WO2017212671A1 - 歪み推定装置、診断装置、及び歪み推定方法 - Google Patents

歪み推定装置、診断装置、及び歪み推定方法 Download PDF

Info

Publication number
WO2017212671A1
WO2017212671A1 PCT/JP2016/089090 JP2016089090W WO2017212671A1 WO 2017212671 A1 WO2017212671 A1 WO 2017212671A1 JP 2016089090 W JP2016089090 W JP 2016089090W WO 2017212671 A1 WO2017212671 A1 WO 2017212671A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
signal
distortion
estimation
strain
Prior art date
Application number
PCT/JP2016/089090
Other languages
English (en)
French (fr)
Inventor
達哉 橋爪
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to US16/099,357 priority Critical patent/US11119004B2/en
Priority to EP16904704.0A priority patent/EP3467461B1/en
Priority to RU2018137679A priority patent/RU2702404C1/ru
Publication of WO2017212671A1 publication Critical patent/WO2017212671A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2277Rotors specially for centrifugal pumps with special measures for increasing NPSH or dealing with liquids near boiling-point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B13/00Measuring arrangements characterised by the use of fluids
    • G01B13/24Measuring arrangements characterised by the use of fluids for measuring the deformation in a solid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/82Forecasts
    • F05D2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure

Definitions

  • the present disclosure relates to a distortion estimation apparatus, a diagnosis apparatus, and a distortion estimation method.
  • Patent Document 1 the fatigue damage degree of the front side member is calculated based on the strain detected by the strain sensor (strain gauge), and the vehicle fatigue that warns that the life of the front side member is approaching.
  • a damage diagnostic system is described.
  • This disclosure describes a strain estimation device, a diagnostic device, and a strain estimation method that can acquire strain without using a strain gauge.
  • the strain estimation device is a device that estimates the strain of a component provided in a fluid.
  • the strain estimation device includes a pressure acquisition unit that acquires a pressure signal including a time-series pressure value at a predetermined position around a component, and a strain signal that includes a time-series strain value generated in the component based on the pressure signal.
  • An estimation unit for estimation and an output unit for outputting a distortion signal are provided.
  • the estimation unit converts the pressure signal into a distortion signal by using an estimation filter that is determined based on the power spectral density of the pressure and the distortion power spectral density of the component generated when the pressure is applied to the position.
  • strain can be acquired without using a strain gauge.
  • FIG. 1 is a diagram schematically illustrating an example of a diagnosis target of a diagnostic apparatus including a distortion estimation apparatus according to the present embodiment.
  • FIG. 2 is a functional block diagram of a diagnostic apparatus including the distortion estimation apparatus according to the present embodiment.
  • FIG. 3 is a hardware configuration diagram of the diagnostic apparatus of FIG.
  • FIG. 4 is a flowchart showing an example of a diagnostic method performed by the diagnostic apparatus of FIG.
  • FIG. 5 is a flowchart showing in detail an example of the distortion estimation process of FIG.
  • a distortion estimation apparatus is an apparatus that estimates distortion of a component provided in a fluid.
  • the strain estimation device includes a pressure acquisition unit that acquires a pressure signal including a time-series pressure value at a predetermined position around a component, and a strain signal that includes a time-series strain value generated in the component based on the pressure signal.
  • An estimation unit for estimation and an output unit for outputting a distortion signal are provided.
  • the estimation unit converts the pressure signal into a distortion signal by using an estimation filter that is determined based on the power spectral density of the pressure and the distortion power spectral density of the component generated when the pressure is applied to the position.
  • the strain estimation method is a method performed by a strain estimation apparatus that estimates the strain of a component provided in a fluid.
  • a pressure acquisition step for acquiring a pressure signal including a time-series pressure value at a predetermined position around a component, and a strain signal including a time-series strain value generated in the component based on the pressure signal are obtained.
  • An estimation step for estimation and an output step for outputting a distortion signal are provided.
  • the pressure signal is converted into a strain signal using an estimation filter that is determined based on the power spectral density of pressure and the power spectral density of strain generated in the component when the pressure is applied to the position.
  • a pressure signal including a time-series pressure value at a predetermined position around a component is converted into a strain signal including a time-series strain value generated in the component by an estimation filter.
  • the distorted signal is output. It has been found that there is a correlation between the power spectral density of the pressure at a predetermined location around the part and the power spectral density of the strain generated in the part. For this reason, it is possible to convert a pressure signal into a strain signal by using an estimation filter determined based on the relationship between the pressure power spectral density and the strain power spectral density. In this way, since the strain signal can be estimated using the pressure signal, it is possible to acquire the strain generated in the component without using a strain gauge.
  • the strain estimation apparatus may further include an offset removal unit that removes an offset from the pressure signal, and an offset recovery unit that recovers the offset of the distortion signal.
  • the estimation unit may convert the pressure signal from which the offset is removed into a distortion signal.
  • the output unit may output a distortion signal whose offset has been recovered.
  • the fluctuation component of the pressure signal can be extracted by removing the offset from the pressure signal.
  • a diagnostic device is a device that diagnoses the cumulative damage degree of a part.
  • This diagnostic device is based on the strain estimation device, a stress calculation unit that calculates a stress signal including a time-series stress value applied to a component based on the strain signal output from the strain estimation device, and based on the stress signal.
  • a cumulative damage degree calculation unit that calculates the cumulative damage degree of the component.
  • a stress signal including a time-series stress value applied to a part is calculated based on the strain signal output from the strain estimation apparatus, and the cumulative damage degree of the part is calculated based on the stress signal. Since the strain estimation device can acquire the strain generated in the component, the cumulative damage degree of the component can be acquired without using a strain gauge.
  • FIG. 1 is a diagram schematically illustrating an example of a diagnosis target of a diagnosis apparatus including a distortion estimation apparatus according to the present embodiment.
  • an inducer 2 (component) provided in a turbo pump of the rocket 1 is an object to be diagnosed.
  • the rocket 1 is a device that obtains a propulsive force by a reaction by injection, and is a reusable rocket that can be used repeatedly.
  • the rocket 1 is a liquid rocket, for example.
  • liquid fuel F fluid
  • the rocket 1 includes a turbo pump for supplying high-pressure liquid fuel F.
  • the inducer 2 is a rotating body provided on the input side of the turbo pump in order to improve the suction performance of the turbo pump.
  • the inducer 2 is provided in the pipe 3 extending in the direction B, and rotates around the rotation axis AX extending in the extending direction of the pipe 3.
  • the inducer 2 sucks the liquid fuel F flowing through the pipe 3 and boosts the liquid fuel F.
  • the inducer 2 sucks the low-pressure liquid fuel F, when the pressure of the liquid fuel F becomes lower than the saturated vapor pressure of the liquid fuel F, the liquid fuel F boils and a large number of small bubbles are generated. When the pressure around the bubbles becomes higher than the saturated vapor pressure of the liquid fuel F, the bubbles disappear. At this moment, since the liquid fuel F around the bubble collides near the center of the bubble, a pressure wave is generated and vibration is generated. Thus, it is known that cavitation occurs in the liquid fuel F, and stress is applied to the inducer 2 by cavitation. Stress is applied to the inducer 2 due to various factors other than cavitation. If this stress is accumulated in the inducer 2, the inducer 2 may be damaged. In the inducer 2, the inducer blade may be a diagnosis target, but the explanation will be made below as the inducer 2.
  • a pressure sensor 4 is provided on the inner surface of the pipe 3.
  • the pressure sensor 4 is provided around the inducer 2.
  • the position where the pressure sensor 4 is provided is set in a range in which vibration energy generated at the position reaches the inducer 2.
  • the pressure sensor 4 has a predetermined position from the input-side tip of the inducer 2 in the direction B along the rotation axis AX of the inducer 2 and substantially at the same position as the input-side tip of the inducer 2. It is arranged upstream of the liquid fuel F by a distance.
  • the pressure sensor 4 may be disposed downstream of the liquid fuel F by a predetermined distance from the output-side tip of the inducer 2.
  • the pressure sensor 4 measures the pressure around the inducer 2 and transmits the measured pressure to the diagnostic device 10.
  • the pipe 3 is provided with a sensor 5 for measuring environmental information in the interface section.
  • the sensor 5 is a temperature sensor and a pressure sensor, for example.
  • the sensor 5 is disposed at a depth d from the inner surface of the pipe 3 upstream of the liquid fuel F by a distance L from the input-side tip of the inducer 2.
