WO2017209146A1 - 透明導光板及びこれに用いる光反射シート - Google Patents

透明導光板及びこれに用いる光反射シート Download PDF

Info

Publication number
WO2017209146A1
WO2017209146A1 PCT/JP2017/020151 JP2017020151W WO2017209146A1 WO 2017209146 A1 WO2017209146 A1 WO 2017209146A1 JP 2017020151 W JP2017020151 W JP 2017020151W WO 2017209146 A1 WO2017209146 A1 WO 2017209146A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
light reflecting
layer
guide plate
Prior art date
Application number
PCT/JP2017/020151
Other languages
English (en)
French (fr)
Inventor
由次郎 高野
皓二 八木
Original Assignee
株式会社エイビック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エイビック filed Critical 株式会社エイビック
Publication of WO2017209146A1 publication Critical patent/WO2017209146A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings

Definitions

  • the present invention relates to a transparent light guide plate and a light reflecting sheet used therefor.
  • the transparent light guide plate of the present invention can be applied to, for example, a surface light source of a transmissive display device.
  • transmissive display device for example, one disclosed in Patent Document 1 below is known.
  • a surface light source is used as a backlight.
  • the surface light source supplies light to the liquid crystal plate or the like by, for example, emitting light incident from the side surface of the light guide plate in the thickness direction of the light guide plate.
  • the transmissive display device can be made thinner than when a fluorescent lamp, an LED array, or the like is used.
  • Patent Document 2 As the surface light source, for example, one disclosed in Patent Document 2 below is known.
  • a large number of spherical light reflecting protrusions (light reflecting dots in Cited Document 2) are formed on the back surface of the light guide plate using an inkjet printing technique. Then, light incident from the side surface of the light guide plate is scattered in the light guide plate, and part of the light reaches the inner spherical surface of the light reflection protrusion to be reflected, thereby obtaining light emitted in the thickness direction of the light guide plate. (See FIG. 1 etc. of Cited Document 2).
  • the conventional light guide plate has the disadvantages that these light reflecting protrusions can be visually recognized and that it is difficult to obtain a sufficient amount of emitted light.
  • the light reflecting protrusion is easily peeled off from the light guide plate.
  • a light guide plate is curved to create a transmissive display device with a curved display screen
  • some light reflecting protrusions are peeled off from the light guide plate, and the surface light source has a sufficiently uniform amount of light. Can't get.
  • the light reflecting protrusions are easily peeled off, it is difficult to clean the surface of the light guide plate.
  • An object of the present invention is to provide a light guide plate that has a sufficiently high uniformity in the amount of emitted light, that makes it difficult for the light reflecting protrusions to be visually recognized, and that makes it difficult for the light reflecting protrusions to peel off.
  • the transparent light guide plate according to the present invention reflects at least a part of light incident on the side surface from the light source by the inner spherical surfaces of a plurality of light reflecting protrusions provided on the back surface,
  • a flat plate-shaped light reflecting member that is affixed to the back surface of the light guide substrate is provided.
  • the light reflecting member includes a plurality of light transmissive layers laminated on the back surface side of the light guide base material, and the outermost layer of the light transmissive layers includes the light reflecting protrusions. It is a formed light reflecting layer, and it is desirable that the light reflecting layer has a higher refractive index than the other light transmitting layer that is in direct contact therewith.
  • the plurality of light-transmitting layers are a polyethylene terephthalate layer attached to the back surface of the light guide base material, and the light reflecting layer directly formed on the polyethylene terephthalate layer using an ultraviolet curable resin. It is desirable to include.
  • the light guide base material and the light reflecting member have flexibility.
  • the light reflecting sheet according to the present invention is used as the light reflecting member of the present invention.
  • the light reflecting protrusions are formed on the light reflecting member by embossing, it is easy to control the diameter and pitch of the light reflecting protrusions with high accuracy.
  • the refractive index of the light reflecting layer that is the outermost layer is made larger than the refractive index of the light transmitting layer that is in direct contact with the transparent member.
  • the amount of light with which the light guide plate irradiates the irradiated surface can be increased.
  • the light reflecting member is a laminate of a polyethylene terephthalate layer and an ultraviolet curable resin layer, a light reflecting member that is highly durable, easy to process, and inexpensive can be obtained.
  • the display screen can be used as a transparent light guide plate of a transmissive display device having a curved surface.
  • the transparent light guide plate of the present invention can be used for a transmissive display device in which a part of the light incident on the side surface from the light source is emitted from the back surface so that the display screen and the background are superimposed.
  • the light reflecting member for the transparent light guide plate according to the present invention can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a transparent light guide plate according to this embodiment.
  • the transparent light guide plate 100 includes a light guide substrate 110, an adhesive layer 120, and a light reflecting member 130.
  • the light guide substrate 110 is a plate-like substrate having translucency.
  • the light guide base 110 a flat plate having a rectangular shape in plan view is used.
