotor 50, and is open at these both end faces 55a and 55b.
 そして、ロータ50の端面55aに開口したベーン溝59が、サライ溝21,31が形成された回転角度の範囲αに位置している期間中は、サライ溝21とベーン溝59とが通じて、サライ溝21からベーン溝59に冷凍機油Rが供給される。 During the period in which the vane groove 59 opened in the end surface 55a of the rotor 50 is located within the rotation angle range α in which the Sarai grooves 21 and 31 are formed, the Sarai groove 21 and the vane groove 59 communicate with each other. The refrigerating machine oil R is supplied from the salai groove 21 to the vane groove 59.
 一方、ベーン溝59が、サライ溝21,31が形成された回転角度の範囲αを除いた回転角度の範囲β(他の回転角度範囲)にあるときは、サライ溝21,31とベーン溝59とが通じていないため、サライ溝21,31からベーン溝59への冷凍機油Rの供給は遮断されるとともに、ベーン溝59は閉じた空間となる。 On the other hand, when the vane groove 59 is in the rotation angle range β (other rotation angle range) excluding the rotation angle range α in which the Sarai grooves 21 and 31 are formed, the Sarai grooves 21 and 31 and the vane groove 59 are provided. And the supply of the refrigerating machine oil R from the Sarai grooves 21 and 31 to the vane groove 59 is shut off, and the vane groove 59 becomes a closed space.
 サライ溝21,31からベーン溝59に供給された冷凍機油Rは、ベーン58をシリンダ40の内周面41に向けて突出させる背圧となる。 The refrigerating machine oil R supplied to the vane groove 59 from the Sarai grooves 21 and 31 becomes a back pressure that causes the vane 58 to protrude toward the inner peripheral surface 41 of the cylinder 40.
 ここで、リヤサイドブロック30のサライ溝31に供給される冷凍機油Rは、油路34aから、リヤサイドブロック30の軸受37とこの軸受37に支持された回転軸51の外周面との間の非常に狭い隙間を通過したものである。 Here, the refrigerating machine oil R supplied to the Sarai groove 31 of the rear side block 30 is very much between the bearing 37 of the rear side block 30 and the outer peripheral surface of the rotating shaft 51 supported by the bearing 37 from the oil passage 34a. It has passed through a narrow gap.
 そして、冷凍機油Rは、油路34aにおいては吐出室14の高圧雰囲気に応じた高い圧力(吐出圧力Pd)であったが、この狭い隙間を通過する間の圧力損失により、サライ溝31に到達したときは、吐出室14の内部の吐出圧力Pdよりも低い圧力である中圧Pmになっている。 The refrigerating machine oil R has a high pressure (discharge pressure Pd) corresponding to the high pressure atmosphere in the discharge chamber 14 in the oil passage 34a, but reaches the salai groove 31 due to a pressure loss while passing through this narrow gap. In this case, the pressure Pm is lower than the discharge pressure Pd inside the discharge chamber 14, which is an intermediate pressure Pm.
 ここで、中圧Pmとは、吸入室13における冷媒ガスGの圧力(低圧Ps)よりも高く、吐出室14における冷媒ガスGの圧力(吐出圧力Pd)よりも低い圧力である(Ps<Pm<Pd)。 Here, the intermediate pressure Pm is a pressure higher than the pressure of the refrigerant gas G (low pressure Ps) in the suction chamber 13 and lower than the pressure of the refrigerant gas G (discharge pressure Pd) in the discharge chamber 14 (Ps <Pm). <Pd).
 同様に、フロントサイドブロック20の油路24とサライ溝21との間で冷凍機油Rが通過する通路は、フロントサイドブロック20の軸受27とこの軸受27に支持された回転軸51の外周面との間の非常に狭い隙間である。 Similarly, the passage through which the refrigerating machine oil R passes between the oil passage 24 of the front side block 20 and the Sarai groove 21 is the bearing 27 of the front side block 20 and the outer peripheral surface of the rotary shaft 51 supported by the bearing 27. It is a very narrow gap between.
 そして、冷凍機油Rは、油路24においては吐出室14の高圧雰囲気に応じた高圧(吐出圧力Pd)であるが、この狭い隙間を通過する間の圧力損失により、サライ溝21に到達したときは、吐出室14の内部の吐出圧力Pdよりも低い圧力(中圧Pm)になっている。 The refrigerating machine oil R has a high pressure (discharge pressure Pd) corresponding to the high pressure atmosphere in the discharge chamber 14 in the oil passage 24, but when it reaches the Saray groove 21 due to a pressure loss while passing through this narrow gap. Is a pressure (intermediate pressure Pm) lower than the discharge pressure Pd inside the discharge chamber 14.
 したがって、サライ溝21,31からベーン溝59に供給されてベーン58をシリンダ40の内周面41に向けて突出させる背圧は中圧Pmである。 Therefore, the back pressure that is supplied from the Sarai grooves 21 and 31 to the vane groove 59 and causes the vane 58 to protrude toward the inner peripheral surface 41 of the cylinder 40 is the intermediate pressure Pm.
 サライ溝21,31は、前述したように、圧縮室43が吸入行程にあるときから圧縮行程の終盤に近づくまでの範囲(回転角度の範囲α)に対応して形成されているが、この範囲においては、圧縮室43の内部の圧力は、最大でも中圧Pmであるため、サライ溝21,31からベーン溝59に供給される中圧Pmの冷凍機油Rによって、ベーン58の背圧が不足することはない。 As described above, the Sarai grooves 21 and 31 are formed corresponding to a range (rotational angle range α) from when the compression chamber 43 is in the suction stroke until it approaches the final stage of the compression stroke. In this case, since the pressure inside the compression chamber 43 is at most the medium pressure Pm, the back pressure of the vane 58 is insufficient due to the refrigerating machine oil R having the medium pressure Pm supplied from the Sarai grooves 21 and 31 to the vane groove 59. Never do.
 一方、ベーン溝59が、サライ溝21,31が形成された回転角度の範囲αを超えて回転角度の範囲βに移行すると、ベーン溝59は、サライ溝21,31に連通せずに、冷凍機油Rの供給が遮断され、供給された冷凍機油Rで満たされた(完全に冷凍機油Rのみで満たされた状態だけでなく、冷媒ガスGが僅かに混入している状態も含む)閉じた空間となる。そして、圧縮が進むにしたがってベーン58がベーン溝59の底部側に進入して来ると、ベーン溝59内の閉じた空間では略液圧縮状態となる。 On the other hand, when the vane groove 59 shifts to the rotation angle range β beyond the rotation angle range α in which the Sarai grooves 21 and 31 are formed, the vane groove 59 does not communicate with the Sarai grooves 21 and 31 and is frozen. Supply of machine oil R was shut off and filled with supplied refrigerating machine oil R (including not only a state where it was completely filled with refrigerating machine oil R but also a state where refrigerant gas G was slightly mixed) It becomes space. When the vane 58 enters the bottom side of the vane groove 59 as the compression proceeds, the closed space in the vane groove 59 is in a substantially liquid compression state.
 液圧縮状態では、吐出室14の内部の吐出圧力Pdを超える高い圧力Ph(Pd<Ph)が得られるため、ベーン58の背圧として、この高い圧力Phを供給することができる。 In the liquid compression state, since a high pressure Ph (Pd <Ph) exceeding the discharge pressure Pd inside the discharge chamber 14 is obtained, this high pressure Ph can be supplied as the back pressure of the vane 58.
 ここで、回転角度の範囲βは、圧縮行程の終盤に近づいた位置(圧縮室43が副吐出部46に臨み始める角度位置)から吐出行程までの範囲に対応している。このため、この範囲では、圧縮室43の内部の圧力が中圧Pmを超え始めて、仮にベーン溝59がサライ溝21,31に連通し続けてベーン58に作用する背圧が中圧Pmのままであると、圧縮室43の内部の圧力に負けて、ベーン58がチャタリングを起こすおそれがある。 Here, the rotation angle range β corresponds to the range from the position approaching the end of the compression stroke (the angular position at which the compression chamber 43 starts to face the sub-discharge section 46) to the discharge stroke. For this reason, in this range, the pressure inside the compression chamber 43 starts to exceed the intermediate pressure Pm, and the back pressure acting on the vane 58 is maintained at the intermediate pressure Pm if the vane groove 59 continues to communicate with the Sarai grooves 21 and 31. If this is the case, the vane 58 may chatter due to the pressure inside the compression chamber 43.
 特に、本実施形態のコンプレッサ1のように、ロータ50の1回転の間に冷媒ガスの吸入行程、圧縮行程、吐出行程を1サイクルしか行わないベーンロータリー型のコンプレッサでは、ロータ50の1回転当たり、吸入行程、圧縮行程、吐出行程を2サイクル行うものよりも、圧縮行程の長さが長い。このため、図2に示したように、先行する圧縮室43Aが圧縮行程の終盤にあるとき、その圧縮室43Aに後続する圧縮室43Bの内部も比較的高い圧力になる。 In particular, in the case of a vane rotary type compressor that performs only one cycle of the refrigerant gas suction stroke, compression stroke, and discharge stroke during one rotation of the rotor 50 as in the compressor 1 of the present embodiment, per rotor 50 rotation. The length of the compression stroke is longer than that in which the suction stroke, the compression stroke, and the discharge stroke are performed in two cycles. For this reason, as shown in FIG. 2, when the preceding compression chamber 43A is at the end of the compression stroke, the inside of the compression chamber 43B following the compression chamber 43A is also at a relatively high pressure.