  • the sensor 5 measures the pressure and temperature of the interface unit, and transmits the measured pressure and temperature to the diagnostic device 10.
  • a flow meter (not shown) that measures the flow rate of the liquid fuel F and a rotation sensor (not shown) that measures the rotation speed of the inducer 2 are arranged.
  • the flow rate of the liquid fuel F is measured by the flow meter, and the measured flow rate is transmitted to the diagnostic device 10.
  • the rotation number of the inducer 2 is measured by the rotation sensor, and the measured rotation number is transmitted to the diagnostic device 10.
  • FIG. 2 is a functional block diagram of a diagnostic apparatus including a distortion estimation apparatus according to the present embodiment.
  • the diagnostic device 10 shown in FIG. 2 is a device that diagnoses the cumulative damage degree of the inducer 2.
  • FIG. 3 is a hardware configuration diagram of the diagnostic apparatus of FIG.
  • the diagnostic device 10 physically includes one or a plurality of processors 101, a storage device 102 such as a RAM (Random Access Memory) and a ROM (Read Only Memory), which are main storage devices, and the like.
  • the computer may include an auxiliary storage device 103 such as a hard disk device, an input device 104 such as a keyboard, an output device 105 such as a display, and a communication device 106 that is a data transmission / reception device.
  • Each function shown in FIG. 2 of the diagnostic device 10 is performed under the control of one or more processors 101 by causing the hardware such as the processor 101 and the storage device 102 to read one or more predetermined computer programs.
  • the distortion estimation device 20 includes a processor 101, a storage device 102, an auxiliary storage device 103, an input device 104, an output device 105, and a communication device 106. You may comprise as a computer provided.
  • the diagnostic device 10 includes a strain estimation device 20, a stress calculation unit 27, and a cumulative damage degree calculation unit 28.
  • the distortion estimation device 20 is a device that estimates the distortion of the inducer 2.
  • the strain estimation apparatus 20 includes an operating point information acquisition unit 21, a pressure acquisition unit 22, an offset removal unit 23, an estimation unit 24, an offset recovery unit 25, and an output unit 26.
  • the operating point information acquisition unit 21 functions as an operating point information acquisition unit that acquires the operating point information of the inducer 2.
  • the operating point information acquisition unit 21 acquires the pressure and temperature measured by the sensor 5, the flow rate measured by the flow meter, and the rotation speed measured by the rotation sensor as the operating point information.
  • the operating point information acquisition unit 21 outputs the operating point information to the offset recovery unit 25.
  • the pressure acquisition unit 22 functions as a pressure signal the pressure obtaining means for obtaining (pressure response) ⁇ p n ⁇ comprising a pressure value p n of a time series at a predetermined position around the inducer 2.
  • the pressure acquiring unit 22 acquires the pressure measured by the pressure sensor 4 as for example 0.1 m (mm) was sampled in seconds about the sampling period T s, when the pressure signal including a pressure value p n sequence ⁇ p n ⁇ To do.
  • the pressure acquisition unit 22 outputs the pressure signal ⁇ p n ⁇ to the offset removal unit 23 and the offset recovery unit 25.
  • the offset removing unit 23 functions as an offset removing unit that removes an offset from the pressure signal ⁇ p n ⁇ .
  • the offset is a fixed component (DC component) that is constantly applied in the pressure measured by the pressure sensor 4.
  • the fluctuation component of the pressure values p n i.e., the pressure value p n '
  • Offset removing unit 23 for example, when one of the pressure values p n sequence, an offset average value of the pressure values p n in a given time period.
  • Offset removal unit 23 an offset is subtracted from each pressure value p n of the pressure signal ⁇ p n ⁇ , to the subtraction result as the pressure value p n '. Thereby, the offset removing unit 23 obtains the pressure signal ⁇ p n ′ ⁇ from which the offset is removed. In this way, the offset removing unit 23 removes the offset from the pressure signal ⁇ p n ⁇ . The offset removal unit 23 outputs the pressure signal ⁇ p n ′ ⁇ from which the offset has been removed to the estimation unit 24.
  • the estimation unit 24 functions as an estimation unit that estimates a strain signal (distortion response) ⁇ n ′ ⁇ including a time-series strain value ⁇ n ′ generated in the inducer 2 based on the pressure signal ⁇ p n ′ ⁇ . .
  • the estimation unit 24 converts the pressure signal ⁇ p n ' ⁇ from which the offset is removed into a distortion signal ⁇ n ' ⁇ using an estimation filter.
  • the estimation filter is a filter for evaluating a high cycle fatigue life, and includes a power spectral density of pressure and a power spectral density of strain generated in the inducer 2 when the pressure is applied to a position where the pressure sensor 4 is provided. To be determined.
  • the power spectral density represents the energy distribution in the frequency direction of the signal. A method for deriving the estimation filter will be described later.
  • the estimation unit 24 outputs the distortion signal ⁇ n ′ ⁇ to the offset recovery unit 25.
  • the offset recovery unit 25 functions as an offset recovery unit that recovers the offset of the distortion signal ⁇ n ′ ⁇ .
  • the offset recovery unit 25 calculates a distortion offset based on the operating point information acquired by the operating point information acquisition unit 21.
  • the offset recovery unit 25 calculates, for example, a distortion offset using regression equations for the rotational speed of the inducer 2, the pressure of the interface unit, the temperature of the interface unit, and the flow rate of the liquid fuel F.
  • the offset recovery unit 25 may further calculate a distortion offset based on the pressure signal ⁇ p n ⁇ .
  • the offset recovery unit 25 adds an offset to each distortion value ⁇ n ′ of the distortion signal ⁇ n ′ ⁇ , and sets the addition result as each distortion value ⁇ n .
  • the offset recovery unit 25 obtains a distortion signal ⁇ n ⁇ from which the offset is recovered. In this way, the offset recovery unit 25 recovers the offset of the distortion signal ⁇ n ′ ⁇ .
  • the offset recovery unit 25 outputs the distortion signal ⁇ n ⁇ from which the offset has been recovered to the output unit 26.
  • the output unit 26 functions as an output unit that outputs a distortion signal ⁇ n ⁇ .
  • the output unit 26 receives the strain signal ⁇ n ⁇ from the offset recovery unit 25, the output unit 26 outputs the strain signal ⁇ n ⁇ to the stress calculation unit 27.
  • Stress calculation unit 27 based on the distortion signal ⁇ epsilon n ⁇ outputted from the distortion estimator 20, the stress signal (stress response) including stress values s n of the time-series applied to the inducer 2 Get ⁇ s n ⁇ Functions as a stress calculation means.
  • Stress calculation part 27 as shown in equation (1), and the longitudinal elastic modulus E, Poisson's ratio [nu, and the strain value epsilon n, on the basis to calculate the stress values s n.
  • the longitudinal elastic modulus E is, for example, 203.0 MPa.
  • the Poisson's ratio ⁇ is 0.290, for example.
  • the cumulative damage degree calculation unit 28 functions as a cumulative damage degree calculation unit that calculates the cumulative damage degree of the inducer 2 based on the stress signal ⁇ s n ⁇ .
  • the cumulative damage degree calculation unit 28 uses, for example, a rain flow algorithm to convert the stress signal ⁇ s n ⁇ into a sequence ⁇ j, s a (j) , s m (j)
  • Set number j is a number for identifying each set, which is an integer value of 1 or more N p.
  • N p is the number of extreme values that appear in the target time interval, that is, the number of vibrations.
  • the target time interval is a time interval for extracting an evaluation target from the stress signal ⁇ s n ⁇ , and is, for example, about several seconds.
  • Stress amplitude s a (j) is the amplitude of the waveform of the stress signal ⁇ s n ⁇ in the target time period, the difference between the maximum stress value and the smallest stress value in the stress signal ⁇ s n ⁇ in the target time period is there.
  • Mean stress s m (j) is the center of the waveform of the stress signal ⁇ s n ⁇ in the target time interval, an intermediate value between the maximum stress value and the smallest stress value in the stress signal ⁇ s n ⁇ in the target time period It is.
  • the cumulative damage degree calculation unit 28 converts the stress amplitude s a (j) of each group into the converted stress s s (j) using the equation (2) in order to adapt to the modified minor rule.
  • the converted stress s s (j) is a stress obtained by converting the stress amplitude s a (j) into an SN curve.
  • the tensile strength s b is the tensile strength of the wing material inducer 2 is a fixed value that is predetermined by the material of the blade. Tensile strength s b is, for example, 1657.0MPa.
  • the notch coefficient ⁇ is 1.1, for example.
  • the cumulative damage degree calculation unit 28 is a rupture that causes the inducer 2 to be damaged when only the converted stress s s (j) is applied to the inducer 2 based on the SN curve of the blade material of the inducer 2.
  • the number of vibrations N d (j) is calculated using equation (3).
  • the constant M 0 and the constant M 1 are SN curve constants.
  • the cumulative damage degree D is expressed by Equation (4).
  • the cumulative damage degree calculation unit 28 calculates the cumulative damage degree D of the inducer 2 using Expression (4).
  • the cumulative damage degree calculation unit 28 may calculate the cumulative damage degree D per unit time by dividing the cumulative damage degree D by the target time interval. The cumulative damage degree calculation unit 28 outputs the calculated cumulative damage degree D.
  • the offset is reduced. set of the removed pressure values and distortion values ⁇ p n ', ⁇ n'
  • the offset pressure value for example, the moving average of the pressure values p n are used.
