WO2017212605A1 - 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法 - Google Patents

廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法 Download PDF

Info

Publication number
WO2017212605A1
WO2017212605A1 PCT/JP2016/067225 JP2016067225W WO2017212605A1 WO 2017212605 A1 WO2017212605 A1 WO 2017212605A1 JP 2016067225 W JP2016067225 W JP 2016067225W WO 2017212605 A1 WO2017212605 A1 WO 2017212605A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis gas
unit
impurity concentration
synthesis
purification
Prior art date
Application number
PCT/JP2016/067225
Other languages
English (en)
French (fr)
Inventor
洋治 藤森
和己 岡田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to PCT/JP2016/067225 priority Critical patent/WO2017212605A1/ja
Priority to PCT/JP2016/077516 priority patent/WO2017212662A1/ja
Priority to JP2016574021A priority patent/JP6097895B1/ja
Priority to US16/307,674 priority patent/US10865425B2/en
Priority to CN201680088125.1A priority patent/CN109563421A/zh
Priority to EP16904696.8A priority patent/EP3470497B1/en
Priority to JP2016244617A priority patent/JP6225239B1/ja
Priority to JP2017101651A priority patent/JP2017216997A/ja
Publication of WO2017212605A1 publication Critical patent/WO2017212605A1/ja
Priority to US17/090,164 priority patent/US11525147B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/32Purifying combustible gases containing carbon monoxide with selectively adsorptive solids, e.g. active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/20Purifying combustible gases containing carbon monoxide by treating with solids; Regenerating spent purifying masses
    • C10K1/28Controlling the gas flow through the purifiers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to an apparatus for producing an organic substance from waste and a method for producing an organic substance from waste.
  • the main object of the present invention is to provide a novel apparatus capable of suitably producing an organic substance from waste.
  • the first apparatus for producing an organic material from waste according to the present invention includes a synthesis gas generation furnace, an organic material synthesis unit, and a synthesis gas purification unit.
  • the synthesis gas generation furnace generates synthesis gas by partially oxidizing a waste containing a carbon source.
  • the organic material synthesis unit generates an organic material from the synthesis gas.
  • the synthesis gas purification unit is connected between the synthesis gas generation furnace and the organic material synthesis unit.
  • the synthesis gas purification unit reduces the impurity concentration in the synthesis gas.
  • the synthesis gas purification unit includes a first purification unit, a second purification unit, and a detection unit.
  • the first purification unit is connected to a synthesis gas generation furnace.
  • the second purification unit is connected between the first purification unit and the organic material synthesis unit.
  • the detection unit is connected between the first purification unit and the second purification unit.
  • the detection unit detects the impurity concentration in the synthesis gas from the first purification unit, and sends the synthesis gas to the organic material synthesis unit when the detected impurity concentration is equal to or lower than a predetermined reference value.
  • the detection unit sends the synthesis gas to the second purification unit when the detected impurity concentration is higher than the reference value.
  • Impurity here refers to all substances that may adversely affect production in the organic matter production process. Examples of impurities include benzene, toluene, xylene, and the like.
  • the second apparatus for producing an organic material from waste according to the present invention includes a synthesis gas generation furnace, an organic material synthesis unit, and a synthesis gas purification unit.
  • the synthesis gas generation furnace generates synthesis gas by partially oxidizing a waste containing a carbon source.
  • the organic material synthesis unit generates an organic material from the synthesis gas.
  • the synthesis gas purification unit is connected between the synthesis gas generation furnace and the organic material synthesis unit.
  • the synthesis gas purification unit reduces the impurity concentration in the synthesis gas.
  • the synthesis gas purification unit includes a first purification unit, a second purification unit, and a detection unit. The first purification unit is connected between the synthesis gas generation furnace and the organic material synthesis unit.
  • the second purification unit is connected between the synthesis gas generation furnace and the organic material synthesis unit.
  • the second purification unit has a higher impurity concentration reduction ability than the first purification unit.
  • the detection unit detects the impurity concentration in the synthesis gas from the synthesis gas generation furnace.
  • the detection unit sends the synthesis gas to the first purification unit when the detected impurity concentration is equal to or lower than a predetermined reference value.