  • the light guide substrate 110 may be a rigid plate or a flexible sheet.
  • As a material for forming the light guide base 110 for example, acrylic is suitable, but other materials may be used.
  • the planar dimensions of the light guide substrate 110 are arbitrary, and may be determined according to the screen dimensions of the transmissive display device to be used.
  • the thickness of the light guide base material 110 is also arbitrary, it is about 2 mm, for example.
  • the refractive index n0 of the light guide base 110 is set to 1.49.
  • the adhesive layer 120 for example, a transparent optical adhesive film (OCA) can be used. However, as long as it has sufficient translucency and adhesive performance, you may use another kind of adhesive sheet, an adhesive agent, etc.
  • the thickness of the adhesive layer 120 is, for example, 0.1 mm.
  • the refractive index n1 of the adhesive layer 120 is set to 1.4857.
  • the light reflecting member 130 is attached to the back surface of the light guide base 110 using the adhesive layer 120.
  • the light reflecting member 130 for example, a flat plate having a planar dimension substantially the same as that of the light guide base 110 is used.
  • the light reflecting member 130 may be a rigid plate or a flexible sheet (corresponding to the light reflecting sheet of the present invention).
  • the light reflecting member 130 may have a single layer structure or a multilayer structure.
  • the light reflecting member 130 is formed by laminating a base layer 131 and a light reflecting layer 132. These layers 131 and 132 are both light-transmitting layers.
  • the base layer 131 for example, PET (that is, polyethylene terephthalate) can be used, but it may be formed of other materials.
  • the refractive index n2 of the base layer 131 is set to 1.48.
  • the thickness of the base layer 131 is, for example, 0.05 mm. Since the color temperature of the emitted light tends to increase as the base layer 131 becomes thicker, it is desirable to make the base layer 131 as thin as possible within a range in which the durability of the light reflecting member 130 can be secured.
  • the light reflecting layer 132 for example, an ultraviolet curable resin can be used, but it may be formed of other materials.
  • the refractive index n3 of the light reflecting layer 132 is set to 1.5785.
  • the thickness of this light reflection layer 132 is 0.012 mm, for example.
  • a large number of light reflecting protrusions 132 b are formed on the outer surface 132 a side of the light reflecting layer 132.
  • the light reflecting protrusion 132b desirably has a spherical shape.
  • the inner spherical surface of these light reflecting protrusions 132b acts as a concave mirror to reflect a part of the light inserted from the light guide base 110 into the light reflecting member 130, so that the light guide base It can be led to the surface side of the material 110.
  • the dimensions of the light reflecting protrusion 132b are, for example, a diameter of 30 to 60 ⁇ m and a height of 3 to 5 ⁇ m (preferably 3.3 to 4.67 ⁇ m).
  • these light reflecting protrusions 132 b are arranged on the outer surface 132 a of the light reflecting layer 132 in the x direction and the y direction (that is, the vertical and horizontal directions of the light reflecting member 130). They are arranged in a two-dimensional direction along the predetermined arrangement pattern at a predetermined pitch.
  • the light reflecting protrusions 132b are arranged in a staggered pattern, but a normal matrix shape may be used.
  • the pitch A in the vertical and horizontal directions is, for example, 0.16 to 0.24 mm
  • the pitch B in the oblique direction is, for example, 0.11 to 0.17 mm.
  • light is incident on the transparent light guide plate 100 from the side surface in a direction parallel to the front and back surfaces of the transparent light guide plate 100.
  • a white LED (not shown) or the like is used as the light source of this light.
  • Part of the light incident on the transparent light guide plate 100 reaches the boundary surface 301 between the light guide base 110 and the adhesive layer 120. Then, a part of the light is reflected at the boundary surface 301, and the remaining light is refracted and enters the adhesive layer 120.
  • the light incident on the adhesive layer 120 reaches the boundary surface 302 between the adhesive layer 120 and the base layer 131. Then, a part of the light is reflected at the boundary surface 302 and the remaining light is refracted and is incident on the base layer 131.
  • the light incident on the base layer 131 reaches the boundary surface 303 between the base layer 131 and the light reflecting layer 132. A part of the light is reflected at the boundary surface 303, and the remaining light is refracted and is incident on the light reflecting layer 132.
  • the light reflected by the light reflecting protrusion 132 b reaches the boundary surface 303, a part of which is reflected, and the rest is refracted and enters the base layer 131.
  • the light incident on the base layer 131 reaches the boundary surface 302, a part of which is reflected, and the rest is refracted and incident on the adhesive layer 120.
  • the light incident on the adhesive layer 120 reaches the boundary surface 301, a part of the light is reflected, and the rest is refracted and incident on the light guide substrate 110.
  • the reflectance R at the boundary surface is expressed by the following equation (1). Given (for normal incidence).
  • the refractive index n0 of the light guide base 110 is 1.49
  • the refractive index n1 of the adhesive layer 120 is 1.4857
  • the refractive index n2 of the base layer 131 is 1.48
  • light reflection is 1.785.
  • the refractive index n3 of the light reflecting layer 132 is 1.5785, which is sufficiently larger than the refractive index outside the light reflecting layer 132 (usually air), and is therefore reflected by the light reflecting protrusion 132b.
  • the amount of light to be generated is sufficiently large (see the above formula (1)).
  • the light reflected in the light reflecting layer 132 reaches the boundary surface 303 again.