  • the distortion value offset for example, a moving average of the distortion values ⁇ n is used.
  • the ensemble number m is, for example, 40 or more.
  • the power spectral density S 1 (x) (f) at frequency f of pressure ⁇ p n ′ ⁇ and the frequency f of distortion value ⁇ n ′ ⁇ at frequency f The power spectral density S 2 (x) (f) is calculated. Then, as shown in equation (5), by calculating the square root of the ratio of the power spectral density S 2 (x) (f) to the power spectral density S 1 (x) (f), m gains ⁇ A x ⁇ (f)
  • x 1, 2,..., M ⁇ is obtained.
  • the gains A x to (f) are gains with respect to the time interval [t ini + T fft ⁇ (x ⁇ 1), t ini + T fft ⁇ x].
  • Equation (6) and Equation (7) the ensemble average ⁇ m (f) and standard deviation ⁇ m (f) of the m gains A x to (f) are calculated.
  • the design gain A m, k (f) is calculated using the ensemble average ⁇ m (f) and the standard deviation ⁇ m (f).
  • the design gain A m, k (f) is fitted with a rational function.
  • a transfer function G s (s) shown in Expression (9) is used.
  • the parameter C i and the parameter D i are generated by partial fractional decomposition of the second equation of the equation (9), and include the natural angular frequency ⁇ p, i , the natural angular frequency ⁇ z, k , and the attenuation coefficient ⁇ . p, i and the damping coefficient ⁇ z, k .
  • the transfer function G s (s) is Z-transformed to obtain the discrete transfer function G z (z) shown in Expression (10).
  • the coefficient a i and the coefficient b k are fixed gain K, several m p , several m z , damping coefficient ⁇ p, i , natural angular frequency ⁇ p, i , damping coefficient ⁇ z, k , and natural angular frequency ⁇ z, Determined by a set of k parameters.
  • the gain A z (f) of the discrete transfer function G z (z) is in the form shown in Expression (11).
  • the design gain A m, k (f) is fitted.
  • the fitting is a parameter ⁇ K, m p , m z , ⁇ p, i , ⁇ p, i such that the difference between the design gain A m, k (f) and the gain A z (f) is as small as possible.
  • ⁇ z, k , ⁇ z, k ⁇ is set.
  • FIG. 4 is a flowchart showing an example of a diagnostic method performed by the diagnostic apparatus of FIG.
  • FIG. 5 is a flowchart showing in detail an example of the distortion estimation process of FIG. The series of processes shown in FIG. 4 is started at the timing when the operation of the rocket 1 is started, for example.
  • the distortion estimation apparatus 20 performs a distortion estimation process (distortion estimation method) (step S11).
  • the operating point information acquisition unit 21 acquires operating point information of the inducer 2 (step S21: operating point information acquisition step). Specifically, the operating point information acquisition unit 21 measures the pressure and temperature of the interface unit measured by the sensor 5, the flow rate of the liquid fuel F measured by the flow meter, and the rotation of the inducer 2 measured by the rotation sensor. The number is acquired as the operating point information. Then, the operating point information acquisition unit 21 outputs the operating point information to the offset recovery unit 25.
  • the pressure acquiring unit 22 acquires the pressure signal ⁇ p n ⁇ comprising a pressure value p n of a time series at a predetermined position around the inducer 2 (step S22: pressure obtaining step). Specifically, the pressure acquiring unit 22, by a pressure value p n of a time series of pressure values obtained by sampling the pressure measured by the pressure sensor 4 in a sampling period T s, the pressure signal ⁇ p n ⁇ . Then, the pressure acquisition unit 22 outputs a pressure signal ⁇ p n ⁇ to the offset removal unit 23.
  • the offset removing unit 23 removes the offset from the pressure signal ⁇ p n ⁇ (step S23: offset removing step). For example, the offset removing unit 23, out of the pressure values p n time series, and offset the average value of the pressure values p n in a predetermined period and subtracts the offset from the respective pressure values p n of the pressure signal ⁇ p n ⁇ To remove the offset from the pressure signal ⁇ p n ⁇ . Then, the offset removal unit 23 outputs the pressure signal ⁇ p n ′ ⁇ from which the offset has been removed to the estimation unit 24.
  • the estimation unit 24 estimates a strain signal ⁇ n ′ ⁇ including a time-series strain value ⁇ n ′ generated in the inducer 2 based on the pressure signal ⁇ p n ′ ⁇ (step S24: estimation step). ). Specifically, the estimation unit 24 converts the pressure signal ⁇ p n ′ ⁇ from which the offset is removed into a distortion signal ⁇ n ′ ⁇ using an estimation filter represented by Expression (13). Then, the estimation unit 24 outputs the distortion signal ⁇ n ′ ⁇ to the offset recovery unit 25.
  • the offset recovery unit 25 recovers the offset of the distortion signal ⁇ n ′ ⁇ (step S25: offset recovery step). For example, the offset recovery unit 25 calculates a distortion offset based on the operating point information acquired by the operating point information acquisition unit 21 and adds the offset to each distortion value ⁇ n ′ of the distortion signal ⁇ n ′ ⁇ . By doing so, the offset of the distortion signal ⁇ n ' ⁇ is recovered. Then, the offset recovery unit 25 outputs the distortion signal ⁇ n ⁇ from which the offset has been recovered to the output unit 26. And the output part 26 outputs the distortion signal ⁇ (epsilon) n ⁇ by which offset was recovered to the stress calculation part 27 (step S26: output step).
  • the cumulative damage degree calculation unit 28 calculates the cumulative damage degree D of the inducer 2 based on the stress signal ⁇ s n ⁇ (step S13: cumulative damage degree calculation step).
  • the cumulative damage degree calculation unit 28 uses a rainflow method algorithm or the like to convert the stress signal ⁇ s n ⁇ into a sequence ⁇ j, s a (j) , s m (j) of pairs of stress amplitude and average stress.
  • the cumulative damage degree calculation unit 28 converts the stress amplitude s a (j) of each group into the converted stress s s (j) using the equation (2).
  • the cumulative damage degree calculation unit 28 uses the expression (3) to calculate the number of fracture vibrations N d (j where the inducer 2 is damaged when only the converted stress s s (j) is applied to the inducer 2. ) . Then, the cumulative damage degree calculation unit 28 calculates the cumulative damage degree D using Expression (4). Then, the cumulative damage degree calculation unit 28 outputs the cumulative damage degree D. As described above, a series of processes of the diagnostic method performed by the diagnostic apparatus 10 is completed.
  • the pressure signal ⁇ including the time-series pressure value p n ′ at a predetermined position around the inducer 2 ⁇ p n ' ⁇ is converted into a distortion signal ⁇ n ' ⁇ including a time-series distortion value ⁇ n ' generated in the inducer 2 by the estimation filter.
  • a linear correlation is not clearly recognized between a pressure value at a predetermined position around the inducer 2 and a strain value generated at the inducer 2, the pressure at a predetermined position around the inducer 2 is not recognized.
  • the pressure signal ⁇ p n ′ ⁇ can be converted into the strain signal ⁇ n ′ ⁇ by using an estimation filter determined based on the relationship between the pressure power spectral density and the strain power spectral density. It becomes possible.
  • the strain signal ⁇ n ′ ⁇ can be estimated using the pressure signal ⁇ p n ′ ⁇ , the strain generated in the inducer 2 can be acquired without using a strain gauge. .
  • the diagnostic device 10 calculates the stress signal ⁇ s n ⁇ comprising stress values s n of the time-series applied to the inducer 2, stress A cumulative damage degree D of the inducer 2 is calculated based on the signal ⁇ s n ⁇ . Since the strain estimation apparatus 20 can acquire the strain generated in the inducer 2, the diagnostic apparatus 10 can acquire the cumulative damage degree D of the inducer 2 without using a strain gauge.
  • the estimation filter it is possible to reduce a calculation load for converting the pressure signal ⁇ p n ⁇ into the distortion signal ⁇ n ⁇ . Therefore, the distortion estimation unit 20, it is possible to estimate the distortion signal ⁇ epsilon n ⁇ from the pressure signal ⁇ p n ⁇ in real-time. Thereby, the diagnostic apparatus 10 can calculate the cumulative damage degree D in real time.
  • the object to be diagnosed is not limited to the inducer 2 of the turbo pump of the rocket 1, but may be any component that receives stress in the fluid.
  • the diagnostic object for example, a turbo blade of a spacecraft, a blade of a steam turbine, a heat exchanger (pipe vibration) used for nuclear power generation, and an inducer of a general industrial pump.
  • the diagnostic apparatus 10 may further include a determination unit that determines an abnormality of the inducer 2 based on the cumulative damage degree D calculated by the cumulative damage degree calculation unit 28.
  • the determination unit determines whether there is an abnormality in the inducer 2 by, for example, comparing a predetermined threshold value with the cumulative damage degree D. Specifically, the determination unit determines that the inducer 2 is abnormal when the cumulative damage degree D is greater than the threshold value, and that the inducer 2 is normal when the cumulative damage degree D is equal to or less than the threshold value. You may judge.
  • the determination unit may output a determination result indicating whether the inducer 2 is abnormal or normal.
  • the distortion estimation apparatus 20 may not include the offset removal unit 23 and the offset recovery unit 25.
  • the estimation unit 24 estimates the distortion signal ⁇ n ⁇ based on the pressure signal ⁇ p n ⁇ acquired by the pressure acquisition unit 22 and outputs the distortion signal ⁇ n ⁇ to the output unit 26.
  • the strain estimation device the diagnosis device, and the strain estimation method of the present disclosure, it is possible to acquire strain without using a strain gauge.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本開示の一側面に係る歪み推定装置は、流体中に設けられた部品の歪みを推定する歪み推定装置であって、部品の周辺の所定の位置における時系列の圧力値を含む圧力信号を取得する圧力取得部と、圧力信号に基づいて、部品に生じる時系列の歪み値を含む歪み信号を推定する推定部と、歪み信号を出力する出力部と、を備える。推定部は、圧力のパワースペクトル密度と当該圧力を位置に加えた時に部品に生じる歪みのパワースペクトル密度とに基づいて決定される推定フィルタを用いて、圧力信号を歪み信号に変換する。