  • the detection unit sends the synthesis gas into the second purification unit when the detected impurity concentration is higher than the reference value.
  • the first purification unit is preferably a pressure fluctuation adsorption type adsorption part or a temperature fluctuation adsorption type adsorption part.
  • the second purification unit contains activated carbon.
  • these steps for purifying gas remove or reduce hydrocarbons such as hydrogen sulfide, carbonyl oxide, NOx, SOx, oxygen, ammonia, hydrogen cyanide, methane, propane, propylene, acetylene, and ethylene as necessary. There may be a process.
  • hydrocarbons such as hydrogen sulfide, carbonyl oxide, NOx, SOx, oxygen, ammonia, hydrogen cyanide, methane, propane, propylene, acetylene, and ethylene as necessary. There may be a process.
  • a synthesis gas generation step is performed in which synthesis gas is generated by partially oxidizing a waste containing a carbon source.
  • a synthesis gas purification process is performed to reduce the impurity concentration in the synthesis gas.
  • an organic material synthesis step is performed in which an organic material is generated from the synthesis gas with a reduced impurity concentration.
  • the impurity concentration of the synthesis gas is reduced in the first purification section. The impurity concentration in the synthesis gas with the reduced impurity concentration is detected in the first purification section.
  • the synthesis gas is supplied to the organic substance synthesis unit, and when the detected impurity concentration is higher than the reference value, the synthesis gas is generated in the second purification unit. After the impurity concentration is reduced, synthesis gas is supplied to the organic material synthesis unit.
  • a synthesis gas generation step is performed in which synthesis gas is generated by partially oxidizing waste including a carbon source.
  • a synthesis gas purification process is performed to reduce the impurity concentration in the synthesis gas.
  • an organic material synthesis step is performed in which an organic material is generated from the synthesis gas with a reduced impurity concentration.
  • the impurity concentration in the synthesis gas is detected. When the detected impurity concentration is less than or equal to a predetermined reference value, the synthesis gas is reduced in the first purification unit, and the synthesis gas is synthesized when the detected impurity concentration is higher than the reference value.
  • the impurity concentration of the synthesis gas is reduced in the second purification section having a higher impurity concentration reduction capability than the first purification section.
  • FIG. 1 is a schematic diagram of an apparatus for producing an organic substance from waste according to the first embodiment.
  • FIG. 2 is a schematic diagram of an apparatus for producing an organic substance from waste according to the second embodiment.
  • FIG. 1 is a schematic diagram of an apparatus 1 for producing an organic substance from waste according to the present embodiment.
  • a manufacturing apparatus 1 shown in FIG. 1 is an apparatus for manufacturing an organic substance from waste containing a carbon source such as waste plastic.
  • the produced organic substance may be an oxygen-containing organic substance.
  • the organic substance to be produced may be, for example, alcohol, organic acid, fatty acid, fat or oil, ketone, biomass, sugar or the like. Specific examples of alcohols, organic acids, fatty acids, fats and oils, ketones, biomass, and sugars include ethanol, acetic acid, and butanediol.
  • the use of the produced organic substance is not particularly limited.
  • the produced organic substance can be used as a raw material for plastics and resins, for example, and can also be used as a fuel.
  • the manufacturing apparatus 1 includes a synthesis gas generation furnace 11.
  • the synthesis gas generation furnace 11 is supplied with waste containing an organic substance containing a carbon source such as plastic or resin.
  • the waste is partially oxidized to generate synthesis gas containing carbon monoxide.
  • synthesis gas contains hydrogen gas and nitrogen gas in addition to carbon monoxide.
  • the synthesis gas is supplied to the fermenter 14 as an organic substance synthesis unit.
  • the fermenter 14 contains microorganisms and water. Microorganisms produce organic substances from synthesis gas by fermentation. For this reason, in the fermenter 14, an organic substance is manufactured from synthesis gas by microbial fermentation.
  • specific examples of the microorganism suitably used for producing alcohol such as ethanol include anaerobic carboxydotrophic bacteria such as Clostridium.
  • the fermenter 14 is connected to a refiner 15.
  • the product in the fermenter 14 is transferred to the refiner 15.
  • the fermenter 14 generates other organic substances in addition to the organic substance to be manufactured.
  • the refiner 15 purifies the product in the fermenter 14. Thereby, the target organic substance can be obtained.
  • a synthesis gas purification unit 12 is connected between the synthesis gas generation furnace 11 and the fermenter 14.