 しかも、本実施形態のコンプレッサ1は、遠隔部49が近接部48に対して、回転方向Wの上流側に偏って形成されていて、具体的には遠隔部49から近接部48までの回転方向Wに沿った角度が270度以上と広く設定されている。このため、圧縮行程の長さが一層長くなり、相前後する2つの圧縮室43A,43Bの内部の圧力は、ともに吐出圧力Pdに近い高圧となり易い。 Moreover, in the compressor 1 of the present embodiment, the remote portion 49 is formed to be biased to the upstream side of the rotation direction W with respect to the proximity portion 48, and specifically, the rotation direction from the remote portion 49 to the proximity portion 48. The angle along W is set as wide as 270 degrees or more. For this reason, the length of the compression stroke is further increased, and the internal pressures of the two compression chambers 43A and 43B that are adjacent to each other tend to be close to the discharge pressure Pd.
 この結果、両圧縮室43A,43Bを仕切っているベーン58(図2では、先行する圧縮室43Aの上流側のベーン58A)には、背圧と反対向き(ベーン溝59の底部方向)の高い圧力が作用し易くなる。このため、このベーン58Aがチャタリングを起こして、効率が低下したり、異音などの問題を生じるおそれがある。 As a result, the vane 58 that partitions both the compression chambers 43A and 43B (in FIG. 2, the vane 58A on the upstream side of the preceding compression chamber 43A) has a high direction opposite to the back pressure (the bottom direction of the vane groove 59). Pressure becomes easy to act. For this reason, the vane 58A may chatter, resulting in a decrease in efficiency and a problem such as abnormal noise.
 しかしながら、本実施形態のコンプレッサ1は、前述したように、回転角度の範囲βでは、ベーン溝59が中圧Pmの冷凍機油Rで略満たされた閉じた空間となり、圧縮が進むにしたがってベーン溝59内の底部側に進入するベーン58の進入量が増大する。そして、ベーン58の進入量が増大するにしたがって、略液圧縮状態のベーン溝59の内部の圧力は急激に上昇する。このため、両圧縮室43A,43Bの内部の圧力がともに吐出圧力Pd程度の高圧となる程度まで圧縮が進むと、ベーン58Aに作用する背圧が、両圧縮室43A,43Bの吐出圧力Pdを超える圧力Ph(Pd<Ph)となる。 However, as described above, in the compressor 1 of the present embodiment, in the rotation angle range β, the vane groove 59 is a closed space substantially filled with the refrigerating machine oil R having the medium pressure Pm, and the vane groove 59 as the compression proceeds. The entry amount of the vane 58 entering the bottom side in 59 increases. Then, as the amount of entry of the vane 58 increases, the pressure inside the vane groove 59 in the substantially liquid compression state rapidly increases. For this reason, when the compression proceeds to such an extent that the pressures in the compression chambers 43A and 43B both become high pressures of about the discharge pressure Pd, the back pressure acting on the vane 58A causes the discharge pressures Pd of the compression chambers 43A and 43B to be reduced. The pressure Ph exceeds (Pd <Ph).
 これにより、圧縮行程の終盤において、ベーン58A先端がシリンダ40の内周面41から離れることなく安定して摺動する状態が保持されるので、ベーン58Aがチャタリングを起こすのを防止することができる。 Thus, at the end of the compression stroke, the state where the tip of the vane 58A slides stably without being separated from the inner peripheral surface 41 of the cylinder 40 is maintained, so that the vane 58A can be prevented from chattering. .
 以上のように、本実施形態に係るコンプレッサ1によれば、圧縮行程の終盤に、両圧縮室43(図2では、圧縮室43A,43B)の内部の圧力が吐出圧力Pd程度の高圧に達した場合でも、吐出圧力Pdを超える圧力Phを、ベーン58(図2では、ベーン58A)に背圧として供給することができる。 As described above, according to the compressor 1 according to the present embodiment, at the end of the compression stroke, the pressure inside the compression chambers 43 ( compression chambers 43A and 43B in FIG. 2) reaches a high pressure of about the discharge pressure Pd. Even in this case, the pressure Ph exceeding the discharge pressure Pd can be supplied as the back pressure to the vane 58 (the vane 58A in FIG. 2).
 しかも、本実施形態に係るコンプレッサ1は、圧縮が進むにしたがって圧縮室43の内部の圧力は高くなるが、圧縮が進むことで、ベーン溝59に対するベーン58の進入量が増え、ベーン58がベーン溝59の底部側に押下げられる。これにより、ベーン溝59の内部の圧力(ベーン58の背圧)も増大するので、圧縮室43の内部の圧力の増大とベーン58の背圧の増大とを常に対応付けた構造とすることができる。 Moreover, in the compressor 1 according to the present embodiment, the pressure inside the compression chamber 43 increases as the compression proceeds. However, as the compression proceeds, the amount of the vane 58 entering the vane groove 59 increases, and the vane 58 becomes the vane. It is pushed down to the bottom side of the groove 59. As a result, the pressure inside the vane groove 59 (back pressure of the vane 58) also increases, so that the increase in the pressure inside the compression chamber 43 and the increase in the back pressure of the vane 58 are always associated with each other. it can.
<実施形態2>
 上述した実施形態1のコンプレッサ1は、所定の回転角度の範囲αを除いた他の回転角度の範囲βでは、ベーン溝59が閉じた空間とされているものであり、所定の回転角度の範囲αでは、中圧Pmの冷凍機油Rが供給されている。このため、ベーン溝59が閉じた空間とされた時点でのベーン溝の59の内部の圧力は中圧Pmである。したがって、冷凍機油Rの液圧縮による背圧の上昇の始点は中圧Pmとなる。
<Embodiment 2>
The compressor 1 of the first embodiment described above is a space in which the vane groove 59 is closed in other rotation angle ranges β except for the predetermined rotation angle range α. In α, a refrigerating machine oil R having a medium pressure Pm is supplied. Therefore, the pressure inside the vane groove 59 at the time when the vane groove 59 is closed is the intermediate pressure Pm. Therefore, the starting point of the increase in the back pressure due to the liquid compression of the refrigerator oil R is the intermediate pressure Pm.
 実施形態2のコンプレッサは、両サイドブロック20,30を、図3に示したものから図4に示したものに代えた以外は、図1,2に示した実施形態1のコンプレッサ1と同じ構成、構造であり、重複する説明は省略する。 The compressor of the second embodiment has the same configuration as the compressor 1 of the first embodiment shown in FIGS. 1 and 2 except that both side blocks 20 and 30 are changed from those shown in FIG. 3 to those shown in FIG. The structure is redundant and redundant description is omitted.
 図4に示すように、このリヤサイドブロック30には、ロータ50(図2参照)の回転方向Wに沿った、中圧Pmの冷凍機油Rが供給されるサライ溝31(21)の回転角度の範囲αを超えた位置に、サライ溝31(21)とは別の、吐出室14の内部の吐出圧力Pdに対応した冷凍機油Rを供給する高圧油路32(22)が追加して形成されている。 As shown in FIG. 4, the rear side block 30 has a rotation angle of the Sarai groove 31 (21) along which the refrigerating machine oil R of medium pressure Pm is supplied along the rotation direction W of the rotor 50 (see FIG. 2). A high-pressure oil passage 32 (22) for supplying the refrigerating machine oil R corresponding to the discharge pressure Pd inside the discharge chamber 14, which is different from the Sarai groove 31 (21), is additionally formed at a position exceeding the range α. ing.
 なお、図4は、リヤサイドブロック30を示しているが、フロントサイドブロック20は、リヤサイドブロック30に対して略線対称に表すことができる。よって、フロントサイドブロック20にも、図4と同様にサライ溝21、高圧油路22が形成されている。 Although FIG. 4 shows the rear side block 30, the front side block 20 can be expressed substantially symmetrically with respect to the rear side block 30. Therefore, the Sarai groove 21 and the high-pressure oil passage 22 are also formed in the front side block 20 as in FIG.
 この高圧油路22,32が形成されている位置は、回転軸51の回転方向Wに沿ってサライ溝21,31の下流側端縁から、ベーン溝59の幅分乃至この幅分よりわずかに大きい長さだけ離れた位置である。 The positions where the high- pressure oil passages 22 and 32 are formed are the width of the vane groove 59 from the downstream end edge of the Sarai grooves 21 and 31 along the rotation direction W of the rotating shaft 51 or slightly more than this width. It is a position separated by a large length.