Description

歪み推定装置、診断装置、及び歪み推定方法
 本開示は、歪み推定装置、診断装置、及び歪み推定方法に関する。
 従来、部品等の寿命を予測する診断システムが知られている。例えば、特許文献1には、歪みセンサ(歪みゲージ)によって検出された歪みに基づいて、フロントサイドメンバの疲労損傷度を算出し、フロントサイドメンバの寿命が近づいていることを警告する車両の疲労損傷度診断システムが記載されている。
特開2013-79920号公報
 例えば、流体中において応力を受ける部品の残存寿命をリアルタイムで評価するためには、部品の歪みをリアルタイムで取得することが求められる。しかしながら、例えば、宇宙機用のターボポンプにおけるインデューサ翼では、宇宙機のフライト時において、インデューサ翼に歪みゲージを直接貼付することが困難である。このように、評価対象の部品の使用中において、当該部品に歪みゲージを貼付することが困難な場合がある。また、評価対象の部品に歪みゲージを貼付できたとしても、何らかの加工が必要となることもある。このため、歪みゲージを用いない手法が望まれている。
 本開示は、歪みゲージを用いることなく、歪みを取得可能な歪み推定装置、診断装置、及び歪み推定方法を説明する。
 本開示の一側面に係る歪み推定装置は、流体中に設けられた部品の歪みを推定する装置である。この歪み推定装置は、部品の周辺の所定の位置における時系列の圧力値を含む圧力信号を取得する圧力取得部と、圧力信号に基づいて、部品に生じる時系列の歪み値を含む歪み信号を推定する推定部と、歪み信号を出力する出力部と、を備える。推定部は、圧力のパワースペクトル密度と当該圧力を上記位置に加えた時に部品に生じる歪みのパワースペクトル密度とに基づいて決定される推定フィルタを用いて、圧力信号を歪み信号に変換する。
 本開示によれば、歪みゲージを用いることなく、歪みを取得することができる。
図1は、本実施形態に係る歪み推定装置を含む診断装置の診断対象の一例を模式的に示す図である。 図2は、本実施形態に係る歪み推定装置を含む診断装置の機能ブロック図である。 図3は、図2の診断装置のハードウェア構成図である。 図4は、図2の診断装置が行う診断方法の一例を示すフローチャートである。 図5は、図4の歪み推定処理の一例を詳細に示すフローチャートである。
[1]実施形態の概要
 本開示の一側面に係る歪み推定装置は、流体中に設けられた部品の歪みを推定する装置である。この歪み推定装置は、部品の周辺の所定の位置における時系列の圧力値を含む圧力信号を取得する圧力取得部と、圧力信号に基づいて、部品に生じる時系列の歪み値を含む歪み信号を推定する推定部と、歪み信号を出力する出力部と、を備える。推定部は、圧力のパワースペクトル密度と当該圧力を上記位置に加えた時に部品に生じる歪みのパワースペクトル密度とに基づいて決定される推定フィルタを用いて、圧力信号を歪み信号に変換する。
 本開示の別の側面に係る歪み推定方法は、流体中に設けられた部品の歪みを推定する歪み推定装置が行う方法である。この歪み推定方法は、部品の周辺の所定の位置における時系列の圧力値を含む圧力信号を取得する圧力取得ステップと、圧力信号に基づいて、部品に生じる時系列の歪み値を含む歪み信号を推定する推定ステップと、歪み信号を出力する出力ステップと、を備える。推定ステップでは、圧力のパワースペクトル密度と当該圧力を上記位置に加えた時に部品に生じる歪みのパワースペクトル密度とに基づいて決定される推定フィルタを用いて、圧力信号を歪み信号に変換する。
 この歪み推定装置及び歪み推定方法では、部品の周辺の所定の位置における時系列の圧力値を含む圧力信号が、推定フィルタによって、部品に生じる時系列の歪み値を含む歪み信号に変換され、変換された歪み信号が出力される。部品の周辺の所定の位置における圧力のパワースペクトル密度と部品に生じる歪みのパワースペクトル密度との間には、相関関係があることが見出された。このため、圧力のパワースペクトル密度と歪みのパワースペクトル密度との関係に基づいて決定された推定フィルタを用いることにより、圧力信号を歪み信号に変換することが可能となる。このように、圧力信号を用いて歪み信号を推定することができるので、歪みゲージを用いることなく、部品に生じる歪みを取得することが可能となる。
 上記歪み推定装置は、圧力信号からオフセットを除去するオフセット除去部と、歪み信号のオフセットを回復するオフセット回復部と、を更に備えてもよい。推定部は、オフセットが除去された圧力信号を歪み信号に変換してもよい。出力部は、オフセットが回復された歪み信号を出力してもよい。この場合、圧力信号からオフセットを除去することによって、圧力信号の変動成分を取り出すことができる。この圧力信号の変動成分を用いることによって、圧力信号から歪み信号に変換する精度を向上することが可能となる。そして、歪み信号のオフセットを回復することによって、部品に生じる歪みの推定精度を向上することが可能となる。
 本開示の更に別の側面に係る診断装置は、部品の累積損傷度を診断する装置である。この診断装置は、上記歪み推定装置と、歪み推定装置から出力された歪み信号に基づいて、部品に加わる時系列の応力値を含む応力信号を計算する応力計算部と、応力信号に基づいて、部品の累積損傷度を計算する累積損傷度計算部と、を備える。この診断装置では、歪み推定装置から出力された歪み信号に基づいて、部品に加わる時系列の応力値を含む応力信号が計算され、応力信号に基づいて部品の累積損傷度が計算される。歪み推定装置において、部品に生じる歪みを取得することができるので、歪みゲージを用いることなく、部品の累積損傷度を取得することが可能となる。
[2]実施形態の例示
 以下、添付図面を参照しながら本開示の実施形態を詳細に説明する。図面の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略する。
 図1は、本実施形態に係る歪み推定装置を含む診断装置の診断対象の一例を模式的に示す図である。図1に示されるように、診断対象として、ロケット1のターボポンプに設けられるインデューサ2(部品)が挙げられる。ロケット1は、噴射による反作用によって推進力を得る装置であり、繰り返し使用可能な再使用型のロケットである。ロケット1は、例えば、液体ロケットである。ロケット1のロケットエンジンでは、燃料として液体水素及び液体酸素等の液体燃料F(流体)が用いられる。ロケット1は、高圧の液体燃料Fを供給するためのターボポンプを備えている。インデューサ2は、ターボポンプの吸込性能を向上するために、ターボポンプの入力側に設けられる回転体である。インデューサ2は、方向Bに延びる配管3に設けられ、配管3の延在方向に延びる回転軸AX周りに回転する。インデューサ2は、配管3を流れる液体燃料Fを吸い込んで、液体燃料Fを昇圧する。
 インデューサ2は、低圧の液体燃料Fを吸い込むので、この液体燃料Fの圧力が液体燃料Fの飽和蒸気圧よりも低くなると、液体燃料Fが沸騰して多数の小さい気泡が発生する。そして、気泡の周囲の圧力が液体燃料Fの飽和蒸気圧よりも高くなると、気泡が消滅する。この瞬間、気泡の周囲の液体燃料Fは気泡の中心付近で衝突するので、圧力波が発生し、振動を発生させる。このようにして、液体燃料Fでは、キャビテーションが発生し、キャビテーションによって、インデューサ2に応力が加わることが知られている。インデューサ2には、キャビテーション以外にも様々な要因により応力が加わる。この応力がインデューサ2に蓄積されていくと、インデューサ2の破損につながるおそれがある。インデューサ2では、特にインデューサ翼を診断対象とすることがあるが、以下ではインデューサ2として説明する。
 配管3の内面には、圧力センサ4が設けられている。圧力センサ4は、インデューサ2の周辺に設けられる。圧力センサ4が設けられる位置は、当該位置において生じた振動のエネルギーがインデューサ2に届く範囲に設定される。図1に示される例では、圧力センサ4は、インデューサ2の回転軸AXに沿った方向Bにおいて、インデューサ2の入力側先端と略同じ位置、及びインデューサ2の入力側先端から所定の距離だけ液体燃料Fの上流に配置される。圧力センサ4は、インデューサ2の出力側先端から所定の距離だけ液体燃料Fの下流に配置されてもよい。この圧力センサ4によって、インデューサ2の周辺の圧力が計測され、計測された圧力が診断装置10に送信される。
 配管3には、インターフェイス部における環境情報を計測するためのセンサ5が設けられる。センサ5は、例えば、温度センサ及び圧力センサである。センサ5は、インデューサ2の入力側先端から距離Lだけ液体燃料Fの上流において、配管3の内面から深さdの位置に配置される。このセンサ5によって、インターフェイス部の圧力及び温度が計測され、計測された圧力及び温度が診断装置10に送信される。インデューサ2の周辺には、更に液体燃料Fの流量を計測する流量計(不図示)及びインデューサ2の回転数を計測する回転センサ(不図示)が配置される。流量計によって、液体燃料Fの流量が計測され、計測された流量が診断装置10に送信される。回転センサによって、インデューサ2の回転数が計測され、計測された回転数が診断装置10に送信される。
 図2は、本実施形態に係る歪み推定装置を含む診断装置の機能ブロック図である。図2に示される診断装置10は、インデューサ2の累積損傷度を診断する装置である。
 図3は、図2の診断装置のハードウェア構成図である。図3に示されるように、診断装置10は、物理的には、1又は複数のプロセッサ101と、主記憶装置であるRAM(Random Access Memory)及びROM(Read Only Memory)等の記憶装置102と、ハードディスク装置等の補助記憶装置103と、キーボード等の入力装置104と、ディスプレイ等の出力装置105と、データ送受信デバイスである通信装置106と、を備えるコンピュータとして構成され得る。診断装置10の図2に示される各機能は、プロセッサ101及び記憶装置102等のハードウェアに1又は複数の所定のコンピュータプログラムを読み込ませることにより、1又は複数のプロセッサ101の制御のもとで各ハードウェアを動作させるとともに、記憶装置102及び補助記憶装置103におけるデータの読み出し及び書き込みを行うことで実現される。なお、上記の説明は診断装置10のハードウェア構成として説明したが、後述の歪み推定装置20がプロセッサ101、記憶装置102、補助記憶装置103、入力装置104、出力装置105、及び通信装置106を備えるコンピュータとして構成されてもよい。
 図2に戻って、診断装置10の詳細について説明する。診断装置10は、歪み推定装置20と、応力計算部27と、累積損傷度計算部28と、を備えている。
 歪み推定装置20は、インデューサ2の歪みを推定する装置である。歪み推定装置20は、作動点情報取得部21と、圧力取得部22と、オフセット除去部23と、推定部24と、オフセット回復部25と、出力部26と、を備えている。
 作動点情報取得部21は、インデューサ2の作動点情報を取得する作動点情報取得手段として機能する。作動点情報取得部21は、センサ5によって計測された圧力及び温度、流量計によって計測された流量、並びに回転センサによって計測された回転数を作動点情報として取得する。作動点情報取得部21は、作動点情報をオフセット回復部25に出力する。
 圧力取得部22は、インデューサ2の周辺の所定の位置における時系列の圧力値pを含む圧力信号(圧力応答){p}を取得する圧力取得手段として機能する。圧力取得部22は、圧力センサ4によって計測された圧力を例えば0.1m(ミリ)秒程度のサンプリング周期Tでサンプリングし、時系列の圧力値pを含む圧力信号{p}として取得する。圧力取得部22は、圧力信号{p}をオフセット除去部23及びオフセット回復部25に出力する。
 オフセット除去部23は、圧力信号{p}からオフセットを除去するオフセット除去手段として機能する。オフセットは、圧力センサ4によって計測された圧力のうちの常に印加されている固定成分(直流成分)である。圧力信号{p}の各圧力値pからオフセットを除去することにより、当該圧力値pの変動成分(つまり、圧力値p )が抽出される。オフセット除去部23は、例えば、時系列の圧力値pのうち、所定の期間における圧力値pの平均値をオフセットとする。オフセット除去部23は、圧力信号{p}の各圧力値pからオフセットを減算し、その減算結果を各圧力値p とする。これにより、オフセット除去部23は、オフセットが除去された圧力信号{p }を得る。このようにして、オフセット除去部23は、圧力信号{p}からオフセットを除去する。オフセット除去部23は、オフセットが除去された圧力信号{p }を推定部24に出力する。
 推定部24は、圧力信号{p }に基づいて、インデューサ2に生じる時系列の歪み値ε を含む歪み信号(歪み応答){ε }を推定する推定手段として機能する。推定部24は、推定フィルタを用いて、オフセットが除去された圧力信号{p }を歪み信号{ε }に変換する。推定フィルタは、高サイクル疲労寿命評価のためのフィルタであって、圧力のパワースペクトル密度と当該圧力を圧力センサ4が設けられている位置に加えた時にインデューサ2に生じる歪みのパワースペクトル密度とに基づいて決定される。パワースペクトル密度は、信号の周波数方向のエネルギー分布を表す。推定フィルタの導出方法については後述する。推定部24は、歪み信号{ε }をオフセット回復部25に出力する。
 オフセット回復部25は、歪み信号{ε }のオフセットを回復するオフセット回復手段として機能する。オフセット回復部25は、作動点情報取得部21によって取得された作動点情報に基づいて、歪みのオフセットを計算する。オフセット回復部25は、例えば、インデューサ2の回転数、インターフェイス部の圧力、インターフェイス部の温度、及び液体燃料Fの流量に対する回帰式を用いて、歪みのオフセットを計算する。オフセット回復部25は、圧力信号{p}に更に基づいて、歪みのオフセットを計算してもよい。オフセット回復部25は、歪み信号{ε }の各歪み値ε にオフセットを加算し、その加算結果を各歪み値εとする。これにより、オフセット回復部25は、オフセットが回復された歪み信号{ε}を得る。このようにして、オフセット回復部25は、歪み信号{ε }のオフセットを回復する。オフセット回復部25は、オフセットが回復された歪み信号{ε}を出力部26に出力する。
 出力部26は、歪み信号{ε}を出力する出力手段として機能する。出力部26は、オフセット回復部25から歪み信号{ε}を受け取ると、歪み信号{ε}を応力計算部27に出力する。
 応力計算部27は、歪み推定装置20から出力された歪み信号{ε}に基づいて、インデューサ2に加わる時系列の応力値sを含む応力信号(応力応答){s}を計算する応力計算手段として機能する。応力計算部27は、式(1)に示されるように、縦弾性係数Eと、ポアソン比νと、歪み値εと、に基づいて、応力値sを計算する。縦弾性係数Eは、例えば203.0MPaである。ポアソン比νは、例えば、0.290である。
Figure JPOXMLDOC01-appb-M000001
 累積損傷度計算部28は、応力信号{s}に基づいて、インデューサ2の累積損傷度を計算する累積損傷度計算手段として機能する。累積損傷度計算部28は、例えばレインフロー法アルゴリズムを用いて、応力信号{s}を応力振幅と平均応力との組の列{j,s (j),s (j)|j∈{1,…N}}に分解する。組番号jは、各組を識別するための番号であり、1以上N以下の整数値である。Nは、対象時間区間において出現する極値の数、すなわち振動の回数である。対象時間区間は、応力信号{s}のうちの評価対象を抽出する時間区間であり、例えば、数秒程度である。応力振幅s (j)は、対象時間区間における応力信号{s}の波形の振幅であり、対象時間区間における応力信号{s}における最大の応力値と最小の応力値との差分である。平均応力s (j)は、対象時間区間における応力信号{s}の波形の中心であり、対象時間区間における応力信号{s}における最大の応力値と最小の応力値との中間値である。
 累積損傷度計算部28は、式(2)を用いて、各組の応力振幅s (j)を修正マイナー則に適応させるために換算応力s (j)に変換する。換算応力s (j)は、応力振幅s (j)をS-N曲線に換算した応力である。なお、引張強さsは、インデューサ2の翼素材の引張強さであり、翼の材料によって予め定められる固定値である。引張強さsは、例えば1657.0MPaである。切欠き係数βは、例えば1.1である。
Figure JPOXMLDOC01-appb-M000002
 累積損傷度計算部28は、インデューサ2の翼素材のS-N曲線をもとに、換算応力s (j)のみがインデューサ2に加わった際に、インデューサ2が損傷に至る破断振動回数N (j)を式(3)を用いて計算する。定数M及び定数Mは、S-N曲線の定数である。
Figure JPOXMLDOC01-appb-M000003
 修正マイナー則を用いた場合、累積損傷度Dは式(4)で示される。累積損傷度計算部28は、式(4)を用いてインデューサ2の累積損傷度Dを計算する。
Figure JPOXMLDOC01-appb-M000004
 累積損傷度計算部28は、累積損傷度Dを対象時間区間で除算することによって、単位時間当たりの累積損傷度Dを計算してもよい。累積損傷度計算部28は、計算した累積損傷度Dを出力する。
 ここで、推定フィルタの導出方法について説明する。インデューサ2に歪みゲージを貼り付け、所望の作動点(液体燃料Fの流量、インデューサ2の回転数、並びにインターフェイス部の圧力及び温度)において、インデューサ2の周辺に圧力を印加する実験を行う。この実験において、圧力センサ4によって計測された圧力を、例えば0.1m秒程度のサンプリング周期Tでサンプリングすることによって、時系列の圧力値pを含む圧力信号{p}が取得される。また、歪みゲージによって計測された歪みを、圧力と同じサンプリング周期Tでサンプリングすることによって、時系列の歪み値εを含む歪み信号{ε}が取得される。
 所定の時間Tfftごとに、圧力信号{p}及び歪み信号{ε}を分割し、分割した各組の圧力値p及び歪み値εからそれぞれオフセットを除去することによって、オフセットが除去された圧力値及び歪み値の組{p ,ε |tini+Tfft×(x-1)<t<tini+Tfft×x}が得られる。なお、x∈{1,2,…,m}である。圧力値のオフセットとしては、例えば、圧力値pの移動平均が用いられる。同様に、歪み値のオフセットとしては、例えば、歪み値εの移動平均が用いられる。アンサンブル数mは、例えば40以上である。
 このm組のそれぞれに対して、公知のWelch法に基づいて、圧力{p }の周波数fにおけるパワースペクトル密度S (x)(f)及び歪み値{ε }の周波数fにおけるパワースペクトル密度S (x)(f)が計算される。そして、式(5)に示されるように、パワースペクトル密度S (x)(f)に対するパワースペクトル密度S (x)(f)の比の平方根を計算することによって、m個のゲイン{A~(f)|x=1,2,…,m}が得られる。ゲインA~(f)は、時間区間[tini+Tfft×(x-1),tini+Tfft×x]に対するゲインである。
Figure JPOXMLDOC01-appb-M000005
 そして、式(6)及び式(7)に示されるように、m個のゲインA~(f)のアンサンブル平均μ(f)及び標準偏差σ(f)が計算される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 そして、式(8)に示されるように、アンサンブル平均μ(f)及び標準偏差σ(f)を用いて、設計ゲインAm,k(f)が計算される。
Figure JPOXMLDOC01-appb-M000008
 続いて、設計ゲインAm,k(f)が有理関数でフィッティングされる。このゲインフィッティングには、式(9)に示される伝達関数G(s)が用いられる。なお、パラメータC及びパラメータDは、式(9)の第2式を部分分数分解することによって生じるものであり、固有角周波数ωp,i、固有角周波数ωz,k、減衰係数ζp,i、及び減衰係数ζz,kによって決定される。
Figure JPOXMLDOC01-appb-M000009
 数mが数m以上である場合に、伝達関数G(s)をZ変換することによって、式(10)に示される離散伝達関数G(z)が得られる。係数a及び係数bは、固定ゲインK、数m、数m、減衰係数ζp,i、固有角周波数ωp,i、減衰係数ζz,k、及び固有角周波数ωz,kのパラメータの組により決定される。
Figure JPOXMLDOC01-appb-M000010
 この離散伝達関数G(z)のゲインA(f)は、式(11)に示される形式である。このゲインA(f)を用いて、設計ゲインAm,k(f)のフィッティングが行われる。なお、フィッティングとは、設計ゲインAm,k(f)とゲインA(f)との差がなるべく小さくなるようなパラメータ{K,m,m,ζp,i,ωp,i,ζz,k,ωz,k}の組を設定することをいう。
Figure JPOXMLDOC01-appb-M000011
 上述のフィッティングの結果、係数a及び係数b(i∈{1,2,…,2m-1,2m},k∈{0,1,…,2m-1,2m})が得られる。ここで、式(12)に示されるように、時刻nにおける圧力値p’及び歪み値ε’を用いて、離散伝達関数G(z)が表される。
Figure JPOXMLDOC01-appb-M000012
 これにより、式(13)に示されるように、歪み値ε’と圧力値p’との関係を規定した推定フィルタが導出される。
Figure JPOXMLDOC01-appb-M000013
 次に、図4及び図5を参照して、診断装置10が行う診断方法の一例を説明する。図4は、図2の診断装置が行う診断方法の一例を示すフローチャートである。図5は、図4の歪み推定処理の一例を詳細に示すフローチャートである。図4に示される一連の処理は、例えばロケット1の動作が開始されるタイミングで開始される。
 まず、歪み推定装置20が歪み推定処理(歪み推定方法)を行う(ステップS11)。ステップS11の歪み推定処理では、図5に示されるように、まず、作動点情報取得部21が、インデューサ2の作動点情報を取得する(ステップS21:作動点情報取得ステップ)。具体的には、作動点情報取得部21は、センサ5によって計測されたインターフェイス部の圧力及び温度、流量計によって計測された液体燃料Fの流量、並びに回転センサによって計測されたインデューサ2の回転数を作動点情報として取得する。そして、作動点情報取得部21は、作動点情報をオフセット回復部25に出力する。
 続いて、圧力取得部22は、インデューサ2の周辺の所定の位置における時系列の圧力値pを含む圧力信号{p}を取得する(ステップS22:圧力取得ステップ)。具体的には、圧力取得部22は、圧力センサ4によって計測された圧力をサンプリング周期Tでサンプリングして得られた圧力値を時系列の圧力値pとすることによって、圧力信号{p}を取得する。そして、圧力取得部22は、圧力信号{p}をオフセット除去部23に出力する。
 続いて、オフセット除去部23は、圧力信号{p}からオフセットを除去する(ステップS23:オフセット除去ステップ)。例えば、オフセット除去部23は、時系列の圧力値pのうち、所定の期間における圧力値pの平均値をオフセットとし、圧力信号{p}の各圧力値pからオフセットを減算することによって、圧力信号{p}からオフセットを除去する。そして、オフセット除去部23は、オフセットが除去された圧力信号{p }を推定部24に出力する。
 続いて、推定部24は、圧力信号{p }に基づいて、インデューサ2に生じる時系列の歪み値ε を含む歪み信号{ε }を推定する(ステップS24:推定ステップ)。具体的には、推定部24は、式(13)に示される推定フィルタを用いて、オフセットが除去された圧力信号{p }を歪み信号{ε }に変換する。そして、推定部24は、歪み信号{ε }をオフセット回復部25に出力する。
 続いて、オフセット回復部25は、歪み信号{ε }のオフセットを回復する(ステップS25:オフセット回復ステップ)。例えば、オフセット回復部25は、作動点情報取得部21によって取得された作動点情報に基づいて、歪みのオフセットを計算し、歪み信号{ε }の各歪み値ε にオフセットを加算することによって、歪み信号{ε }のオフセットを回復する。そして、オフセット回復部25は、オフセットが回復された歪み信号{ε}を出力部26に出力する。そして、出力部26は、オフセットが回復された歪み信号{ε}を応力計算部27に出力する(ステップS26:出力ステップ)。
 続いて、応力計算部27は、歪み推定装置20から出力された歪み信号{ε}に基づいて、インデューサ2に加わる時系列の応力値sを含む応力信号{s}を計算する(ステップS12:応力計算ステップ)。具体的には、応力計算部27は、式(1)を用いて、各歪み値εに基づいて各応力値sを計算することによって、応力信号{s}を取得する。そして、応力計算部27は、応力信号{s}を累積損傷度計算部28に出力する。
 続いて、累積損傷度計算部28は、応力信号{s}に基づいて、インデューサ2の累積損傷度Dを計算する(ステップS13:累積損傷度計算ステップ)。まず、累積損傷度計算部28は、レインフロー法アルゴリズム等を用いて、応力信号{s}を応力振幅と平均応力との組の列{j,s (j),s (j)|j∈{1,…N}}に分解する。そして、累積損傷度計算部28は、式(2)を用いて、各組の応力振幅s (j)を換算応力s (j)に変換する。そして、累積損傷度計算部28は、式(3)を用いて、換算応力s (j)のみがインデューサ2に加わった際に、インデューサ2が損傷に至る破断振動回数N (j)を計算する。そして、累積損傷度計算部28は、式(4)を用いて累積損傷度Dを計算する。そして、累積損傷度計算部28は、累積損傷度Dを出力する。以上のようにして、診断装置10が行う診断方法の一連の処理が終了する。
 以上説明したように、診断装置10、歪み推定装置20、及び歪み推定装置20が行う歪み推定方法では、インデューサ2の周辺の所定の位置における時系列の圧力値p を含む圧力信号{p }が、推定フィルタによって、インデューサ2に生じる時系列の歪み値ε を含む歪み信号{ε }に変換される。インデューサ2の周辺の所定の位置における圧力値と、インデューサ2に生じる歪み値との間には線形な相関関係が明確には認められないものの、インデューサ2の周辺の所定の位置における圧力のパワースペクトル密度とインデューサ2に生じる歪みのパワースペクトル密度との間には、相関関係があることが見出された。このため、圧力のパワースペクトル密度と歪みのパワースペクトル密度との関係に基づいて決定された推定フィルタを用いることにより、圧力信号{p }を歪み信号{ε }に変換することが可能となる。このように、圧力信号{p }を用いて歪み信号{ε }を推定することができるので、歪みゲージを用いることなく、インデューサ2に生じる歪みを取得することが可能となる。
 また、診断装置10では、歪み推定装置20から出力された歪み信号{ε}に基づいて、インデューサ2に加わる時系列の応力値sを含む応力信号{s}が計算され、応力信号{s}に基づいてインデューサ2の累積損傷度Dが計算される。歪み推定装置20において、インデューサ2に生じる歪みを取得することができるので、診断装置10では、歪みゲージを用いることなく、インデューサ2の累積損傷度Dを取得することが可能となる。
 また、推定フィルタを用いることにより、圧力信号{p}を歪み信号{ε}に変換するための計算負荷を軽減することができる。このため、歪み推定装置20では、圧力信号{p}から歪み信号{ε}をリアルタイムで推定することが可能となる。これにより、診断装置10では、累積損傷度Dをリアルタイムで計算することが可能となる。
 また、圧力信号{p}からオフセットを除去することによって、圧力信号{p}の変動成分である圧力信号{p }を取り出すことができる。この圧力信号{p }を用いることによって、圧力信号{p }から歪み信号{ε }に変換する精度を向上することが可能となる。そして、歪み信号{ε }のオフセットを回復することによって、オフセットが回復された歪み信号{ε}が得られるので、インデューサ2に生じる歪みの推定精度を向上することが可能となる。
 以上、本開示の実施形態について説明したが、本発明は上記実施形態に限られない。例えば、診断対象は、ロケット1のターボポンプのインデューサ2に限られず、流体中において応力を受ける部品であればよい。診断対象の別の例として、例えば、宇宙機のターボポンプのタービンブレード、蒸気タービンのブレード、原子力発電に用いられる熱交換器(配管振動)、及び一般産業用ポンプのインデューサが挙げられる。
 診断装置10は、累積損傷度計算部28によって計算された累積損傷度Dに基づいて、インデューサ2の異常を判定する判定部を更に備えていてもよい。判定部は、例えば、所定の閾値と累積損傷度Dとを比較することによって、インデューサ2の異常の有無を判定する。具体的には、判定部は、累積損傷度Dが閾値よりも大きい場合にインデューサ2は異常であると判定し、累積損傷度Dが閾値以下である場合にインデューサ2は正常であると判定してもよい。判定部は、インデューサ2が異常であるか正常であるかを示す判定結果を出力してもよい。
 また、歪み推定装置20は、オフセット除去部23及びオフセット回復部25を備えていなくてもよい。この場合、推定部24は、圧力取得部22によって取得された圧力信号{p}に基づいて、歪み信号{ε}を推定し、歪み信号{ε}を出力部26に出力する。
 本開示の歪み推定装置、診断装置、及び歪み推定方法によれば、歪みゲージを用いることなく、歪みを取得することができる。
2 インデューサ(部品)
4 圧力センサ
10 診断装置
20 歪み推定装置
21 作動点情報取得部
22 圧力取得部
23 オフセット除去部
24 推定部
25 オフセット回復部
26 出力部
27 応力計算部
28 累積損傷度計算部
F 液体燃料(流体)

Claims (5)

  1.  流体中に設けられた部品の歪みを推定する歪み推定装置であって、
     前記部品の周辺の所定の位置における時系列の圧力値を含む圧力信号を取得する圧力取得部と、
     前記圧力信号に基づいて、前記部品に生じる時系列の歪み値を含む歪み信号を推定する推定部と、
     前記歪み信号を出力する出力部と、
    を備え、
     前記推定部は、圧力のパワースペクトル密度と当該圧力を前記位置に加えた時に前記部品に生じる歪みのパワースペクトル密度とに基づいて決定される推定フィルタを用いて、前記圧力信号を前記歪み信号に変換する、歪み推定装置。
  2.  前記圧力信号からオフセットを除去するオフセット除去部と、
     前記歪み信号のオフセットを回復するオフセット回復部と、
    を更に備え、
     前記推定部は、オフセットが除去された前記圧力信号を前記歪み信号に変換し、
     前記出力部は、オフセットが回復された前記歪み信号を出力する、請求項1に記載の歪み推定装置。
  3.  前記部品の累積損傷度を診断する診断装置であって、
     請求項1に記載の歪み推定装置と、
     前記歪み推定装置から出力された前記歪み信号に基づいて、前記部品に加わる時系列の応力値を含む応力信号を計算する応力計算部と、
     前記応力信号に基づいて、前記部品の前記累積損傷度を計算する累積損傷度計算部と、
    を備える診断装置。
  4.  前記部品の累積損傷度を診断する診断装置であって、
     請求項2に記載の歪み推定装置と、
     前記歪み推定装置から出力された前記歪み信号に基づいて、前記部品に加わる時系列の応力値を含む応力信号を計算する応力計算部と、
     前記応力信号に基づいて、前記部品の前記累積損傷度を計算する累積損傷度計算部と、
    を備える診断装置。
  5.  流体中に設けられた部品の歪みを推定する歪み推定装置が行う歪み推定方法であって、
     前記部品の周辺の所定の位置における時系列の圧力値を含む圧力信号を取得する圧力取得ステップと、
     前記圧力信号に基づいて、前記部品に生じる時系列の歪み値を含む歪み信号を推定する推定ステップと、
     前記歪み信号を出力する出力ステップと、
    を備え、
     前記推定ステップでは、圧力のパワースペクトル密度と当該圧力を前記位置に加えた時に前記部品に生じる歪みのパワースペクトル密度とに基づいて決定される推定フィルタを用いて、前記圧力信号を前記歪み信号に変換する、歪み推定方法。
PCT/JP2016/089090 2016-06-06 2016-12-28 歪み推定装置、診断装置、及び歪み推定方法 WO2017212671A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/099,357 US11119004B2 (en) 2016-06-06 2016-12-28 Strain estimation device, diagnosis device, and strain estimation method
EP16904704.0A EP3467461B1 (en) 2016-06-06 2016-12-28 Strain estimation device, diagnosis device, and strain estimation method
RU2018137679A RU2702404C1 (ru) 2016-06-06 2016-12-28 Устройство для оценки деформации, устройство для диагностики и способ оценки деформации

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016112471A JP6648641B2 (ja) 2016-06-06 2016-06-06 歪み推定装置、診断装置、及び歪み推定方法
JP2016-112471 2016-06-06

Publications (1)

Publication Number Publication Date
WO2017212671A1 true WO2017212671A1 (ja) 2017-12-14

Family

ID=60578563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089090 WO2017212671A1 (ja) 2016-06-06 2016-12-28 歪み推定装置、診断装置、及び歪み推定方法

Country Status (5)

Country Link
US (1) US11119004B2 (ja)
EP (1) EP3467461B1 (ja)
JP (1) JP6648641B2 (ja)
RU (1) RU2702404C1 (ja)
WO (1) WO2017212671A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026604A (zh) * 2023-02-28 2023-04-28 中国航发沈阳发动机研究所 一种航空发动机进气畸变试验方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110207987B (zh) * 2019-05-13 2020-12-15 中国民航大学 一种滚动轴承性能退化衰退节点的判定方法
CN111238424B (zh) * 2020-02-20 2021-01-05 南京麦澜德医疗科技股份有限公司 一种检测形变量的装置及检测方法
CN113029581B (zh) * 2021-02-08 2022-02-08 南京航空航天大学 一种合页式可调畸变发生器模型实验台