  • the synthesis gas purification unit 12 reduces the impurity concentration in the synthesis gas.
  • the synthesis gas purification unit 12 includes a first purification unit 12a, a detection unit 12b, and a second purification unit 12c.
  • the first purification unit 12 a is connected to the synthesis gas generation furnace 11.
  • the synthesis gas from the synthesis gas generation furnace 11 is first purified in the first purification unit 12a, and the impurity concentration of the synthesis gas is reduced.
  • the first purification unit 12a is connected to the detection unit 12b.
  • the detection unit 12b detects the impurity concentration in the synthesis gas from the first purification unit 12a.
  • the detection part 12b supplies synthesis gas to the fermenter 14 when the detected impurity concentration is below a predetermined reference value.
  • the detection unit 12b supplies the synthesis gas to the second purification unit 12c when the detected impurity concentration is larger than a predetermined reference value.
  • the second purification unit 12c reduces the impurity concentration of the supplied synthesis gas.
  • the second purification unit 12 c is connected to the fermenter 14.
  • the synthesis gas from the second purification unit 12 c is supplied to the fermenter 14.
  • purification part 12c are provided. Except when the impurity concentration is extremely high, only the first purification unit 12a is used, and the second purification unit 12c is used only when the impurity concentration is extremely high. For this reason, the impurity concentration reduction capability of the first purification unit 12a is not necessarily so high. Therefore, it is possible to suppress the running cost of the synthesis gas purification unit 12 while suppressing the supply of synthesis gas having a high impurity concentration to the fermenter 14.
  • the first purification unit 12a is configured by a pressure fluctuation adsorption part (PSA) or a temperature fluctuation adsorption type adsorption part (TSA) with a low running cost. It is preferable.
  • the second purification unit 12c preferably includes activated carbon having a high impurity concentration reducing ability in order to reliably suppress the synthesis gas having a high impurity concentration from being supplied to the fermenter 14.
  • FIG. 2 is a schematic diagram of an apparatus 2 for producing an organic substance from waste according to the second embodiment.
  • the detection unit 12b is connected between the synthesis gas generation furnace 11 and the first and second purification units 12a and 12c.
  • the first purification unit 12a and the second purification unit 12c are connected in parallel to the detection unit 12b.
  • the second purification unit 12c has a higher impurity concentration reduction ability than the first purification unit 12a.
  • the detection unit 12b sends the synthesis gas to the first purification unit 12a having a relatively low impurity concentration reduction ability, and detects the detected impurity concentration. Is higher than a predetermined reference value, the synthesis gas is sent to the second purification unit 12c having a relatively high impurity concentration reducing ability. For this reason, also in the manufacturing apparatus 2, it can suppress the running cost of the synthesis gas refinement
  • Example A manufacturing apparatus having a configuration substantially similar to that of the manufacturing apparatus 1 according to the first embodiment was produced.
  • the capacities of the first purification unit and the second purification unit were 90 L, respectively.
  • the first purification section and the second purification section were each filled with activated carbon (model: 4GS-S) manufactured by Tsurumi Co., Ltd.
  • the flow rate of the synthesis gas to the first purification unit was 5 Nm 3 / min.
  • Detectors for detecting the concentration of benzene (microGC, GL Science) at the inlet of the first purification section (point A), the outlet of the first purification section (point B), and the outlet of the first purification section (point C) 490 micro GC) was installed and the concentration of benzene was constantly monitored.
  • the detector installed at the point B corresponds to the detection unit 12b of the manufacturing apparatus 1 according to the first embodiment.
  • the detector installed at this point B sends the synthesis gas from the first purification section to the fermenter 14 and detects it.
  • the benzene concentration obtained was higher than a predetermined reference value (20 ppm)
  • the synthesis gas from the first purification unit was sent to the second purification unit.
  • Table 1 below shows the benzene concentration at points A, B, and C at times 1 to 4.
  • the period in which the benzene concentration at point B exceeded 20 ppm as shown in hours 2 and 4 was 280 hours. That is, the period during which the second purification unit was used was 280 hours (about 6.5%) out of 4300 hours. Therefore, it was possible to suppress the deterioration of the activated carbon in the second purification unit, compared to the case where the first and second purification units were used over the entire period of 4300 hours.

