WO2017210846A1 - 抑制微波芯片中本振泄露的方法及其装置 - Google Patents

抑制微波芯片中本振泄露的方法及其装置 Download PDF

Info

Publication number
WO2017210846A1
WO2017210846A1 PCT/CN2016/085004 CN2016085004W WO2017210846A1 WO 2017210846 A1 WO2017210846 A1 WO 2017210846A1 CN 2016085004 W CN2016085004 W CN 2016085004W WO 2017210846 A1 WO2017210846 A1 WO 2017210846A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
microwave chip
local oscillator
component
channel signal
Prior art date
Application number
PCT/CN2016/085004
Other languages
English (en)
French (fr)
Inventor
拓勇
曹文涛
毛宏亮
孙利国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680086118.8A priority Critical patent/CN109155611B/zh
Priority to EP16904299.1A priority patent/EP3457563B1/en
Priority to PCT/CN2016/085004 priority patent/WO2017210846A1/zh
Publication of WO2017210846A1 publication Critical patent/WO2017210846A1/zh
Priority to US16/210,847 priority patent/US10735108B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • H04B15/02Reducing interference from electric apparatus by means located at or near the interfering apparatus
    • H04B15/04Reducing interference from electric apparatus by means located at or near the interfering apparatus the interference being caused by substantially sinusoidal oscillations, e.g. in a receiver or in a tape-recorder
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/008Compensating DC offsets
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/165Multiple-frequency-changing at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/125Discriminating pulses
    • H03K5/1252Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1461Suppression of signals in the return path, i.e. bidirectional control circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/009Reduction of local oscillator or RF leakage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00286Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency

Definitions

  • the present invention relates to the field of integrated circuit technology, and more particularly to a method and apparatus for suppressing local oscillator leakage in a microwave chip.
  • the problem of space leakage inside the chip has become a bottleneck in the performance improvement of microwave chips.
  • the LO leakage due to insufficient isolation is difficult to solve by the traditional Quadrature Modulation Correction (QMC) scheme.
  • QMC Quadrature Modulation Correction
  • the local oscillator suppression filter is difficult to implement in the high frequency band, and is not integrated inside the chip. Local oscillator leakage seriously affects transmit power accuracy, transmit spurs, and link linearity.
  • Embodiments of the present invention provide a method and device for suppressing local oscillator leakage in a microwave chip, which can effectively suppress local oscillator leakage inside a microwave chip.
  • a method for suppressing leakage of a local oscillator in a microwave chip includes an oscillator, a phase shifter, a first mixer, a second mixer, a combiner, and an adjustable attenuator.
  • the oscillator is configured to generate a local oscillator signal
  • the phase shifter is configured to convert the local oscillator signal into an in-phase local oscillator signal component and a quadrature local oscillator signal component
  • the first mixer is configured to use the in-phase I path
  • the signal is mixed with the in-phase local oscillator signal component
  • the second mixer is configured to mix the quadrature Q-channel signal with the quadrature local oscillator signal component
  • the combiner is configured to pass the The first mixer-mixed signal and the second mixer-mixed signal are combined and output to the adjustable attenuator, the method comprising: obtaining a current of the adjustable attenuator Attenuation amount; obtaining a DC component coefficient dc i ' of the I channel signal and a DC component coefficient dc q ' of the Q channel signal according to the local oscillation signal leaked to the adjustable attenuator; according to the space leakage factor k1 of the microwave chip K2, the current attenuation amount of
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • the method further includes: acquiring a power value of the output signal generated by the microwave chip in each of the at least three operating states and the The amount of attenuation of the adjustable attenuator in each of the operating states; the power value of the signal generated in each of the at least three operating states and the adjustable attenuator in each of the operating states The amount of attenuation determines the spatial leakage factors k1 and k2 of the microwave chip.
  • the spatial leakage factors k1 and k2 are respectively a parallel component coefficient and a vertical component coefficient of the local oscillator signal vector leaked to the local oscillator signal vector before the adjustable attenuator after leaking to the adjustable attenuator. Therefore, by acquiring the power value of the output signal of the microwave chip, a local oscillator signal leaking to the tunable attenuator can be obtained, and by acquiring the power value of the output signal of the microwave chip and the attenuation amount of the tunable attenuator, leakage can be obtained.
  • the local oscillator signal before the tunable attenuator can determine the spatial leakage factors k1 and k2 of the microwave chip according to the leakage condition of the local oscillator signal under three operating states.
  • the space leakage factor k1, k2 according to the microwave chip, the current attenuation amount of the tunable attenuator, And weighting the I component signal DC component coefficient dc i ' and the Q channel signal DC component coefficient dc q ', determining the corrected I channel signal DC component coefficient dc i and the corrected Q channel signal DC component coefficient dc q ,
  • the method comprises: determining a DC component coefficient dc i of the corrected I channel signal and a DC component coefficient dc q of the corrected Q channel signal by using the following formula;
  • A is the attenuation value of the adjustable attenuator.
  • the attenuation amount of the tunable attenuator, the I component signal DC component coefficient dc i ' and the Q channel signal DC component coefficient dc q ' are weighted, and the corrected I channel signal DC can be obtained.
  • the component coefficient dc i and the corrected Q channel signal DC component coefficient dc q are weighted, and the corrected I channel signal DC can be obtained.
  • the parameter for characterizing the working state includes at least one of: a local oscillator of the microwave chip The power of the signal, the power of the input modulation signal of the microwave chip, the attenuation of the attenuator, the DC component coefficient dc i ' of the I-channel signal, and the DC component coefficient dc q ' of the Q-channel signal.
  • any one of the above parameters changes, and the operating state of the microwave chip changes. It should be understood that other parameters that can change the operating state of the microwave chip also fall within the scope of the present invention.
  • the amount of attenuation of the adjustable attenuator in each of the operating states includes: when the microwave chip is in a frequency division duplex mode of operation, acquiring the microwave chip during initialization of the microwave chip Generating a power value of the output signal in each of the at least three operating states; when the microwave chip is in the time division duplex mode of operation, acquiring the said during the initialization process of the microwave chip and/or receiving the time slot
  • the microwave chip produces a power value of the output signal for each of the at least three operating states.
  • a second aspect provides an apparatus for suppressing leakage of a local oscillator signal in a microwave chip, comprising: an obtaining unit, a determining unit, and a transmitting unit, wherein the apparatus is configured to perform any of the above first aspect or the first aspect The method in the implementation.
  • a transceiver comprising the apparatus for suppressing leakage of a local oscillator signal in a microwave chip according to the second aspect.
  • an apparatus comprising: a processor, a memory, a receiver, and a transmitter, the processor, the memory, and the receiver being connected by a bus system, the memory for storing instructions
  • the processor is configured to execute instructions stored in the memory to control the receiver to receive a signal, the transmitter to transmit a signal, such that the apparatus performs the first aspect or the first aspect described above
  • the method in any of the possible implementations.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • FIG. 1 is a schematic view showing a space leak of a microwave chip according to an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a method for suppressing leakage of a local oscillation signal in a microwave chip according to an embodiment of the present invention.
  • FIG. 3 is a schematic flow chart of a method for suppressing leakage of a local oscillation signal in a microwave chip according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a method for suppressing leakage of a local oscillator signal in a microwave chip according to an embodiment of the present invention.
  • Fig. 5 is a block diagram showing the schematic configuration of a working device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural block diagram of a working device according to another embodiment of the present invention.
  • FIG. 7 is a schematic structural block diagram of a microwave chip according to an embodiment of the present invention.
  • Figure 8 is a block diagram showing the schematic structure of an apparatus of another embodiment of the present invention.
  • FIG. 1 is a schematic view showing a space leak of a microwave chip according to an embodiment of the present invention.
  • the microwave chip includes an oscillator 101, a phase shifter 102, a first mixer 103, a second mixer 104, a combiner 105, a tunable attenuator 106, an envelope detector 107, The amplifier 108 and the like, wherein the phase shifter 102, the first mixer 103, the second mixer 104, and the combiner 105 constitute an up-converter.
  • the local oscillator (English: Local Oscillatoer, LO) signal generated by the oscillator 101 is converted into two orthogonal signal components by the phase shifter 101, wherein the in-phase signal component of the local oscillator signal is sent to the first mixed signal.
  • LO Local Oscillatoer
  • the frequency converter 103 sends the orthogonal signal component of the local oscillator signal to the second mixer 104; the inphase signal sent from the modulator is sent to the first mixer 103 and the in-phase signal of the local oscillator signal.
  • Mixing wherein the in-phase signal is simply referred to as an I-channel signal; an orthogonal (English: Quadrature) signal sent from the modulator is sent to the first mixer 103 and mixed with the orthogonal signal of the local oscillator signal, wherein
  • the orthogonal signal is simply referred to as an I channel signal, and the signals sent through the first mixer 103 and the second mixer 104 are summed by the combiner 105.
  • the combiner the adjustable attenuator 106, and the like.
  • the space leakage generated by the microwave chip mainly consists of the following parts: the first part, the I component signal leaked to the adjustable attenuator 106 and the DC component of the Q channel signal; the second part, the leakage is adjustable The local oscillator signal before the attenuator 106; the third portion, the local oscillator signal leaking after the adjustable attenuator 106.
  • the signal leakage of the first part can be corrected by the QMC module
  • the signal leakage of the second part can be corrected by the envelope detector 107 after the adjustable attenuator 106
  • the third part that is, the leakage to the adjustable attenuator
  • the local oscillator signal after 106 is not well corrected.
  • the entire microwave signal outputted can be expressed by the following formula (1):
  • the tunable attenuator 106 full fading refers to the calibrated attenuation device calibrated maximum attenuation, for example, may be 25dB, 28dB, etc., the invention is not limited, r is the gain imbalance parameter, ⁇ is the phase imbalance parameter, Dc i is the DC component coefficient of the I channel signal, and dc q is the DC component coefficient of the Q channel signal.
  • the main signal representing the output signal dc i cos(w c t)-dc q sin(w c t)+acos(w c + ⁇ 1 )+bcos(w c t+ ⁇ 2 ) represents the local oscillator leakage of the output signal ,and It means that the image of the output signal is leaking.
  • the DC component coefficient dc of the I channel signal is The DC component coefficients dc q of the i and Q signals can correct the local oscillator leakage before leakage to the adjustable attenuator, and the DC component coefficients dc i of the I signal generated by the QMC and the DC component coefficient dc q of the Q channel signal are It cannot be used to correct the local oscillator signal after leakage to the adjustable attenuator.
  • the execution body of the method may be a device for suppressing leakage of a local oscillator signal, and the microwave chip includes an oscillator and a shifter.
  • the method 200 includes:
  • the spatial leakage factor k1, k2 of the microwave chip weighting the I component signal DC component coefficient dc i ' and the Q channel signal DC component coefficient dc q ', determining the corrected I The signal component DC component coefficient dc i and the corrected Q channel signal DC component coefficient dc q , wherein the spatial leakage factors k1 and k2 are respectively, and the local oscillator signal vector leaked to the adjustable attenuator is leaked to the adjustable attenuator Parallel component coefficients and vertical component coefficients on the previous local oscillator signal vector.
  • the current attenuation of the tunable attenuator is the attenuation value of the tunable attenuator
  • the tunable attenuator is a voltage variable attenuator (V: VVA).
  • V voltage variable attenuator
  • the amount of attenuation can be 3 dB, 6 dB, and the like.
  • the QMC module for suppressing signal leakage of the microwave chip is capable of obtaining a DC component coefficient dc i ' of the I channel signal and a DC component coefficient dc q ' of the Q channel signal according to the signal detected by the envelope detector tube.
  • the envelope detector is typically located before the tunable attenuator and can therefore be used to suppress LO leakage before it leaks into the tunable attenuator. It should be understood that the QMC module can also collect distortion signals according to other components having functions similar to the envelope detector tube, which is not limited in the present invention.
  • the local oscillator signal vector leaking after the tunable attenuator can be orthogonally resolved onto the local oscillator signal vector that leaks before the tunable attenuator.
  • the parallel component coefficient defining the local oscillator signal vector leaking to the tunable attenuator before the leakage to the tunable attenuator is a spatial leakage factor k1, defining the local oscillator after leaking to the tunable attenuator
  • the vertical component coefficient of the signal vector on the local oscillator signal vector before leaking to the tunable attenuator is the spatial leakage factor k2.
  • the vector is a vector signal that can be leaked to the adjustable attenuator after being decomposed into parallel and perpendicular to the local oscillator signal vector before leaking to the adjustable attenuator.
  • the amplitude coefficients are k1 and k2, respectively, which we call the coefficient k1 and K2 is the leakage factor.
  • the output local oscillator signal leaks to dc i cos(w c t)-dc q sin(w c t)+acos(w c + ⁇ 1 ) + bcos (w c t + ⁇ 2 ).
  • Acos(w c + ⁇ 1 ) represents the amount before the local oscillator leaks to the adjustable attenuator
  • bcos(w c t+ ⁇ 2 ) represents the amount after the local oscillator leaks to the adjustable attenuator when the adjustable attenuator is fully fading.
  • the DC component coefficients used to correct the leakage of the local oscillator are the I component signal DC component coefficient dc i ' and the Q channel signal DC.
  • Component coefficient dc q ' In order to offset the acos(w c + ⁇ 1 ) leak partially by dc i ' and dc q ', the relationship of the following formula (3) is obtained:
  • the local oscillator leakage signal dc i cos(w c t)-dc q sin(w c t)+acos(w c + ⁇ 1 )+bcos(w c t+ ⁇ 2 ) is adjustable by the attenuation amount A After the attenuator, the following formula is obtained
  • dc i ', dc q ' are the known parameters of the attenuation amount A, respectively, and it is necessary to obtain the power value of the output signal after the adjustable attenuator of the microwave chip, and obtain the above leakage factors k1 and k2.
  • step 240 before transmitting the I channel signal with the coefficient dc i to the first mixer, superimposing with the I channel modulation signal sent to the microwave chip by the combiner; similarly, Before transmitting the Q channel signal with dc q as a coefficient to the second mixer, superimposing with the Q channel modulation signal sent to the microwave chip by the combiner, wherein the I channel modulation signal and the Q channel modulation signal are The modulator sends two orthogonal signals to the microwave chip.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • the method further includes: acquiring a power value of the output signal generated by the microwave chip in each of the at least three operating states and an attenuation of the adjustable attenuator in each working state. .
  • the working state of the microwave chip refers to the operation of the microwave chip when a specific local oscillator signal output power, an adjustable attenuator attenuation value, and related parameters are determined.
  • the power detector tube, the power meter, the spectrum analyzer, and the like may be added at a position where the signal is outputted at the end of the microwave chip to obtain the power of the output signal of the microwave chip. It should be understood that the position of the component is not limited to the end of the microwave chip.
  • the network element outside the microwave chip may also be located, which is not limited in the present invention.
  • the output signal with the main signal turned off (that is, the modulator is turned off) and the component gain of the microwave chip is fully released. Power measurement.
  • the parameters affecting the working state of the microwave chip include, but are not limited to, the power of the local oscillator signal of the microwave chip, the power of the input modulated signal of the microwave chip, the attenuation value of the attenuator, and the sending to the The DC component coefficient dc i ' of the I signal of a mixer and the DC component coefficient dc q ' of the Q signal sent to the second mixer.
  • the first working state when the tunable attenuator is fully fading, the remaining attenuators are not fading, receiving the modulated signal, optimizing the parameters dc i ' and dc q ' of the QMC module, turning off the main body of the oscillator
  • the signal, the power detector located behind the tunable attenuator records the detected power as P 0 , according to the above relationship (2) At this point you can get:
  • the second working state the adjustable attenuator is fully fading, the remaining attenuators are not fading, the main signal from the oscillator is turned off, the parameters dc i ', dc q ' of the QMC module are respectively zero, and the detected power is recorded as P 1 According to the above relation (2), we can get:
  • the third working state the adjustable attenuator amplifies 6dB, the remaining attenuators are not fading, the main signal from the oscillator is turned off, the parameters dc i ', dc q ' of the QMC module are respectively zero, and the detected power is recorded as P 2 According to the above relation (2), we can get:
  • determining a spatial leakage factor of the microwave chip according to a power value of a signal generated in each working state in at least three working states and an attenuation amount of the adjustable attenuator in each working state. K1 and k2; determining the corrected DC component coefficient dc i of the I channel signal sent to the first mixer and transmitting to the second according to the spatial leakage factors k1, k2 of the microwave chip and the current attenuation amount of the adjustable attenuator
  • the corrected DC component coefficient dc q of the Q signal of the mixer causes the local oscillator leakage of the microwave chip to be zero.
  • the corrected DC component coefficient dc i of the I channel signal sent to the first mixer is determined according to the spatial leakage factors k1 and k2 and the current attenuation value of the adjustable attenuator.
  • the corrected DC component coefficient dc q of the Q channel signal sent to the second mixer including:
  • the corrected DC component coefficient dc i of the I signal transmitted to the first mixer and the Q sent to the second mixer are obtained by the following equation (7).
  • A is the attenuation value of the adjustable attenuator.
  • acquiring a power value of an output signal generated by the microwave chip in each of the at least three operating states and an attenuation amount of the adjustable attenuator in each working state including
  • the microwave chip is in the frequency division duplex mode, during the initialization process of the microwave chip, the power value of the output signal generated by the microwave chip in each of the at least three working states is obtained;
  • the microwave chip is in the time division duplex In the working mode, during the initialization process of the microwave chip and/or the receiving time slot, the power value of the output signal generated by the microwave chip in each of the at least three operating states is obtained.
  • the spatial leakage factors k1 and k2 are extracted;
  • time division duplexing English: Time Division Duplexing
  • TDD Time Division Duplexing
  • the present invention can solve the local leakage signal of the space leakage.
  • the problem that the space leakage cannot be corrected can be solved;
  • the static QMC coefficient can be solved to deteriorate due to the change of the attenuation state.
  • Problem; for LO_NULLING schemes of non-zero IF systems, LO_NULLING can be improved with power variation
  • improving system indicators improving the local oscillator leakage suppression degree by more than 10 dB compared with the existing solution, solving the problem of the emission template in the large-bandwidth radio frequency communication system; reducing the difficulty of system design: reducing some of the local oscillator suppression from the hardware point of view
  • the cost is reduced, and the requirements for the existing QMC algorithm are reduced. Further, the manufacturing cost can be reduced, and the static QMC parameter can be omitted.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • FIG. 4 is a schematic structural diagram of a method for suppressing leakage of a local oscillator signal in a microwave chip according to an embodiment of the present invention.
  • the architecture includes a microwave integrated chip, a micro control unit (English: Microcontroller Unit, MCU), and a QMC module.
  • the oscillator 401 is used to provide a local oscillator signal for the mixer
  • the mixer Mixer is used to up-convert the in-phase and quadrature components of the local oscillator signal to a radio frequency or microwave signal
  • the modulator sends out
  • the I signal and the in-phase signal component of the local oscillator signal are mixed by the first mixer 402, and the Q signal of the modulator and the quadrature component of the local oscillator signal are mixed by the second mixer 403.
  • the output to the combiner 404 is combined, and the signal passing through the combiner 404 is amplified by the amplifier 405 for final output.
  • the tunable attenuator 406 in the embodiment of the present invention may be a voltage variable attenuator (V: VVA), which can realize variable tuning of the signal by adjusting the attenuation amount.
  • V voltage variable attenuator
  • the detector tube 407 is for detecting the envelope of the modulated signal, collecting the distorted information, and adding a detector tube 408 after the VVA for power detection. It should be understood that the detector tube 408 can also be connected to the output end of the microwave chip, which is not limited in the present invention.
  • the QMC module includes a transmit TXTXQMC unit 409, a third mixer 410, and a digital to analog converter (English: Digital to Analog converter) (411) for transmitting signals by comparison.
  • the distortion signal detected by the envelope determines the DC component coefficient dc i ' of the I channel signal capable of correcting the LO leakage leaked before the VVA, and the DC component coefficient dc q ' of the Q channel signal leaked by the local oscillator leaked before the VVA .
  • the MCU module 412 is configured to perform processing of data processing, storage, and software flow, and the MCU module 412 in turn includes a first MCU unit 413 and a second MCU unit 414.
  • the MCU module 412 is connected to the detecting tube 408, the QMC unit 409, the adjustable attenuator 407, and the like, respectively, and can acquire the signal of the detecting tube 408 and the attenuation value of the adjustable attenuator 407, and the MCU module 412 can be measured according to the detecting tube 408.
  • the power value of the output signal of the microwave chip and the attenuation value of the adjustable attenuator 407 determine the leakage factors k1 and k2, and correct the DC component coefficient dc i ' of the I signal by the first MCU unit 413 to obtain the I signal.
  • the corrected DC component coefficient dc i ; and the DC component coefficient dc q ' of the Q channel signal are corrected by the second MCU unit 414 to obtain a corrected DC component coefficient of the Q channel signal.
  • the local oscillator dc i cos(w c t)-dc q sin(w c t)+acos(w c + ⁇ 1 )+bcos(w c t+ ⁇ 2 ) of the output signal acos(w c + ⁇ 1 ) represents the amount before the local oscillator leaks to the adjustable attenuator 407 (that is, VVA), and bcos(w c t+ ⁇ 2 ) represents the amount after the local oscillator leaks to VVA when the VVA is completely fading.
  • the local oscillator signal vector after leaking to VVA can be decomposed into parallel and perpendicular to the local oscillator signal vector before leaking to VVA, and the amplitude coefficients are k1 and k2, respectively, which we call the leak factors.
  • the local oscillator leakage signal dc i cos(w c t)-dc q sin(w c t)+acos(w c + ⁇ 1 )+bcos(w c t+ ⁇ 2 ) is after the VVA of the attenuation amount A , get the following
  • dc i ', dc q ' is the known attenuation parameter A, and the MCU module 412 needs to obtain the circuit power value after the VVA by power detection to determine the leakage factors k1 and k2.
  • the method of calculating k1 and k2 in the MCU module 412 is as follows:
  • the modulator sends a modulated signal, optimizes the parameters dc i ' and dc q ' of the QMC module, turns off the main signal, and the power detector recorded after the VVA records the detected power as P. 0 , you can get:
  • VVA is fully fading, the remaining attenuators are not fading, the main signal is turned off, the bypass QMC parameters dc i ', dc q ' are respectively zero, and the detected power is P 1 , at which time:
  • the VVA is amplified by 6dB, the remaining attenuators are not fading, the main signal is turned off, the bypass QMC parameters dc i ', dc q ' are respectively zero, and the detected power is recorded as P 2 , at which time:
  • an I-channel DC signal having a coefficient of dc i and a Q-channel DC signal having a coefficient of dc q are respectively transmitted to the microwave chip through the combiner 415 and the combiner 416.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • FIG. 5 is a block diagram showing the schematic structure of an apparatus in accordance with one embodiment of the present invention.
  • an apparatus 500 for suppressing leakage of a local oscillator signal in a microwave chip the microwave chip including an oscillator, a phase shifter, a first mixer, a second mixer, a combiner Adjustable attenuator, wherein the oscillator is used to generate a local oscillator signal, the phase shifter is used to convert the local oscillator signal into two orthogonal signal components, and the first mixer is used to phase-shift the in-phase I signal The in-phase local oscillator signal component is mixed, and the second mixer is used to mix the quadrature Q-channel signal with the quadrature local oscillator signal component that has passed through the phase shifter, and the combiner is used to pass the first mixer.
  • the mixed signal and the second mixer mixed signal are combined and output to the adjustable attenuator, and the apparatus 500 includes:
  • the obtaining unit 510 is configured to acquire a current attenuation amount of the adjustable attenuator
  • the obtaining unit 510 is further configured to obtain, according to the local oscillator signal leaked to the adjustable attenuator, the I component signal DC component coefficient dc i ' and the Q channel signal DC component coefficient dc q ';
  • a determining unit 520 configured to: according to a spatial leakage factor k1, k2 of the microwave chip, a current attenuation amount of the tunable attenuator, a DC component coefficient dc i ' and a Q path of the I channel signal
  • the signal DC component coefficient dc q ' is weighted to determine the corrected I component signal DC component coefficient dc i and the corrected Q channel signal DC component coefficient dc q , wherein the spatial leakage factors k1 and k2 are respectively leaked to a parallel component coefficient and a vertical component coefficient of the local oscillator signal vector after the adjustable attenuator on the local oscillator signal vector before leaking to the adjustable attenuator;
  • a sending unit 530 configured to send an I channel signal with the dc i as a coefficient to the first mixer, and send a Q channel signal with the dc q as a coefficient to the second Mixer.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • the acquiring unit 510 is further configured to: acquire the The microwave chip generates a power value of the output signal and an attenuation amount of the adjustable attenuator in each of the operating states in each of the at least three operating states; the transmitting unit 540 is further configured to The power leakage values of the signals generated in each of the at least three operating states and the attenuation of the adjustable attenuator in each of the operating states determine spatial leakage factors k1 and k2 of the microwave chip.
  • the determining unit 520 is specifically configured to: determine, by using the following formula, the corrected I component signal DC component coefficient dc i and the corrected Q channel signal DC component coefficient dc q ,
  • A is the attenuation value of the adjustable attenuator.
  • the parameter for characterizing the working state includes at least one of the following: a power of a local oscillator signal of the microwave chip, a power of an input modulation signal of the microwave chip, The attenuation amount of the attenuator, the DC component coefficient dc i ' of the I channel signal, and the DC component coefficient dc q ' of the Q channel signal.
  • the acquiring unit 510 is further configured to: when the microwave chip is in a frequency division duplex working mode, acquire the microwave chip in an initialization process of the microwave chip Generating the power of the output signal in each of the at least three operating states; when the microwave chip is in the time division duplex mode of operation, acquiring the microwave during initialization of the microwave chip and/or receiving time slot The chip produces a power value of the output signal for each of the at least three operating states.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • FIG. 6 is a schematic structural block diagram of a working device according to another embodiment of the present invention. As shown in FIG. 6, a device 600 for suppressing leakage of a local oscillator signal in a microwave chip is shown.
  • the device 600 includes:
  • the microwave chip 610 includes an oscillator, a phase shifter, a first mixer, a second mixer, a combiner, and an adjustable attenuator, wherein the oscillator is used to generate a local oscillator signal.
  • the phase shifter is configured to convert the local oscillator signal into two orthogonal signal components
  • the first mixer is configured to mix the in-phase I channel signal with the in-phase local oscillator signal component of the phase shifter.
  • the second mixer is configured to mix the quadrature Q channel signal with the quadrature local oscillator signal component that has passed through the phase shifter
  • the combiner is configured to mix the signal after the first mixer is mixed
  • the mixed signal of the second mixer is combined and output to the adjustable attenuator;
  • An obtaining unit 620 configured to acquire a current attenuation amount of the adjustable attenuator
  • the acquiring unit is further configured to acquire a direct current component coefficient dc i ' of the I channel signal and a direct current component coefficient dc q ' of the Q channel signal according to the local oscillator signal leaked to the adjustable attenuator;
  • a determining unit 630 configured to: according to a spatial leakage factor k1, k2 of the microwave chip, a current attenuation amount of the tunable attenuator, a DC component coefficient dc i ' and a Q path of the I signal
  • the signal DC component coefficient dc q ' is weighted to determine the corrected I component signal DC component coefficient dc i and the corrected Q channel signal DC component coefficient dc q , wherein the spatial leakage factors k1 and k2 are respectively leaked to a parallel component coefficient and a vertical component coefficient of the local oscillator signal vector after the adjustable attenuator on the local oscillator signal vector before leaking to the adjustable attenuator;
  • a sending unit 640 configured to send an I channel signal with the dc i as a coefficient to the first mixer, and send a Q channel signal with the dc q as a coefficient to the second Mixer.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • FIG. 7 is a schematic structural block diagram of a microwave chip according to an embodiment of the present invention.
  • the microwave chip 700 includes the microwave chip including an oscillator 701, a phase shifter 702, a first mixer 703, a second mixer 704, a combiner 705, an adjustable attenuator 706, and Power detection element 707,
  • the oscillator 701 is configured to generate a local oscillator signal
  • the phase shifter 702 is configured to The local oscillator signal is converted into two orthogonal signal components
  • the first mixer 703 is configured to mix the in-phase I signal with the in-phase local oscillator signal component of the phase shifter
  • the second mixer 704 is configured to mix the orthogonal Q channel signal with a quadrature local oscillator signal component that has passed through a phase shifter
  • the combiner 705 is configured to mix the signal and the frequency after the first mixer 703 is mixed.
  • the mixed signal of the second mixer 704 is combined and output to the adjustable attenuator 706, and the power detecting component 707 is configured to detect the power value of the output signal of the microwave chip.
  • the detecting component 707 can be a power detector tube, a power meter, or the like, and the invention is not limited.
  • the DC component coefficient dc i ' of the I channel signal and the DC component coefficient dc q ' of the Q channel signal are weighted according to the spatial leakage factors k1 and k2 of the microwave chip and the current attenuation amount of the tunable attenuator, and the correction is determined.
  • the subsequent I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q are respectively determined according to the corrected I-channel signal DC component coefficient dc i and the corrected Q-channel signal DC component coefficient dc q , respectively
  • a DC component of the I-channel signal superimposed on the microwave chip and a DC component of the Q-channel signal are determined. Therefore, the local oscillator leakage in the microwave chip can be effectively suppressed, the system performance of the microwave chip can be improved, the system design difficulty can be reduced, and the manufacturing cost can be reduced.
  • FIG. 8 is a block diagram showing the schematic structure of an apparatus of another embodiment of the present invention.
  • an embodiment of the present invention further provides an apparatus 800, which includes a processor 801, a memory 802, a bus system 803, and a receiver 804.
  • the processor 801, the memory 802 and the receiver 804 are connected by a bus system 803 for storing instructions for executing instructions stored by the memory 802 and controlling the receiver 804 to receive information.
  • the device 800 can implement the corresponding processes in the foregoing method embodiments. To avoid repetition, details are not described herein again.
  • the processor 801 may be a central processing unit (“CPU"), and the processor 8 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 802 can include read only memory and random access memory and provides instructions and data to the processor 801. A portion of the memory 802 may also include a non-volatile random access memory. For example, the memory 802 can also store information of the device type.
  • the bus system 803 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for the sake of clarity, the various buses are labeled as buses in the figure. System 803.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 802, and processor 801 reads the information in memory 802 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or made as a standalone product When used, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)
  • Noise Elimination (AREA)