 つまり、回転方向Wに沿って回転するロータ50のベーン溝59が、回転角度の範囲αに位置しているとき(圧縮室43が吸入行程にあるときから、圧縮行程の終盤に近づく(圧縮室43が副吐出部46に臨み始める)角度位置までの範囲)は、上述した実施形態1と同様に、ベーン溝59に中圧Pmの冷凍機油Rが供給される。そして、ベーン溝59が回転角度の範囲αを通り過ぎた時点で、ベーン溝59は瞬間的に閉じた空間とされるが、その直後、ベーン溝59は高圧油路22,32に通じるため、ベーン溝59と高圧油路22,32とが通じている回転角度の範囲γにおいては、ベーン溝59に高圧(吐出圧力Pd)の冷凍機油Rが供給される。 That is, when the vane groove 59 of the rotor 50 rotating along the rotation direction W is positioned in the rotation angle range α (from the time when the compression chamber 43 is in the suction stroke, the end of the compression stroke is approached (the compression chamber is compressed). In the range up to the angular position) where 43 starts to face the sub-discharge portion 46, the refrigerating machine oil R of medium pressure Pm is supplied to the vane groove 59 as in the first embodiment. When the vane groove 59 passes through the rotation angle range α, the vane groove 59 is instantaneously closed, but immediately thereafter, the vane groove 59 leads to the high- pressure oil passages 22 and 32. In the rotational angle range γ where the groove 59 and the high- pressure oil passages 22 and 32 communicate with each other, high-pressure (discharge pressure Pd) refrigerating machine oil R is supplied to the vane groove 59.
 この高圧油路22,32は、例えば、油路24,34aから分岐して、サライ溝21,31に通じる油路(軸受け27,37と回転軸51の外周面との間の隙間)とは別の経路で、両サイドブロック20,30の内面25,35(図1参照)に開口している。 The high- pressure oil passages 22 and 32 are, for example, branched from the oil passages 24 and 34 a and communicated with the Sarai grooves 21 and 31 (gap between the bearings 27 and 37 and the outer peripheral surface of the rotating shaft 51). It opens to inner surface 25, 35 (refer FIG. 1) of both the side blocks 20 and 30 by another path | route.
 したがって、高圧油路22,32は、軸受け27,37と回転軸51の外周面との間の隙間での圧力損失がないため、吐出室14の雰囲気圧力である吐出圧力Pdの冷凍機油Rをベーン溝59に供給することができる。 Accordingly, the high- pressure oil passages 22 and 32 have no pressure loss in the gap between the bearings 27 and 37 and the outer peripheral surface of the rotary shaft 51, so that the refrigerating machine oil R having the discharge pressure Pd that is the atmospheric pressure of the discharge chamber 14 is supplied. The vane groove 59 can be supplied.
 そして、ベーン溝59に高圧(吐出圧力Pd)の冷凍機油Rが供給され、ベーン溝59が回転角度の範囲γを通り過ぎた時点から、次にベーン溝59がサライ溝21,31に通じるまでの回転角度の範囲βにあるときは、ベーン溝59は閉じた空間となる。 The high pressure (discharge pressure Pd) refrigerating machine oil R is supplied to the vane groove 59 and the time from when the vane groove 59 passes the rotation angle range γ until the next time the vane groove 59 communicates with the salai grooves 21 and 31. When in the rotation angle range β, the vane groove 59 is a closed space.
 よって、実施形態2のコンプレッサでは、ベーン溝59が回転角度の範囲βにあるときは、ベーン溝59内が液圧縮状態となり、図3に示した両サイドブロック20,30を有する実施形態1の場合に対して、さらに高い圧力Ph′(Pd<Ph<Ph′)の背圧をベーン58に供給することができる。そして、更に実施形態2のコンプレッサでは、上記したように、ベーン溝59が閉じた空間とされた時点でのベーン溝59の内部の圧力を、中圧Pmよりも高い吐出圧力Pdとすることができる。 Therefore, in the compressor of the second embodiment, when the vane groove 59 is in the rotation angle range β, the inside of the vane groove 59 is in a liquid compression state, and the both side blocks 20 and 30 shown in FIG. In some cases, a back pressure of a higher pressure Ph ′ (Pd <Ph <Ph ′) can be supplied to the vane 58. In the compressor of the second embodiment, as described above, the pressure inside the vane groove 59 at the time when the vane groove 59 is closed is set to the discharge pressure Pd higher than the intermediate pressure Pm. it can.
 したがって、実施形態2のコンプレッサは、ベーン58の背圧として供給される非常に高い圧力Ph′を、上記した実施形態1においてベーン58の背圧として供給される圧力Phよりもさらに高い圧力とすることができる。 Therefore, in the compressor of the second embodiment, the very high pressure Ph ′ supplied as the back pressure of the vane 58 is set to a pressure higher than the pressure Ph supplied as the back pressure of the vane 58 in the first embodiment. be able to.
 これにより、ベーン58の背圧として、吐出圧力Pdを超える圧力Phよりも高い圧力が求められる場合にも、チャタリングを発生することがなく適切に対応することができる。 Thus, even when a pressure higher than the pressure Ph exceeding the discharge pressure Pd is required as the back pressure of the vane 58, it is possible to appropriately cope with chattering.
 なお、高圧油路22,32を、サライ溝21,31の下流側端縁からベーン溝59の幅分乃至この幅分よりわずかに大きい長さだけ離れた位置に形成しているのは、ベーン溝59を介して、中圧Pmの冷凍機油Rが供給されるサライ溝21,31と、高圧(吐出圧力Pd)の冷凍機油Rが供給される高圧油路22,32とが連通するのを防止するためである。 The high- pressure oil passages 22 and 32 are formed at positions away from the downstream side edge of the Sarai grooves 21 and 31 by the width of the vane groove 59 or a length slightly larger than this width. Through the groove 59, the Sarai grooves 21 and 31 to which the medium pressure Pm refrigerating machine oil R is supplied communicate with the high pressure oil passages 22 and 32 to which the high pressure (discharge pressure Pd) refrigerating machine oil R is supplied. This is to prevent it.
<実施形態3>
 上記した実施形態1では、圧縮行程の終盤に、吐出圧力Pdを超える圧力Phを、ベーン58に背圧として供給するようにしている。また、上記した実施形態2では、前記圧力Phよりもさらに高い圧力Ph′を、ベーン58に背圧として供給するようにしている。
<Embodiment 3>
In the first embodiment described above, the pressure Ph exceeding the discharge pressure Pd is supplied to the vane 58 as the back pressure at the end of the compression stroke. In the second embodiment described above, a pressure Ph ′ that is higher than the pressure Ph is supplied to the vane 58 as a back pressure.
 よって、圧縮行程の終盤において、ベーン58先端がシリンダ40の内周面41から離れることなく安定して摺動する状態に保持できる。しかしながら、例えば、冷凍機油Rの粘度の変化等によってベーン58に作用させる背圧がさらに昇圧されると、ベーン58先端のシリンダ40の内周面41への押し付け荷重が過大となるおそれがある。このように、ベーン58先端のシリンダ40の内周面41への押し付け荷重が過大となると、ベーン58先端が摩耗によって損傷したり、ロータ50の回転駆動時に無駄な動力が必要となって運転効率が低下する。 Therefore, at the end of the compression stroke, the tip of the vane 58 can be held in a stable sliding state without leaving the inner peripheral surface 41 of the cylinder 40. However, for example, if the back pressure applied to the vane 58 is further increased due to, for example, a change in the viscosity of the refrigerating machine oil R, the pressing load on the inner peripheral surface 41 of the cylinder 40 at the tip of the vane 58 may be excessive. As described above, when the pressing load on the inner peripheral surface 41 of the cylinder 40 at the tip of the vane 58 becomes excessive, the tip of the vane 58 is damaged due to wear, or unnecessary power is required when the rotor 50 is driven to rotate, resulting in operating efficiency. Decreases.
 そこで、本実施形態では、図5に示すように、シリンダ40の内周面41表面の、ロータ50の回転方向Wに沿って圧縮工程の終盤付近から近接部48付近の間の範囲全域に、周知のショットピーニングによって微細凹部A(図6参照)を形成している。 Therefore, in the present embodiment, as shown in FIG. 5, the entire surface of the inner peripheral surface 41 of the cylinder 40 is in the entire range between the vicinity of the end of the compression process and the vicinity of the proximity portion 48 along the rotation direction W of the rotor 50. Fine recesses A (see FIG. 6) are formed by well-known shot peening.
 詳細には、前記実施形態1の場合では、シリンダ40の内周面41表面の微細凹部Aの形成範囲は、図3に示したように、ベーン溝59が、両サイドブロック20,30のサライ溝21,31が形成された回転角度の範囲αを超えて、回転角度の範囲βに位置している範囲に対応している(ベーン溝59が、回転角度の範囲αに位置している範囲では、微細凹部Aは形成されていない)。即ち、微細凹部Aの形成範囲は、ベーン溝59が中圧Pmの冷凍機油Rで略満たされた閉じた空間の範囲と対応しており、ベーン58に作用する背圧が、吐出圧力Pdを超える圧力Phとなっている領域である。 Specifically, in the case of the first embodiment, the formation range of the fine recesses A on the surface of the inner peripheral surface 41 of the cylinder 40 is such that the vane groove 59 is the salais of both side blocks 20 and 30 as shown in FIG. Corresponding to the range of the rotation angle range β beyond the rotation angle range α in which the grooves 21 and 31 are formed (the range where the vane groove 59 is positioned in the rotation angle range α). Then, the fine recess A is not formed). That is, the formation range of the fine recess A corresponds to the closed space range in which the vane groove 59 is substantially filled with the refrigerating machine oil R of medium pressure Pm, and the back pressure acting on the vane 58 causes the discharge pressure Pd to be reduced. This is the region where the pressure Ph exceeds.