Abstract

廃棄物から有機物質を好適に製造し得る新規な装置を提供する。 合成ガス精製部12は、第1の精製部12aと、第2の精製部12cと、検出部12bとを有する。第1の精製部12aは、合成ガス生成炉11に接続されている。第2の精製部12cは、第1の精製部12aと有機物質合成部14との間に接続されている。検出部12bは、第1の精製部12aと第2の精製部12cとの間に接続されている。検出部12bは、第1の精製部12aからの合成ガスにおける不純物濃度を検出し、検出された不純物濃度が予め定められた基準値以下である場合に合成ガスを有機物質合成部14に送入する。検出部12bは、検出された不純物濃度が基準値より高い場合に合成ガスを第2の精製部12cに送入する。

Description

廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
 本発明は、廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法に関する。
 近年、例えば製鋼所からの排気ガス等から合成された一酸化炭素を含む合成ガスを微生物発酵させることによりエタノールなどの化学物質を製造する方法の実用化が検討されている(例えば特許文献1を参照)。
国際公開第2011/087380号公報
 しかしながら、廃棄物から有機物質を製造する装置は、現在のところ、実用化に至っておらず、十分に検討されていないのが実情である。
 本発明の主な目的は、廃棄物から有機物質を好適に製造し得る新規な装置を提供することにある。
 本発明に係る廃棄物からの第1の有機物質の製造装置は、合成ガス生成炉と、有機物質合成部と、合成ガス精製部とを備える。合成ガス生成炉は、炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる。有機物質合成部は、合成ガスから有機物質を生成させる。合成ガス精製部は、合成ガス生成炉と有機物質合成部との間に接続されている。合成ガス精製部は、合成ガス中の不純物濃度を低減させる。合成ガス精製部は、第1の精製部と、第2の精製部と、検出部とを有する。第1の精製部は、合成ガス生成炉に接続されている。第2の精製部は、第1の精製部と有機物質合成部との間に接続されている。検出部は、第1の精製部と第2の精製部との間に接続されている。検出部は、第1の精製部からの合成ガスにおける不純物濃度を検出し、検出された不純物濃度が予め定められた基準値以下である場合に合成ガスを有機物質合成部に送入する。検出部は、検出された不純物濃度が基準値より高い場合に合成ガスを第2の精製部に送入する。
 ここで言う不純物とは、有機物生成工程で生成に悪影響を及ぼす可能性があるもの全てをいう。不純物の例としては、例えば、ベンゼン・トルエン・キシレンなどが挙げられる。
 本発明に係る廃棄物からの第2の有機物質の製造装置は、合成ガス生成炉と、有機物質合成部と、合成ガス精製部とを備える。合成ガス生成炉は、炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる。有機物質合成部は、合成ガスから有機物質を生成させる。合成ガス精製部は、合成ガス生成炉と有機物質合成部との間に接続されている。合成ガス精製部は、合成ガス中の不純物濃度を低減させる。合成ガス精製部は、第1の精製部と、第2の精製部と、検出部とを有する。第1の精製部は、合成ガス生成炉と有機物質合成部との間に接続されている。第2の精製部は、合成ガス生成炉と有機物質合成部との間に接続されている。第2の精製部は、第1の精製部よりも高い不純物濃度低減能を有する。検出部は、合成ガス生成炉からの合成ガスにおける不純物濃度を検出する。検出部は、検出された不純物濃度が予め定められた基準値以下である場合に合成ガスを第1の精製部に送入する。検出部は、検出された不純物濃度が基準値よりも高い場合に合成ガスを第2の精製部に送入する。
 本発明に係る第1及び第2の有機物質の製造装置のそれぞれでは、第1の精製部が、圧力変動吸着型吸着部もしくは温度変動吸着型吸着部であることが好ましい。
 本発明に係る第1及び第2の有機物質の製造装置のそれぞれでは、第2の精製部が活性炭を含むことが好ましい。
 また、ガスを精製するこれらの工程には必要に応じて、硫化水素、酸化カルボニル、NOx、SOx、酸素、アンモニア、シアン化水素、メタン・プロパン・プロピレン・アセチレン・エチレン等の炭化水素を除去もしくは低減するプロセスがあってもよい。