Abstract

本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。

Description

抑制微波芯片中本振泄露的方法及其装置 技术领域
本发明涉及集成电路技术领域,更具体地,涉及一种抑制微波芯片中本振泄露的方法及其装置。
背景技术
伴随着高集成度微波芯片的发展,芯片内部的空间泄露问题已经成为微波芯片性能提升的一个瓶颈。对于常见的上变频器加可调谐衰减器架构的微波集成芯片来说,由于隔离度不够造成的本振泄露通过传统的正交调制校正(英文:Quadrature Modulation Correction,简写:QMC)方案已经难以解决,而本振抑制滤波器在高频段实现困难,更无法集成在芯片内部。本振泄露严重影响发射功率精度、发射杂散和链路线性。
因此,如何有效的抑制微波芯片内部空间隔离不够造成的本振泄露,是亟待解决的问题。
发明内容
本发明实施例提供一种抑制微波芯片中本振泄露的方法及其装置,能够有效抑制微波芯片内部的本振泄露。
第一方面,提供一种微波芯片中抑制本振泄露的方法,所述微波芯片包括振荡器、移相器、第一混频器、第二混频器、合路器、可调衰减器,所述振荡器用于产生本振信号,所述移相器用于将所述本振信号转化为同相本振信号分量和正交本振信号分量,所述第一混频器用于将同相I路信号与所述同相本振信号分量进行混频,所述第二混频器用于将正交Q路信号与所述正交本振信号分量进行混频,所述合路器用于将经过所述第一混频器混频后的信号和所述第二混频器混频后的信号进行合频并输出至所述可调衰减器,所述方法包括:获取所述可调衰减器的当前衰减量;根据泄露到所述可调衰减器之前的本振信号,获取I路信号直流分量系数dci'和Q路信号直流分量系数dcq';根据所述微波芯片的空间泄露因子k1、k2、所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和所述Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号 直流分量系数dcq,其中,所述空间泄露因子k1和k2分别为,泄露到所述可调衰减器之后的本振信号矢量在泄露到所述可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数;发送以所述dci为系数的I路信号至所述第一混频器,以及发送以所述dcq为系数的Q路信号至所述第二混频器。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
结合第一方面,在第一方面的第一种可能的实现方式中,上述方法还包括:获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在所述每种工作状态下的衰减量;根据所述至少三种工作状态中每种工作状态下产生信号的功率值和所述每种工作状态下所述可调衰减器的衰减量,确定所述微波芯片的空间泄露因子k1和k2。
应理解,空间泄露因子k1和k2分别为,泄露到所述可调衰减器之后的本振信号矢量在泄露到所述可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数,因此,通过获取微波芯片产生输出信号的功率值能够获得泄漏到可调谐衰减器之后的本振信号,通过获取微波芯片产生输出信号的功率值以及可调谐衰减器的衰减量,可以获得泄露到可调谐衰减器之前的本振信号,根据三种工作状态下的本振信号的泄露情况可以确定所述微波芯片的空间泄露因子k1和k2。
结合第一方面及其上述实现方式,在第一方面的第二种可能的实现方式中,所述根据所述微波芯片的空间泄露因子k1、k2、所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,包括:利用下式确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq
Figure PCTCN2016085004-appb-000001
其中,所述A为所述可调衰减器的衰减值。
也就是说,利用泄露因子k1和k2、可调谐衰减器的衰减量对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,能够得到校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq
结合第一方面及其上述实现方式,在第一方面的第三种可能的实现方式中,所述用于表征所述工作状态的参数包括下列中的至少一种:所述微波芯片的本振信号的功率、所述微波芯片的输入调制信号的功率、所述衰减器的衰减量、所述I路信号的直流分量系数dci'、所述Q路信号的直流分量系数dcq'。
也就是说,上述参数中的任意一个参数发生变化,所述微波芯片的工作状态就发生了变化,应理解,能够令微波芯片工作状态发生变化的其它参数也落入本发明的范围。
结合第一方面及其上述实现方式,在第一方面的第四种可能的实现方式中,所述获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在所述每种工作状态下的衰减量,包括:当所述微波芯片处于频分双工工作模式时,在所述微波芯片的初始化过程中,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值;当所述微波芯片处于时分双工工作模式时,在所述微波芯片的初始化过程中和/或接收时隙,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值。
第二方面,提供一种抑制微波芯片中的本振信号泄露的装置,包括:获取单元、确定单元、发送单元,所述装置用于执行上述第一方面或第一方面的任一种可能的实现方式中的方法。
第三方面,提供一种收发机,所述收发机包括第二方面所述的抑制微波芯片中的本振信号泄露的装置。
第四方面,提供了一种装置,包括:处理器、存储器、接收器和发送器,所述处理器、所述存储器和所述接收器通过总线系统相连,所述存储器用于存储指令,所述处理器用于执行该存储器存储的指令,以控制所述接收器接收信号、所述发射器发送信号,使得所述装置执行上述第一方面或第一方面 的任一可能的实现方式中的方法。
第五方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
附图说明
图1是本发明实施例的微波芯片的空间泄露的示意图。
图2是本发明一个实施例的微波芯片中抑制本振信号泄露的方法的示意性流程图。
图3是本发明一个实施例的微波芯片中抑制本振信号泄露的方法的示意性流程图。
图4是本发明实施例的微波芯片中抑制本振信号泄露的方法的架构示意图。
图5是本发明一个实施例的工作装置的示意性结构框图。
图6是本发明另一实施例的工作装置的示意性结构框图。
图7是本发明一个实施例的微波芯片的示意性结构框图。
图8是本发明另一个实施例的装置的示意性结构框图。
具体实施方式
图1是本发明实施例的微波芯片的空间泄露的示意图。
如图1所示,该微波芯片包括振荡器101、移相器102、第一混频器103、第二混频器104、合路器105、可调谐衰减器106、包络检波管107、放大器108等,其中,移相器102、第一混频器103、第二混频器104和合路器105等构成上变频器。具体地,振荡器101产生的本振(英文:Local Oscillatoer,简写LO)信号经过移相器101转化为两路正交的信号分量,其中,本振信号的同相信号分量发送至第一混频器103,本振信号的正交信号分量发送至第二混频器104;从调制器发出的同相(英文:Inphase)信号发送至第一混频器103与本振信号的同相信号进行混频,其中,同相信号简称为I路信号;从上述调制器发出的正交(英文:Quadrature)信号发送至第一混频器103与本振信号的正交信号进行混频,其中,正交信号简称为I路信号,经过第一混频器103和第二混频器104发出的信号经由合路器105进行信号的加和, 并经过后续的放大器108、耦合器、可调衰减器106等输出。
如图1所示,微波芯片产生的空间泄露主要由以下几个部分:第一部分,泄露到可调衰减器106之前的I路信号和Q路信号的直流分量;第二部分,泄露到可调衰减器106之前本振信号;第三部分,泄露到可调衰减器106之后的本振信号。其中,第一部分的信号泄露可以通过QMC模块进行校正,第二部分的信号泄露可以通过可调衰减器106之后的包络检波管107进行校正,而第三部分,也就是泄漏到可调衰减器106之后的本振信号却无法较好的校正。
具体地,对于微波芯片,在可调衰减器106全衰的时候,输出的整个微波信号可以用下式(1)表示:
Figure PCTCN2016085004-appb-000002
其中,可调衰减器106全衰是指该可调谐的衰减器件标定的最大衰减量,例如可以为25dB、28dB等,本发明不作限定,r为增益不平衡参数,φ为相位不平衡参数,dci为I路信号的直流分量系数,dcq为Q路信号的直流分量系数。
进一步地,
Figure PCTCN2016085004-appb-000003
表示输出信号的主信号,dcicos(wct)-dcqsin(wct)+acos(wc1)+bcos(wct+θ2)表示输出信号的本振泄露,而
Figure PCTCN2016085004-appb-000004
则表示输出信号的镜像泄露。
具体地,由于在微波集成芯片的QMC模块根据包络检波管检测到的信号得到I路信号的直流分量系数dci和Q路信号的直流分量系数dcq,因此I路信号的直流分量系数dci和Q路信号的直流分量系数dcq能够校正泄露到可调衰减器之前的本振泄露,而该QMC产生的I路信号的直流分量系数dci和Q路信号的直流分量系数dcq并不能够用于校正泄露到可调衰减器之后的本振信号。
图2是本发明一个实施例的微波芯片中抑制本振信号泄露的方法的示意性流程图,该方法的执行主体可以为一种抑制本振信号泄露的装置,该微波芯片包括振荡器、移相器、第一混频器、第二混频器、合路器、可调衰减器,其中,振荡器用于产生本振信号,移相器用于将所述本振信号转化为两路正 交的信号分量,第一混频器用于将同相I路信号与经过移相器的同相本振信号分量进行混频,第二混频器用于将正交Q路信号与经过移相器的正交本振信号分量进行混频,合路器用于将经过第一混频器混频后的信号和第二混频器混频后的信号进行合频并输出至所述可调衰减器。如图2所示,该方法200包括:
210,获取可调衰减器的当前衰减量。
220,根据泄露到可调衰减器之前的本振信号,获取I路信号直流分量系数dci'和Q路信号直流分量系数dcq'。
230,根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,其中,空间泄露因子k1和k2分别为,泄露到可调衰减器之后的本振信号矢量在泄露到可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数。
240,发送以dci为系数的I路信号至第一混频器,以及发送以dcq为系数的Q路信号至第二混频器。
具体地,在步骤210中,可调谐衰减器的当前衰减量为该可调谐衰减器的衰减值,该可调谐衰减器为压控可调衰减器(英文:Voltage variable attenuator,简写:VVA),例如,衰减量可以为3dB、6dB等。
具体地,在步骤220中,用于抑制微波芯片信号泄露的QMC模块能够根据包络检波管检测到的信号得到I路信号的直流分量系数dci'和Q路信号的直流分量系数dcq',该包络检波管一般位于可调谐衰减器之前,因此能够用于抑制泄露到可调谐衰减器之前的本振泄露。应理解,该QMC模块还可以根据其它功能与包络检波管功能相似的元器件采集失真信号,本发明不做限制。
具体地,在步骤230中,泄露在可调谐衰减器之后的本振信号矢量能够正交分解在泄露到可调谐衰减器之前的本振信号矢量上。其中,定义泄露到可调谐衰减器之后的本振信号矢量在泄露到可调谐衰减器之前的本振信号矢量上的平行分量系数为空间泄露因子k1,定义泄露到可调谐衰减器之后的本振信号矢量在泄露到可调谐衰减器之前的本振信号矢量上的垂直分量系数为空间泄露因子k2。也就是说,如果泄露到可调谐衰减器之前的本振信号 矢量为可以将泄露到可调衰减器之后的本振信号矢量分解为平行于和垂直于泄露到可调衰减器之前的本振信号矢量,振幅系数分别为k1和k2,我们称该系数k1和k2为泄露因子。
如图3所示,
Figure PCTCN2016085004-appb-000005
表示本振信号泄露到可调衰减器之前的量,
Figure PCTCN2016085004-appb-000006
表示本振信号泄露到可调衰减器之后的量,可以得到
Figure PCTCN2016085004-appb-000007
具体地,上述微波芯片在可调谐衰减器全衰状态下,QMC模块使能后,输出的本振信号泄露为dcicos(wct)-dcqsin(wct)+acos(wc1)+bcos(wct+θ2)。。acos(wc1)表示本振泄露到可调衰减器之前的量,bcos(wct+θ2)表示可调衰减器全衰时,本振泄露到可调衰减器之后的量。
因此,根据
Figure PCTCN2016085004-appb-000008
也可以得到如下关系式(2):
bcos(wct+θ2)=k1*acos(wct+θ1)+k2*asin(wc1)  (2)
当QMC模块使能后,为了解决泄露到可调衰减器之前的本振泄露,假设用于校正该部分本振泄露的直流分量系数分别为I路信号直流分量系数dci'和Q路信号直流分量系数dcq'。为了利用dci'和dcq'将acos(wc1)泄露部分抵消掉,则得出了如下式(3)的关系:
Figure PCTCN2016085004-appb-000009
经历1/4周期后,上面的等式可以变化为下式(4):
Figure PCTCN2016085004-appb-000010
因此,本振泄露信号dcicos(wct)-dcqsin(wct)+acos(wc1)+bcos(wct+θ2)经过衰减量为A的可调衰减器之后,得到下式
A×dcicos(wct)-A×dcqsin(wct)+acos(wc1)+bcos(wct+θ2)   (5)
将公式(2)的关系带入式(5),可以得到如下关系:
Figure PCTCN2016085004-appb-000011
因此,为了最大程度的抑制本振泄露,也就需要使得上式(6)的最终取值为0。因此需要有如下关系,得到校正后的I路信号直流分量系数dci和 校正后的Q路信号直流分量系数dcq
Figure PCTCN2016085004-appb-000012
在式(7)中,dci'、dcq'为衰减量A分别为已知参数,需要获取微波芯片的可调衰减器之后的输出信号的功率值,获得上述泄露因子k1和k2。
具体地,在步骤240中,在发送以dci为系数的I路信号至第一混频器之前,通过合路器与发送至所述微波芯片的I路调制信号进行叠加;同样地,在发送以dcq为系数的Q路信号至第二混频器之前,通过合路器与发送至所述微波芯片的Q路调制信号进行叠加,其中,I路调制信号和Q路调制信号是由调制器发送至所述微波芯片的两路正交信号。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
可选地,作为本发明一个实施例,上述方法还包括:获取微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与每种工作状态下可调衰减器的衰减量。
具体地,微波芯片的工作状态指的是该微波芯片在特定的本振信号输出功率、可调衰减器的衰减值以及相关参数确定时的工作情况。
具体地,可以通过在微波芯片末端输出信号的位置增加功率检波管、功率计、频谱仪等元件,以获取该微波芯片输出信号的功率,应理解,上述元器件的位置不限于微波芯片末端,也可以位于微波芯片外的网元,本发明不作限定。
应理解,为了提升对微波芯片的输出信号的功率的检测精度,优选地方式是在关闭主信号(也就是调制器关闭)、并将微波芯片的元器件增益全放的情况下进行输出信号的功率测量。
可选地,作为本发明一个实施例,影响微波芯片工作状态的参数包括但不限于:微波芯片的本振信号的功率、微波芯片的输入调制信号的功率、衰 减器的衰减值、发送至第一混频器的I路信号的直流分量系数dci'和发送至第二混频器的Q路信号的直流分量系数dcq'。
具体地,例如,第一种工作状态:在可调谐衰减器全衰时,其余衰减器不衰,接收调制信号,最优化QMC模块的参数dci'和dcq',关闭振荡器发出的主信号,位于可调谐衰减器之后的功率检波管记录检测到的功率为P0,根据上述关系式(2)
Figure PCTCN2016085004-appb-000013
此时可以得到:
a2(k12+k22)=P0   (8)
第二种工作状态:可调衰减器全衰,其余衰减器不衰,关闭振荡器发出的主信号,QMC模块的参数dci'、dcq'分别为零,记录检测到的功率为P1,根据上述关系式(2),可以得到:
a2[(k1+1)2+k22)=P1   (9)
第三种工作状态:可调衰减器放大6dB,其余衰减器不衰,关闭振荡器发出的主信号,QMC模块的参数dci'、dcq'分别为零,记录检测到的功率为P2,根据上述关系式(2)可以得到:
a2[(k1+2)2+k22)=P2    (10)
其中,
Figure PCTCN2016085004-appb-000014
表示本振信号泄露到可调衰减器之前的量,
Figure PCTCN2016085004-appb-000015
表示本振信号泄露到可调衰减器之后的量。
应理解,上述三种工作状态仅仅是示例性的,本发明不限于此。
可选地,作为本发明一个实施例,根据至少三种工作状态中每种工作状态下产生信号的功率值和每种工作状态下可调衰减器的衰减量,确定述微波芯片的空间泄露因子k1和k2;根据微波芯片的空间泄露因子k1、k2和可调衰减器的当前衰减量,确定发送至第一混频器的I路信号的校正后的直流分量系数dci和发送至第二混频器的Q路信号的校正后的直流分量系数dcq,使得微波芯片的本振泄露为0。
具体地,根据上述等式(8)至(10),可以得到:
由(8)至(9)式可以得到下式(11):
Figure PCTCN2016085004-appb-000016
Figure PCTCN2016085004-appb-000017
因此,将系数k1和k2分别带入公式(7),即可得到dci和dcq
本方案所述的空间泄露因子k1和k2的提取,在任何3个(或3个以上)功率等级下都可以推出,因此,都落入本发明要求的保护范围。
可选地,作为本发明一个实施例,根据空间泄露因子k1和k2,以及可 调衰减器的当前衰减值,确定发送至第一混频器的I路信号的校正后的直流分量系数dci和发送至第二混频器的Q路信号的校正后的直流分量系数dcq,包括:
将根据上述实施例得到的泄露因子k1和k2,利用下式(7)获得发送至第一混频器的I路信号的校正后的直流分量系数dci和发送至第二混频器的Q路信号的校正后的直流分量系数dcq
Figure PCTCN2016085004-appb-000018
其中,A为可调衰减器的衰减值。
可选地,作为本发明一个实施例,获取微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在每种工作状态下的衰减量,包括:当微波芯片处于频分双工工作模式时,在微波芯片的初始化过程中,获取微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值;当微波芯片处于时分双工工作模式时,在微波芯片的初始化过程中和/或接收时隙,获取微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值。
也就是说,对于频分双工(英文:Frequency Division Duplexing,简写:FDD)系统,在对微波芯片的初始化过程,进行空间泄露因子k1和k2的提取;对于时分双工(英文:Time Division Duplexing,简写:TDD)系统,可以在对微波芯片的初始化过程或接收时隙进行空间泄露因子k1和k2的提取。
本发明可以解决空间泄露的本振信号,对于单只模块的TX_QMC方案,可以解决空间泄露无法校正的问题;对于成跳模块的RX-TXQMC方案,可以解决静态QMC系数随衰减状态变化而恶化的问题;对于非零中频系统的LO_NULLING方案,可以提升LO_NULLING随功率变化的抑制度
具体地,在提升系统指标方面:较现有方案提升本振泄露抑制度10dB以上,解决大带宽射频通信系统中的发射模板问题;降低系统设计难度方面:降低从硬件角度解决本振抑制的一些成本,降低对于现有QMC算法能力的要求;进一步地,能够减小生产制造成本,可以省去静态QMC参数做表环节等。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器 的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
图4是本发明实施例的微波芯片中抑制本振信号泄露的方法的架构示意图。
如图4所示,该架构包括微波集成芯片、微控制单元(英文:Microcontroller Unit,简写:MCU)、QMC模块三部分组成。
具体地,在微波集成芯片中:振荡器401用于为混频器提供本振信号,混频器Mixer用于将本振信号的同相和正交分量上变频到射频或微波信号,调制器发出的I路信号和本振信号的同相信号分量经过第一混频器402混频,以及调制器发出的Q路信号和本振信号的正交分量经过第二混频器403混频后,输出至合路器404合频,经过合路器404的信号又经过放大器405进行放大最终输出的过程。其中,本发明实施例中的可调谐衰减器406可以为压控可调衰减器(英文:Voltage variable attenuator,简写:VVA),该VVA通过调节衰减量能够实现对信号的可变调谐,包络检波管407用于检测调制信号的包络,采集失真的信息,并且,在VVA之后增加了检波管408,用于进行功率检测。应理解,该检波管408也可以接在该微波芯片的输出端,本发明不作限定。
具体地,具体地,QMC模块包括发射TXTXQMC单元409、第三混频器410和数模转换器(英文:Digital to analog converter,简写:DAC)411,该QMC模块用于通过比对发送信号和包络检测的失真信号,确定能够校正泄露在VVA之前的本振泄露的I路信号的直流分量系数dci',以及泄露在VVA之前的本振泄露的Q路信号的直流分量系数dcq'。
具体地,MCU模块412用于进行数据处理、存储和软件流程的处理,该MCU模块412又包括第一MCU单元413和第二MCU单元414。MCU模块412分别与检波管408、QMC单元409、可调衰减器407等相连,能够获取检波管408的信号以及可调衰减器407的衰减值,该MCU模块412能够根据检波管408测得的微波芯片的输出信号的功率值和可调衰减器407的 衰减值,确定泄露因子k1和k2,并通过第一MCU单元413对I路信号的直流分量系数dci'进行校正,得到I路信号的校正后的直流分量系数dci;以及通过第二MCU单元414对Q路信号的直流分量系数dcq'进行校正,得到Q路信号的校正后的直流分量系数。
具体地,输出信号的本振dcicos(wct)-dcqsin(wct)+acos(wc1)+bcos(wct+θ2)中,acos(wc1)表示本振泄露到可调衰减器407(也即是VVA)之前的量,bcos(wct+θ2)表示VVA全衰时,本振泄露到VVA之后的量。