  • the greater the incident angle when the boundary surface 303 is reached the higher the light reflectance.
  • this light is incident on a medium having a high refractive index (light reflecting layer 132) and entering a medium having a low refractive index (base layer 131), total reflection is caused for light having an incident angle ⁇ 2 larger than a predetermined value. Occur. Therefore, a large amount of light having a small incident angle ⁇ 2 (that is, light having a small angle with respect to the thickness direction of the transparent light guide plate 100) is incident on the base layer 131.
  • a part of the light incident on the base layer 131 passes through the adhesive layer 120 and the light guide base 110 and exits from the surface of the light guide base 110 (the lower side in FIG. 3). .
  • the difference in refractive index between the base layer 131 and the adhesive layer 120 (n2-n1) and the difference in refractive index between the adhesive layer 120 and the light guide substrate 110 (n0-n1) are small.
  • the transmittance of is sufficiently large.
  • the light reflection member 130 is configured such that the upper layer (that is, the light reflection layer 132) has a higher refractive index, the angle of the transparent light guide plate 100 with respect to the thickness direction is increased. A large amount of small light can be extracted, thereby increasing the directivity of the emitted light, so that the amount of light irradiated on the irradiated surface (for example, a liquid crystal panel of a transmissive display device) can be increased.
  • a sheet-like light reflecting member 130 is produced as follows.
  • a liquid ultraviolet curable resin is applied to the back surface of the base layer 131 (for example, PET).
  • the light reflecting protrusion 132b is formed on the ultraviolet curable resin by a stamping process.
  • the method of pressing is not limited, and a direct pressing transfer method in which a flat plate is pressed against the ultraviolet curable resin may be used.
  • a rotary roller type is used in order to manufacture the light reflecting member 130 having a large area. It is desirable to use the roller transfer method used.
  • the ultraviolet curable resin is cured by irradiating with ultraviolet rays.
  • the light reflecting member 130 is cut into a desired size.
  • the size of the light reflecting member 130 is determined based on the size of the irradiated surface (for example, a liquid crystal panel of a transmissive display device).
  • the adhesive layer 120 is formed on the back surface of the light guide substrate 110.
  • the method of forming the adhesive layer 120 may be a method of applying a transparent optical adhesive film (OCA), or a method of applying a liquid adhesive or the like to the back surface of the light guide substrate 110. There may be.
  • OCA transparent optical adhesive film
  • a sheet-like light reflecting member 130 is pasted on the back surface of the adhesive layer 120.
  • the light reflecting member 130 may be attached to the light guide substrate 110 while being inclined.
  • the light reflecting protrusions 132b are arranged depending on the pitch and arrangement pattern of the light reflecting protrusions 132b. May cause stripe-like luminance unevenness in the light emitted from the transparent light guide plate 100, which may deteriorate the image quality of the irradiated surface (for example, a liquid crystal panel of a transmissive display device).
  • the light reflecting member 130 is attached to the transparent light guide plate 100 so that the light reflecting protrusions 132b are arranged in a light incident direction.
  • the liquid crystal panel is inclined with respect to the arrangement direction of the liquid crystal elements, and this makes it possible to suppress and prevent such image quality deterioration.
  • the inclination angle varies depending on the pitch and arrangement pattern of the light reflecting projections 132b, but is about 3 to 5 °, for example.
  • the light reflecting protrusions 132b may be formed so as to be inclined with respect to the vertical and horizontal side surfaces of the light reflecting member 130, instead of attaching the light reflecting member 130 at an angle.
  • the arrangement direction of the light reflecting protrusions 132b is inclined with respect to the arrangement direction of the pixels or sub-pixels of the display device, it is possible to prevent interference fringes from being generated in the transmissive display device.
  • the light reflecting protrusion 132b is formed on the light reflecting member 130 by embossing, the diameter and pitch of the light reflecting protrusion 132b are controlled with high accuracy. It becomes easy.
  • the diameter of the light reflecting protrusion 132b can be made extremely small.
  • the light reflecting protrusion 132b can be made difficult to peel off.
  • the transparent light guide plate 100 can increase the amount of light that irradiates the irradiated surface.
  • the base layer 131 is formed of PET and the light reflecting layer 132 is formed of an ultraviolet curable resin, a light reflecting member that is highly durable, easy to process, and inexpensive can be obtained.
  • the light guide base 110 and the light reflecting member 130 are made flexible, so that the display screen can be used as a transparent light guide plate of a transmissive display device having a curved surface.
  • the transparent light guide plate 100 according to the present invention is used for a liquid crystal display or the like has been described as an example.
  • the display screen and the background are overlapped by emitting a part of incident light from the back surface. It is also possible to use it for a transmissive display device of the type that is displayed. In this case, light transmitted through the light reflecting member 130 and reflected by the object on the back side is transmitted through the light reflecting member 130, the adhesive layer 120, and the light guide substrate 110.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

出射光量の均一性が十分に高く、光反射突部が視認し難く且つ光反射突部が剥がれ落ち難い導光板を提供する。透明導光板は、入射光を、裏面に設けられた複数の光反射突部の内球面で反射させて、表面から出射させる。この透明導光板は、透光性の導光基材と、接着層と、光反射部材とを備える。光反射部材は、ベース層と、光反射層とを有する。光反射層には、型押し加工によって、光反射突部が形成されている。型押し加工で光反射突部を形成することで、この光反射突部を小さく形成できると共に、その径やピッチを高精度に制御することができ、且つ、剥がれ落ち難くできる。

Description

透明導光板及びこれに用いる光反射シート
 本発明は、透明導光板及びこれに用いる光反射シートに関する。本発明の透明導光板は、例えば、透過型ディスプレイ装置の面光源等に適用することができる。
 透過型ディスプレイ装置としては、例えば下記特許文献1に開示されたものが知られている。特許文献1の透過型ディスプレイ装置では、バックライトとして、面光源を使用している。
 ここで、面光源は、例えば、導光板の側面から入射させた光を、その導光板の厚さ方向に出射させることによって、液晶板等に光を供給する。面光源をバックライトとして使用することにより、蛍光灯やLEDアレイ等を使用する場合と比較して、その透過型ディスプレイ装置を薄型化できる。
 面光源としては、例えば、下記特許文献2に開示されたものが知られている。特許文献2では、インクジェット印刷技術を用いて、導光板の背面に、球欠状の光反射突部(引用文献2では光反射ドット)を多数形成している。そして、導光板の側面から入射した光が、導光板内で散乱し、その一部が光反射突部の内側球面に達して反射することにより、導光板の厚さ方向に出射する光を得る(引用文献2の図1等参照)。
国際公開第2014/010585号 特開2015-76124号公報
 しかしながら、インクジェット印刷技術を用いて光反射突部を形成する場合、この光反射突部の径やピッチを高精度に制御することが困難である。このため、引用文献2の技術によっては、光量が十分に均一な面光源を歩留まり良く製造することは困難であった。
 また、インクジェット印刷技術を使用する場合、光反射突部の径を十分に小さくすることができない。このため、従来の導光板には、これらの光反射突部が視認できてしまうと共に、十分な出射光量を得にくいという欠点があった。
 更に、インクジェット印刷技術を使用する場合、光反射突部が導光板から剥がれ落ち易いという欠点があった。特に、表示画面が曲面の透過型ディスプレイ装置を作成するために、その導光板を湾曲させると、一部の光反射突部が導光板から剥がれ落ちてしまって、光量が十分に均一な面光源を得ることができない。更には、光反射突部が剥がれ落ちやすいために、導光板の表面を洗浄することも困難であった。
 本発明は、出射光量の均一性が十分に高く、光反射突部が視認し難く、且つ、光反射突部が剥がれ落ち難い導光板を提供することを課題とする。
 かかる課題を解決するため、本発明に係る透明導光板は、光源から側面に入射された光の少なくとも一部を、裏面に設けられた複数の光反射突部の内球面で反射させて、表面から出射させる透明導光板であって、平板形状を呈する、透光性の導光基材と、型押し加工で前記光反射突部が形成され、該光反射突部の形成面が外側になるように該導光基材の裏面に貼付される、平板形状の光反射部材と、を備えることを特徴とする。
 本発明において、前記光反射部材は、前記導光基材の前記裏面側に積層された複数の透光層を備え、該複数の透光層のうちの最外層は、前記光反射突部が形成された光反射層であり、該光反射層は、直接接する他の前記透光層よりも屈折率が高い、ことが望ましい。
 本発明において、前記複数の透光層は、前記導光基材の裏面に貼付されるポリエチレンテレフタラート層と、紫外線硬化性樹脂を用いて該ポリエチレンテレフタレート層上に直接形成された前記光反射層とを含むことが望ましい。
 本発明においては、前記導光基材及び前記光反射部材が可撓性を有することが望ましい。
 本発明においては、前記光源から側面に入射された光の一部を背面から出射させることが望ましい。
 本発明に係る光反射シートは、本発明の光反射部材として使用する。
 本発明によれば、光反射部材に型押し加工で光反射突部を形成することとしたので、光反射突部の径やピッチを高精度に制御することが容易である。
 また、型押し加工を使用することにより、光反射突部の径を非常に小さくすることが可能になる。
 更に、型押し加工を使用することにより、光反射突部を剥がれ落ち難くすることができる。
 本発明において、複数の透光層を積層することで光反射部材を構成するに際して、最外層である光反射層の屈折率を、直接接する透光層の屈折率よりも大きくすることにより、透明導光板が被照射面を照射する光量を増大させることができる。