 本発明に係る廃棄物からの第1の有機物質の製造方法では、炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成工程を行う。合成ガス中の不純物濃度を低減させる合成ガス精製工程を行う。有機物質合成部において、不純物濃度が低減された合成ガスから有機物質を生成させる有機物質合成工程を行う。合成ガス精製工程では、第1の精製部において合成ガスの不純物濃度を低減させる。第1の精製部において不純物濃度が低減された合成ガス中の不純物濃度を検出する。検出された不純物濃度が予め定められた基準値以下である場合に、合成ガスを有機物質合成部に供給し、検出された不純物濃度が基準値より高い場合に、第2の精製部において合成ガスの不純物濃度を低減させた後に、合成ガスを有機物質合成部に供給する。
 本発明に係る廃棄物からの第2の有機物質の製造方法では、炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成工程を行う。合成ガス中の不純物濃度を低減させる合成ガス精製工程を行う。有機物質合成部において、不純物濃度が低減された合成ガスから有機物質を生成させる有機物質合成工程を行う。合成ガス精製工程では、合成ガス中の不純物濃度を検出する。検出された不純物濃度が予め定められた基準値以下である場合に合成ガスを第1の精製部において合成ガスの不純物濃度を低減し、検出された不純物濃度が基準値よりも高い場合に、合成ガスを、第1の精製部よりも高い不純物濃度低減能を有する第2の精製部において合成ガスの不純物濃度を低減する。
 本発明によれば、廃棄物から有機物質を好適に製造し得る新規な装置を提供することができる。
図1は、第1の実施形態に係る廃棄物からの有機物質の製造装置の模式図である。 図2は、第2の実施形態に係る廃棄物からの有機物質の製造装置の模式図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 (第1の実施形態)
 図1は、本実施形態に係る廃棄物からの有機物質の製造装置1の模式図である。図1に示される製造装置1は、廃棄プラスチック等の炭素源を含む廃棄物から、有機物質を製造するための装置である。製造される有機物質は、含酸素有機物であってもよい。製造される有機物質は、例えば、アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖等であってもよい。アルコール、有機酸、脂肪酸、油脂、ケトン、バイオマス、糖の具体例としては、例えば、エタノール、酢酸、ブタンジオール等が挙げられる。
 製造された有機物質の用途は、特に限定されない。製造された有機物質は、例えば、プラスチックや樹脂等の原料として用いることもできるし、燃料として用いることもできる。
 製造装置1は、合成ガス生成炉11を備えている。合成ガス生成炉11には、プラスチックや樹脂などの炭素源を含む有機物を含む廃棄物が供給される。合成ガス生成炉11において廃棄物が部分酸化され一酸化炭素を含む合成ガスが生成する。通常、合成ガスは、一酸化炭素に加え、水素ガスや窒素ガスを含んでいる。
 合成ガスは、有機物質合成部としての発酵器14に供給される。発酵器14は、微生物と水とを含む。微生物は、発酵することにより合成ガスから有機物質を生成させる。このため、発酵器14においては、微生物発酵により合成ガスから有機物質が製造される。なお、例えば、エタノール等のアルコールを生成させる場合に好適に用いられる微生物の具体例としては、例えば、クロストリジウム属などの嫌気性カルボキシド栄養性細菌等が挙げられる。
 発酵器14は、精製機15に接続されている。発酵器14における生成物は、精製機15に移送される。通常、発酵器14においては、製造しようとする有機物質に加え、他の有機物質も生成する。精製機15は、発酵器14における生成物を精製する。これにより、目的とする有機物質を得ることができる。
 合成ガス生成炉11と発酵器14との間には、合成ガス精製部12が接続されている。合成ガス精製部12は、合成ガス中の不純物濃度を低減する。
 合成ガス精製部12は、第1の精製部12aと、検出部12bと、第2の精製部12cとを有する。第1の精製部12aは、合成ガス生成炉11に接続されている。合成ガス生成炉11からの合成ガスは、まず、第1の精製部12aにおいて、精製され、合成ガスの不純物濃度が低減される。
 第1の精製部12aは、検出部12bに接続されている。検出部12bは、第1の精製部12aからの合成ガスにおける不純物濃度を検出する。検出部12bは、検出した不純物濃度が予め定められた基準値以下である場合は、発酵器14に合成ガスを供給する。検出部12bは、検出した不純物濃度が予め定められた基準値より大きい場合は、第2の精製部12cに合成ガスを供給する。
 第2の精製部12cは、供給された合成ガスの不純物濃度を低減する。第2の精製部12cは、発酵器14に接続されている。第2の精製部12cからの合成ガスは、発酵器14に供給される。