可以将泄露到VVA之后的本振信号矢量分解为平行于和垂直于泄露到VVA之前的本振信号矢量,振幅系数分别为k1和k2,我们称该系数k1和k2为泄露因子。
假设
Figure PCTCN2016085004-appb-000019
表示本振信号泄露到VVA之前的量,
Figure PCTCN2016085004-appb-000020
表示本振信号泄露到VVA之后的量,得到
Figure PCTCN2016085004-appb-000021
即可以得到如下关系式(2):
bcos(wct+θ2)=k1*acos(wct+θ1)+k2*asin(wc1)   (2)
当QMC模块使能后,为了解决泄露到VVA之前的本振泄露,假设用于校正该部分本振泄露的直流分量系数分别为dci'和dcq'。为了利用dci'和dcq'将acos(wc1)泄露部分抵消掉,则得出了如下式(3)的关系:
Figure PCTCN2016085004-appb-000022
经历1/4周期后,上面的等式可以变化为下式(4):
Figure PCTCN2016085004-appb-000023
因此,本振泄露信号dcicos(wct)-dcqsin(wct)+acos(wc1)+bcos(wct+θ2)经过衰减量为A的VVA之后,得到下式
A×dcicos(wct)-A×dcqsin(wct)+acos(wc1)+bcos(wct+θ2)   (5)
将公式(2)的关系带入式(5),可以得到如下关系:
Figure PCTCN2016085004-appb-000024
因此,为了最大程度的抑制本振泄露,也就需要使得上式(6)的最终取值为0。因此需要有如下关系:
Figure PCTCN2016085004-appb-000025
在式(7)中,dci'、dcq'为衰减量A分别为已知参数,MCU模块412需要通过功率检波获取位于VVA之后的电路功率值,确定泄露因子k1和k2。
具体地,在MCU模块412中计算确定k1和k2的方法如下:
在VVA全衰时,其余衰减器不衰,调制器发送调制信号,最优化QMC模块的参数dci'和dcq',关闭主信号,位于VVA之后的功率检波管记录检测到的功率为P0,此时可以得到:
a2(k12+k22)=P0   (8)
VVA全衰,其余衰减器不衰,关闭主信号,旁路QMC参数dci'、dcq'分别为零,记录检测到的功率为P1,此时可以得到:
a2[(k1+1)2+k22)=P1   (9)
VVA放大6dB,其余衰减器不衰,关闭主信号,旁路QMC参数dci'、dcq'分别为零,记录检测到的功率为P2,此时可以得到:
a2[(k1+2)2+k22)=P2   (10)
由(8)至(10)式可以得到:
Figure PCTCN2016085004-appb-000026
Figure PCTCN2016085004-appb-000027
因此,将等式(11)系数k1和k2分别带入公式(7),即可得到dci和dcq。其中,根据上述微波芯片的输出信号的功率值计算泄露因子k1和k2的过程是MCU模块412完成的,利用公式(7)确定校正后的I路信号的直流分量系数dci的过程可以在第一MCU单元413中实现,利用公式(7)确定校正后的Q路信号的直流分量系数dcq的过程可以在第一MCU单元414中实现。
本方案所述的空间泄露因子k1和k2的提取,在任何3个(或3个以上)功率等级下都可以推出,因此,都落入本发明要求的保护范围。
进一步地,以dci为系数的I路直流信号和以dcq为系数的Q路直流信号分别通过合路器415和合路器416发送至微波芯片中。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信 号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
图5是本发明一个实施例的装置的示意性结构框图。如图5所示,示出了一种抑制微波芯片中的本振信号泄露的装置500,该微波芯片包括振荡器、移相器、第一混频器、第二混频器、合路器、可调衰减器,其中,振荡器用于产生本振信号,移相器用于将本振信号转化为两路正交的信号分量,第一混频器用于将同相I路信号与经过移相器的同相本振信号分量进行混频,第二混频器用于将正交Q路信号与经过移相器的正交本振信号分量进行混频,合路器用于将经过第一混频器混频后的信号和第二混频器混频后的信号进行合频并输出至所述可调衰减器,装置500包括:
获取单元510,获取单元510用于获取可调衰减器的当前衰减量;
获取单元510还用于根据泄露到所述可调衰减器之前的本振信号,获取I路信号直流分量系数dci'和Q路信号直流分量系数dcq';
确定单元520,所述确定单元520用于根据所述微波芯片的空间泄露因子k1、k2、所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,其中,所述空间泄露因子k1和k2分别为,泄露到所述可调衰减器之后的本振信号矢量在泄露到所述可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数;
发送单元530,所述发送单元530用于发送以所述dci为系数的I路信号至所述第一混频器,以及发送以所述dcq为系数的Q路信号至所述第二混频器。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
可选地,作为本发明一个实施例,所述获取单元510还用于:获取所述 微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在所述每种工作状态下的衰减量;所述发送单元540还用于根据所述至少三种工作状态中每种工作状态下产生信号的功率值和所述每种工作状态下所述可调衰减器的衰减量,确定所述微波芯片的空间泄露因子k1和k2。
可选地,作为本发明一个实施例,所述确定单元520具体用于:利用下式确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq
Figure PCTCN2016085004-appb-000028
其中,所述A为所述可调衰减器的衰减值。
可选地,作为本发明一个实施例,用于表征所述工作状态的参数包括下列中的至少一种:所述微波芯片的本振信号的功率、所述微波芯片的输入调制信号的功率、所述衰减器的衰减量、所述I路信号的直流分量系数dci'、所述Q路信号的直流分量系数dcq'。
可选地,作为本发明一个实施例,所述获取单元510还用于:当所述微波芯片处于频分双工工作模式时,在所述微波芯片的初始化过程中,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率;当所述微波芯片处于时分双工工作模式时,在所述微波芯片的初始化过程中和/或接收时隙,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
图6是本发明另一实施例的工作装置的示意性结构框图。如图6所示,示出了一种抑制微波芯片中的本振信号泄露的装置600,该装置600包括:
微波芯片610,所述微波芯片610包括振荡器、移相器、第一混频器、第二混频器、合路器、可调衰减器,所述振荡器用于产生本振信号,所述移相器用于将所述本振信号转化为两路正交的信号分量,所述第一混频器用于将同相I路信号与经过移相器的同相本振信号分量进行混频,所述第二混频器用于将正交Q路信号与经过移相器的正交本振信号分量进行混频,所述合路器用于将经过所述第一混频器混频后的信号和所述第二混频器混频后的信号进行合频并输出至所述可调衰减器;
获取单元620,所述获取单元620用于获取所述可调衰减器的当前衰减量;
所述获取单元还用于根据泄露到所述可调衰减器之前的本振信号,获取I路信号直流分量系数dci'和Q路信号直流分量系数dcq';
确定单元630,所述确定单元630用于根据所述微波芯片的空间泄露因子k1、k2、所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,其中,所述空间泄露因子k1和k2分别为,泄露到所述可调衰减器之后的本振信号矢量在泄露到所述可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数;
发送单元640,所述发送单元640用于发送以所述dci为系数的I路信号至所述第一混频器,以及发送以所述dcq为系数的Q路信号至所述第二混频器。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
图7是本发明一个实施例的微波芯片的示意性结构框图。如图7所示,该微波芯片700包括所述微波芯片包括振荡器701、移相器702、第一混频器703、第二混频器704、合路器705、可调衰减器706和功率检波元件707,
其中,所述振荡器701用于产生本振信号,所述移相器702用于将所述 本振信号转化为两路正交的信号分量,所述第一混频器703用于将同相I路信号与经过移相器的同相本振信号分量进行混频,所述第二混频器704用于将正交Q路信号与经过移相器的正交本振信号分量进行混频,所述合路器705用于将经过所述第一混频器703混频后的信号和所述第二混频器704混频后的信号进行合频并输出至所述可调衰减器706,所述功率检波元件707用于检测所述微波芯片的输出信号的功率值。
具体地,该检波元件707可以为功率检波管、功率计等元件,本发明不作限制。
本发明实施例通过根据微波芯片的空间泄露因子k1、k2、可调谐衰减器的当前衰减量,对I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,并根据校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,分别确定叠加至所述微波芯片上的I路信号的直流分量和Q路信号的直流分量。因此,能够有效抑制微波芯片中本振泄露,提升微波芯片的系统性能,降低系统设计难度,减少生成制造成本。
图8是本发明另一个实施例的装置的示意性结构框图。如图8所示,本发明实施例还提供了一种装置800,该装置800包括处理器801、存储器802、总线系统803和接收器804。其中,处理器801、存储器802和接收器804通过总线系统803相连,该存储器802用于存储指令,该处理器801用于执行该存储器802存储的指令,并控制该接收器804接收信息。装置800能够实现前述方法实施例中的相应流程,为避免重复,这里不再赘述。
应理解,在本发明实施例中,该处理器801可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器8还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器802可以包括只读存储器和随机存取存储器,并向处理器801提供指令和数据。存储器802的一部分还可以包括非易失性随机存取存储器。例如,存储器802还可以存储设备类型的信息。
该总线系统803除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线 系统803。
在实现过程中,上述方法的各步骤可以通过处理器801中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器802,处理器801读取存储器802中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (12)

  1. 一种抑制微波芯片中的本振信号泄露的方法,其特征在于,所述微波芯片包括振荡器、移相器、第一混频器、第二混频器、合路器、可调衰减器,所述振荡器用于产生本振信号,所述移相器用于将所述本振信号转化为同相本振信号分量和正交本振信号分量,所述第一混频器用于将同相I路信号与所述同相本振信号分量进行混频,所述第二混频器用于将正交Q路信号与所述正交本振信号分量进行混频,所述合路器用于将经过所述第一混频器混频后的信号和所述第二混频器混频后的信号进行合频并输出至所述可调衰减器,所述方法包括:
    获取所述可调衰减器的当前衰减量;
    根据泄露到所述可调衰减器之前的本振信号,获取I路信号直流分量系数dci'和Q路信号直流分量系数dcq';
    根据所述微波芯片的空间泄露因子k1、k2、所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和所述Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,其中,所述空间泄露因子k1和k2分别为,泄露到所述可调衰减器之后的本振信号矢量在泄露到所述可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数;
    发送以所述dci为系数的I路信号至所述第一混频器,以及发送以所述dcq为系数的Q路信号至所述第二混频器。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在所述每种工作状态下的衰减量;
    根据所述至少三种工作状态中每种工作状态下产生信号的功率值和所述每种工作状态下所述可调衰减器的衰减量,确定所述微波芯片的空间泄露因子k1和k2。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述微波芯片的空间泄露因子k1、k2、所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,包括:
    利用下式确定校正后的I路信号直流分量系数dci和校正后的Q路信号 直流分量系数dcq
    Figure PCTCN2016085004-appb-100001
    其中,所述A为所述可调衰减器的衰减值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述用于表征所述工作状态的参数包括下列中的至少一种:
    所述微波芯片的本振信号的功率、所述微波芯片的输入调制信号的功率、所述衰减器的衰减量、所述I路信号的直流分量系数dci'、所述Q路信号的直流分量系数dcq'。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在所述每种工作状态下的衰减量,包括:
    当所述微波芯片处于频分双工工作模式时,在所述微波芯片的初始化过程中,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值;
    当所述微波芯片处于时分双工工作模式时,在所述微波芯片的初始化过程中和/或接收时隙,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值。
  6. 一种抑制微波芯片中的本振信号泄露的装置,其特征在于,所述微波芯片包括振荡器、移相器、第一混频器、第二混频器、合路器、可调衰减器,所述振荡器用于产生本振信号,所述移相器用于将所述本振信号转化为同相本振信号分量和正交本振信号分量,所述第一混频器用于将同相I路信号与所述同相本振信号分量进行混频,所述第二混频器用于将正交Q路信号与所述正交本振信号分量进行混频,所述合路器用于将经过所述第一混频器混频后的信号和所述第二混频器混频后的信号进行合频并输出至所述可调衰减器,所述装置包括:
    获取单元,所述获取单元用于获取所述可调衰减器的当前衰减量;
    所述获取单元还用于根据泄露到所述可调衰减器之前的本振信号,获取I路信号直流分量系数dci'和Q路信号直流分量系数dcq';
    确定单元,所述确定单元用于根据所述微波芯片的空间泄露因子k1、k2、 所述可调谐衰减器的当前衰减量,对所述I路信号直流分量系数dci'和Q路信号直流分量系数dcq'进行加权,确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq,其中,所述空间泄露因子k1和k2分别为,泄露到所述可调衰减器之后的本振信号矢量在泄露到所述可调衰减器之前的本振信号矢量上的平行分量系数和垂直分量系数;
    发送单元,所述发送单元用于发送以所述dci为系数的I路信号至所述第一混频器,以及发送以所述dcq为系数的Q路信号至所述第二混频器。
  7. 根据权利要求6所述的装置,其特征在于,所述获取单元还用于:
    获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值与所述可调衰减器在所述每种工作状态下的衰减量;
    所述发送单元还用于根据所述至少三种工作状态中每种工作状态下产生信号的功率值和所述每种工作状态下所述可调衰减器的衰减量,确定所述微波芯片的空间泄露因子k1和k2。
  8. 根据权利要求6或7所述的装置,其特征在于,所述确定单元具体用于:
    利用下式确定校正后的I路信号直流分量系数dci和校正后的Q路信号直流分量系数dcq
    Figure PCTCN2016085004-appb-100002
    其中,所述A为所述可调衰减器的衰减值。
  9. 根据权利要求7或8所述的装置,其特征在于,所述用于表征所述工作状态的参数包括下列中的至少一种:
    所述微波芯片的本振信号的功率、所述微波芯片的输入调制信号的功率、所述衰减器的衰减量、所述I路信号的直流分量系数dci'、所述Q路信号的直流分量系数dcq'。
  10. 根据权利要求7至9中任一项所述的装置,其特征在于,所述获取单元还用于:
    当所述微波芯片处于频分双工工作模式时,在所述微波芯片的初始化过程中,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值;
    当所述微波芯片处于时分双工工作模式时,在所述微波芯片的初始化过 程中和/或接收时隙,获取所述微波芯片在至少三种工作状态中每种工作状态下产生输出信号的功率值。
  11. 根据权利要求6至10中任一项所述的装置,其特征在于,所述装置还包括:
    所述微波芯片,所述微波芯片包括所述振荡器、所述移相器、所述第一混频器、所述第二混频器、所述合路器、所述可调衰减器。
  12. 一种收发机,其特征在于,所述收发机包括权利要求6至11所述的抑制微波芯片中的本振信号泄露的装置。
PCT/CN2016/085004 2016-06-06 2016-06-06 抑制微波芯片中本振泄露的方法及其装置 WO2017210846A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680086118.8A CN109155611B (zh) 2016-06-06 2016-06-06 抑制微波芯片中本振泄露的方法及其装置
EP16904299.1A EP3457563B1 (en) 2016-06-06 2016-06-06 Method for suppressing local oscillator leakage in microwave chip and device thereof
PCT/CN2016/085004 WO2017210846A1 (zh) 2016-06-06 2016-06-06 抑制微波芯片中本振泄露的方法及其装置
US16/210,847 US10735108B2 (en) 2016-06-06 2018-12-05 Method for suppressing local oscillator leakage in microwave chip and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/085004 WO2017210846A1 (zh) 2016-06-06 2016-06-06 抑制微波芯片中本振泄露的方法及其装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/210,847 Continuation US10735108B2 (en) 2016-06-06 2018-12-05 Method for suppressing local oscillator leakage in microwave chip and apparatus thereof