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182402A (ja) * 1986-02-06 1987-08-10 Mitsubishi Heavy Ind Ltd 回転機械の翼振動監視装置
JP2002162298A (ja) * 2000-11-27 2002-06-07 Mitsubishi Heavy Ind Ltd 配管応力評価装置
JP2003097410A (ja) * 2001-09-21 2003-04-03 Tokyo Electric Power Co Inc:The 水力発電機器のキャビテーション診断装置
US20050119568A1 (en) * 2003-10-14 2005-06-02 Salcudean Septimiu E. Method for imaging the mechanical properties of tissue
JP2013079920A (ja) * 2011-10-05 2013-05-02 Mitsubishi Motors Corp 車両の疲労損傷度診断システム
CN104049036A (zh) * 2014-07-01 2014-09-17 华南理工大学 基于时反聚焦峰值的结构损伤多峰值回归评估方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100198B2 (ja) * 1988-06-27 1994-12-12 石川島播磨重工業株式会社 ポンプの寿命予測方法
US5038614A (en) * 1989-08-10 1991-08-13 Atlantic Richfield Company Acoustic vibration detection of fluid leakage from conduits
US6298454B1 (en) 1999-02-22 2001-10-02 Fisher-Rosemount Systems, Inc. Diagnostics in a process control system
US8044793B2 (en) 2001-03-01 2011-10-25 Fisher-Rosemount Systems, Inc. Integrated device alerts in a process control system
US7562135B2 (en) 2000-05-23 2009-07-14 Fisher-Rosemount Systems, Inc. Enhanced fieldbus device alerts in a process control system
US6975219B2 (en) 2001-03-01 2005-12-13 Fisher-Rosemount Systems, Inc. Enhanced hart device alerts in a process control system
US7346404B2 (en) 2001-03-01 2008-03-18 Fisher-Rosemount Systems, Inc. Data sharing in a process plant
US6774786B1 (en) 2000-11-07 2004-08-10 Fisher-Rosemount Systems, Inc. Integrated alarm display in a process control network
US7206646B2 (en) 1999-02-22 2007-04-17 Fisher-Rosemount Systems, Inc. Method and apparatus for performing a function in a plant using process performance monitoring with process equipment monitoring and control
JP3910339B2 (ja) 2000-05-17 2007-04-25 株式会社日立製作所 ガスタービンおよびその疲労診断装置並びにその疲労診断方法
TW522435B (en) 2000-05-23 2003-03-01 Toray Industries Slurry, display component and process for producing the display component
US6363789B1 (en) * 2000-05-31 2002-04-02 The Boeing Company Acoustic pressure load conversion method to vibration spectra
US7113085B2 (en) 2000-11-07 2006-09-26 Fisher-Rosemount Systems, Inc. Enhanced device alarms in a process control system
US6795798B2 (en) 2001-03-01 2004-09-21 Fisher-Rosemount Systems, Inc. Remote analysis of process control plant data
US7389204B2 (en) 2001-03-01 2008-06-17 Fisher-Rosemount Systems, Inc. Data presentation system for abnormal situation prevention in a process plant
JP4564715B2 (ja) 2001-03-01 2010-10-20 フィッシャー−ローズマウント システムズ, インコーポレイテッド ワークオーダ/パーツオーダの自動的生成および追跡
US6954713B2 (en) 2001-03-01 2005-10-11 Fisher-Rosemount Systems, Inc. Cavitation detection in a process plant
US8073967B2 (en) 2002-04-15 2011-12-06 Fisher-Rosemount Systems, Inc. Web services-based communications for use with process control systems
US7720727B2 (en) 2001-03-01 2010-05-18 Fisher-Rosemount Systems, Inc. Economic calculations in process control system
JP4105852B2 (ja) 2001-05-08 2008-06-25 株式会社日立製作所 発電設備の遠隔損傷診断システム
US7104120B2 (en) * 2004-03-02 2006-09-12 Caterpillar Inc. Method and system of determining life of turbocharger
US7079984B2 (en) 2004-03-03 2006-07-18 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a process plant
US7676287B2 (en) 2004-03-03 2010-03-09 Fisher-Rosemount Systems, Inc. Configuration system and method for abnormal situation prevention in a process plant
JP4369321B2 (ja) 2004-07-30 2009-11-18 株式会社高田工業所 流体回転機械の診断方法
RU2280846C1 (ru) 2004-12-08 2006-07-27 Государственное образовательное учреждение высшего профессионального образования Красноярский государственный технический университет (КГТУ) Способ и устройство извлечения информации о напряженно-деформированном состоянии гидротехнических сооружений
US7448853B2 (en) 2005-04-12 2008-11-11 Sundyne Corporation System and method of determining centrifugal turbomachinery remaining life
US7455495B2 (en) 2005-08-16 2008-11-25 United Technologies Corporation Systems and methods for monitoring thermal growth and controlling clearances, and maintaining health of turbo machinery applications
DE102007009085A1 (de) 2007-02-24 2008-08-28 Oerlikon Leybold Vacuum Gmbh Verfahren zur Bestimmung der Ermüdung eines Pumpenrotors einer Turbo-Gaspumpe
JP5308852B2 (ja) * 2009-02-03 2013-10-09 オークマ株式会社 転がり軸受の潤滑状態判定方法および装置
JP2011157894A (ja) 2010-02-02 2011-08-18 Hitachi Plant Technologies Ltd キャビテーション壊食量予測方法及び予測装置
JP5817221B2 (ja) 2011-05-31 2015-11-18 株式会社Ihi 竪型ミルの負荷監視方法及び装置
JP2014202144A (ja) 2013-04-05 2014-10-27 新日本造機株式会社 遠心ポンプの診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182402A (ja) * 1986-02-06 1987-08-10 Mitsubishi Heavy Ind Ltd 回転機械の翼振動監視装置
JP2002162298A (ja) * 2000-11-27 2002-06-07 Mitsubishi Heavy Ind Ltd 配管応力評価装置
JP2003097410A (ja) * 2001-09-21 2003-04-03 Tokyo Electric Power Co Inc:The 水力発電機器のキャビテーション診断装置
US20050119568A1 (en) * 2003-10-14 2005-06-02 Salcudean Septimiu E. Method for imaging the mechanical properties of tissue
JP2013079920A (ja) * 2011-10-05 2013-05-02 Mitsubishi Motors Corp 車両の疲労損傷度診断システム
CN104049036A (zh) * 2014-07-01 2014-09-17 华南理工大学 基于时反聚焦峰值的结构损伤多峰值回归评估方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467461A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116026604A (zh) * 2023-02-28 2023-04-28 中国航发沈阳发动机研究所 一种航空发动机进气畸变试验方法及装置

Also Published As

Publication number Publication date
EP3467461A1 (en) 2019-04-10
US11119004B2 (en) 2021-09-14
JP2017219361A (ja) 2017-12-14
JP6648641B2 (ja) 2020-02-14
RU2702404C1 (ru) 2019-10-08
EP3467461B1 (en) 2021-10-20
EP3467461A4 (en) 2020-01-29
US20190212137A1 (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2017212671A1 (ja) 歪み推定装置、診断装置、及び歪み推定方法
Yan et al. Improved Hilbert–Huang transform based weak signal detection methodology and its application on incipient fault diagnosis and ECG signal analysis
EP2904368B1 (en) Turbine blade fatigue life analysis using non-contact measurement and dynamical response reconstruction techniques
CN104458170B (zh) 机械装备监测振动信号的时频图处理方法及系统
JP6974828B2 (ja) 船舶の水中騒音推定方法、水中騒音推定プログラム及び水中騒音推定装置
US20180157249A1 (en) Abnormality Detecting Apparatus
CN103575523A (zh) 基于FastICA-谱峭度-包络谱分析的旋转机械故障诊断方法
KR100764092B1 (ko) 음향 방출 센서를 이용한 역지 밸브 건전성 감시 시스템 및방법
JP2011157894A (ja) キャビテーション壊食量予測方法及び予測装置
CN105604806A (zh) 风力发电机的塔架状态监测方法和系统
US11525758B2 (en) Method and apparatus for identifying gear tooth numbers in a gearbox
CN114354112A (zh) 一种叶片多阶耦合振动疲劳分析方法
WO2017158976A1 (ja) 異常判定装置及び異常判定方法
JP2015125147A (ja) ロータブレードの健全性をモニターする方法およびシステム
CN107356282A (zh) 分辨率受限情况下高速列车鲁棒间歇传感器故障检测方法
WO2021020170A1 (ja) プラント監視装置、プラント監視方法、及びプログラム
Venkatakrishnan et al. Analysis of Vibration in gearbox sensor data using Lipschitz Exponent (LE) function: A Wavelet approach
WO2020179241A1 (ja) 構造物診断装置、構造物診断方法、及びコンピュータ読み取り可能な記録媒体
CN114486252A (zh) 一种矢量模极大值包络的滚动轴承故障诊断方法
JP2022158570A (ja) 異常検出装置、異常検出方法、およびプログラム
CN113358342A (zh) 一种风力发电机组螺栓监测系统及方法
CN113239608B (zh) 浮式风电结构非线性效应评估方法
JP2019074373A (ja) 船舶エンジン回転数推定装置、船舶エンジン回転数推定方法および船舶エンジン回転数推定プログラム
KR20140044986A (ko) 선박 추진기 캐비테이션 감시 시스템 및 방법
CN116882088A (zh) 基于加速度的叶片高阶动应力重构方法以及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016904704

Country of ref document: EP

Effective date: 20190107