 また、前記実施形態2の場合では、シリンダ40の内周面41表面の微細凹部Aの形成範囲は、図4に示したように、ベーン溝59が、両サイドブロック20,30のサライ溝21,31が形成された回転角度の範囲αを超えて、高圧油路22,32とが通じている回転角度の範囲γを通り過ぎた時点から、サライ溝21,31に通じるまでの回転角度の範囲βにある範囲に対応している(ベーン溝59が、回転角度の範囲α及び回転角度の範囲γに位置している範囲では、微細凹部Aは形成されていない)。即ち、微細凹部Aの形成範囲は、ベーン溝59が中圧Pmの冷凍機油Rで液圧縮状態の閉じた空間の範囲と対応しており、ベーン58に作用する背圧がさらに高い圧力Ph′となっている領域である。 Further, in the case of the second embodiment, the formation range of the fine recesses A on the surface of the inner peripheral surface 41 of the cylinder 40 is such that the vane groove 59 is the salai groove 21 of both side blocks 20 and 30 as shown in FIG. , 31 exceeds the rotation angle range α formed and passes through the rotation angle range γ communicated with the high- pressure oil passages 22, 32 to the rotation angle range from the point where the rotation angle reaches the salai grooves 21, 31. This corresponds to a range of β (in the range where the vane groove 59 is located in the rotation angle range α and the rotation angle range γ, the fine recess A is not formed). That is, the formation range of the fine recess A corresponds to the range of the closed space in which the vane groove 59 is in the liquid compression state with the refrigerating machine oil R having the medium pressure Pm, and the back pressure acting on the vane 58 is higher pressure Ph ′. This is the area.
 図6に示すように、シリンダ40の内周面41表面の微細凹部Aは、粒径が数μm~数十μm程度の硬質な多数のショット材をこの内周面41表面に高速で衝突させて、微細なディンプル面状に形成したものであり、表層部は加工硬化されている。なお、使用するショット材としては、固体潤滑剤として高い潤滑性能を有する二硫化モリブデン粉体が好ましい。 As shown in FIG. 6, the fine recess A on the surface of the inner peripheral surface 41 of the cylinder 40 causes a large number of hard shot materials having a particle size of several μm to several tens of μm to collide with the surface of the inner peripheral surface 41 at high speed. The surface layer portion is work-hardened. The shot material used is preferably molybdenum disulfide powder having high lubricating performance as a solid lubricant.
 このように、ショットピーニングによって微細凹部Aを形成することで、シリンダ40の内周面41表面のこの微細凹部Aを形成した範囲に、油溜まりが形成される。よって、ベーン58先端のシリンダ40の内周面41への押し付け荷重が過大となった場合でも、圧縮室43内の冷媒ガスに混ざっている冷凍機油が微細凹部Aに溜まり、シリンダ40の内周面41に対して摺動するベーン58先端の潤滑性を向上させることができる。 Thus, by forming the fine concave portion A by shot peening, an oil reservoir is formed in the range where the fine concave portion A is formed on the surface of the inner peripheral surface 41 of the cylinder 40. Therefore, even when the pressing load on the inner peripheral surface 41 of the cylinder 40 at the tip of the vane 58 becomes excessive, the refrigerating machine oil mixed with the refrigerant gas in the compression chamber 43 accumulates in the fine recess A, and the inner periphery of the cylinder 40 The lubricity of the tip of the vane 58 sliding with respect to the surface 41 can be improved.
 よって、ベーン58先端の摩耗が抑制され、更に、ロータ50の回転駆動時に無駄な動力ロスを低減することができる。 Therefore, wear at the tip of the vane 58 is suppressed, and furthermore, useless power loss can be reduced when the rotor 50 is driven to rotate.
 また、微細凹部Aの形成範囲は、ベーン溝59が中圧Pmの冷凍機油Rで液圧縮状態の閉じた空間の範囲のみに対応させて形成しているので、シリンダ40の内周面41の全周に設ける必要がなく、作業時間の短縮化や作業コストの低減を図ることができる。 In addition, the formation range of the fine recesses A is formed so that the vane groove 59 is formed corresponding to only the range of the closed space in the liquid compression state with the refrigerating machine oil R having the medium pressure Pm. It is not necessary to provide the entire circumference, and the working time can be shortened and the working cost can be reduced.
<実施形態4>
 前記実施形態1に係るコンプレッサ1では、上記したように、圧縮行程の最後付近(吐出行程の直前から直後付近)において、両圧縮室43A,43B内の圧力がともに略吐出圧力Pdとなる程度まで圧縮が進むと、略液圧縮状態のベーン溝59内の圧力が上昇して、ベーン58に作用する背圧(ベーン背圧)を大幅に昇圧させることができる。
<Embodiment 4>
In the compressor 1 according to the first embodiment, as described above, in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke), the pressures in both the compression chambers 43A and 43B are both substantially equal to the discharge pressure Pd. As the compression proceeds, the pressure in the substantially liquid-compressed vane groove 59 increases, and the back pressure (vane back pressure) acting on the vane 58 can be significantly increased.
 図7Aは、上記したコンプレッサ1の吸入行程、圧縮行程、吐出行程におけるベーン58に作用するベーン背圧(図のa)の変化と、圧縮室43内の圧力(図のb)の変化を示した図である。なお、図7Aにおいて、Pdは前記吐出圧力(高圧)値であり、Psは圧縮室43内に吸入される冷媒ガスの圧力(低圧)値である。 FIG. 7A shows changes in the vane back pressure (a in the figure) acting on the vane 58 and changes in the pressure in the compression chamber 43 (b in the figure) in the intake stroke, compression stroke, and discharge stroke of the compressor 1 described above. It is a figure. 7A, Pd is the discharge pressure (high pressure) value, and Ps is the pressure (low pressure) value of the refrigerant gas sucked into the compression chamber 43.
 また、図7Aにおいて、ロータ50の回転角度が0度(360度)付近は、ベーン58が圧縮室43の回転方向Wに沿って近接部48付近に位置しているときであり(吐出行程と吸入行程の間)、ロータ50が1回転(回転角度が0~360度)することで、上記した1サイクルの吸入行程、圧縮行程、吐出行程が行われる。 In FIG. 7A, the rotation angle of the rotor 50 is near 0 degrees (360 degrees) when the vane 58 is positioned near the proximity portion 48 along the rotation direction W of the compression chamber 43 (the discharge stroke and the discharge stroke). During the suction stroke), the rotor 50 makes one rotation (the rotation angle is 0 to 360 degrees), whereby the one-stroke suction stroke, compression stroke, and discharge stroke are performed.
 図7Aに示すように、圧縮行程の終盤付近(ロータ50の回転角度が270度付近)からベーン58に作用する背圧(ベーン背圧)が上昇し、吐出行程の直前付近(ロータ50の回転角度が355度付近)で圧力Phに達する。 As shown in FIG. 7A, the back pressure (vane back pressure) acting on the vane 58 rises from near the end of the compression stroke (rotation angle of the rotor 50 is around 270 degrees), and immediately before the discharge stroke (rotation of the rotor 50). The pressure Ph is reached at an angle of around 355 degrees.
 ところで、上記したようベーン背圧を昇圧させることで、ベーン58の先端をシリンダ40の内周面に良好に当接させることができるが、圧縮行程の最後付近(吐出行程の直前から直後付近)では、圧縮室43内の圧力(略吐出圧力Pd程度)よりも大幅に高い圧力Phがベーン背圧として作用するので、ベーン58の先端がシリンダ40の内周面に必要以上に強く当接することがある。 By increasing the vane back pressure as described above, the tip of the vane 58 can be satisfactorily brought into contact with the inner peripheral surface of the cylinder 40, but in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke). Then, since the pressure Ph that is significantly higher than the pressure in the compression chamber 43 (about the discharge pressure Pd) acts as the vane back pressure, the tip of the vane 58 abuts the inner peripheral surface of the cylinder 40 more strongly than necessary. There is.
 特に、吐出行程の直前から直後の間では、圧縮室43内の高圧の冷媒ガスの一部が吐出孔45bから吐出されるために圧縮室43内の圧力が急激に低下して、ベーン58の先端がシリンダ40の内周面により強く当接することとなる。 In particular, immediately before and after the discharge stroke, a part of the high-pressure refrigerant gas in the compression chamber 43 is discharged from the discharge hole 45b, so that the pressure in the compression chamber 43 rapidly decreases, and the vane 58 The tip end comes into stronger contact with the inner peripheral surface of the cylinder 40.
 このように、吐出行程の直前から直後でベーン58の先端がシリンダ40の内周面に必要以上に強く当接した状況では、ベーン58の先端とシリンダ40の内周面との間での接触抵抗が必要以上に大きくなるため、ロータ50の回転駆動時に無駄な動力が必要となり、運転効率が低下する。 Thus, in a situation where the tip of the vane 58 is in contact with the inner peripheral surface of the cylinder 40 more than necessary immediately before and after the discharge stroke, contact between the tip of the vane 58 and the inner peripheral surface of the cylinder 40 is achieved. Since the resistance becomes larger than necessary, useless power is required when the rotor 50 is rotationally driven, and the operation efficiency is lowered.
 そこで、本実施形態では、図8に示したように、リヤサイドブロック30の内面35に背圧の一部を逃がすための絞り穴80が形成されている。この絞り穴80は、サライ溝31が形成された回転角度の範囲αを除いた回転角度の範囲βで、圧縮行程の最後付近(主吐出部45での吐出行程の直前付近)となっている領域に対応して形成されている。 Therefore, in this embodiment, as shown in FIG. 8, a throttle hole 80 for releasing a part of the back pressure is formed in the inner surface 35 of the rear side block 30. The throttle hole 80 is in the rotation angle range β excluding the rotation angle range α in which the salai groove 31 is formed, and is near the end of the compression stroke (near the discharge stroke in the main discharge portion 45). It is formed corresponding to the region.
 図9A、図9Bに示すように、絞り穴80は、リヤサイドブロック30の外面36に形成された油吐出口81内まで通路82によって連通している。本実施形態では、この通路82は絞り穴80の一部に含まれた構成であり、絞り穴80と通路82とによって絞り穴全体が構成されている。 As shown in FIGS. 9A and 9B, the throttle hole 80 communicates with the oil discharge port 81 formed in the outer surface 36 of the rear side block 30 through a passage 82. In the present embodiment, the passage 82 is included in a part of the throttle hole 80, and the throttle hole 80 and the passage 82 constitute the entire throttle hole.
 なお、図9A、図9Bにおいて、リヤサイドブロック30の外面36の油吐出口81に不図示の油分離器が設置されている。また、この油吐出口81は、油流路溝83を介して前記吐出路38に通じている。 9A and 9B, an oil separator (not shown) is installed at the oil discharge port 81 of the outer surface 36 of the rear side block 30. The oil discharge port 81 communicates with the discharge path 38 via an oil flow path groove 83.
 そして、図10に示すように、圧縮行程の最後付近(吐出行程の直前から直後付近)では、絞り穴80がベーン溝59内の底部59aに連通するような位置関係にある。圧縮行程の最後付近で、絞り穴80とベーン溝59内の底部59aが連通すると、ベーン溝59内の底部59aに供給されて液圧縮状態にある冷凍機油R(冷媒ガスが混入されている場合も含む)の一部が、絞り穴80から通路82を通して油吐出口81から油分離器70(図1参照)へ排出される。なお、油分離器70へ排出された冷凍機油は、吐出室14内の底部に戻される。 As shown in FIG. 10, in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke), the throttle hole 80 communicates with the bottom 59 a in the vane groove 59. When the throttle hole 80 and the bottom 59a in the vane groove 59 are communicated with each other near the end of the compression stroke, the refrigerating machine oil R (refrigerant gas is mixed) is supplied to the bottom 59a in the vane groove 59 and is in a liquid compression state. A part of the oil is discharged from the throttle hole 80 through the passage 82 to the oil separator 70 (see FIG. 1) from the oil discharge port 81. The refrigerating machine oil discharged to the oil separator 70 is returned to the bottom in the discharge chamber 14.
 このように、液圧縮状態にある冷凍機油Rの一部が絞り穴80から通路82を通して油分離器70側に排出されると、図7Bに示すように、吐出行程の直前から直後付近で昇圧されているベーン背圧(図のa)が減圧される。よって、吐出行程の直前から直後付近でベーン58の先端がシリンダ40の内周面に必要以上に強く当接することを抑制できるので、ロータ50の回転駆動時に無駄な動力ロスを低減することができる。 In this way, when a part of the refrigerating machine oil R in the liquid compression state is discharged from the throttle hole 80 to the oil separator 70 side through the passage 82, as shown in FIG. 7B, the pressure rises immediately before and immediately after the discharge stroke. The vane back pressure (a in the figure) is reduced. Therefore, it is possible to suppress the tip of the vane 58 from coming into contact with the inner peripheral surface of the cylinder 40 more than necessary in the vicinity immediately before and immediately after the discharge stroke, so that it is possible to reduce unnecessary power loss when the rotor 50 is rotationally driven. .
 なお、実施形態4では、ベーン溝59内の底部59aに供給されて液圧縮状態にある冷凍機油の一部が、絞り穴80からリヤサイドブロック30内の通路82を通して油吐出口81から油分離器70(吐出室14)へ排出される構成であったが、同様の穴をフロントサイドブロック20側に形成して、この穴からフロントサイドブロック20内に形成した通路を通して吸入室13へ排出するようにしてもよい。 In the fourth embodiment, a part of the refrigerating machine oil that is supplied to the bottom 59a in the vane groove 59 and is in a liquid compressed state passes through the passage 82 in the rear side block 30 from the throttle hole 80 to the oil separator 81. 70 (discharge chamber 14), the same hole is formed on the front side block 20 side, and the hole is discharged from the hole to the suction chamber 13 through a passage formed in the front side block 20. It may be.
<実施形態5>
 前記実施形態1に係るコンプレッサ1では、上記したように、圧縮行程の最後付近(吐出行程の直前から直後付近)において、両圧縮室43A,43B内の圧力がともに略吐出圧力Pdとなる程度まで圧縮が進むと、略液圧縮状態のベーン溝59内の圧力が上昇して、ベーン58に作用する背圧(ベーン背圧)を大幅に昇圧させることができる。
<Embodiment 5>
In the compressor 1 according to the first embodiment, as described above, in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke), the pressures in both the compression chambers 43A and 43B are both substantially equal to the discharge pressure Pd. As the compression proceeds, the pressure in the substantially liquid-compressed vane groove 59 increases, and the back pressure (vane back pressure) acting on the vane 58 can be significantly increased.
 図7Aに示したように、圧縮行程の終盤付近(ロータ50の回転角度が270度付近)からベーン58に作用する背圧(ベーン背圧)が上昇し、吐出行程の直前付近(ロータ50の回転角度が355度付近)で圧力Phに達する。 As shown in FIG. 7A, the back pressure (vane back pressure) acting on the vane 58 increases from the vicinity of the end of the compression stroke (rotation angle of the rotor 50 is about 270 degrees), and immediately before the discharge stroke (the rotation of the rotor 50). The pressure Ph is reached at a rotation angle of around 355 degrees.
 ところで、上記したようベーン背圧を昇圧させることで、ベーン58の先端をシリンダ40の内周面に良好に当接させることができるが、圧縮行程の最後付近(吐出行程の直前から直後付近)では、圧縮室43内の圧力(略吐出圧力Pd程度)よりも大幅に高い圧力Phがベーン背圧として作用するので、ベーン58の先端がシリンダ40の内周面に必要以上に強く当接することがある。 By increasing the vane back pressure as described above, the tip of the vane 58 can be satisfactorily brought into contact with the inner peripheral surface of the cylinder 40, but in the vicinity of the end of the compression stroke (from immediately before and immediately after the discharge stroke). Then, since the pressure Ph that is significantly higher than the pressure in the compression chamber 43 (about the discharge pressure Pd) acts as the vane back pressure, the tip of the vane 58 abuts the inner peripheral surface of the cylinder 40 more strongly than necessary. There is.
 そこで、本実施形態では、図11に示すように、リヤサイドブロック30の内面35に背圧の一部を逃がすための穴100が形成されている。この穴100は、サライ溝31が形成された回転角度の範囲αを除いた回転角度の範囲βで、圧縮行程の最後付近(主吐出部45での吐出行程の直前付近)となっている領域に対応して形成されている。 Therefore, in this embodiment, as shown in FIG. 11, a hole 100 for releasing a part of the back pressure is formed in the inner surface 35 of the rear side block 30. This hole 100 is a region that is in the vicinity of the end of the compression stroke (near the immediately before the discharge stroke in the main discharge portion 45) in the rotation angle range β excluding the rotation angle range α in which the salai groove 31 is formed. It is formed corresponding to.
 そして、本実施形態では更に、この穴100は、サライ溝31が形成された回転角度の範囲αを除いた回転角度の範囲β内で、圧縮行程の終盤付近から主吐出部45での吐出行程付近となっている領域に対応して形成された凹状の連通溝84内の一方の端部付近(図11では、連通溝81の右端部付近)に設けられている。なお、図12は、前記穴100、連通溝84とベーン溝59との位置関係を示したものである。 In the present embodiment, the hole 100 further has a discharge stroke in the main discharge section 45 from the vicinity of the final stage of the compression stroke within a rotation angle range β excluding the rotation angle range α in which the salai groove 31 is formed. It is provided near one end (in the vicinity of the right end of the communication groove 81 in FIG. 11) in the concave communication groove 84 formed corresponding to the nearby region. FIG. 12 shows the positional relationship among the hole 100, the communication groove 84, and the vane groove 59.
 図13A、図13Bに示すように、穴100は、リヤサイドブロック30の外面36に形成された油吐出口81内まで通路82を通して連通している。本実施形態では、この通路82は穴100の一部に含まれた構成であり、穴100と通路82とによって穴全体が構成されている。 As shown in FIGS. 13A and 13B, the hole 100 communicates with the oil discharge port 81 formed in the outer surface 36 of the rear side block 30 through the passage 82. In the present embodiment, the passage 82 is included in a part of the hole 100, and the hole 100 and the passage 82 constitute the whole hole.
 なお、図13A、図13Bにおいて、リヤサイドブロック30の外面36の油吐出口81に不図示の油分離器が設置されている。また、この油吐出口81は、油通路溝83を介して前記吐出路38に通じている。 13A and 13B, an oil separator (not shown) is installed at the oil discharge port 81 on the outer surface 36 of the rear side block 30. The oil discharge port 81 communicates with the discharge path 38 through an oil passage groove 83.
 また、通路82の油吐出口81側に形成された大径部にはトリガーバルブタイプの圧力調整弁(以下、「第1リリーフ弁」という)85が配置されている。この第1リリーフ弁85は、球状の弁体86とバネ部材87を有し、通常はバネ部材87の付勢力(バネ力)で弁体86を付勢して通路82の小径側を塞いだ閉弁状態にある。 Also, a trigger valve type pressure regulating valve (hereinafter referred to as “first relief valve”) 85 is disposed in the large diameter portion formed on the oil discharge port 81 side of the passage 82. The first relief valve 85 includes a spherical valve body 86 and a spring member 87, and normally the valve body 86 is urged by the urging force (spring force) of the spring member 87 to close the small diameter side of the passage 82. The valve is closed.
 この第1リリーフ弁85は、ベーン溝59内の圧力(ベーン背圧)と吐出圧力(前記吐出行程で吐出路38を通して吐出室14へ吐出される高圧ガス(冷媒ガス)の吐出圧力)との差圧で作動し、この差圧が所定圧Pa(<Ph)以下のときは閉弁状態となり、差圧が所定圧Pa以上になるとバネ部材87の付勢力に抗して開弁状態となるように構成されている。 The first relief valve 85 has a pressure between the vane groove 59 (vane back pressure) and a discharge pressure (a discharge pressure of high-pressure gas (refrigerant gas) discharged into the discharge chamber 14 through the discharge path 38 in the discharge stroke). When the differential pressure is equal to or lower than a predetermined pressure Pa (<Ph), the valve is closed. When the differential pressure is equal to or higher than the predetermined pressure Pa, the valve is opened against the biasing force of the spring member 87. It is configured as follows.
 そして、図12、図14に示すように、圧縮行程の終盤付近から圧縮行程の最後付近(吐出行程の直前から直後付近)では、連通溝84がベーン溝59内の底部59aに連通するような位置関係にある。これにより、穴100が連通溝84を通してベーン溝59内の底部59aと連通状態となるため、ベーン背圧(ベーン溝59内の底部59aに供給されて液圧縮状態にある冷凍機油R)の一部が、穴100から通路82側に排出される。 As shown in FIGS. 12 and 14, the communication groove 84 communicates with the bottom 59 a in the vane groove 59 from the vicinity of the end of the compression stroke to the vicinity of the end of the compression stroke (nearly immediately after the discharge stroke). It is in a positional relationship. As a result, the hole 100 is in communication with the bottom 59a in the vane groove 59 through the communication groove 84, so that one of the vane back pressures (refrigerating machine oil R supplied to the bottom 59a in the vane groove 59 and in a liquid compression state). The portion is discharged from the hole 100 to the passage 82 side.
 そして、第1リリーフ弁85は、前記差圧が所定圧Pa以上になるとバネ部材87の付勢力に抗して開弁状態となり、液圧縮状態にある冷凍機油Rの一部が油吐出口81から油分離器70(図1参照)へ排出される。なお、油分離器70へ排出された冷凍機油は、吐出室14内の底部に戻される。そして、吐出工程ではベーン背圧が低下するため、第1リリーフ弁85は閉弁状態となる。 The first relief valve 85 is opened against the urging force of the spring member 87 when the differential pressure becomes a predetermined pressure Pa or more, and a part of the refrigerating machine oil R in the liquid compression state is oil discharge port 81. To the oil separator 70 (see FIG. 1). The refrigerating machine oil discharged to the oil separator 70 is returned to the bottom in the discharge chamber 14. And in a discharge process, since a vane back pressure falls, the 1st relief valve 85 will be in a valve closing state.
 このように、第1リリーフ弁85が開弁状態となって、液圧縮状態にある冷凍機油Rの一部が穴100から通路82を通して油分離器70側に排出されると、図15に示すように、吐出行程の直前から直後付近で昇圧されているベーン背圧(図のa)が所定圧Paに減圧される。よって、吐出行程の直前から直後付近でベーン58の先端がシリンダ40の内周面に必要以上に強く当接することを抑制できるので、ロータ50の回転駆動時に無駄な動力ロスを低減することができる。 As described above, when the first relief valve 85 is opened and a part of the refrigerating machine oil R in the liquid compression state is discharged from the hole 100 to the oil separator 70 side through the passage 82, it is shown in FIG. As described above, the vane back pressure (a in the figure) increased from immediately before to immediately after the discharge stroke is reduced to a predetermined pressure Pa. Therefore, it is possible to suppress the tip of the vane 58 from coming into contact with the inner peripheral surface of the cylinder 40 more than necessary in the vicinity immediately before and immediately after the discharge stroke, so that it is possible to reduce unnecessary power loss when the rotor 50 is rotationally driven. .
〈実施形態6〉
 実施形態6では、図16に示すように、リヤサイドブロック30の内面35に背圧の一部を逃がすための穴101が形成されている。この穴101は、サライ溝31が形成された回転角度の範囲αを除いた回転角度の範囲βで、圧縮行程の最後付近(主吐出部45での吐出行程の直前付近)となっている領域に対応して形成されている。
<Embodiment 6>
In the sixth embodiment, as shown in FIG. 16, a hole 101 for releasing a part of the back pressure is formed in the inner surface 35 of the rear side block 30. This hole 101 is a region that is in the rotation angle range β excluding the rotation angle range α in which the salai groove 31 is formed, and is near the end of the compression stroke (near the discharge stroke in the main discharge portion 45). It is formed corresponding to.
 本実施形態では、この穴101は、サライ溝31が形成された回転角度の範囲αを除いた回転角度の範囲β内で、圧縮行程の終盤付近から主吐出部45での吐出行程付近となっている領域に対応して形成された凹状の連通溝84内の一他の端部付近(図16では、連通溝84の左端部付近)に設けられている。 In the present embodiment, the hole 101 is in the vicinity of the discharge stroke at the main discharge portion 45 from the vicinity of the end of the compression stroke within the rotation angle range β excluding the rotation angle range α in which the saray grooves 31 are formed. It is provided in the vicinity of the other end in the concave communication groove 84 formed corresponding to the region (in FIG. 16, in the vicinity of the left end of the communication groove 84).
 図17A、図17Bに示すように、穴101は、リヤサイドブロック30内に形成した通路82aを通して外面36(即ち、吐出室14:図1参照)に連通している。本実施形態では、この通路82aは穴110の一部に含まれた構成であり、穴110と通路82aとによって穴全体が構成されている。 As shown in FIGS. 17A and 17B, the hole 101 communicates with the outer surface 36 (that is, the discharge chamber 14: see FIG. 1) through a passage 82a formed in the rear side block 30. In the present embodiment, the passage 82a is included in a part of the hole 110, and the hole 110 and the passage 82a constitute the entire hole.
 なお、図17A、図17Bにおいて、リヤサイドブロック30の外面36の油吐出口81に不図示の油分離器が設置されている。また、この油吐出口81は、油流路溝83を介して吐出路38に通じている。 In FIGS. 17A and 17B, an oil separator (not shown) is installed at the oil discharge port 81 of the outer surface 36 of the rear side block 30. Further, the oil discharge port 81 communicates with the discharge path 38 via the oil flow path groove 83.
 また、リヤサイドブロック30の外面36の通路82aが連通している領域には、リードバルブタイプの圧力調整弁(以下、「第2リリーフ弁」という)88が配置されている。この第2リリーフ弁88の基端側は、固定ネジ88aによって外面36に固定されており、通常は第2リリーフ弁88の付勢力(弾性力)で通路82aを塞いだ閉弁状態にある。 Further, a reed valve type pressure regulating valve (hereinafter referred to as “second relief valve”) 88 is disposed in a region where the passage 82a of the outer surface 36 of the rear side block 30 communicates. The base end side of the second relief valve 88 is fixed to the outer surface 36 by a fixing screw 88a, and is normally in a closed state in which the passage 82a is closed by the urging force (elastic force) of the second relief valve 88.
 この第2リリーフ弁88は、ベーン溝59内の圧力(ベーン背圧)と吐出圧力(前記吐出行程で吐出路38を通して吐出室14へ吐出される高圧ガス(冷媒ガス)の吐出圧力)との差圧で作動し、この差圧が所定圧Pa(<Ph)以下のときは閉弁状態となり、差圧が所定圧Pa以上になると開弁状態となるように構成されている。 The second relief valve 88 is a pressure between the pressure in the vane groove 59 (vane back pressure) and the discharge pressure (discharge pressure of the high-pressure gas (refrigerant gas) discharged into the discharge chamber 14 through the discharge path 38 in the discharge stroke). The valve is operated with a differential pressure, and when the differential pressure is less than or equal to a predetermined pressure Pa (<Ph), the valve is closed, and when the differential pressure exceeds the predetermined pressure Pa, the valve is opened.
 そして、実施形態5と同様に、圧縮行程の終盤付近から圧縮行程の最後付近(吐出行程の直前から直後付近)では、連通溝84がベーン溝59内の底部59aに連通するような位置関係にある。これにより、穴101が連通溝84を通してベーン溝59内の底部59aと連通状態にあるため、ベーン背圧(ベーン溝59内の底部59aに供給されて液圧縮状態にある冷凍機油R)の一部が、穴101から通路82a側に排出される。 As in the fifth embodiment, the positional relationship is such that the communication groove 84 communicates with the bottom 59a in the vane groove 59 from the vicinity of the end of the compression stroke to the vicinity of the end of the compression stroke (from immediately before to immediately after the discharge stroke). is there. Accordingly, since the hole 101 is in communication with the bottom 59a in the vane groove 59 through the communication groove 84, one of the vane back pressures (refrigerating machine oil R supplied to the bottom 59a in the vane groove 59 and in a liquid compression state). The portion is discharged from the hole 101 toward the passage 82a.
 そして、第2リリーフ弁88は、前記差圧が所定圧Pa以上になると開弁状態となり、液圧縮状態にある冷凍機油Rの一部がこの通路82aを通してリヤサイドブロック30の外面36(即ち、吐出室14)へ排出される。なお、吐出行程ではベーン背圧が低下するため、第2リリーフ弁88は閉弁状態となる。 The second relief valve 88 is opened when the differential pressure exceeds a predetermined pressure Pa, and a part of the refrigerating machine oil R in the liquid compression state passes through the passage 82a to the outer surface 36 of the rear side block 30 (that is, the discharge pressure). To the chamber 14). In addition, since the vane back pressure is reduced in the discharge stroke, the second relief valve 88 is closed.
 このように、第2リリーフ弁88が開弁状態となって、液圧縮状態にある冷凍機油Rの一部が穴101から通路82aを通して吐出室14側に排出されると、図15に示したように、吐出行程の直前から直後付近で昇圧されているベーン背圧(図のa)が所定圧Paに減圧される。よって、吐出行程の直前から直後付近でベーン58の先端がシリンダ40の内周面に必要以上に強く当接することを抑制できるので、ロータ50の回転駆動時に無駄な動力ロスを低減することができる。 As described above, when the second relief valve 88 is opened and a part of the refrigerating machine oil R in the liquid compression state is discharged from the hole 101 to the discharge chamber 14 side through the passage 82a, it is shown in FIG. As described above, the vane back pressure (a in the figure) increased from immediately before to immediately after the discharge stroke is reduced to a predetermined pressure Pa. Therefore, it is possible to suppress the tip of the vane 58 from coming into contact with the inner peripheral surface of the cylinder 40 more than necessary in the vicinity immediately before and immediately after the discharge stroke, so that it is possible to reduce unnecessary power loss when the rotor 50 is rotationally driven. .
関連出願の相互参照Cross-reference of related applications
 本願は、2013年11月21日に日本国特許庁に出願された特願2013-241196号、2012年12月26日に日本国特許庁に出願された特願2012-283142号、及び2012年12月26日に日本国特許庁に出願された特願2012-283143号に基づく優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application includes Japanese Patent Application No. 2013-241196 filed with the Japan Patent Office on November 21, 2013, Japanese Patent Application No. 2012-283142 filed with the Japan Patent Office on December 26, 2012, and 2012 Claiming priority based on Japanese Patent Application No. 2012-283143 filed with the Japan Patent Office on December 26, the entire disclosure of which is fully incorporated herein by reference.

Claims (16)

  1.  軸回りに回転する略円柱状のベーン溝が形成されたロータと、前記ロータを、その外周面の外方から囲む輪郭形状の内周面を有するシリンダと、前記ベーン溝に挿入され、所定の油路から前記ベーン溝に供給された冷凍機油による背圧を受けて前記シリンダの内周面に向けて突出自在に設けられた複数枚の板状のベーンとを有し、吸入された気体を、前記ロータの1回転の間に1回の割合で圧縮する圧縮室が形成された圧縮機本体を、ハウジングの内部に備え、
     前記油路は、前記ロータの所定の回転角度範囲で、前記ベーン溝と連通し、前記油路と前記ベーン溝とが連通する回転角度範囲を除いた他の回転角度範囲では、前記ベーン溝が閉じた空間とされていることを特徴とする気体圧縮機。
    A rotor formed with a substantially cylindrical vane groove that rotates about an axis, a cylinder having a contoured inner peripheral surface that surrounds the rotor from the outside of the outer peripheral surface, and a predetermined groove. A plurality of plate-like vanes provided so as to be protruded toward the inner peripheral surface of the cylinder in response to back pressure due to refrigerating machine oil supplied from the oil passage to the vane groove, and A compressor body in which a compression chamber is formed to compress at a rate of once during one rotation of the rotor is provided inside the housing;
    The oil passage communicates with the vane groove in a predetermined rotation angle range of the rotor, and the vane groove is in a rotation angle range other than a rotation angle range in which the oil passage communicates with the vane groove. A gas compressor characterized by being a closed space.
  2.  前記油路は、前記回転角度範囲で、前記圧縮室から吐出された気体の圧力を絞った中圧に対応した冷凍機油を供給するように形成されていることを特徴とする請求項1に記載の気体圧縮機。 The said oil path is formed so that the refrigerating machine oil corresponding to the intermediate pressure which restrict | squeezed the pressure of the gas discharged from the said compression chamber in the said rotation angle range may be supplied. Gas compressor.
  3.  前記油路は、前記回転角度範囲で、前記圧縮室から吐出された気体の圧力を絞った中圧に対応した冷凍機油を供給するように形成され、
     前記ロータの回転方向に沿った、前記回転角度範囲を超えた位置に、前記中圧に対応した冷凍機油を供給する油路とは別の、前記圧縮室から吐出された気体の圧力に対応した冷凍機油を供給する高圧油路が形成され、
     前記他の回転角度範囲は、前記油路と前記ベーン溝とが連通する回転角度範囲および前記高圧油路と前記ベーン溝とが連通する回転角度範囲を除いた回転角度範囲であることを特徴とする請求項1に記載の気体圧縮機。
    The oil passage is formed to supply refrigerating machine oil corresponding to an intermediate pressure obtained by reducing the pressure of the gas discharged from the compression chamber in the rotation angle range,
    Corresponding to the pressure of the gas discharged from the compression chamber, which is different from the oil passage supplying the refrigerating machine oil corresponding to the intermediate pressure at a position exceeding the rotation angle range along the rotation direction of the rotor. A high-pressure oil passage for supplying refrigeration oil is formed,
    The other rotation angle range is a rotation angle range excluding a rotation angle range in which the oil passage communicates with the vane groove and a rotation angle range in which the high pressure oil passage communicates with the vane groove. The gas compressor according to claim 1.
  4.  前記圧縮機本体は、前記ロータおよび前記シリンダの両端面に接してこれら両端面を覆う2つのサイドブロックとを有し、
     前記ベーン溝は、前記ロータの端面に開口して形成され、
     前記油路は、前記サイドブロックのうち前記ロータの端面に対向する部分に開口して形成され、
     前記ロータの回転に伴って、前記油路の開口と前記ベーン溝の開口とが通じる状態と通じない状態とで切り替えられるように形成されていることを特徴とする請求項1乃至3のいずれか一項に記載の気体圧縮機。
    The compressor body has two side blocks that touch both end faces of the rotor and the cylinder and cover the both end faces,
    The vane groove is formed to open at an end surface of the rotor,
    The oil passage is formed to open in a portion of the side block that faces the end surface of the rotor,
    4. The device according to claim 1, wherein the rotation is switched between a state where the opening of the oil passage and the opening of the vane groove communicate with each other and the state where the opening of the vane groove does not communicate with the rotation of the rotor. The gas compressor according to one item.
  5.  前記シリンダの内周面のうち、前記ロータの外周面からの距離が最大となる遠隔部が、前記距離が最小となる近接部に対して、前記ロータの回転方向の上流側に偏った位置に形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の気体圧縮機。 Of the inner peripheral surface of the cylinder, the remote portion having the maximum distance from the outer peripheral surface of the rotor is located at a position biased to the upstream side in the rotational direction of the rotor with respect to the proximity portion having the minimum distance. It forms, The gas compressor as described in any one of Claim 1 thru | or 4 characterized by the above-mentioned.
  6.  前記ベーン溝が閉じた空間とされている、前記他の回転角度範囲と対応した前記シリンダの内周面の領域に、微細凹部が形成されていることを特徴とする請求項1乃至5のいずれか一項に記載の気体圧縮機。 6. A minute recess is formed in a region of an inner peripheral surface of the cylinder corresponding to the other rotation angle range, in which the vane groove is a closed space. A gas compressor according to claim 1.
  7.  微細凹部は、ショットピーニングによって形成されていることを特徴とする請求項6に記載の気体圧縮機。 The gas compressor according to claim 6, wherein the fine recess is formed by shot peening.
  8.  前記ショットピーニングで使用するショット材は、二硫化モリブデン粉体であることを特徴とする請求項7に記載の気体圧縮機。
    The gas compressor according to claim 7, wherein the shot material used in the shot peening is molybdenum disulfide powder.
  9.  圧縮行程の初期から所定範囲にかけては、前記油路は前記ベーン溝と連通して前記ベーン溝内に所定圧の冷凍機油が供給され、
     圧縮行程の前記所定範囲から吐出行程の直前近傍にかけては前記ベーン溝が前記油路から遮蔽されて密閉空間とされて、圧縮行程の進行にともなう前記ベーンの前記ベーン溝内への引っ込みによって前記背圧を昇圧させ、
     更に、前記ベーン溝内の昇圧された前記背圧の一部を、外部に逃がすための絞り穴を有していることを特徴とする請求項1に記載の気体圧縮機。
    From the initial stage of the compression stroke to a predetermined range, the oil passage communicates with the vane groove and refrigeration oil having a predetermined pressure is supplied into the vane groove.
    From the predetermined range of the compression stroke to the vicinity immediately before the discharge stroke, the vane groove is shielded from the oil passage to form a sealed space. Increase the pressure,
    2. The gas compressor according to claim 1, further comprising a throttle hole for letting a part of the increased back pressure in the vane groove to the outside.
  10.  前記絞り穴は、前記圧縮行程で圧縮された高圧気体が吐出される吐出圧空間側に連通していることを特徴とする請求項9に記載の気体圧縮機。 10. The gas compressor according to claim 9, wherein the throttle hole communicates with a discharge pressure space side from which high-pressure gas compressed in the compression stroke is discharged.
  11.  前記吐出圧空間に吐出される前記高圧気体中から油分を分離する油分離器を備え、前記絞り穴は、前記油分離器への前記高圧気体の吐出口側に連通していることを特徴とする請求項9に記載の気体圧縮機。 An oil separator that separates oil from the high-pressure gas discharged into the discharge pressure space is provided, and the throttle hole communicates with a discharge port side of the high-pressure gas to the oil separator. The gas compressor according to claim 9.
  12.  圧縮行程の初期から所定範囲にかけては、前記油路は前記ベーン溝と連通して前記ベーン溝内に所定圧の冷凍機油が供給され、
     圧縮行程の前記所定範囲から吐出行程の直前近傍にかけては前記ベーン溝が前記油路から遮蔽されて密閉空間とされて、圧縮行程の進行にともなう前記ベーンの前記ベーン溝内への引っ込みによって前記背圧を昇圧させ、
     更に、前記ベーン溝内の昇圧された前記背圧の一部を、外部に逃がすための穴を有し、
     前記穴と連通した通路内又はこの穴の端面に、前記穴を開閉可能な弁体を配置していることを特徴とする請求項1に記載に記載の気体圧縮機。
    From the initial stage of the compression stroke to a predetermined range, the oil passage communicates with the vane groove and refrigeration oil having a predetermined pressure is supplied into the vane groove.
    From the predetermined range of the compression stroke to the vicinity immediately before the discharge stroke, the vane groove is shielded from the oil passage to form a sealed space. Increase the pressure,
    Furthermore, it has a hole for releasing a part of the back pressure that has been boosted in the vane groove to the outside,
    The gas compressor according to claim 1, wherein a valve body capable of opening and closing the hole is disposed in a passage communicating with the hole or on an end surface of the hole.
  13.  前記圧縮行程で圧縮された高圧気体が吐出される吐出圧空間に、前記吐出圧空間に吐出される前記高圧気体中から油分を分離する油分離器を備え、前記穴は、前記油分離器への前記高圧気体の吐出口側に連通しており、
     前記弁体は、前記ベーン溝内の圧力と吐出行程で前記吐出圧空間側へ吐出される高圧ガスの吐出圧力との差圧で作動し、この差圧が所定圧以下のときは閉弁状態となり、前記差圧が前記所定圧以上になると開弁状態となることを特徴とする請求項12に記載の気体圧縮機。
    The discharge pressure space into which the high-pressure gas compressed in the compression stroke is discharged includes an oil separator that separates oil from the high-pressure gas discharged into the discharge pressure space, and the hole is connected to the oil separator. Communicating with the high-pressure gas outlet side of
    The valve body is operated by a differential pressure between the pressure in the vane groove and the discharge pressure of the high-pressure gas discharged to the discharge pressure space side in the discharge stroke, and when the differential pressure is equal to or lower than a predetermined pressure, the valve body is closed. The gas compressor according to claim 12, wherein when the differential pressure becomes equal to or higher than the predetermined pressure, the valve is opened.
  14.  前記穴は、前記圧縮行程で圧縮された高圧気体が吐出される吐出圧空間側に連通しており、
     前記弁体は、前記ベーン溝内の圧力と吐出行程で前記吐出圧空間側へ吐出される高圧ガスの吐出圧力との差圧で作動し、この差圧が所定圧以下のときは閉弁状態となり、前記差圧が前記所定圧以上になると開弁状態となることを特徴とする請求項12に記載の気体圧縮機。
    The hole communicates with the discharge pressure space side from which the high-pressure gas compressed in the compression stroke is discharged,
    The valve body is operated by a differential pressure between the pressure in the vane groove and the discharge pressure of the high-pressure gas discharged to the discharge pressure space side in the discharge stroke, and when the differential pressure is equal to or lower than a predetermined pressure, the valve body is closed. The gas compressor according to claim 12, wherein when the differential pressure becomes equal to or higher than the predetermined pressure, the valve is opened.
  15.  前記弁体は、トリガーバルブタイプのリリーフ弁であることを特徴とする請求項13に記載の気体圧縮機。 The gas compressor according to claim 13, wherein the valve body is a relief valve of a trigger valve type.
  16.  前記弁体は、リードバルブタイプのリリーフ弁であることを特徴とする請求項14に記載の気体圧縮機。 The gas compressor according to claim 14, wherein the valve body is a reed valve type relief valve.
PCT/JP2013/084390 2012-12-26 2013-12-23 Gas compressor WO2014103974A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-283142 2012-12-26
JP2012-283143 2012-12-26
JP2012283143A JP5963667B2 (en) 2012-12-26 2012-12-26 Gas compressor
JP2012283142A JP5963666B2 (en) 2012-12-26 2012-12-26 Gas compressor
JP2013-241196 2013-11-21
JP2013241196A JP5878157B2 (en) 2012-12-26 2013-11-21 Gas compressor

Publications (1)

Publication Number Publication Date
WO2014103974A1 true WO2014103974A1 (en) 2014-07-03

Family

ID=51021057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084390 WO2014103974A1 (en) 2012-12-26 2013-12-23 Gas compressor

Country Status (1)

Country Link
WO (1) WO2014103974A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034511A1 (en) * 2018-08-17 2020-02-20 珠海格力电器股份有限公司 Compressor and air conditioner having same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496733Y1 (en) * 1968-03-30 1974-02-18
JP2001165081A (en) * 1999-12-10 2001-06-19 Matsushita Electric Ind Co Ltd Compressor and refrigerating or cooling device having refrigerating cycle with the compressor
JP2001221179A (en) * 2000-02-09 2001-08-17 Matsushita Electric Ind Co Ltd Rotary compressor
JP2002339083A (en) * 2001-05-16 2002-11-27 Honda Motor Co Ltd Molybdenum disulfide for projection
JP2006112331A (en) * 2004-10-15 2006-04-27 Matsushita Electric Ind Co Ltd Compressor
JP2008169810A (en) * 2007-01-15 2008-07-24 Calsonic Compressor Inc Gas compressor
JP2009250155A (en) * 2008-04-09 2009-10-29 Calsonic Kansei Corp Variable displacement gas compressor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496733Y1 (en) * 1968-03-30 1974-02-18
JP2001165081A (en) * 1999-12-10 2001-06-19 Matsushita Electric Ind Co Ltd Compressor and refrigerating or cooling device having refrigerating cycle with the compressor
JP2001221179A (en) * 2000-02-09 2001-08-17 Matsushita Electric Ind Co Ltd Rotary compressor
JP2002339083A (en) * 2001-05-16 2002-11-27 Honda Motor Co Ltd Molybdenum disulfide for projection
JP2006112331A (en) * 2004-10-15 2006-04-27 Matsushita Electric Ind Co Ltd Compressor
JP2008169810A (en) * 2007-01-15 2008-07-24 Calsonic Compressor Inc Gas compressor
JP2009250155A (en) * 2008-04-09 2009-10-29 Calsonic Kansei Corp Variable displacement gas compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034511A1 (en) * 2018-08-17 2020-02-20 珠海格力电器股份有限公司 Compressor and air conditioner having same

Similar Documents

Publication Publication Date Title
US10527041B2 (en) Compressor having oil recovery means
US9695691B2 (en) Gas compressor
JP5963667B2 (en) Gas compressor
WO2013183436A1 (en) Gas compressor
JP5828814B2 (en) Gas compressor
JP2008057389A (en) Gas compressor
WO2013183609A1 (en) Gas compressor
JP5963548B2 (en) Gas compressor
WO2014103974A1 (en) Gas compressor
JP5878157B2 (en) Gas compressor
JP2008169811A (en) Gas compressor
JP5878112B2 (en) Gas compressor
JP2008291655A (en) Gas compressor
JP5963544B2 (en) Gas compressor
JP5751215B2 (en) Tandem vane compressor
JP5843729B2 (en) Gas compressor
JP2008223526A (en) Gas compressor
JP2014218985A (en) Gas compressor
JP5963666B2 (en) Gas compressor
JP5826709B2 (en) Gas compressor
JP2004190509A (en) Gas compressor
JP2004190510A (en) Gas compressor
JP2008255806A (en) Gas compressor
JP5826708B2 (en) Gas compressor
JP2009079538A (en) Variable displacement gas compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867418

Country of ref document: EP

Kind code of ref document: A1