Publications (1)

Publication Number Publication Date
WO2017210846A1 true WO2017210846A1 (zh) 2017-12-14

Family

ID=60578316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085004 WO2017210846A1 (zh) 2016-06-06 2016-06-06 抑制微波芯片中本振泄露的方法及其装置

Country Status (4)

Country Link
US (1) US10735108B2 (zh)
EP (1) EP3457563B1 (zh)
CN (1) CN109155611B (zh)
WO (1) WO2017210846A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11815588B2 (en) * 2019-07-05 2023-11-14 University Of Electronic Science And Technology Of China Room-temperature semiconductor maser and applications thereof
CN114039619B (zh) * 2021-09-28 2023-05-09 三维通信股份有限公司 零中频射频前端电路、系统、射频单元保护方法和介质
CN117220713B (zh) * 2023-09-06 2024-04-12 上海力通通信有限公司 不共本振的tx直流跟踪校正方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270965A (zh) * 2011-04-02 2011-12-07 华为技术有限公司 混频电路和混频电路中抑制本振泄露的方法
CN102510265A (zh) * 2011-09-28 2012-06-20 武汉虹信通信技术有限责任公司 基于变频系统的自适应减小本振泄露的方法及实现装置
CN104158552A (zh) * 2014-08-01 2014-11-19 华为技术有限公司 零中频发射机、接收机及相关方法和系统

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681697A (en) * 1969-12-31 1972-08-01 Westinghouse Electric Corp Wideband image terminated mixer
US4947062A (en) * 1988-05-19 1990-08-07 Adams Russell Electronics Co., Inc. Double balanced mixing
US5060298A (en) * 1988-12-09 1991-10-22 Siemens Aktiengesellschaft Monolithic double balanced mixer with high third order intercept point employing an active distributed balun
NL8901460A (nl) * 1989-06-08 1991-01-02 Philips Nv Ontvanger voor terrestriele am- en satelliet fm-tv-omroepsignalen.
US5263198A (en) * 1991-11-05 1993-11-16 Honeywell Inc. Resonant loop resistive FET mixer
JP3022032B2 (ja) * 1993-03-12 2000-03-15 三菱電機株式会社 平衡形ミクサおよび180度分配回路および帯域阻止フィルタ
KR0145047B1 (ko) * 1993-09-28 1998-07-15 김광호 디지탈신호 기록/재생장치의 변조 및 복조회로
EP0707757B1 (en) * 1994-05-06 1999-12-29 Koninklijke Philips Electronics N.V. Microwave transmission system
US6122329A (en) * 1998-02-06 2000-09-19 Intermec Ip Corp. Radio frequency identification interrogator signal processing system for reading moving transponders
US6249876B1 (en) * 1998-11-16 2001-06-19 Power Integrations, Inc. Frequency jittering control for varying the switching frequency of a power supply
US6832077B1 (en) * 2000-01-12 2004-12-14 Honeywell International, Inc. Microwave isolator
US7138858B2 (en) * 2001-01-12 2006-11-21 Silicon Laboratories, Inc. Apparatus and methods for output buffer circuitry with constant output power in radio-frequency circuitry
US7042960B2 (en) * 2001-08-28 2006-05-09 Northrop Grumman Corporation Low order spur cancellation mixer topologies
US7876855B2 (en) * 2001-08-28 2011-01-25 Northrop Grumman Systems Corporation Phase modulation power spreading used to reduce RF or microwave transmitter output power spur levels
JP4676358B2 (ja) * 2006-02-27 2011-04-27 東芝テック株式会社 直交復調器及び質問器
WO2007119405A1 (ja) * 2006-04-03 2007-10-25 Brother Kogyo Kabushiki Kaisha 無線通信装置
US7809338B2 (en) * 2006-08-29 2010-10-05 Texas Instruments Incorporated Local oscillator with non-harmonic ratio between oscillator and RF frequencies using wideband modulation spectral replicas
US7826815B2 (en) * 2007-07-13 2010-11-02 Fairchild Semiconductor Corporation Dynamic selection of oscillation signal frequency for power converter
CN101272373B (zh) 2008-05-07 2010-09-08 北京北方烽火科技有限公司 一种自适应模拟正交调制失衡补偿方法和装置
CN101588659A (zh) * 2008-05-19 2009-11-25 沈阳北方交通重工集团有限公司 微波防泄露装置
US8542616B2 (en) * 2008-10-14 2013-09-24 Texas Instruments Incorporated Simultaneous multiple signal reception and transmission using frequency multiplexing and shared processing
CN101540208A (zh) * 2009-04-24 2009-09-23 中国农业大学 一种防微波泄露装置
US8744385B2 (en) * 2009-09-01 2014-06-03 Provigent Ltd Efficient reduction of local oscillator leakage
CN102598555B (zh) * 2009-10-28 2014-10-15 松下电器产业株式会社 无线通信装置
CN102598533B (zh) * 2009-11-04 2015-06-24 日本电气株式会社 无线电通信系统的控制方法、无线电通信系统和无线电通信装置
JP5896503B2 (ja) * 2010-08-03 2016-03-30 ザインエレクトロニクス株式会社 送信装置、受信装置および送受信システム
US8804397B2 (en) * 2011-03-03 2014-08-12 Rambus Inc. Integrated circuit having a clock deskew circuit that includes an injection-locked oscillator
US9450537B2 (en) * 2014-08-25 2016-09-20 Tensorcom, Inc. Method and apparatus to detect LO leakage and image rejection using a single transistor
US9548788B2 (en) * 2014-12-04 2017-01-17 Raytheon Company Frequency conversion system with improved spurious response and frequency agility
JP6299887B2 (ja) * 2015-01-26 2018-03-28 株式会社Jvcケンウッド Fm受信装置、fm受信方法
JP6436174B2 (ja) * 2015-02-06 2018-12-12 日本電気株式会社 電源供給回路、増幅器、通信装置、基地局、電源供給方法
US9634717B2 (en) * 2015-03-20 2017-04-25 Huawei Technologies Co., Ltd. Single local oscillator architecture for dual-band microwave/millimeter-wave transceiver
CN105471468B (zh) * 2015-11-11 2018-06-05 上海华为技术有限公司 一种本振泄漏信号校正的装置、方法及微处理机控制器
US9887862B2 (en) * 2015-12-07 2018-02-06 The Trustees Of Columbia University In The City Of New York Circuits and methods for performing self-interference cancelation in full-duplex transceivers
US9992722B2 (en) * 2015-12-14 2018-06-05 Huawei Technologies Canada Co., Ltd. Reconfigurable multi-mode and multi-bands radio architecture and transceiver
US10145937B2 (en) * 2016-04-01 2018-12-04 Texas Instruments Incorporated Dynamic IQ mismatch correction in FMCW radar
JP6636862B2 (ja) * 2016-06-16 2020-01-29 株式会社東芝 信号検出装置、無線通信装置、無線通信端末および信号検出方法
KR102437150B1 (ko) * 2017-12-15 2022-08-26 한국전자통신연구원 다중 주파수 신호를 사용하는 사물의 변위 측정 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270965A (zh) * 2011-04-02 2011-12-07 华为技术有限公司 混频电路和混频电路中抑制本振泄露的方法
CN102510265A (zh) * 2011-09-28 2012-06-20 武汉虹信通信技术有限责任公司 基于变频系统的自适应减小本振泄露的方法及实现装置
CN104158552A (zh) * 2014-08-01 2014-11-19 华为技术有限公司 零中频发射机、接收机及相关方法和系统

Also Published As

Publication number Publication date
CN109155611B (zh) 2020-10-27
EP3457563B1 (en) 2020-09-09
EP3457563A4 (en) 2019-07-03
US20190115987A1 (en) 2019-04-18
EP3457563A1 (en) 2019-03-20
US10735108B2 (en) 2020-08-04
CN109155611A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
US9031523B2 (en) Systems and methods for determining antenna impedance
TWI528764B (zh) 校正傳送器/接收器的第一、第二訊號路徑之間的不匹配的校正方法與校正裝置
TWI536779B (zh) 校正傳送器/接收器的第一、第二訊號路徑之間的不匹配的校正方法與校正裝置
JP4845437B2 (ja) Lo漏洩及び側波帯像の校正システム及び方法
TWI416899B (zh) 校正通訊電路中同相/正交訊號間之不匹配的方法與裝置
TWI551038B (zh) 用於振幅調變至相位調變失真補償之裝置及方法
US8831076B2 (en) Transceiver IQ calibration system and associated method
US9584175B2 (en) Radio frequency transceiver loopback testing
US9485598B2 (en) Method and a device for measuring the amplitude noise and/or phase noise of a signal
WO2017063415A1 (zh) 一种收发信机及工作方法
CN104125182A (zh) 收发器的同相/正交失衡校正系统及其校正方法
WO2018121111A1 (zh) 消除本振泄漏的装置及方法
US10374643B2 (en) Transmitter with compensating mechanism of pulling effect
WO2017210846A1 (zh) 抑制微波芯片中本振泄露的方法及其装置
TWI385913B (zh) 接收器與無線訊號接收方法
TW202016569A (zh) 雷達裝置及其洩漏修正方法
WO2022001721A1 (zh) 相位确定方法及装置、相位校准方法、介质、天线设备
US11528179B1 (en) System, apparatus, and method for IQ imbalance correction for multi-carrier IQ transmitter
TWI422148B (zh) 複數濾波器及校正方法
US10230408B2 (en) Measurement receiver harmonic distortion cancellation
US8279975B2 (en) Method to suppress undesired sidebands in a receiver
US9379929B2 (en) Phase imbalance calibration
US10003415B1 (en) Method to remove measurement receiver counter intermodulation distortion for transmitter calibration
CN117675489A (zh) 信号校正方法及装置
JP2003333117A (ja) コヒーレント適応校正装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016904299

Country of ref document: EP

Effective date: 20181212