 ところで、製造装置1では、種々の廃棄物が合成ガス生成炉11に投入される。このため、合成ガス生成炉11に投入される廃棄物の種類によっては、生成する合成ガス中の不純物濃度が大きくばらつくという問題が発生する。よって、合成ガス精製部をひとつのみ設ける場合は、不純物濃度が最も高くなったときに対応した高性能な合成ガス精製部が必要となる。このため、合成ガス精製部のランニングコストが増大するという問題が生じる。
 製造装置1では、第1の精製部12aと、第2の精製部12cとが設けられている。そして、不純物濃度が極端に高い場合を除いて第1の精製部12aのみが用いられ、第2の精製部12cは、不純物濃度が極端に高いときのみ用いられる。このため、第1の精製部12aの不純物濃度低減能がそれほど高い必要は必ずしもない。従って、発酵器14に不純物濃度が高い合成ガスが供給されることを抑制しながら、かつ、合成ガス精製部12のランニングコストを低く抑えることができる。
 合成ガス精製部12のランニングコストをより低く抑える観点からは、第1の精製部12aが、ランニングコストが低い圧力変動吸着部(PSA)もしくは温度変動吸着型吸着部(TSA)により構成されていることが好ましい。一方、第2の精製部12cは、不純物濃度が高い合成ガスが発酵器14に供給されることを確実に抑制するために、不純物濃度低減能が高い活性炭を含むことが好ましい。
 以下、本発明の好ましい実施形態の他の例について説明する。以下の説明において、上記第1の実施形態と実質的に共通の機能を有する部材を共通の符号で参照し、説明を省略する。
 (第2の実施形態)
 図2は、第2の実施形態に係る廃棄物からの有機物質の製造装置2の模式図である。
 製造装置2では、検出部12bが合成ガス生成炉11と、第1及び第2の精製部12a、12cとの間に接続されている。第1の精製部12aと、第2の精製部12cとは、検出部12bに並列に接続されている。第2の精製部12cは、第1の精製部12aよりも高い不純物濃度低減能を有する。検出部12bは、検出した不純物濃度が予め定められた基準値以下である場合は、相対的に低い不純物濃度低減能を有する第1の精製部12aに合成ガスを送入し、検出した不純物濃度が予め定められた基準値より高い場合は、相対的に高い不純物濃度低減能を有する第2の精製部12cに合成ガスを送入する。このため、製造装置2においても、発酵器14に不純物濃度が高い合成ガスが供給されることを抑制しながら、かつ、合成ガス精製部12のランニングコストを低く抑えることができる。
 (実施例)
 第1の実施形態に係る製造装置1と実質的に同様の構成を有する製造装置を作製した。第1の精製部及び第2の精製部の容量は、それぞれ90Lとした。第1の精製部及び第2の精製部には、それぞれ、株式会社ツルミコール社製の活性炭(型式:4GS-S)を充填した。第1の精製部への合成ガスの流量は、5Nm/minとした。
 第1の精製部の入口(ポイントA)、第1の精製部の出口(ポイントB)及び第1の精製部の出口(ポイントC)に、ベンゼンの濃度を検出する検出器(microGC、GLサイエンス社製490microGC)を設置し、ベンゼンの濃度を常時監視した。ポイントBに設置した検出器は、第1の実施形態に係る製造装置1の検出部12bに相当する。このポイントBに設置した検出器を、検出されたベンゼン濃度が予め定められた基準値(20ppm)以下である場合に、第1の精製部からの合成ガスを発酵器14に送入し、検出されたベンゼン濃度が予め定められた基準値(20ppm)より高い場合に第1の精製部からの合成ガスを第2の精製部に送入するように構成した。
 下記の表1に、時間1~4におけるポイントA,B,Cでのベンゼン濃度を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ポイントBにおけるベンゼン濃度が20ppm以下であった時間1,3では、第1の精製部から第2の精製部を経由せずに発酵槽に合成ガスが送入された。一方、ポイントBにおけるベンゼン濃度が20ppmより高かった時間2,4では、第1の精製部からの合成ガスは、第2の精製部を経由して発酵槽に送入された。
 製造装置を4300時間運転した結果、時間2,4のようにポイントBにおけるベンゼン濃度が20ppmを超えた期間は、280時間であった。すなわち、第2の精製部が使用された期間は、4300時間中280時間(約6.5%)であった。従って、4300時間の全期間にわたって第1及び第2の精製部を用いた場合よりも第2の精製部中の活性炭の劣化を抑制することができた。
1,2 製造装置
11 合成ガス生成炉
12 合成ガス精製部
12a 第1の精製部
12b 検出部
12c 第2の精製部
14 発酵器
15 精製機