 本発明において、光反射部材を、ポリエチレンテレフタラート層及び紫外線硬化性樹脂層の積層とすることにより、耐久性が高く、加工し易く且つ安価な光反射部材を得ることができる。
 本発明において、導光基材及び光反射部材を可撓性とすることで、表示画面が曲面の透過型ディスプレイ装置の透明導光板としての使用が可能になる。
 本発明において、光源から側面に入射された光の一部を背面から出射させることにより、表示画面と背景とを重ねて表示するタイプの透過型ディスプレイ装置に、この発明の透明導光板使用できる。
 本発明に係る光反射シートによれば、本発明に係る透明導光板用の光反射部材を得ることができる。
本発明の実施形態に係る透明導光板の構成を概念的に示す断面図である。 上記実施形態に係る透明導光板の構成を概念的に示す平面図である。 上記実施形態に係る透明導光板の原理を説明するための概念的部分断面図である。 上記実施形態に係る透明導光板の製造方法を説明するための概念的平面図である。
 以下、本発明の実施形態について、図面を参照して説明する。
 図1は、本実施形態に係る透明導光板の構造を概略的に示す断面図である。
 図1に示したように、この透明導光板100は、導光基材110と、接着層120と、光反射部材130とを備える。
 導光基材110は、透光性を有する、板状の基材である。この導光基材110としては、平面視が矩形の、平板形状のものが使用される。導光基材110は、剛性を有する板であっても良いし、可撓性を有するシートであっても良い。導光基材110の形成材料としては、例えばアクリルが好適であるが、他の材料を使用してもよい。導光基材110の平面寸法は任意であり、使用する透過型ディスプレイ装置の画面寸法等に応じて定めれば良い。また、導光基材110の厚さも任意であるが、例えば2mm程度である。本実施形態では、導光基材110の屈折率n0を、1.49に設定した。
 接着層120としては、例えば透明光学粘着フィルム(Optical Clear Adhesive Film:OCA)を使用できる。但し、十分な透光性と接着性能とを有するものであれば、他の種類の接着シートや接着剤等を使用してもよい。この接着層120の厚さは、例えば0.1mmである。本実施形態では、接着層120の屈折率n1を、1.4857に設定した。
 光反射部材130は、接着層120を用いて、導光基材110の裏面に貼付される。この光反射部材130としては、例えば、平面寸法が導光基材110と略同一の、平板形状のものが使用される。この光反射部材130は、剛性を有する板であっても良いし、可撓性を有するシート(本発明の光反射シートに対応)であっても良い。
 光反射部材130は、単層構造であっても良いし、多層構造であっても良い。図1の例では、この光反射部材130を、ベース層131と光反射層132とを積層することで形成した。これらの層131,132は、何れも透光性を有する層である。
 ここで、ベース層131の形成材料としては、例えばPET(すなわち、ポリエチレンテレフタラート)を使用できるが、他の材料で形成してもよい。本実施形態では、ベース層131の屈折率n2を、1.48に設定した。また、このベース層131の厚さは、例えば0.05mmである。なお、ベース層131が厚くなるほど出射光の色温度が上昇する傾向があるため、このベース層131は、光反射部材130の耐久性等を確保できる範囲内で、なるべく薄くすることが望ましい。
 光反射層132としては、例えば紫外線硬化樹脂を使用できるが、他の材料で形成してもよい。本実施形態では、光反射層132の屈折率n3を、1.5785に設定した。また、この光反射層132の厚さは、例えば、0.012mmである。
 この光反射層132の外側面132a側には、多数の光反射突部132bが形成されている。
 光反射突部132bは、望ましくは、球欠状を呈する。このような形状とすることで、これら光反射突部132bの内球面を凹面鏡として作用させて、導光基材110から光反射部材130に挿入された光の一部を反射させ、導光基材110の表面側に導くことができる。
 光反射突部132bの寸法は、例えば直径30~60μm、高さ3~5μm(望ましくは3.3~4.67μm)である。
 図2の平面図に示したように、これらの光反射突部132bは、光反射層132の外側面132aに、互いに直交するx方向及びy方向(すなわち、光反射部材130の縦横方向)に沿った二次元方向に、所定のピッチで、所定の配置パターンに従って配置される。図2の例では、光反射突部132bを千鳥状に配置したが、通常の行列状でもよい。図2において、縦横方向のピッチAは例えば0.16~0.24mm、斜め方向のピッチBは例えば0.11~0.17mmである。また、隣接する3個の光反射突部132bが成す三角形の角度θa,θb,θcは任意であるが、本実施形態では、θa=θb=θc=60゜(すなわち正三角形)とした。
 次に、本実施形態に係る透明導光板100の光学的な原理について、図3の概念的部分断面図を用いて説明する。
 図3に示したように、透明導光板100には、その側面から、この透明導光板100の表面及び裏面と平行な方向に、光が入射される。上述のように、この光の光源としては、例えば白色LED(図示せず)等が使用される。
 透明導光板100に入射された光は、その一部が、この導光基材110と接着層120との境界面301に達する。そして、この境界面301で、一部の光は反射し、残りの光は屈折して接着層120に入射される。
 接着層120に入射された光は、この接着層120とベース層131との境界面302に達する。そして、この境界面302で、一部の光は反射し、残りの光は屈折してベース層131に入射される。
 更に、ベース層131に入射された光は、このベース層131と光反射層132の境界面303に達する。そして、この境界面303で、一部の光は反射し、残りの光は屈折して光反射層132に入射される。
 そして、光反射層132に入射された光の一部は、光反射突部132bに達して、この光反射突部132bで反射する。
 光反射突部132bで反射した光は、境界面303に達して、その一部は反射し、残りは屈折してベース層131に入射される。
 ベース層131に入射された光は、境界面302に達して、その一部は反射し、残りは屈折して接着層120に入射される。
 更に、接着層120に入射された光は、境界面301に達して、その一部は反射し、残りは屈折して導光基材110に入射される。
 そして、導光基材110に入射された光の一部が、この導光基材110の表面(図3の下側面)から出射する。
 ここで、周知のように、光が物質A(屈折率をnaとする)から物質B(屈折率をnbとする)に達する場合、その境界面における反射率Rは、下式(1)で与えられる(垂直入射の場合)。
 R=(na-nb)/(na+nb)  ・・・(1)
 この式(1)が示すように、物質A,Bの屈折率na,nbの差が小さいほど、反射率Rが小さくなり、したがって物質Aから物質Bへ達する光の透過率が多くなる。
 本実施形態では、上述のように、導光基材110の屈折率n0は1.49、接着層120の屈折率n1は1.4857、ベース層131の屈折率n2は1.48、光反射層132の屈折率n3は1.5785である。
 すなわち、本実施形態では、導光基材110の屈折率n0と接着層120の屈折率n1との差(0.0043)及び接着層120の屈折率n1とベース層131の屈折率n2との差(0.0057)が小さいため、これら各部110,120,131の境界面301,302では、光の透過率が高い。従って、導光基材110の側面から入射された光の多くは、ベース層131へ達する。
 一方、光反射層132の屈折率n3とベース層131の屈折率n2との差(n3-n2=0.0985は大きい。このため、ベース層131側から境界面303に達した光の透過率は、境界面301,302の場合よりも小さくなる(従って、反射率は、境界面301,302の場合よりも大きくなる)。
 その反面、n3>n2であるため、ベース層131側から境界面303へ達した光の全反射は起こらない。
 従って、十分な光量の光を、ベース層131から光反射層132内へ導くことができる。
 ここで、周知のように、境界面303に達した時の入射角θ1が大きいほど、光の反射率が高くなる。このため、光反射層132には、入射角θ1が小さい光(すなわち、透明導光板100の厚さ方向に対する角度が小さい光)が、多く入射されることになる。
 光反射層132へ入射された光の一部は、上述のように、光反射突部132bで反射する。上述のように、光反射層132の屈折率n3は1.5785であり、この光反射層132の外部(通常は空気)の屈折率と比べて十分に大きいので、光反射突部132bで反射する光の光量は十分に大きい(上述の式(1)参照)。
 そして、光反射層132内で反射した光は、再び、境界面303へ達する。上述のように、境界面303に達した時の入射角が大きいほど、光の反射率が高い。更に、この光は、屈折率の高い媒体(光反射層132)から低い媒体(ベース層131)へ入射する光であるため、入射角θ2が所定値より大きい光に対しては、全反射が起こる。このため、ベース層131には、入射角θ2が小さい光(すなわち、透明導光板100の厚さ方向に対する角度が小さい光)が、多く入射されることになる。
 なお、このとき境界面303で反射した光の一部は、光反射層132内で散乱し、この境界面303への入射角θ2が小さい光となって、ベース層131に入射されることになる。
 ベース層131に入射された光の一部は、上述のように、接着層120及び導光基材110を透過して、この導光基材110の表面(図3の下側面)から出射する。上述のように、ベース層131と接着層120との屈折率の差(n2-n1)や、接着層120と導光基材110との屈折率の差(n0-n1)は小さいので、これらの透過率は十分に大きい。
 このように、本実施形態では、光反射部材130を、上の層(すなわち光反射層132)の方が屈折率が高くなるように構成したので、透明導光板100の厚さ方向に対する角度が小さい光を多く取り出せるようになり、これにより出射光の指向性を高めることができるので、被照射面(例えば、透過型ディスプレイ装置の液晶パネル)の照射光量を増大させることができる。
 次に、本実施形態に係る透明導光板100の製造方法について説明する。
 最初に、以下のようにして、シート状の光反射部材130を作製する。
 まず、ベース層131(例えばPET)の裏面に、液体状態の紫外線硬化性樹脂を塗布する。
 次に、この紫外線硬化性樹脂に、型押し加工で、光反射突部132bを形成する。型押し加工の方式は限定されず、この紫外線硬化性樹脂に平板状の型を押し付ける直押し転写方式でもよいが、大面積の光反射部材130を作製するためには、回転ローラ型の型を用いたローラ転写方式を用いることが望ましい。
 続いて、紫外線を照射することにより、この紫外線硬化性樹脂を硬化させる。
 その後、この光反射部材130を、所望のサイズに寸断する。光反射部材130のサイズは、被照射面(例えば、透過型ディスプレイ装置の液晶パネル)のサイズに基づいて決定される。
 以上により、シート状の光反射部材130が完成する。
 次に、以下のようにして、この光反射部材130を、導光基材110に貼付する工程を行う。
 まず、導光基材110の裏面に、接着層120を形成する。上述のように、この接着層120の形成方法は、透明光学粘着フィルム(OCA)を貼付する方法であっても良いし、液体の接着剤等を導光基材110の裏面に塗布する方法であっても良い。
 その後、この接着層120の裏面に、シート状の光反射部材130を貼付する。このとき、図4の概念的平面図に示したように、この光反射部材130を、導光基材110に対して、傾斜させて貼付してもよい。
 例えば、この光反射部材130を、光反射突部132bの縦横の配列方向と導光基材110の縦横の側面とが平行になるように貼付すると、光反射突部132bのピッチや配置パターンによっては、透明導光板100の出射光に縞状の輝度ムラが発生して、被照射面(例えば、透過型ディスプレイ装置の液晶パネル)の画質を劣化させる原因になる場合がある。
 これに対して、本願発明者等の検討によれば、光反射部材130を、透明導光板100に対して傾斜させて貼付することで、光反射突部132bの配列方向が、光の入射方向や液晶パネルの液晶素子の配列方向に対して傾斜した状態になり、これによって、このような画質劣化を抑制・防止することが可能になる。
 傾斜角度は、光反射突部132bのピッチや配列パターン等によって異なるが、例えば3~5゜程度である。
 なお、光反射部材130を傾斜させて貼付するのでは無く、この光反射部材130の縦横側面に対して傾斜するように、光反射突部132bを形成することにしてもよい。
 要するに、光反射突部132bの配列方向がディスプレイ装置の画素又は副画素の配列方向に対して傾斜した状態となっていれば、透過型ディスプレイ装置に干渉縞が発生することを防止できる。
 以上説明したように、本実施形態によれば、光反射部材130に型押し加工で光反射突部132bを形成することとしたので、光反射突部132bの径やピッチを高精度に制御することが容易になる。
 また、型押し加工を使用することにより、光反射突部132bの径を非常に小さくすることが可能になる。
 更に、型押し加工を使用することにより、光反射突部132bを剥がれ落ち難くすることができる。
 加えて、ベース層131及び光反射層132を積層することで光反射部材130を構成すると共に、ベース層131の屈折率よりも光反射層132の屈折率のを大きくしたので、透明導光板100が被照射面を照射する光量を増大させることができる。
 本実施形態によれば、ベース層131をPETで形成すると共に光反射層132を紫外線硬化性樹脂で形成したので、耐久性が高く、加工し易く且つ安価な光反射部材を得ることができる。
 本実施形態によれば、導光基材110及び光反射部材130を可撓性とすることで、表示画面が曲面の透過型ディスプレイ装置の透明導光板としての使用が可能になる。
 なお、本実施形態では、本発明に係る透明導光板100を液晶ディスプレイ等に利用する場合を例にとって説明したが、入射光の一部を背面から出射させることにより、表示画面と背景とを重ねて表示するタイプの透過型ディスプレイ装置に使用することも可能である。この場合は、光反射部材130を透過して裏面側の対象物で反射した光が、光反射部材130、接着層120及び導光基材110を透過することを利用する。
100 透明導光板
110 導光基材
120 接着層
130 光反射部材
131 ベース層
132 光反射層
132a 外側面
132b 光反射突部
301~303 境界面

Claims (6)

  1.  光源から側面に入射された光の少なくとも一部を、裏面に設けられた複数の光反射突部の内球面で反射させて、表面から出射させる透明導光板であって、
     平板形状を呈する、透光性の導光基材と、
     型押し加工で前記光反射突部が形成され、該光反射突部の形成面が外側になるように該導光基材の裏面に貼付される、平板形状の光反射部材と、
     を備えることを特徴とする透明導光板。
  2.  前記光反射部材は、前記導光基材の前記裏面側に積層された複数の透光層を備え、
     該複数の透光層のうちの最外層は、前記光反射突部が形成された光反射層であり、
     該光反射層は、直接接する他の前記透光層よりも屈折率が高い、
     ことを特徴とする請求項1に記載の透明導光板。
  3.  前記複数の透光層は、前記導光基材の裏面に貼付されるポリエチレンテレフタラート層と、紫外線硬化性樹脂を用いて該ポリエチレンテレフタレート層上に直接形成された前記光反射層とを含むことを特徴とする請求項2に記載の透明導光板。
  4.  前記導光基材及び前記光反射部材が可撓性を有することを特徴とする請求項1乃至3の何れかに記載の透明導光板。
  5.  前記光源から側面に入射された光の一部を背面から出射させることを特徴とする請求項1乃至4の何れかに記載の透明導光板。
  6.  請求項1乃至5のいずれかに記載の光反射部材として使用する光反射シート。
PCT/JP2017/020151 2016-06-03 2017-05-30 透明導光板及びこれに用いる光反射シート WO2017209146A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016111502A JP6536490B2 (ja) 2016-06-03 2016-06-03 透明導光板及びこれに用いる光反射シート
JP2016-111502 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209146A1 true WO2017209146A1 (ja) 2017-12-07

Family

ID=60478611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020151 WO2017209146A1 (ja) 2016-06-03 2017-05-30 透明導光板及びこれに用いる光反射シート

Country Status (2)

Country Link
JP (1) JP6536490B2 (ja)
WO (1) WO2017209146A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752786A (zh) * 2017-11-03 2019-05-14 路志坚 导光元件及背光源装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156082A (ja) * 2011-01-28 2012-08-16 Furukawa Electric Co Ltd:The バックライトパネル、導光板、反射板、および接着シート
JP2012178345A (ja) * 2011-02-02 2012-09-13 Sumitomo Chemical Co Ltd 導光板、面光源装置、透過型画像表示装置、導光板の製造方法及び導光板用紫外線硬化型インクジェットインク
JP2013077473A (ja) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd 導光板、導光板の製造方法、金型、ディスプレイ用バックライトユニットおよびディスプレイ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201083928Y (zh) * 2007-08-30 2008-07-09 比亚迪股份有限公司 背光源及其反光片

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156082A (ja) * 2011-01-28 2012-08-16 Furukawa Electric Co Ltd:The バックライトパネル、導光板、反射板、および接着シート
JP2012178345A (ja) * 2011-02-02 2012-09-13 Sumitomo Chemical Co Ltd 導光板、面光源装置、透過型画像表示装置、導光板の製造方法及び導光板用紫外線硬化型インクジェットインク
JP2013077473A (ja) * 2011-09-30 2013-04-25 Toppan Printing Co Ltd 導光板、導光板の製造方法、金型、ディスプレイ用バックライトユニットおよびディスプレイ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752786A (zh) * 2017-11-03 2019-05-14 路志坚 导光元件及背光源装置

Also Published As

Publication number Publication date
JP2017220288A (ja) 2017-12-14
JP6536490B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
JP7462552B2 (ja) 光学デバイス
US8432527B2 (en) Light guide device
JP4518179B2 (ja) レンズアレイシート、光学部材、光源及び液晶表示装置
US10317609B2 (en) Display device
JP4518178B2 (ja) レンズアレイシート、光学部材、光源及び液晶表示装置
JP6664193B2 (ja) バックライトユニット
JP6499269B2 (ja) 積層型光学部材、照明装置、表示装置、及びテレビ受信装置
US20120133618A1 (en) Display device with touch sensor functionality, and light-collecting/blocking film
KR20110097642A (ko) 광학 시트 적층체, 조명 장치 및 표시 장치
JP2013195458A (ja) 配列型表示装置
JP5493312B2 (ja) 面発光装置及び画像表示装置
KR20160021755A (ko) 적층체, 적층체의 제조 방법, 광원 장치용 도광체 및 광원 장치
JPH04191704A (ja) 面発光装置とその製造方法
WO2017209146A1 (ja) 透明導光板及びこれに用いる光反射シート
JP5098576B2 (ja) 光学シート、バックライトユニット及びディスプレイ装置
WO2017209147A1 (ja) 透明導光板及びこれを用いた透過型ディスプレイ装置
JP2015194628A (ja) 両面表示装置、照明装置及び導光板
WO2012005135A1 (ja) 光拡散シートおよび当該光拡散シートを備えた表示装置
JP2007178775A (ja) 光屈曲シート
JP5509532B2 (ja) 光学部材及びバックライトユニット並びにディスプレイ装置
JP2010122372A (ja) 光学機能部材、バックライトユニット及びディスプレイ装置
KR20080028403A (ko) 광학필름 및 이를 포함하는 액정표시장치
JP2022189735A (ja) 光拡散シート、光拡散シート積層体、バックライトユニット、及び液晶表示装置
JP2009217007A (ja) 光学シート及びバックライトユニット並びに表示装置
JP2016071076A (ja) 光拡散シート、光学シート、面光源装置及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806699

Country of ref document: EP

Kind code of ref document: A1