Claims (6)

  1.  炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成炉と、
     前記合成ガスから有機物質を生成させる有機物質合成部と、
     前記合成ガス生成炉と前記有機物質合成部との間に接続されており、合成ガス中の不純物濃度を低減させる合成ガス精製部と、
     を備え、
     前記合成ガス精製部は、
     前記合成ガス生成炉に接続された第1の精製部と、
     前記第1の精製部と前記有機物質合成部との間に接続された第2の精製部と、
     前記第1の精製部と前記第2の精製部との間に接続されており、前記第1の精製部からの合成ガスにおける不純物濃度を検出し、前記検出された不純物濃度が予め定められた基準値以下である場合に前記合成ガスを前記有機物質合成部に送入し、前記検出された不純物濃度が前記基準値より高い場合に前記合成ガスを前記第2の精製部に送入する検出部と、
     を有する、廃棄物からの有機物質の製造装置。
  2.  炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成炉と、
     前記合成ガスから有機物質を生成させる有機物質合成部と、
     前記合成ガス生成炉と前記有機物質合成部との間に接続されており、合成ガス中の不純物濃度を低減させる合成ガス精製部と、
    を備え、
     前記合成ガス精製部は、
     前記合成ガス生成炉と前記有機物質合成部との間に接続された第1の精製部と、
     前記合成ガス生成炉と前記有機物質合成部との間に接続されており、前記第1の精製部よりも高い不純物濃度低減能を有する第2の精製部と、
     前記合成ガス生成炉からの合成ガスにおける不純物濃度を検出し、前記検出された不純物濃度が予め定められた基準値以下である場合に前記合成ガスを前記第1の精製部に送入し、前記検出された不純物濃度が前記基準値よりも高い場合に前記合成ガスを前記第2の精製部に送入する検出部と、
     を有する、廃棄物からの有機物質の製造装置。
  3.  前記第1の精製部が、圧力変動吸着型吸着部もしくは温度変動吸着型吸着部である、請求項1又は2に記載の有機物質の製造装置。
  4.  前記第2の精製部が活性炭を含む、請求項1~3のいずれか一項に記載の有機物質の製造装置。
  5.  炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成工程と、
     前記合成ガス中の不純物濃度を低減させる合成ガス精製工程と、
     有機物質合成部において、前記不純物濃度が低減された合成ガスから有機物質を生成させる有機物質合成工程と、
     を備え、
     前記合成ガス精製工程は、
     第1の精製部において前記合成ガスの不純物濃度を低減させる工程と、
     前記第1の精製部において不純物濃度が低減された合成ガス中の不純物濃度を検出する工程と、
     前記検出された不純物濃度が予め定められた基準値以下である場合に、前記合成ガスを前記有機物質合成部に供給し、前記検出された不純物濃度が前記基準値より高い場合に、第2の精製部において前記合成ガスの不純物濃度を低減させた後に、前記合成ガスを前記有機物質合成部に供給する工程と、
     を含む、廃棄物からの有機物質の製造方法。
  6.  炭素源を含む廃棄物を部分酸化させることにより合成ガスを生成させる合成ガス生成工程と、
     前記合成ガス中の不純物濃度を低減させる合成ガス精製工程と、
     有機物質合成部において、前記不純物濃度が低減された合成ガスから有機物質を生成させる有機物質合成工程と、
     を備え、
     前記合成ガス精製工程は、
     前記合成ガス中の不純物濃度を検出する工程と、
     前記検出された不純物濃度が予め定められた基準値以下である場合に前記合成ガスを第1の精製部において前記合成ガスの不純物濃度を低減し、前記検出された不純物濃度が前記基準値よりも高い場合に、前記合成ガスを、前記第1の精製部よりも高い不純物濃度低減能を有する第2の精製部において前記合成ガスの不純物濃度を低減する工程と、
     を含む、廃棄物からの有機物質の製造方法。 
PCT/JP2016/067225 2016-06-09 2016-06-09 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法 WO2017212605A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2016/067225 WO2017212605A1 (ja) 2016-06-09 2016-06-09 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
PCT/JP2016/077516 WO2017212662A1 (ja) 2016-06-09 2016-09-16 有機物質の製造システム及び有機物質の製造方法
JP2016574021A JP6097895B1 (ja) 2016-06-09 2016-09-16 有機物質の製造システム及び有機物質の製造方法
US16/307,674 US10865425B2 (en) 2016-06-09 2016-09-16 System for producing organic substance and method for producing organic substance
CN201680088125.1A CN109563421A (zh) 2016-06-09 2016-09-16 有机物质的制造系统和有机物质的制造方法
EP16904696.8A EP3470497B1 (en) 2016-06-09 2016-09-16 System for producing organic substance and method for producing organic substance
JP2016244617A JP6225239B1 (ja) 2016-06-09 2016-12-16 有機物質の製造システム及び有機物質の製造方法
JP2017101651A JP2017216997A (ja) 2016-06-09 2017-05-23 有機物質の製造システム及び有機物質の製造方法
US17/090,164 US11525147B2 (en) 2016-06-09 2020-11-05 System for producing organic substance and method for producing organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/067225 WO2017212605A1 (ja) 2016-06-09 2016-06-09 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法

Publications (1)

Publication Number Publication Date
WO2017212605A1 true WO2017212605A1 (ja) 2017-12-14

Family

ID=60213998

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/067225 WO2017212605A1 (ja) 2016-06-09 2016-06-09 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
PCT/JP2016/077516 WO2017212662A1 (ja) 2016-06-09 2016-09-16 有機物質の製造システム及び有機物質の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077516 WO2017212662A1 (ja) 2016-06-09 2016-09-16 有機物質の製造システム及び有機物質の製造方法

Country Status (5)

Country Link
US (2) US10865425B2 (ja)
EP (1) EP3470497B1 (ja)
JP (2) JP6225239B1 (ja)
CN (1) CN109563421A (ja)
WO (2) WO2017212605A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069787B1 (fr) * 2017-08-03 2019-08-09 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de production continue d'un flux gazeux d'hydrogene
EP3752587A4 (en) * 2018-02-12 2021-11-24 Lanzatech, Inc. INTEGRATED PROCESS FOR FILTERING CONSTITUENTS FROM A GAS FLOW
CN108676707A (zh) * 2018-04-13 2018-10-19 苏州爱绿环保科技有限公司 一种生活垃圾生产沼气系统及沼气生产方法
EP4036192A4 (en) * 2019-09-24 2023-10-04 Sekisui Chemical Co., Ltd. METHOD FOR PRODUCING PURIFIED GAS, METHOD FOR PRODUCING RECOVERY MATERIAL, DEVICE FOR PURIFYING GAS, AND DEVICE FOR PRODUCING RECOVERY MATERIAL
CN115003822A (zh) * 2020-01-23 2022-09-02 积水化学工业株式会社 有机物质的制造方法和有机物质制造装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095485A (ja) * 2004-09-30 2006-04-13 Toshiba Corp 廃棄物処理システム
JP2012001441A (ja) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd エタノール製造方法、およびエタノール製造システム
JP2012184367A (ja) * 2011-03-07 2012-09-27 Mitsubishi Heavy Ind Ltd 生成ガス中のcos処理装置及びcos処理方法
WO2016017551A1 (ja) * 2014-07-29 2016-02-04 積水化学工業株式会社 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
JP2016059296A (ja) * 2014-09-16 2016-04-25 積水化学工業株式会社 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA22A (en) * 1869-08-25 A. Frechette Improvements in the gig saw
CN101190893B (zh) * 2006-11-20 2010-04-14 中国石油化学工业开发股份有限公司 一种纯化粗己内酰胺水溶液的设备与方法
CN102015974B (zh) * 2008-02-20 2014-06-25 Gtl汽油有限公司 处理氢气和一氧化碳的系统和方法
US8211679B2 (en) 2008-02-25 2012-07-03 Coskata, Inc. Process for producing ethanol
CN101538483B (zh) 2009-04-03 2013-04-17 中国科学院山西煤炭化学研究所 一种利用煤制气和焦炉气为原料多联产的工艺
EP2267102A1 (de) * 2009-06-24 2010-12-29 CTU - Conzepte Technik Umwelt AG System und Verfahren zur Aufbereitung von Gas aus einer Biomasse-Vergasung
PL3070170T3 (pl) 2010-01-14 2019-02-28 Lanzatech New Zealand Limited Fermentacja CO<sub>2</sub> z zastosowaniem potencjału elektrycznego
US8752390B2 (en) * 2010-07-13 2014-06-17 Air Products And Chemicals, Inc. Method and apparatus for producing power and hydrogen
US9155988B2 (en) * 2013-03-14 2015-10-13 Universal Laser Systems, Inc. Multi-stage air filtration systems and associated apparatuses and methods
CN103146760A (zh) * 2013-03-18 2013-06-12 张其标 一种高效节能环保沼气发酵及净化提纯技术
JP6523959B2 (ja) * 2013-09-13 2019-06-05 積水化学工業株式会社 有機物質の製造装置及び有機物質の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095485A (ja) * 2004-09-30 2006-04-13 Toshiba Corp 廃棄物処理システム
JP2012001441A (ja) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd エタノール製造方法、およびエタノール製造システム
JP2012184367A (ja) * 2011-03-07 2012-09-27 Mitsubishi Heavy Ind Ltd 生成ガス中のcos処理装置及びcos処理方法
WO2016017551A1 (ja) * 2014-07-29 2016-02-04 積水化学工業株式会社 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
JP2016059296A (ja) * 2014-09-16 2016-04-25 積水化学工業株式会社 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置

Also Published As

Publication number Publication date
US10865425B2 (en) 2020-12-15
US20210054419A1 (en) 2021-02-25
US11525147B2 (en) 2022-12-13
CN109563421A (zh) 2019-04-02
US20190256874A1 (en) 2019-08-22
JP6225239B1 (ja) 2017-11-01
EP3470497A1 (en) 2019-04-17
JP2017216997A (ja) 2017-12-14
JP2017216992A (ja) 2017-12-14
WO2017212662A1 (ja) 2017-12-14
EP3470497B1 (en) 2021-11-24
EP3470497A4 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
WO2017212605A1 (ja) 廃棄物から有機物質を製造する装置及び廃棄物から有機物質を製造する方法
CN110312558B (zh) 用于产物回收和细胞再循环的方法和系统
US11713443B2 (en) Integrated process for filtering constituents from a gas stream
JP6130817B2 (ja) 有機物質を製造する装置、有機物質を製造する方法、合成ガスの製造方法及び合成ガスの製造装置
US8158378B2 (en) Utilizing waste tail gas from a separation unit biogas upgrade systems as beneficial fuel
JP6097895B1 (ja) 有機物質の製造システム及び有機物質の製造方法
US20150152441A1 (en) Methods and systems for improving fermentation efficiency
CN117157409A (zh) 用于提高碳捕获效率的集成发酵和电解方法
JP6680960B1 (ja) ガス処理方法及びガス処理装置
JP6795707B2 (ja) 有機物質の製造装置
JPWO2019188730A1 (ja) 有機物質の製造方法
JP2016187792A (ja) ガス浄化方法及び装置、並びに有価物生成方法及び装置
JP6797317B1 (ja) 有機物質製造システム
US20170198309A1 (en) Apparatus for producing organic substance and method for producing organic substance
JP2015053922A (ja) 有機物質を製造する方法
WO2023235191A1 (en) Product recovery from fermentation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP