WO2017209084A1 - Touch sensor - Google Patents

Touch sensor Download PDF

Info

Publication number
WO2017209084A1
WO2017209084A1 PCT/JP2017/019985 JP2017019985W WO2017209084A1 WO 2017209084 A1 WO2017209084 A1 WO 2017209084A1 JP 2017019985 W JP2017019985 W JP 2017019985W WO 2017209084 A1 WO2017209084 A1 WO 2017209084A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
transparent electrode
sensor
coating layer
touch sensor
Prior art date
Application number
PCT/JP2017/019985
Other languages
French (fr)
Japanese (ja)
Inventor
孝伸 矢野
基希 拝師
浩史 別府
憲俊 木曽
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017104593A external-priority patent/JP6879826B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201780033500.7A priority Critical patent/CN109196452B/en
Priority to KR1020187027355A priority patent/KR102342378B1/en
Publication of WO2017209084A1 publication Critical patent/WO2017209084A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a touch sensor having a press detection function.
  • touch sensors have been introduced into electronic devices such as smartphones and tablets, and are used as intuitive human-machine interfaces.
  • the touch sensor detects a two-dimensional position touched with a finger or a pen.
  • the electronic device is operated by detecting the touched position according to the display.
  • touch sensors that detect pressing force are developed and disclosed for the purpose of increasing input information and improving operability. For example, there are a method of detecting a pressing force based on a change in capacitance when the casing is distorted, a change in resistance value using pressure-sensitive rubber, and the like, and a method of detecting a change in charge of the piezoelectric material.
  • Various materials such as those using inorganic lead zirconate titanate (PZT), organic polyvinylidene fluoride, and polylactic acid are used in the technology that uses piezoelectric materials.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2010-269378 discloses a piezoelectric film for a touch panel that can detect pressure (Z coordinate) touched by a finger.
  • a laminate in which transparent electrodes are laminated on both sides of a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is used.
  • a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is described as being produced by a casting method or an extrusion method, and is a single film.
  • the thickness of the piezoelectric layer is 20 ⁇ m to 300 ⁇ m.
  • the thickness of the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer is 20 ⁇ m to 100 ⁇ m
  • the total light transmittance is 95%
  • the haze value cloudiness value
  • the haze value is desirably less than 5%, and it is necessary to further reduce the haze value.
  • organic piezoelectric films generally have high material costs and processing costs, and further cost reduction is required for use as touch sensors.
  • a touch sensor with high detection accuracy has been proposed by using a capacitive method with high detection sensitivity for touch position detection and using a transparent organic piezoelectric film for indentation pressure detection (see Patent Document 2).
  • Patent Document 2 since it is formed by bonding a capacitance sensor substrate and a piezoelectric film, there are problems such as an increase in cost due to an increase in members and an increase in the thickness of the touch sensor.
  • An object of the present invention is to provide a touch sensor that achieves an improvement in total light transmittance and haze, a reduction in thickness by reducing the number of members, and a reduction in cost, as compared with the prior art.
  • the touch sensor of the present invention includes a piezoelectric sensor and a capacitance sensor.
  • the piezoelectric sensor includes a piezoelectric film in which a base film is laminated with a piezoelectric coating layer.
  • Transparent electrodes are arranged on one side and the other side of the piezoelectric film.
  • the transparent electrode includes a transparent electrode used only for a piezoelectric sensor, a transparent electrode used only for a capacitance sensor, and a transparent electrode used for both a piezoelectric sensor and a capacitance sensor.
  • a transparent electrode to be laminated at the time of manufacture is selected according to the type of touch sensor.
  • the thickness of the coating layer having piezoelectricity is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the piezoelectric coating layer includes a fluororesin.
  • the fluororesin is a copolymer of two or more of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene, or a polymer of vinylidene fluoride.
  • At least one layer of an undercoat layer, a refractive index adjustment layer, an optical adjustment layer, and an anti-blocking layer is provided between the base film and the coating layer having piezoelectricity.
  • a piezoelectric coating layer may be directly formed on the base film.
  • the thickness of the coating layer is 0.5 to 10 ⁇ m, the thickness of the refractive index adjustment layer is 80 to 160 nm, and the thickness of the transparent electrode is 20 nm or more.
  • the coating layer has a refractive index of 1.40 to 1.50, the refractive index adjustment layer has a refractive index of 1.50 to 1.70, and the transparent electrode has a refractive index of 1.90 to 2.10.
  • At least one layer of an undercoat layer, a refractive index adjustment layer, an optical adjustment layer, and an anti-blocking layer is provided between the piezoelectric film and the transparent electrode.
  • the transparent electrode may be directly formed in the piezoelectric film.
  • a transparent filling layer is laminated on the piezoelectric film and the transparent electrode.
  • a laminate in which the transparent electrode is formed on the base film may be prepared, and the laminate and the piezoelectric film may be laminated via a transparent filling layer.
  • the base film is selected from at least one of polyethylene terephthalate, cycloolefin copolymer, polycycloolefin, polyethylene naphthalate, and polycarbonate.
  • the transparent electrode is a transparent electrode mainly composed of indium oxide.
  • a coating layer having piezoelectricity is formed on the base film, and the coating layer can be thinned. Since the coating layer is thin, it is difficult to deteriorate the total light transmittance and haze.
  • the touch sensor 10 of the present invention shown in FIGS. 1 and 2 is disposed on the display surface of a display.
  • the touch sensor 10 of the present invention includes a piezoelectric sensor 11 and a capacitance sensor 12.
  • the piezoelectric sensor 11 detects the pressing force by a piezoelectric method.
  • the capacitance sensor 12 detects the pressed position (X coordinate and Y coordinate) by a capacitance method.
  • the piezoelectric sensor 11 and the capacitance sensor 12 are bonded by a transparent filling layer 13.
  • the piezoelectric sensor 11 includes a piezoelectric film 16 that is a first laminate including a first base film 14 and a coating layer 15 having piezoelectricity, a first transparent electrode 17 formed on one surface of the piezoelectric film 16, and a piezoelectric film 13. A second transparent electrode 18 formed on the other surface is provided.
  • the piezoelectric coating layer 15 is polarized, and the change in potential at that time is detected by the transparent electrodes 17 and 18 so that the pressing force can be detected.
  • the capacitance sensor 12 is arranged on one side of the piezoelectric sensor 13.
  • the capacitance sensor 12 includes a second laminated body 21 in which the third transparent electrode 20 is formed on one surface of the second base film 19, and a third laminated body in which the fourth transparent electrode 23 is formed on one surface of the third base film 22.
  • attaches the body 24, the 2nd laminated body 21, and the 3rd laminated body 24 is provided.
  • the transparent electrodes 20 and 24 are insulated from each other.
  • the capacitance sensor 12 changes its capacitance when a finger or pen touches or approaches the touch sensor 10, changes the potential of the transparent electrodes 20 and 24 at that location, and changes the potential. The touch position can be detected by.
  • the first, second and third substrate films 14, 19, 22 are, for example, polyethylene terephthalate, cycloolefin polymer, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene. And polymer films such as polynorbornene.
  • Each of the base films 14, 19, and 22 is preferably a polyethylene terephthalate film (PET film) excellent in transparency, heat resistance, and mechanical properties, but is not limited thereto. Moreover, you may laminate
  • each base film 14, 19, and 22 is preferably 10 ⁇ m or more and 150 ⁇ m or less, but is not limited thereto. However, if the thickness of the base films 14, 19, and 22 is less than 10 ⁇ m, handling may be difficult. Moreover, when the thickness of the base films 14, 19, and 22 exceeds 150 ⁇ m, it may be difficult to wind up the piezoelectric film 16, the second laminated body 21, and the third laminated body 24 into a roll.
  • the coating layer 15 having piezoelectricity is a thin film coated on any surface of the first base film 14.
  • the coating layer 15 having piezoelectricity is not particularly limited as long as the coated film has piezoelectricity.
  • the coating layer 15 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
  • the coating layer 15 having piezoelectricity is formed into a solution by dissolving the material of the coating layer 15 in a solvent, and is thinly and uniformly formed on the first base film 14 by a known coating apparatus such as a bar coater or a gravure coater. It is obtained by coating and then drying.
  • a material containing a fluororesin is preferably used as the material of the coating layer 15 having piezoelectricity.
  • a material containing a fluororesin include polyvinylidene fluoride, a vinylidene fluoride component-containing polymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer.
  • Polymer hexafluoropropylene-vinylidene fluoride copolymer, perfluorovinyl ether-vinylidene fluoride copolymer, tetrafluoroethylene-vinylidene fluoride copolymer, hexafluoropropylene oxide-vinylidene fluoride copolymer
  • a polymer, a copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, and a copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride can be selected. These polymers can be used alone or as a mixture.
  • the molar ratio of vinylidene fluoride and trifluoroethylene is 100 as a whole, and (50 to 85): (50 to 15) is appropriate. It is.
  • a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer is used as the material for the coating layer 15, the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is 100 as a whole. 63 to 65): (27 to 29): (10 to 6) is appropriate.
  • the thickness of the coating layer 15 having piezoelectricity after drying is not limited. However, in consideration of optical characteristics described later, 0.5 ⁇ m or more and 20 ⁇ m or less are appropriate, but 0.5 to 10 ⁇ m is more preferable. 0.5 to 5 ⁇ m is more preferable. If the thickness of the coating layer 15 having piezoelectricity after drying is less than 0.5 ⁇ m, the formed film may be incomplete. If the thickness of the coating layer 15 having piezoelectricity after drying exceeds 20 ⁇ m, the optical properties (haze and total light transmittance) may become inappropriate.
  • the haze value of the piezoelectric film 16 is preferably less than 5%, and the total light transmittance is preferably 90% or more. If the haze value of the piezoelectric film 16 is 5% or more, or if the total light transmittance is less than 85%, the image on the display may not be clearly visible.
  • the first and second transparent electrodes 17 and 18 are electrodes for detecting a pressing force
  • the third and fourth transparent electrodes 20 and 23 are electrodes for detecting a pressing position.
  • the first transparent electrode 17 covers the entire surface of the piezoelectric film 16, and the second transparent electrode 18 covers the entire other surface of the piezoelectric film 16.
  • the coating layer 15 having piezoelectricity is polarized.
  • the first and second transparent electrodes 17 and 18 detect a change in potential of the coating layer 15 having piezoelectricity.
  • the second transparent electrode 18 is set to a reference potential (ground potential), and the first transparent electrode 17 detects a change in potential.
  • the third transparent electrode 20 and the fourth transparent electrode 23 are arranged on one surface side of the piezoelectric sensor 11. These transparent electrodes 20 and 23 are part of the capacitance sensor 12. As shown in FIG. 1, the 3rd transparent electrode 20 and the 4th transparent electrode 23 are insulated by having the 2nd base film 19 and the transparent filling layer 25 in between. Further, as shown in FIG. 2, the third and fourth transparent electrodes 20, 23 have a band shape, and face the direction in which the electrodes 20, 23 are orthogonal to each other. For example, the third transparent electrode 20 detects the X coordinate of the pressed position, and the fourth transparent electrode 23 detects the Y coordinate. By pressing or approaching the surface of the touch sensor 10 with a finger or a pen, the potential of the third and fourth transparent electrodes 20 and 23 at that position changes, and the X and Y coordinates are detected using the change in potential. To do.
  • the first base film 1 has a third transparent electrode 20 on one surface of the second base film 19 and a fourth transparent electrode 23 on one surface of the third base film 22. It is not limited to.
  • the transparent electrodes 20 and 23 are laminated on one surface or the other surface of the base films 19 and 22,
  • the laminates 21 and 24 may be bonded by the transparent filling layer 25.
  • the 2nd laminated body 21 is arrange
  • Each of the transparent electrodes 17, 18, 20, and 23 includes an indium-based composite oxide, typically indium tin composite oxide (ITO: Indium Tin Oxide), indium zinc composite oxide.
  • ITO Indium Tin Oxide
  • indium zinc composite oxide examples thereof include indium oxide (In203) doped with divalent metal ions.
  • Indium-based composite oxides are characterized by high transmittance of 80% or more in the visible light region (380 to 780 nm) and low surface resistance per unit area (30 to 1000 ⁇ / ⁇ (ohms per square)). is doing.
  • the thickness of the indium composite oxide is preferably 35 nm or less. This is because if the thickness is too thick, the transmittance in the visible light region is deteriorated.
  • the surface resistance value of the indium composite oxide is preferably 300 ⁇ / ⁇ or less, and more preferably 150 ⁇ / ⁇ or less. This is because if the surface resistance value becomes high, it will not function as an electrode.
  • a transparent electrode having a low surface resistance is formed by, for example, forming an amorphous layer of an indium-based composite oxide on a substrate film by sputtering or vacuum deposition, and then heat-treating it at 80 to 200 ° C. It is obtained by changing the crystalline layer to a crystalline layer.
  • Each of the transparent electrodes 17, 18, 20, 23 is not limited to the above materials, and a transparent conductive oxide such as tin zinc oxide, zinc oxide, fluorine-doped tin oxide, a conductive polymer such as polyethylenedioxythiophene, Can be used.
  • a transparent conductive oxide such as tin zinc oxide, zinc oxide, fluorine-doped tin oxide, a conductive polymer such as polyethylenedioxythiophene, Can be used.
  • the poling may be performed after the first and second transparent electrodes 17 and 18 are formed, or the coating may be performed before the first and second transparent electrodes 17 and 18 are formed. You may poll the layer.
  • the first and second transparent electrodes 17 and 18 are formed by sputtering, either poling or sputtering may be performed first.
  • the first, second and third base films 14, 19, 22 and the first, third and fourth transparent electrodes 17, 20, 23 A thin layer of about several nm to several tens of nm such as an undercoat layer and an index matching layer (optical adjustment layer) may be provided.
  • the undercoat layer improves the adhesion between the layers, and the refractive index adjustment layer adjusts the reflectance.
  • an anti-blocking layer may be provided between each base film 14, 19, 22 and the transparent electrodes 17, 20, 23. The anti-blocking layer has an effect of preventing the stacked films from being pressed (blocked).
  • Transparent packing layer The transparent filling layers 13 and 25 fill the layers without forming an air layer.
  • the surfaces of the first and fourth transparent electrodes 17 and 23 are covered with transparent filling layers 13 and 25. This is to prevent the total light transmittance and haze from being lowered by the reflection caused by the surfaces of the first and fourth transparent electrodes 17 and 23 and the scattering caused by the fine unevenness.
  • the transparent filling layers 13 and 25 use an adhesive or resin made of an optical transparent adhesive material or an optical transparent adhesive material.
  • the transparent filling layers 13 and 25 may be formed by laminating a sheet-like optical transparent adhesive material or optical transparent adhesive material, or a liquid optical transparent adhesive material or optical transparent adhesive material is applied and irradiated with ultraviolet rays. Then, the transparent filling layers 13 and 25 may be formed by curing.
  • a touch sensor 10 is disposed on the front surface of the display.
  • a flat display such as a liquid crystal display or an organic EL display can be used.
  • the capacitance sensor 12 for detecting the pressed position is arranged above (touching) the piezoelectric sensor 11.
  • the first and second transparent electrodes 17 and 18 are formed so as to cover the piezoelectric film 16, and when the piezoelectric sensor 11 is disposed above the capacitance sensor 12, the third and fourth transparent electrodes 20, This is because the change in capacitance 23 cannot be detected.
  • the touch sensor 10 and the display are bonded with a transparent filling layer.
  • the transparent filling layer the above optical transparent adhesive material or optical transparent adhesive material can be used.
  • the coating layer 15 having piezoelectricity is formed on the first base film 14, and the thickness of the piezoelectric material can be made thinner than before. Since the coating layer 15 having piezoelectricity is thin, it is difficult to deteriorate the total light transmittance and haze. Therefore, the touch sensor 10 with good optical characteristics can be realized.
  • the direction of the piezoelectric film 16 is arbitrary.
  • the piezoelectric coating layer 15 may be disposed on the upper side of the first base film 14.
  • the second transparent electrode 18 is adhered to the transparent filling layer 13, and the second transparent electrode 18, the piezoelectric sensor 11, and the first transparent electrode 17 are arranged in this order from the top.
  • the second transparent electrode 18 may not be directly formed on the piezoelectric film 16.
  • a fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 is prepared, and the piezoelectric film 16 and the fourth laminated body are bonded by the transparent filling layer 44.
  • the fourth base film 42 can be made of the same material as the first base film 14 or the like.
  • the transparent filling layer 44 can be made of the same material as the other transparent filling layers 13 and the like.
  • the direction of the fourth stacked body 43 is not limited.
  • the second transparent electrode 18 is bonded to the transparent filling layer 44.
  • the fourth base film 42 may be bonded to the transparent filling layer 44.
  • this embodiment can be applied to the touch sensor 30 of FIG.
  • the second transparent electrode 18 is not directly formed on the first base film 14, the fourth laminate 43 is prepared, and the first base film and the fourth laminate 43 are bonded by the transparent filling layer 44.
  • the direction of the 4th laminated body 43 is not limited, Any of the 2nd transparent electrode 18 and the 4th base film 42 may be adhere
  • the first transparent electrode 17 may not be directly formed on the piezoelectric film 16.
  • a fifth laminated body 53 in which the first transparent electrode 17 is laminated on the fifth base film 52 is prepared, and the piezoelectric film 16 and the fifth laminated body 53 are bonded by the transparent filling layer 54.
  • the fifth base film 52 can be made of the same material as the first base film 14 or the like.
  • the transparent filling layer 54 can be comprised with the same material as the other transparent filling layer 13 grade
  • the direction of the fifth stacked body 53 is not limited.
  • the fifth base film 52 is bonded to the transparent filling layer 54.
  • the first transparent electrode 17 may be bonded to the transparent filling layer 54.
  • this embodiment can be applied to the touch sensor 30 of FIG.
  • the first transparent electrode 17 is not directly formed on the coating layer 15 having piezoelectricity
  • the fifth stacked body 53 is prepared, and the coating layer 15 having piezoelectricity and the fifth stacked body 53 are transparently filled. Adhere by 54.
  • the direction of the fifth laminated body 53 is not limited, and any of the first transparent electrode 17 and the fifth base film 52 may be bonded to the transparent filling layer 54.
  • the piezoelectric sensor 61 of the touch sensor 60 of FIG. 7 has a configuration in which the piezoelectric film 16, the fourth laminated body 43, and the fifth laminated body 53 are bonded by transparent filling layers 44 and 54.
  • the piezoelectric sensor 61 is configured by combining the piezoelectric sensor 41 of FIG. 5 and the piezoelectric sensor 51 of FIG.
  • the directions of the piezoelectric film 16, the fourth laminated body 43, and the fifth laminated body 53 are arbitrary.
  • the positions of the first base film 14 and the piezoelectric coating layer 15, the positions of the second transparent electrode 18 and the fourth base film 42, and the positions of the first transparent electrode 17 and the fifth base film 52 are interchanged. Also good. Accordingly, the piezoelectric sensor 61 has eight configurations.
  • the third transparent electrode 20 is formed on one surface of the sixth substrate film 72, and the fourth transparent electrode 23 is formed on the other surface of the sixth substrate film 72.
  • the sixth base film 72 can be the same as the first base film 14 or the like.
  • the fourth transparent electrode 23 is bonded to the transparent filling layer 13, but the third transparent electrode 20 may be bonded to the transparent filling layer 13.
  • the touch sensor 70 can be thinned.
  • a third ′ transparent electrode 82 and a fourth ′ transparent electrode 83 are formed on one surface side of the sixth base film 72.
  • the third ′ transparent electrode 82 and the fourth ′ transparent electrode 83 are made of the same material as the third transparent electrode 20 and the fourth transparent electrode 23.
  • each of the third 'transparent electrode 82 and the fourth' transparent electrode 83 has a plurality of rectangular portions 85 and 86 arranged in the X direction. Alternatively, they are connected by linear portions 87 and 88 in the Y direction. Accordingly, the third ′ transparent electrode 82 and the fourth ′ transparent electrode 83 are oriented in directions orthogonal to each other.
  • the rectangular portions 85 and 86 have shapes such as rhombus, square, hexagon.
  • the third ′ transparent electrode 82 and the fourth ′ transparent electrode 83 intersect with each other through an insulator 84 so as not to be short-circuited.
  • the third ′ transparent electrode 82 intersects the fourth ′ transparent electrode 83.
  • the fourth ′ transparent electrode 83 intersects the third ′ transparent electrode 82. good.
  • the direction of the capacitance sensor 81 is not limited, and the transparent electrodes 82 and 83 may be bonded to the transparent filling layer 13.
  • the capacitance sensor is not limited to a configuration in which a change in capacitance is detected by the two transparent electrodes 20 and 23.
  • the capacitive sensor 91 of the touch sensor 90 of FIG. 10 includes a rectangular transparent electrode 92 arranged vertically and horizontally on one surface of the sixth substrate film 72.
  • a lead wiring 93 is connected to the rectangular transparent electrode 92.
  • the rectangular transparent electrode 92 and the lead-out wiring 93 are made of the same material as the third transparent electrode 20 and the fourth transparent electrode 23.
  • the present application is not limited to a form in which the capacitance sensor and the piezoelectric sensor are completely separated.
  • the touch sensor 100 of FIG. 11A omits the first transparent electrode 17 as compared with the touch sensor 10 of FIG.
  • the fourth transparent electrode 23 arranged on the one surface side of the piezoelectric film 16 is an electrode that detects the coordinates of the touch position by a capacitance method, and detects the potential when the coating layer 15 having piezoelectricity is polarized. Electrode.
  • the fourth transparent electrode 23 also has the function of the first transparent electrode 17 of the above embodiment.
  • the touch sensor 100 can drive the piezoelectric sensor 101 and the capacitance sensor 12.
  • the fourth transparent electrode 23 and the second transparent electrode 18 are used.
  • the capacitance sensor 12 operates, the third transparent electrode 20 and the fourth transparent electrode 23 are used.
  • the method of detecting the potential at each of the electrodes 18, 20, and 23 when the piezoelectric sensor 101 and the capacitance sensor 12 are driven is the same as the method of the above embodiment.
  • the driving method of the piezoelectric sensor 101 and the capacitance sensor 12 is not limited.
  • 11 may be a piezoelectric sensor 103 in which the positions of the coating layer 15 having piezoelectricity and the first base film 14 are interchanged as in the touch sensor 102 of FIG. 11B.
  • the first transparent electrode 17 is omitted as compared with the touch sensor 10 of FIG. 1, and the touch sensors 100 and 102 can be thinned.
  • the structure which does not form the 2nd transparent electrode 18 directly in the piezoelectric film 16 like the piezoelectric sensor 111 of the touch sensor 110 of Fig.12 (a) may be sufficient. Similar to the piezoelectric sensors 41 and 46 of FIG. 5, the piezoelectric sensor 111 prepares a fourth laminated body 43 in which the second transparent electrode 18 is laminated on any surface of the fourth base film 42, and the transparent filling layer 44 The fourth laminate 43 and the piezoelectric film 16 are bonded.
  • the fourth transparent electrode 23 is used for the capacitance sensor 12 and the piezoelectric sensor 111 in the touch sensor 110, similarly to the touch sensors 100 and 102 in FIG. 11.
  • the driving method of the capacitance sensor 12 and the piezoelectric sensor 111 is not limited.
  • the capacitance sensor 12 is driven, the third transparent electrode 20 and the fourth transparent electrode 23 are used.
  • the piezoelectric sensor 111 is driven, the second transparent electrode 18 and the fourth transparent electrode 23 are used.
  • the direction of the fourth stacked body 43 may be changed with respect to the piezoelectric sensor 111.
  • the fourth base film 43 is adhered to the transparent filling layer 44.
  • the piezoelectric sensors 111 and 113 shown in FIGS. 12A and 12B can change the direction of the piezoelectric film 16.
  • the coating layer 15 having piezoelectricity is on the first base film 14, but the first base film 14 may be on the coating layer 15 having piezoelectricity.
  • the fourth transparent electrode 23 may be directly formed on the piezoelectric film 16 as in the touch sensor 120 in FIG.
  • a fourth transparent electrode 23 is laminated on one surface of the piezoelectric film 16, and a second transparent electrode 18 is laminated on the other surface of the piezoelectric film 16.
  • the third transparent electrode 20 to the fourth transparent electrode 23 are 121, and the fourth transparent electrode 23 to the second transparent electrode 18 are the piezoelectric sensors 122.
  • the fourth transparent electrode 23 is used as the capacitance sensor 121 and the piezoelectric sensor 122 in the same manner as the touch sensors 100, 102, 110, and 112 in FIGS. 11 and 12.
  • the direction of the piezoelectric film 16 may be changed as compared with the piezoelectric sensor 122, like the piezoelectric sensor 124 of the touch sensor 123 in FIG.
  • the fourth transparent electrode 23 is laminated on the coating layer 15 having piezoelectricity
  • the second transparent electrode 18 is laminated on the first base film 14.
  • the second transparent electrode 18 may not be directly formed on the piezoelectric film 16. Similar to the piezoelectric sensors 41 and 46 of FIG. 5, the piezoelectric sensor 131 prepares a fourth laminated body 43 in which the second transparent electrode 18 is laminated on any surface of the fourth base film 42, and the transparent filling layer 44. Thus, the fourth laminate 43 and the piezoelectric film 16 are bonded together.
  • the direction of the piezoelectric film 16 may be changed like the piezoelectric sensor 133 of the touch sensor 132 in FIG.
  • the fourth transparent electrode 23 is laminated on the coating layer 15 having piezoelectricity.
  • the direction of the fourth stacked body 43 may be changed.
  • the fourth base film 42 of the fourth laminate 43 is adhered to the transparent adhesive layer 44.
  • the capacitance sensor 71 shown in FIG. 8 may be used. Like the touch sensor 140 in FIG. 15A, a capacitance sensor 71 in which the third transparent electrode 20 is laminated on one surface of the sixth base film 72 and the fourth transparent electrode 23 is laminated on the other surface is used.
  • the second transparent electrode 18 is laminated on the other surface of the piezoelectric film 16, and one surface is bonded to the transparent filling layer 25.
  • the transparent filling layer 25 is bonded to the fourth transparent electrode 23, and the piezoelectric sensor 141 is from the fourth transparent electrode 23 to the second transparent electrode 18.
  • the driving method of the capacitance sensor 71 and the piezoelectric sensor 141 is not limited.
  • the second transparent electrode 18 is laminated on the first base film 14, and the coating layer 15 having piezoelectricity is adhered to the transparent filling layer 25. May be.
  • the second transparent electrode 18 is not directly formed on the piezoelectric film 16, and the fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 as in the touch sensors 130 and 132 of FIG. 14.
  • the piezoelectric film 16 and the fourth laminated body 43 may be bonded by the transparent filling layer 44.
  • the surface bonded to the transparent filling layer 44 of the fourth laminate 43 is not limited.
  • the capacitance sensor 81 of FIG. 9 may be used.
  • the second transparent electrode 18 is laminated on the piezoelectric coating layer 15 of the piezoelectric film 16, and the first base film 14 and the sixth base film 72 are bonded by the transparent filling layer 13.
  • the piezoelectric sensor 151 extends from the second transparent electrode 18 to the fourth ′ transparent electrode 83 of the capacitance sensor 81.
  • the driving method of the capacitance sensor 81 and the piezoelectric sensor 151 is not limited.
  • the second transparent electrode 18 is laminated on the first base film 14, and the coating layer 15 having piezoelectricity is adhered to the transparent filling layer 13. May be.
  • the second transparent electrode 18 is not directly formed on the piezoelectric film 16, and the fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 as in the touch sensors 130 and 132 of FIG. 14.
  • the piezoelectric film 16 and the fourth laminated body 43 may be bonded by the transparent filling layer 44.
  • the surface bonded to the transparent filling layer 44 of the fourth laminate 43 is not limited.
  • the capacitance sensor 161 is formed with transparent electrodes 82 and 83 in two directions of the capacitance sensor 81 of FIG. 9 on one surface side of the piezoelectric film 16.
  • the capacitance sensor 161 is above the film 161 by pressure, but the capacitance sensor 161 may be above the fourth ′ transparent electrode 83.
  • the piezoelectric sensor 162 of the touch sensor 160 is formed by forming the fourth 'transparent electrode 83 on one surface of the piezoelectric film 16 and the second transparent electrode 18 on the other surface.
  • the fourth 'transparent electrode 83 is used for the capacitance sensor 81 and the piezoelectric sensor 151, the driving method of the capacitance sensor 81 and the piezoelectric sensor 151 is not limited.
  • the second transparent electrode 18 is laminated on the first base film 14, and the piezoelectric coating layer 15 is adhered to the transparent filling layer 13. May be.
  • the second transparent electrode 18 is not directly formed on the piezoelectric film 16, and the fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 is prepared and transparently filled as in the above embodiment.
  • the piezoelectric film 16 and the fourth laminated body 43 may be bonded by the layer 44.
  • the surface bonded to the transparent filling layer 44 of the fourth laminate 43 is not limited.
  • the transparent electrodes on the one surface side and the other surface side of the piezoelectric film 16 may be used in both the capacitance sensor and the piezoelectric sensor.
  • the third transparent electrode 20 may be laminated on one surface of the piezoelectric film 16 and the fourth transparent electrode 23 may be laminated on the other surface of the piezoelectric film 16.
  • the third transparent electrode 20 and the fourth transparent electrode 23 are electrodes for detecting the coordinates of the touch position by a capacitance method, and are electrodes for detecting a potential when the coating layer 15 having piezoelectricity is polarized. is there. If the 3rd transparent electrode 20 and the 4th transparent electrode 23 are used for the electrostatic capacitance sensor 171 and the piezoelectric sensor 172, the drive method of the electrostatic capacitance sensor 170 and the piezoelectric sensor 172 will not be limited. When the capacitance sensor 171 is driven, a change in capacitance is detected by the transparent electrodes 20 and 23. When the piezoelectric sensor 172 is driven, one of the transparent electrodes 20 and 23 becomes the ground potential, and the other electrode 23 and 20 detects a change in potential due to polarization of the coating layer 15.
  • the vertical direction of the piezoelectric sensor 16 is arbitrary.
  • the 4th transparent electrode 23 may be laminated
  • the transparent electrodes 20 and 23 are not limited to forming the transparent electrodes 20 and 23 directly on the piezoelectric film 16.
  • the capacitance sensor 191 and the piezoelectric sensor 192 use the same transparent electrodes 20 and 23 alternately.
  • the touch sensor 193 of FIG. 19B prepares a second laminate 21 in which the third transparent electrode 20 is laminated on the second base film 19, and adheres the second laminate 21 to the piezoelectric film 16. Yes.
  • the capacitance sensor 194 and the piezoelectric sensor 195 use the same transparent electrodes 20 and 23 alternately.
  • the touch sensor 196 in FIG. 19C prepares the second laminated body 21 and the third laminated body 24 and adheres them to the piezoelectric film 16. Similar to the above, the capacitance sensor 197 and the piezoelectric sensor 198 use the same transparent electrodes 20 and 23 alternately.
  • the direction of the piezoelectric film 16 is not limited, and the positions of the first base film 14 and the coating layer 15 having piezoelectricity are interchanged, and the first base film 14 may be adhered to the transparent filling layer 44.
  • the direction of the second stacked body 21 is not limited, and the third transparent electrode 20 may be bonded to the transparent filling layer 25.
  • the direction of the third stacked body 24 is not limited, and the third stacked body 22 may be bonded to the transparent filling layer 44.
  • At least one of the undercoat layer (ancher20coat ⁇ ⁇ ⁇ ⁇ ⁇ layer), the refractive index adjustment layer (index matching layer) (optical adjustment layer), and the anti-blocking layer described in the first embodiment is the piezoelectric film 16 and the third and fourth transparent electrodes 20. , 23 may be formed.
  • a transparent electrode may be disposed between the touch sensor and the display.
  • a laminated body in which the seventh transparent electrode 201 is laminated on the entire surface of the seventh base film 202 is prepared and bonded with the transparent filling layer 203.
  • the seventh transparent electrode 201 serves as a shield.
  • the refractive index adjustment layer may be disposed between the piezoelectric film 16 and the second transparent electrode 18 as in the touch sensor 210 of FIG.
  • the touch sensor 210 in FIG. 21 has the same configuration except that the refractive index adjustment layer 210 is added to the touch sensor 10 in FIG.
  • the refractive index adjustment layer 210 may be disposed between the piezoelectric film 16 and the first transparent electrode 17.
  • the thickness of the coating layer 15 having piezoelectricity is 0.5 to 10 ⁇ m
  • the thickness of the refractive index adjustment layer 210 is 80 to 160 nm
  • the thickness of the second transparent electrode 18 is 20 nm or more.
  • the refractive index of the coating layer 15 having piezoelectricity is 1.40 to 1.50
  • the refractive index of the refractive index adjusting layer 210 is 1.50 to 1.70
  • the refractive index of the second transparent electrode 18 is 1.90.
  • One example is ⁇ 2.10.
  • the thickness of the first base film 14 is set to 2 to 100 ⁇ m
  • the refractive index is set to 1.50 to 1.70.
  • Example 1 the total light transmittance and haze of the touch sensor 10 when the thickness of the coating layer 15 is 1 ⁇ m, 5 ⁇ m, and 10 ⁇ m were measured, and the results are shown in Table 1.
  • Example 1 As a comparative example, the total light transmittance and haze were measured when the piezoelectric film 222 was attached to the first base film 14 with the transparent filling layer 221 as in the touch sensor 220 shown in FIG.
  • the piezoelectric film 222 was a single film manufactured by extrusion using PVDF and had a thickness of 80 ⁇ m.
  • the transparent filling layer 221 used an optical transparent adhesive, and its thickness was 22 ⁇ m. Other configurations are the same as those in the embodiment.
  • Examples 4 to 9 Further, in order to confirm the change in appearance due to the refractive index adjustment layer 211 in FIG. 21, a coating layer 15 having piezoelectricity, a refractive index adjustment layer on the first base film 14 having a thickness of 23 ⁇ m as shown in FIG. 211, the 2nd transparent electrode 18 was created, and thickness and refractive index were measured. The results are shown in Table 2.
  • the “first layer” is the piezoelectric coating layer 15, the “second layer” is the refractive index adjustment layer 211, and the “third layer” is the second transparent electrode 18.
  • the piezoelectric film 16 was prepared by coating a polyethylene terephthalate base film with a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene.
  • the copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was Piezotech RT TM TS manufactured by Arkema Co., Ltd., and a solution was prepared in MIBK (methyl isobutyl ketone) by ultrasonic waves.
  • MIBK methyl isobutyl ketone
  • a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was coated on a polyethylene terephthalate base film by a bar coater.
  • the polyethylene terephthalate base film and the undried coating layer were dried at 110 ° C. for 5 minutes to prepare a coating layer.
  • the thickness of the coating layer 15 shown in Table 2 is
  • the refractive index adjustment layer 211 may have a refractive index of 1.54, 1.62, 1.7. Since the manufacturing method differs depending on the refractive index, each refractive index will be described.
  • a thermosetting resin refractive index of light
  • melamine resin alkyd resin: organosilane condensate
  • n 1.54
  • the refractive index adjustment layer 211 having a thickness of 120 nm was formed.
  • an optical adjustment composition containing 47 parts by mass of UV curable resin, 57 parts by mass of zirconia oxide particles (median diameter 40 nm) and PGME on one surface of the coating layer 15 having piezoelectricity (Manufactured by JSR, “OPSTAR Z7412”, solid content: 12% by mass) was applied using a gravure coater, and immediately heated and dried at 60 ° C. for 1 minute in a windless state (less than 0.1 m / s). Then, the curing process was performed by irradiating ultraviolet rays with an integrated light amount of 250 mJ / cm 2 with a high-pressure mercury lamp.
  • a refractive index adjustment layer 211 having a thickness of 90, 120, or 150 nm and a refractive index of 1.62 was formed on the coating layer 15 having piezoelectricity.
  • melamine resin: alkyd resin: organosilane condensate 2: 2: 1
  • the mixing amount of the TiO 2 fine particles was adjusted so that the refractive index of the resin composition was 1.70.
  • the said resin composition was apply
  • a hard coat layer 231 having an anti-blocking function is formed on the opposite surface of the first base film 14 to the coating layer 15.
  • the thickness of the coating layer 15 having piezoelectricity is 0.5 to 10 ⁇ m
  • the thickness of the refractive index adjustment layer 211 is 80 to 160 nm
  • the thickness of the second transparent electrode 18 is 20 nm or more as described above. It has become.
  • the refractive index of the coating layer 15 having piezoelectricity is 1.40 to 1.50
  • the refractive index of the refractive index adjusting layer 211 is 1.50 to 1.70
  • the refractive index of the second transparent electrode 18 is 1.90. It is ⁇ 2.10.
  • the difference in reflectance between the second transparent electrode 18 and the refractive index adjustment layer 211 was 2% or less, and the appearance was good.
  • the second transparent electrode 18 is etched to become a desired electrode or the like as necessary.
  • the refractive index of the refractive index adjusting layer 211 was the portion where the second transparent electrode 18 was removed by etching. Therefore, the reflectance difference was calculated
  • the refractive index adjusting layer 211 is prepared by diluting silica sol (Colcoat P, Colcoat P) with ethanol so that the solid content concentration is 2%. On one side of the coating layer 15 having piezoelectricity, it is applied by a silica coating method, then dried and cured at 150 ° C. for 2 minutes, and a layer having a thickness of 120 nm (SiO 2 film, refractive index of light 1.. 46) to form a refractive index adjusting layer 211.
  • the manufacturing method of the other configuration is the same as that of the example.
  • the second transparent electrode 18 may be colored yellow or brown to impair the appearance.
  • the refractive index adjustment layer 211 is provided as in the present invention, and the thickness and the refractive index of the second transparent electrode 18, the refractive index adjustment layer 211, and the coating layer 15 having piezoelectricity are adjusted to be in the above-described range.
  • the difference in reflectance can be reduced as shown in Table 2, and the appearance is not impaired. It has been found that even if a configuration in which the refractive index adjusting layer 211 and the second transparent electrode 18 are laminated on the piezoelectric film 16 is disposed on the front surface of the display, the appearance of the display is hardly impaired.
  • the touch sensor of the present invention is disposed on the front surface of the display and can be used as an integral part of the display.

Abstract

[Problem] To provide a touch sensor in which total light transmittance and haze are improved, the touch sensor is made thinner by reduction of members, and costs are lower in comparison with conventional configurations. [Solution] A touch sensor 10 is provided with a piezoelectric sensor 11 and an electrostatic capacitance sensor 12. The piezoelectric sensor 11 is provided with: a piezoelectric film 16, which is a first laminate comprising a first base material film 14 and a piezoelectric coating layer 15; a first transparent electrode 17 formed on one surface of the piezoelectric film 16; and a second transparent electrode 18 formed on the other surface of the piezoelectric film 16. The electrostatic capacitance sensor 12 is provided with: a second laminate 21 in which a third transparent electrode 20 is formed on one surface of a second base material film 19; a third laminate 24 in which a fourth transparent electrode 23 is formed on one surface of a third base material film 22; and a transparent fill layer 25 that bonds the second laminate 21 and the third laminate 24.

Description

タッチセンサTouch sensor
 本発明は、押圧検出機能を備えたタッチセンサに関するものである。 The present invention relates to a touch sensor having a press detection function.
 近年、スマートフォンやタブレットなどの電子機器にタッチセンサが導入され、直感的なヒューマン-マシンインターフェースとして利用されている。タッチセンサは指やペンでタッチされた2次元位置を検出している。ディスプレイの表示にあわせてタッチされた位置を検出することで電子機器を操作する。 In recent years, touch sensors have been introduced into electronic devices such as smartphones and tablets, and are used as intuitive human-machine interfaces. The touch sensor detects a two-dimensional position touched with a finger or a pen. The electronic device is operated by detecting the touched position according to the display.
 また、入力情報を増やし、操作性を向上させる目的で押圧力を検知するタッチセンサが開発および開示されている。たとえば、筐体がひずんだときの静電容量の変化や感圧ゴムを用いた抵抗値の変化などで押圧力を検出する方法、圧電材料の電荷の変化を検出する方法などがある。圧電材料を利用する技術には、無機系のチタン酸ジルコン酸鉛(PZT)を用いたものや有機系のポリフッ化ビニリデンやポリ乳酸などの様々な材料が用いられる。 Also, touch sensors that detect pressing force are developed and disclosed for the purpose of increasing input information and improving operability. For example, there are a method of detecting a pressing force based on a change in capacitance when the casing is distorted, a change in resistance value using pressure-sensitive rubber, and the like, and a method of detecting a change in charge of the piezoelectric material. Various materials such as those using inorganic lead zirconate titanate (PZT), organic polyvinylidene fluoride, and polylactic acid are used in the technology that uses piezoelectric materials.
 このような指のタッチする圧力(Z座標)も検出できるタッチパネルの圧電フィルムとしては、例えば、特許文献1(特開2010-26938)に記載されている。特許文献1のタッチパネルでは、ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層の両面に透明電極が積層された積層体が用いられる。ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層は、キャスティング法あるいは押し出し法で製造することが記載されており、単独のフィルムになっている。そして、圧電体層の厚さは20μm~300μmである。ポリフッ化ビニリデン-四フッ化エチレン共重合体を含有する圧電体層の厚さが20μm~100μmの実施例において、全光線透過率は95%、ヘイズ値(曇り値)は5%~7%である。 For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-26938) discloses a piezoelectric film for a touch panel that can detect pressure (Z coordinate) touched by a finger. In the touch panel of Patent Document 1, a laminate in which transparent electrodes are laminated on both sides of a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is used. A piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is described as being produced by a casting method or an extrusion method, and is a single film. The thickness of the piezoelectric layer is 20 μm to 300 μm. In an example in which the thickness of the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer is 20 μm to 100 μm, the total light transmittance is 95%, and the haze value (cloudiness value) is 5% to 7%. is there.
 タッチパネルの背面にあるディスプレイの画像の視認性を損なわないためには、ヘイズ値は5%未満が望ましく、ヘイズ値をさらに低減する必要がある。また、有機系の圧電フィルムは材料費、加工費が一般的に高価であり、タッチセンサ用途用いるにはさらなる低コスト化が必要である。 In order not to impair the visibility of the display image on the back of the touch panel, the haze value is desirably less than 5%, and it is necessary to further reduce the haze value. In addition, organic piezoelectric films generally have high material costs and processing costs, and further cost reduction is required for use as touch sensors.
 タッチ位置検出として、検出感度の高い静電容量方式を用い、押込み圧力検出として透明な有機系の圧電フィルムを用いることで、検出精度の高いタッチセンサが提案されている(特許文献2参照)。しかしながら、静電容量センサ基材と圧電フィルムを貼り合せることで形成されるため、部材の増加によるコストアップと、タッチセンサの厚みが増してしまうといった問題があった。 A touch sensor with high detection accuracy has been proposed by using a capacitive method with high detection sensitivity for touch position detection and using a transparent organic piezoelectric film for indentation pressure detection (see Patent Document 2). However, since it is formed by bonding a capacitance sensor substrate and a piezoelectric film, there are problems such as an increase in cost due to an increase in members and an increase in the thickness of the touch sensor.
特開2010-26938JP 2010-26938 A 特許5722954Patent 5722951
 本発明の目的は、従来に比べて、全光線透過率およびヘイズの改善、部材削減による薄型化、および低コスト化を達成したタッチセンサを提供することにある。 An object of the present invention is to provide a touch sensor that achieves an improvement in total light transmittance and haze, a reduction in thickness by reducing the number of members, and a reduction in cost, as compared with the prior art.
 本発明のタッチセンサは、圧電センサおよび静電容量センサを備える。圧電センサは、基材フィルムに圧電性を有するコーティング層が積層された圧電フィルムを備える。 The touch sensor of the present invention includes a piezoelectric sensor and a capacitance sensor. The piezoelectric sensor includes a piezoelectric film in which a base film is laminated with a piezoelectric coating layer.
 前記圧電フィルムの一面側および他面側に透明電極が配置される。透明電極は、圧電センサのみに使用される透明電極、静電容量センサにのみ使用される透明電極、圧電センサと静電容量センサの両方に使用される透明電極がある。タッチセンサの種類に応じて製造時に積層する透明電極を選択する。 Transparent electrodes are arranged on one side and the other side of the piezoelectric film. The transparent electrode includes a transparent electrode used only for a piezoelectric sensor, a transparent electrode used only for a capacitance sensor, and a transparent electrode used for both a piezoelectric sensor and a capacitance sensor. A transparent electrode to be laminated at the time of manufacture is selected according to the type of touch sensor.
 前記圧電性を有するコーティング層の厚みが0.5μm以上、20μm以下である。また、前記圧電性を有するコーティング層がフッ素樹脂を含む。さらに、前記フッ素系樹脂がフッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロチレンのうちの2種類以上の共重合体またはフッ化ビニリデンの重合体である。 The thickness of the coating layer having piezoelectricity is 0.5 μm or more and 20 μm or less. The piezoelectric coating layer includes a fluororesin. Furthermore, the fluororesin is a copolymer of two or more of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene, or a polymer of vinylidene fluoride.
 前記基材フィルムと圧電性を有するコーティング層との間にアンダーコート層、屈折率調整層、光学調整層、アンチブロッキング層の少なくとも1層を備える。または基材フィルムに圧電性を有するコーティング層が直接形成されていても良い。 At least one layer of an undercoat layer, a refractive index adjustment layer, an optical adjustment layer, and an anti-blocking layer is provided between the base film and the coating layer having piezoelectricity. Alternatively, a piezoelectric coating layer may be directly formed on the base film.
 前記コーティング層の厚みが0.5~10μm、屈折率調整層の厚みが80~160nm、透明電極の厚みが20nm以上である。また、前記コーティング層の屈折率が1.40~1.50、屈折率調整層の屈折率が1.50~1.70、透明電極の屈折率が1.90~2.10である。 The thickness of the coating layer is 0.5 to 10 μm, the thickness of the refractive index adjustment layer is 80 to 160 nm, and the thickness of the transparent electrode is 20 nm or more. The coating layer has a refractive index of 1.40 to 1.50, the refractive index adjustment layer has a refractive index of 1.50 to 1.70, and the transparent electrode has a refractive index of 1.90 to 2.10.
 前記圧電フィルムと透明電極との間にアンダーコート層、屈折率調整層、光学調整層、アンチブロッキング層の少なくとも1層を備える。または圧電フィルムに透明電極が直接形成されていても良い。 At least one layer of an undercoat layer, a refractive index adjustment layer, an optical adjustment layer, and an anti-blocking layer is provided between the piezoelectric film and the transparent electrode. Or the transparent electrode may be directly formed in the piezoelectric film.
 前記圧電フィルムおよび透明電極に透明充填層が積層されている。圧電フィルムに直接透明電極を積層しない場合、基材フィルムに透明電極を形成した積層体を準備し、積層体と圧電フィルムは透明充填層を介して積層しても良い。 A transparent filling layer is laminated on the piezoelectric film and the transparent electrode. When the transparent electrode is not directly laminated on the piezoelectric film, a laminate in which the transparent electrode is formed on the base film may be prepared, and the laminate and the piezoelectric film may be laminated via a transparent filling layer.
 前記基材フィルムがポリエチレンテレフタレート、シクロオレフィンコポリマー、ポリシクロオレフィン、ポリエチレンナフタレート、ポリカーボネートの少なくとも1つから選ばれる。 The base film is selected from at least one of polyethylene terephthalate, cycloolefin copolymer, polycycloolefin, polyethylene naphthalate, and polycarbonate.
 前記透明電極が酸化インジウムを主成分とする透明電極である。 The transparent electrode is a transparent electrode mainly composed of indium oxide.
 本発明のタッチセンサは、基材フィルムに圧電性を有するコーティング層を形成しており、コーティング層を薄くできる。コーティング層が薄いため、全光線透過率およびヘイズを悪化させにくい。 In the touch sensor of the present invention, a coating layer having piezoelectricity is formed on the base film, and the coating layer can be thinned. Since the coating layer is thin, it is difficult to deteriorate the total light transmittance and haze.
本発明のタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor of this invention. 図1のタッチセンサを構成部品ごとに分解した斜視図である。It is the perspective view which decomposed | disassembled the touch sensor of FIG. 1 for every component. 静電容量センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of an electrostatic capacitance sensor. 本発明の実施形態2に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 6 of this invention. 本発明の実施形態7に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 7 of this invention. 本発明の実施形態8に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 8 of this invention. 本発明の実施形態9に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 9 of this invention. 本発明の実施形態10に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 10 of this invention. 本発明の実施形態11に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 11 of this invention. 本発明の実施形態12に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 12 of this invention. 本発明の実施形態13に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 13 of this invention. 本発明の実施形態14に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 14 of this invention. 本発明の実施形態15に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 15 of this invention. 本発明の実施形態16に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 16 of this invention. 本発明の実施形態16に係るタッチセンサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the touch sensor which concerns on Embodiment 16 of this invention. 本発明の実施形態17に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 17 of this invention. 本発明の実施形態18に係るタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor which concerns on Embodiment 18 of this invention. 比較例のタッチセンサの構成を模式的に示す図である。It is a figure which shows typically the structure of the touch sensor of a comparative example. 実施例4~10をおこなった構成を模式的に示す図である。It is a figure which shows typically the structure which performed Example 4-10.
 本発明のタッチセンサについて図面を使用して説明する。一の実施形態で説明した構成について他の実施形態で同じ構成が有れば、その構成の説明を省略し、図面に同一の符号を付す場合が有る。 The touch sensor of the present invention will be described with reference to the drawings. If the configuration described in one embodiment has the same configuration in other embodiments, the description of the configuration may be omitted, and the same reference numerals may be attached to the drawings.
 [実施形態1]
 図1、図2に示す本発明のタッチセンサ10は、ディスプレイの表示面に配置されるものである。本発明のタッチセンサ10は、圧電センサ11および静電容量センサ12を備える。圧電センサ11は押圧力を圧電方式で検出する。静電容量センサ12は押圧された位置(X座標およびY座標)を静電容量方式で検出する。圧電センサ11と静電容量センサ12は透明充填層13によって接着されている。
[Embodiment 1]
The touch sensor 10 of the present invention shown in FIGS. 1 and 2 is disposed on the display surface of a display. The touch sensor 10 of the present invention includes a piezoelectric sensor 11 and a capacitance sensor 12. The piezoelectric sensor 11 detects the pressing force by a piezoelectric method. The capacitance sensor 12 detects the pressed position (X coordinate and Y coordinate) by a capacitance method. The piezoelectric sensor 11 and the capacitance sensor 12 are bonded by a transparent filling layer 13.
 [圧電センサ]
 圧電センサ11は、第1基材フィルム14と圧電性を有するコーティング層15からなる第1積層体である圧電フィルム16、圧電フィルム16の一面に形成された第1透明電極17、圧電フィルム13の他面に形成された第2透明電極18を備える。タッチセンサ10が押圧されると圧電性を有するコーティング層15が分極し、その際の電位の変化を透明電極17、18で検出することで、押圧力を検出することができる。
[Piezoelectric sensor]
The piezoelectric sensor 11 includes a piezoelectric film 16 that is a first laminate including a first base film 14 and a coating layer 15 having piezoelectricity, a first transparent electrode 17 formed on one surface of the piezoelectric film 16, and a piezoelectric film 13. A second transparent electrode 18 formed on the other surface is provided. When the touch sensor 10 is pressed, the piezoelectric coating layer 15 is polarized, and the change in potential at that time is detected by the transparent electrodes 17 and 18 so that the pressing force can be detected.
 [静電容量センサ]
 静電容量センサ12は、圧電センサ13の一面側に配置されている。静電容量センサ12は、第2基材フィルム19の一面に第3透明電極20を形成した第2積層体21、第3基材フィルム22の一面に第4透明電極23を形成した第3積層体24、第2積層体21と第3積層体24とを接着する透明充填層25を備える。透明電極20、24同士は絶縁されている。静電容量センサ12は、指またはペンがタッチセンサ10に接触または近接したときにその位置の静電容量が変化し、その位置にある透明電極20、24の電位が変化し、その電位の変化によってタッチ位置を検出することができる。
[Capacitance sensor]
The capacitance sensor 12 is arranged on one side of the piezoelectric sensor 13. The capacitance sensor 12 includes a second laminated body 21 in which the third transparent electrode 20 is formed on one surface of the second base film 19, and a third laminated body in which the fourth transparent electrode 23 is formed on one surface of the third base film 22. The transparent filling layer 25 which adhere | attaches the body 24, the 2nd laminated body 21, and the 3rd laminated body 24 is provided. The transparent electrodes 20 and 24 are insulated from each other. The capacitance sensor 12 changes its capacitance when a finger or pen touches or approaches the touch sensor 10, changes the potential of the transparent electrodes 20 and 24 at that location, and changes the potential. The touch position can be detected by.
 [基材フィルム]
 第1および第2、第3基材フィルム14、19、22は、たとえばポリエチレンテレフタレート、シクロオレフィンポリマー、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンなどの高分子フィルムが挙げられる。それぞれの基材フィルム14、19、22は透明性、耐熱性、および機械特性に優れるポリエチレンテレフタレートフィルム(PETフィルム)が好ましいが、これに限定されない。また、異なる材料のフィルムを積層して1枚の基材フィルムにしても良い。
[Base film]
The first, second and third substrate films 14, 19, 22 are, for example, polyethylene terephthalate, cycloolefin polymer, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene. And polymer films such as polynorbornene. Each of the base films 14, 19, and 22 is preferably a polyethylene terephthalate film (PET film) excellent in transparency, heat resistance, and mechanical properties, but is not limited thereto. Moreover, you may laminate | stack the film of a different material to make one base film.
 各基材フィルム14、19、22の厚さは、好ましくは、10μm以上、150μm以下であるが、これに限定されることはない。ただし基材フィルム14、19、22の厚さが10μm未満であると取り扱いが困難になるおそれがある。また基材フィルム14、19、22の厚さが150μmを超えると、圧電フィルム16、第2積層体21および第3積層体24を巻き取ってロールにするのが難しくなるおそれがある。 The thickness of each base film 14, 19, and 22 is preferably 10 μm or more and 150 μm or less, but is not limited thereto. However, if the thickness of the base films 14, 19, and 22 is less than 10 μm, handling may be difficult. Moreover, when the thickness of the base films 14, 19, and 22 exceeds 150 μm, it may be difficult to wind up the piezoelectric film 16, the second laminated body 21, and the third laminated body 24 into a roll.
 [圧電性を有するコーティング層]
 圧電性を有するコーティング層15は、第1基材フィルム14のいずれかの面上に薄膜状にコーティングされたものである。圧電性を有するコーティング層15は、コーティング後の膜が圧電性を有するものであれば、特に限定されない。圧電性を有するコーティング層15は、ポーリング(分極処理)を行なわなくても圧電性を示すものが望ましいが、ポーリング後に圧電性を示すものでもよい。
[Coating layer with piezoelectricity]
The coating layer 15 having piezoelectricity is a thin film coated on any surface of the first base film 14. The coating layer 15 having piezoelectricity is not particularly limited as long as the coated film has piezoelectricity. The coating layer 15 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
 ポーリングにはコロナ放電処理分極による非接触式と、2枚の金属板でフィルムを挟み電圧を印加して分極する接触式との、2種類の方式が知られている。 There are two known types of poling, a non-contact type using corona discharge treatment polarization and a contact type in which a film is sandwiched between two metal plates and polarized by applying a voltage.
 圧電性を有するコーティング層15は、例えば、コーティング層15の材料を溶媒に溶解させて溶液とし、バーコーターやグラビアコーターなどの既知のコーティング装置によって第1基材フィルム14の上に薄く一様にコーティングし、その後乾燥させて得られる。 The coating layer 15 having piezoelectricity is formed into a solution by dissolving the material of the coating layer 15 in a solvent, and is thinly and uniformly formed on the first base film 14 by a known coating apparatus such as a bar coater or a gravure coater. It is obtained by coating and then drying.
 [圧電性を有するコーティング層の材料]
  圧電性を有するコーティング層15の材料は、例えば、フッ素樹脂を含む材料が好適に用いられる。フッ素樹脂を含む材料を具体的に例示すると、フッ化ビニリデン成分含有ポリマーであるポリフッ化ビニリデン、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体、ヘキサフルオロプロピレン-ビニリデンフロライドの共重合体、パーフルオロビニルエーテル-ビニリデンフロライドの共重合体、テトラフルオロエチレン-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシド-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシド-テトラフルオロエチレン-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレン-テトラフルオロエチレン-ビニリデンフロライドの共重合体から選ぶことができる。そしてこれらのポリマーは単独でも混合体でも用いることができる。より好ましくは、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデンの重合体である。
[Material of coating layer having piezoelectricity]
As the material of the coating layer 15 having piezoelectricity, for example, a material containing a fluororesin is preferably used. Specific examples of a material containing a fluororesin include polyvinylidene fluoride, a vinylidene fluoride component-containing polymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer. Polymer, hexafluoropropylene-vinylidene fluoride copolymer, perfluorovinyl ether-vinylidene fluoride copolymer, tetrafluoroethylene-vinylidene fluoride copolymer, hexafluoropropylene oxide-vinylidene fluoride copolymer A polymer, a copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, and a copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride can be selected. These polymers can be used alone or as a mixture. More preferred are a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride polymer.
 フッ化ビニリデン-トリフルオロエチレンの共重合体をコーティング層15の材料として用いる場合、フッ化ビニリデンとトリフルオロエチレンのモル比は全体を100として、(50~85):(50~15)が適切である。また、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体をコーティング層15の材料として用いる場合、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンのモル比は全体を100として、(63~65):(27~29):(10~6)が適切である。 When a copolymer of vinylidene fluoride-trifluoroethylene is used as the material of the coating layer 15, the molar ratio of vinylidene fluoride and trifluoroethylene is 100 as a whole, and (50 to 85): (50 to 15) is appropriate. It is. When a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer is used as the material for the coating layer 15, the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is 100 as a whole. 63 to 65): (27 to 29): (10 to 6) is appropriate.
 [圧電性を有するコーティング層の厚さ]
 圧電性を有するコーティング層15の乾燥後の厚さが限定されることはないが、後述する光学特性を考慮すると、0.5μm以上、20μm以下が適切であるが、0.5~10μmがより好ましく、0.5~5μmがさらに好ましい。圧電性を有するコーティング層15の乾燥後の厚さが0.5μm未満であると、形成された膜が不完全であるおそれがある。圧電性を有するコーティング層15の乾燥後の厚さが20μmを超えると、光学特性(ヘイズおよび全光線透過率)が不適切になるおそれがある。
[Thickness of coating layer having piezoelectricity]
The thickness of the coating layer 15 having piezoelectricity after drying is not limited. However, in consideration of optical characteristics described later, 0.5 μm or more and 20 μm or less are appropriate, but 0.5 to 10 μm is more preferable. 0.5 to 5 μm is more preferable. If the thickness of the coating layer 15 having piezoelectricity after drying is less than 0.5 μm, the formed film may be incomplete. If the thickness of the coating layer 15 having piezoelectricity after drying exceeds 20 μm, the optical properties (haze and total light transmittance) may become inappropriate.
 [圧電フィルムの光学特性]
 ディスプレイの画像が明瞭に視認されなければならないため、圧電フィルム16のヘイズ値は5%未満が好ましく、全光線透過率は90%以上が好ましい。圧電フィルム16のヘイズ値が5%以上の場合、あるいは、全光線透過率が85%未満となった場合、ディスプレイの画像が明瞭に視認できなくなるおそれがある。
[Optical characteristics of piezoelectric film]
Since the image on the display must be clearly seen, the haze value of the piezoelectric film 16 is preferably less than 5%, and the total light transmittance is preferably 90% or more. If the haze value of the piezoelectric film 16 is 5% or more, or if the total light transmittance is less than 85%, the image on the display may not be clearly visible.
 [透明電極]
 第1および第2透明電極17、18は押圧力を検出するための電極であり、第3および第4透明電極20、23は押圧位置を検出するための電極である。
[Transparent electrode]
The first and second transparent electrodes 17 and 18 are electrodes for detecting a pressing force, and the third and fourth transparent electrodes 20 and 23 are electrodes for detecting a pressing position.
 第1透明電極17が圧電フィルム16の一面全体を覆い、第2透明電極18が圧電フィルム16の他面全体を覆う。タッチセンサ10が押圧されたとき、圧電性を有するコーティング層15が分極する。その際に、第1および第2透明電極17、18で圧電性を有するコーティング層15の電位の変化を検出する。たとえば第2透明電極18は基準電位(アース電位)にして、第1透明電極17で電位の変化を検出する。 The first transparent electrode 17 covers the entire surface of the piezoelectric film 16, and the second transparent electrode 18 covers the entire other surface of the piezoelectric film 16. When the touch sensor 10 is pressed, the coating layer 15 having piezoelectricity is polarized. At that time, the first and second transparent electrodes 17 and 18 detect a change in potential of the coating layer 15 having piezoelectricity. For example, the second transparent electrode 18 is set to a reference potential (ground potential), and the first transparent electrode 17 detects a change in potential.
 図1、図2に示すように、圧電センサ11の一面側に第3透明電極20と第4透明電極23が配置されている。これらの透明電極20、23は静電容量センサ12の一部である。図1に示すように、第3透明電極20と第4透明電極23は間に第2基材フィルム19と透明充填層25が有ることで絶縁されている。さらに図2に示すように、第3および第4透明電極20、23は帯状になっており、電極20、23同士が直交する方向を向いている。たとえば第3透明電極20が押圧位置のX座標を検出し、第4透明電極23がY座標を検出するための電極とする。タッチセンサ10の表面を指やペンで押圧または近づくことで、その位置の第3および第4透明電極20、23の電位が変化し、その電位の変化を利用してX座標およびY座標を検出する。 As shown in FIGS. 1 and 2, the third transparent electrode 20 and the fourth transparent electrode 23 are arranged on one surface side of the piezoelectric sensor 11. These transparent electrodes 20 and 23 are part of the capacitance sensor 12. As shown in FIG. 1, the 3rd transparent electrode 20 and the 4th transparent electrode 23 are insulated by having the 2nd base film 19 and the transparent filling layer 25 in between. Further, as shown in FIG. 2, the third and fourth transparent electrodes 20, 23 have a band shape, and face the direction in which the electrodes 20, 23 are orthogonal to each other. For example, the third transparent electrode 20 detects the X coordinate of the pressed position, and the fourth transparent electrode 23 detects the Y coordinate. By pressing or approaching the surface of the touch sensor 10 with a finger or a pen, the potential of the third and fourth transparent electrodes 20 and 23 at that position changes, and the X and Y coordinates are detected using the change in potential. To do.
 なお、図1の静電容量センサ12は、第2基材フィルム19の一面に第3透明電極20、第3基材フィルム22の一面に第4透明電極23が積層されているが、この構成に限定されない。たとえば、図3(a)、(b)、(c)の静電容量センサ27、28、29のように、基材フィルム19、22の一面または他面に透明電極20、23を積層し、透明充填層25によって積層体21、24を接着しても良い。また、第3積層体24の上方に第2積層体21が配置されているが、逆に配置されても良い。 1 has a third transparent electrode 20 on one surface of the second base film 19 and a fourth transparent electrode 23 on one surface of the third base film 22. It is not limited to. For example, like the electrostatic capacitance sensors 27, 28, and 29 in FIGS. 3A, 3B, and 3C, the transparent electrodes 20 and 23 are laminated on one surface or the other surface of the base films 19 and 22, The laminates 21 and 24 may be bonded by the transparent filling layer 25. Moreover, although the 2nd laminated body 21 is arrange | positioned above the 3rd laminated body 24, you may arrange | position conversely.
 各透明電極17、18、20、23は、インジウム系複合酸化物、代表的にはインジウムスズ複合酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛複合酸化物が挙げられるが、4価金属イオンまたは2価金属イオンがドープされた酸化インジウム(In203)が挙げられる。インジウム系複合酸化物は、可視光領域(380~780nm)で透過率が80%以上と高く、かつ単位面積当たりの表面抵抗が低い(30~1000Ω/□(ohms per square))という特徴を有している。 Each of the transparent electrodes 17, 18, 20, and 23 includes an indium-based composite oxide, typically indium tin composite oxide (ITO: Indium Tin Oxide), indium zinc composite oxide. Examples thereof include indium oxide (In203) doped with divalent metal ions. Indium-based composite oxides are characterized by high transmittance of 80% or more in the visible light region (380 to 780 nm) and low surface resistance per unit area (30 to 1000Ω / □ (ohms per square)). is doing.
 上記インジウム系複合酸化物の厚みは35nm以下が好ましい。厚みが厚くなりすぎると可視光領域の透過率等が悪くなるためである。また、インジウム系複合酸化物の表面抵抗値は、好ましくは300Ω/□以下であり、さらに好ましくは150Ω/□以下である。表面抵抗値が高くなると電極として機能しなくなるためである。 The thickness of the indium composite oxide is preferably 35 nm or less. This is because if the thickness is too thick, the transmittance in the visible light region is deteriorated. In addition, the surface resistance value of the indium composite oxide is preferably 300Ω / □ or less, and more preferably 150Ω / □ or less. This is because if the surface resistance value becomes high, it will not function as an electrode.
 表面抵抗の小さい透明電極は、たとえば、スパッタリング法または真空蒸着法により、インジウム系複合酸化物の非晶質層を基材フィルム上に形成した後、80~200℃で加熱処理して、非晶質層を結晶質層に変化することにより得られる。 A transparent electrode having a low surface resistance is formed by, for example, forming an amorphous layer of an indium-based composite oxide on a substrate film by sputtering or vacuum deposition, and then heat-treating it at 80 to 200 ° C. It is obtained by changing the crystalline layer to a crystalline layer.
 各透明電極17、18、20、23は上記の材料に限定されず、スズ亜鉛酸化物、酸化亜鉛、フッ素ドープスズ酸化物などの透明導電性酸化物、ポリエチレンジオキシチオフェンなどの導電性高分子、を用いることができる。 Each of the transparent electrodes 17, 18, 20, 23 is not limited to the above materials, and a transparent conductive oxide such as tin zinc oxide, zinc oxide, fluorine-doped tin oxide, a conductive polymer such as polyethylenedioxythiophene, Can be used.
 圧電性を有するコーティング層15をポーリングする場合、第1および第2透明電極17、18を形成した後にポーリングしても良いし、第1および第2透明電極17、18を形成するより前にコーティング層をポーリングしても良い。第1および第2透明電極17、18をスパッタリングで形成する場合、ポーリングとスパッタリングはいずれが先になっても良い。 When poling the coating layer 15 having piezoelectricity, the poling may be performed after the first and second transparent electrodes 17 and 18 are formed, or the coating may be performed before the first and second transparent electrodes 17 and 18 are formed. You may poll the layer. When the first and second transparent electrodes 17 and 18 are formed by sputtering, either poling or sputtering may be performed first.
 [層間]
 第1基材フィルム14と圧電性を有するコーティング層15、第1、第2および第3基材フィルム14、19、22と第1、第3、第4透明電極17、20、23の間にアンダーコート層(ancher coat layer)、屈折率調整層(Index matching layer)(光学調整層)などの数nm~数十nm程度の薄層を設けても良い。アンダーコート層は層間の密着性を高め、屈折率調整層は反射率を調整する。さらに、各基材フィルム14、19、22と透明電極17、20、23の間にアンチブロッキング層を設けても良い。アンチブロッキング層は積み重ねられたフィルムが圧着(ブロッキング)することを防止する効果がある。
[Interlayer]
Between the first base film 14 and the coating layer 15 having piezoelectricity, the first, second and third base films 14, 19, 22 and the first, third and fourth transparent electrodes 17, 20, 23 A thin layer of about several nm to several tens of nm such as an undercoat layer and an index matching layer (optical adjustment layer) may be provided. The undercoat layer improves the adhesion between the layers, and the refractive index adjustment layer adjusts the reflectance. Furthermore, an anti-blocking layer may be provided between each base film 14, 19, 22 and the transparent electrodes 17, 20, 23. The anti-blocking layer has an effect of preventing the stacked films from being pressed (blocked).
 [透明充填層]
 透明充填層13、25は、空気層を作らずに層間を満たすようにする。第1および第4透明電極17、23の表面は透明充填層13、25で覆われる。第1および第4透明電極17、23の表面による反射と微細な凹凸によって生じる散乱により、全光線透過率とヘイズが低下するのを防止するためである。
[Transparent packing layer]
The transparent filling layers 13 and 25 fill the layers without forming an air layer. The surfaces of the first and fourth transparent electrodes 17 and 23 are covered with transparent filling layers 13 and 25. This is to prevent the total light transmittance and haze from being lowered by the reflection caused by the surfaces of the first and fourth transparent electrodes 17 and 23 and the scattering caused by the fine unevenness.
 透明充填層13、25は光学透明接着材料または光学透明粘着材料から成る接着剤または樹脂を用いる。シート状になった光学透明接着材料または光学透明粘着材料を貼りあわせて透明充填層13、25を形成しても良いし、液状の光学透明接着材料または光学透明粘着材料を塗布し、紫外線を照射して硬化させることで透明充填層13、25を形成しても良い。 The transparent filling layers 13 and 25 use an adhesive or resin made of an optical transparent adhesive material or an optical transparent adhesive material. The transparent filling layers 13 and 25 may be formed by laminating a sheet-like optical transparent adhesive material or optical transparent adhesive material, or a liquid optical transparent adhesive material or optical transparent adhesive material is applied and irradiated with ultraviolet rays. Then, the transparent filling layers 13 and 25 may be formed by curing.
 [ディスプレイ]
 ディスプレイの前面にタッチセンサ10が配置される。ディスプレイは液晶ディスプレイまたは有機ELディスプレイなどの平面ディスプレイを使用することができる。押圧位置を検出するための静電容量センサ12が圧電センサ11よりも上方(タッチする側)に配置されるようにする。第1および第2透明電極17、18は圧電フィルム16を覆うように形成されており、圧電センサ11が静電容量センサ12よりも上方に配置されると、第3および第4透明電極20、23が静電容量の変化を検出できなくなるためである。タッチセンサ10とディスプレイは透明充填層で接着する。透明充填層は上記の光学透明接着材料または光学透明粘着材料が使用可能である。
[display]
A touch sensor 10 is disposed on the front surface of the display. As the display, a flat display such as a liquid crystal display or an organic EL display can be used. The capacitance sensor 12 for detecting the pressed position is arranged above (touching) the piezoelectric sensor 11. The first and second transparent electrodes 17 and 18 are formed so as to cover the piezoelectric film 16, and when the piezoelectric sensor 11 is disposed above the capacitance sensor 12, the third and fourth transparent electrodes 20, This is because the change in capacitance 23 cannot be detected. The touch sensor 10 and the display are bonded with a transparent filling layer. As the transparent filling layer, the above optical transparent adhesive material or optical transparent adhesive material can be used.
 以上のように、本発明は第1基材フィルム14に圧電性を有するコーティング層15を形成しており、従来よりも圧電材料の厚さを薄くできる。圧電性を有するコーティング層15が薄いため、全光線透過率およびヘイズを悪化させにくい。そのため、光学特性の良いタッチセンサ10が実現できる。 As described above, in the present invention, the coating layer 15 having piezoelectricity is formed on the first base film 14, and the thickness of the piezoelectric material can be made thinner than before. Since the coating layer 15 having piezoelectricity is thin, it is difficult to deteriorate the total light transmittance and haze. Therefore, the touch sensor 10 with good optical characteristics can be realized.
 [実施形態2]
 図1のタッチセンサ10において、圧電フィルム16の方向は任意である。図4のタッチセンサ30のように、圧電性を有するコーティング層15が第1基材フィルム14の上側に配置されても良い。
[Embodiment 2]
In the touch sensor 10 of FIG. 1, the direction of the piezoelectric film 16 is arbitrary. As in the touch sensor 30 of FIG. 4, the piezoelectric coating layer 15 may be disposed on the upper side of the first base film 14.
 図4のタッチセンサ30は図1のタッチセンサ10に対して圧電フィルム16の方向を変更したが、圧電センサ11の方向を変更しても良い。第2透明電極18が透明充填層13に接着されるようにし、上から第2透明電極18、圧電センサ11、第1透明電極17の順番に並ぶようにする。 4 has changed the direction of the piezoelectric film 16 with respect to the touch sensor 10 of FIG. 1, but the direction of the piezoelectric sensor 11 may be changed. The second transparent electrode 18 is adhered to the transparent filling layer 13, and the second transparent electrode 18, the piezoelectric sensor 11, and the first transparent electrode 17 are arranged in this order from the top.
 [実施形態3]
 図5(a)のタッチセンサ40の圧電センサ41のように、圧電フィルム16に第2透明電極18を直接形成していなくても良い。第4基材フィルム42に第2透明電極18を積層した第4積層体43を準備し、透明充填層44によって圧電フィルム16と第4積層体を接着している。第4基材フィルム42は第1基材フィルム14などと同じ材料で構成することができる。また、透明充填層44は他の透明充填層13などと同じ材料で構成することができる。
[Embodiment 3]
Like the piezoelectric sensor 41 of the touch sensor 40 in FIG. 5A, the second transparent electrode 18 may not be directly formed on the piezoelectric film 16. A fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 is prepared, and the piezoelectric film 16 and the fourth laminated body are bonded by the transparent filling layer 44. The fourth base film 42 can be made of the same material as the first base film 14 or the like. The transparent filling layer 44 can be made of the same material as the other transparent filling layers 13 and the like.
 第4積層体43の方向は限定されない。図5(a)のタッチセンサ40の圧電センサ41は第2透明電極18が透明充填層44に接着されている。図5(b)のタッチセンサ45の圧電センサ46のように、第4基材フィルム42が透明充填層44に接着されても良い。 The direction of the fourth stacked body 43 is not limited. In the piezoelectric sensor 41 of the touch sensor 40 in FIG. 5A, the second transparent electrode 18 is bonded to the transparent filling layer 44. Like the piezoelectric sensor 46 of the touch sensor 45 in FIG. 5B, the fourth base film 42 may be bonded to the transparent filling layer 44.
 さらに、本実施形態は図4のタッチセンサ30に適用することができる。タッチセンサ30において、第2透明電極18を第1基材フィルム14に直接形成せず、第4積層体43を準備し、第1基材フィルムと第4積層体43を透明充填層44によって接着する。第4積層体43の方向は限定されず、第2透明電極18と第4基材フィルム42のいずれが透明充填層44に接着されても良い。 Furthermore, this embodiment can be applied to the touch sensor 30 of FIG. In the touch sensor 30, the second transparent electrode 18 is not directly formed on the first base film 14, the fourth laminate 43 is prepared, and the first base film and the fourth laminate 43 are bonded by the transparent filling layer 44. To do. The direction of the 4th laminated body 43 is not limited, Any of the 2nd transparent electrode 18 and the 4th base film 42 may be adhere | attached on the transparent filling layer 44. FIG.
 [実施形態4]
 図6(a)のタッチセンサ50の圧電センサ51のように、圧電フィルム16に第1透明電極17を直接形成しなくても良い。第5基材フィルム52に第1透明電極17を積層した第5積層体53を準備し、透明充填層54によって圧電フィルム16と第5積層体53を接着している。第5基材フィルム52は第1基材フィルム14などと同じ材料で構成することができる。また、透明充填層54は他の透明充填層13などと同じ材料で構成することができる。
[Embodiment 4]
Like the piezoelectric sensor 51 of the touch sensor 50 in FIG. 6A, the first transparent electrode 17 may not be directly formed on the piezoelectric film 16. A fifth laminated body 53 in which the first transparent electrode 17 is laminated on the fifth base film 52 is prepared, and the piezoelectric film 16 and the fifth laminated body 53 are bonded by the transparent filling layer 54. The fifth base film 52 can be made of the same material as the first base film 14 or the like. Moreover, the transparent filling layer 54 can be comprised with the same material as the other transparent filling layer 13 grade | etc.,.
 第5積層体53の方向は限定されない。図6(a)のタッチセンサ50の圧電センサ51は第5基材フィルム52が透明充填層54に接着されている。図6(b)のタッチセンサ55の圧電センサ56のように、第1透明電極17が透明充填層54に接着されても良い。 The direction of the fifth stacked body 53 is not limited. In the piezoelectric sensor 51 of the touch sensor 50 in FIG. 6A, the fifth base film 52 is bonded to the transparent filling layer 54. Like the piezoelectric sensor 56 of the touch sensor 55 in FIG. 6B, the first transparent electrode 17 may be bonded to the transparent filling layer 54.
 さらに、本実施形態は図4のタッチセンサ30に適用することができる。タッチセンサ30において、第1透明電極17を圧電性を有するコーティング層15に直接形成せず、第5積層体53を準備し、圧電性を有するコーティング層15と第5積層体53を透明充填層54によって接着する。第5積層体53の方向は限定されず、第1透明電極17と第5基材フィルム52のいずれが透明充填層54に接着されても良い。 Furthermore, this embodiment can be applied to the touch sensor 30 of FIG. In the touch sensor 30, the first transparent electrode 17 is not directly formed on the coating layer 15 having piezoelectricity, the fifth stacked body 53 is prepared, and the coating layer 15 having piezoelectricity and the fifth stacked body 53 are transparently filled. Adhere by 54. The direction of the fifth laminated body 53 is not limited, and any of the first transparent electrode 17 and the fifth base film 52 may be bonded to the transparent filling layer 54.
 [実施形態5]
 図7のタッチセンサ60の圧電センサ61は、圧電フィルム16、第4積層体43、第5積層体53を透明充填層44、54によって接着した構成である。圧電センサ61は、図5の圧電センサ41と図6の圧電センサ51を組み合わせた構成である。
[Embodiment 5]
The piezoelectric sensor 61 of the touch sensor 60 of FIG. 7 has a configuration in which the piezoelectric film 16, the fourth laminated body 43, and the fifth laminated body 53 are bonded by transparent filling layers 44 and 54. The piezoelectric sensor 61 is configured by combining the piezoelectric sensor 41 of FIG. 5 and the piezoelectric sensor 51 of FIG.
 圧電センサ61は、圧電フィルム16および第4積層体43、第5積層体53の方向は任意である。第1基材フィルム14と圧電性を有するコーティング層15の位置、第2透明電極18と第4基材フィルム42の位置、および第1透明電極17と第5基材フィルム52の位置は入れ替わっても良い。したがって、圧電センサ61の構成は8通りになる。 In the piezoelectric sensor 61, the directions of the piezoelectric film 16, the fourth laminated body 43, and the fifth laminated body 53 are arbitrary. The positions of the first base film 14 and the piezoelectric coating layer 15, the positions of the second transparent electrode 18 and the fourth base film 42, and the positions of the first transparent electrode 17 and the fifth base film 52 are interchanged. Also good. Accordingly, the piezoelectric sensor 61 has eight configurations.
 [実施形態6]
 図8のタッチセンサ70の静電容量センサ71は、第6基材フィルム72の一面に第3透明電極20が形成され、第6基材フィルム72の他面に第4透明電極23が形成されている。第6基材フィルム72は第1基材フィルム14などと同じものを使用できる。図8では第4透明電極23が透明充填層13に接着されているが、第3透明電極20を透明充填層13に接着しても良い。
[Embodiment 6]
In the capacitance sensor 71 of the touch sensor 70 of FIG. 8, the third transparent electrode 20 is formed on one surface of the sixth substrate film 72, and the fourth transparent electrode 23 is formed on the other surface of the sixth substrate film 72. ing. The sixth base film 72 can be the same as the first base film 14 or the like. In FIG. 8, the fourth transparent electrode 23 is bonded to the transparent filling layer 13, but the third transparent electrode 20 may be bonded to the transparent filling layer 13.
 図8の静電容量センサ71は、図1の静電容量センサ12と比較して、基材フィルムの数と透明充填層の数が減っている。そのため、タッチセンサ70の薄型化が可能である。 8 has a reduced number of base films and transparent filling layers as compared with the capacitive sensor 12 of FIG. Therefore, the touch sensor 70 can be thinned.
 実施形態1から6で説明したタッチセンサ10、30、40、45、50、55、60に使用される静電容量センサ12を静電容量センサ71に変更することが可能である。 It is possible to change the electrostatic capacity sensor 12 used for the touch sensors 10, 30, 40, 45, 50, 55, and 60 described in the first to sixth embodiments to the electrostatic capacity sensor 71.
 [実施形態7]
 図9(a)のタッチセンサ80の静電容量センサ81は、第6基材フィルム72の一面側に第3'透明電極82と第4'透明電極83が形成されている。第3'透明電極82と第4'透明電極83は第3透明電極20と第4透明電極23と同じ材料で形成されている。
[Embodiment 7]
In the capacitance sensor 81 of the touch sensor 80 in FIG. 9A, a third ′ transparent electrode 82 and a fourth ′ transparent electrode 83 are formed on one surface side of the sixth base film 72. The third ′ transparent electrode 82 and the fourth ′ transparent electrode 83 are made of the same material as the third transparent electrode 20 and the fourth transparent electrode 23.
 図9(b)に示すように、第3'透明電極82と第4'透明電極83は、それぞれ複数の矩形状部分85、86が並べられており、矩形状部分85、86同士はX方向またはY方向に線状部分87、88でつなげられている。したがって、第3'透明電極82と第4'透明電極83は、互いに直交する方向を向いている。矩形状部分85、86は菱形、正方形、六角形などの形状である。第3'透明電極82と第4'透明電極83は短絡しないように、絶縁体84を介して交差している。 As shown in FIG. 9B, each of the third 'transparent electrode 82 and the fourth' transparent electrode 83 has a plurality of rectangular portions 85 and 86 arranged in the X direction. Alternatively, they are connected by linear portions 87 and 88 in the Y direction. Accordingly, the third ′ transparent electrode 82 and the fourth ′ transparent electrode 83 are oriented in directions orthogonal to each other. The rectangular portions 85 and 86 have shapes such as rhombus, square, hexagon. The third ′ transparent electrode 82 and the fourth ′ transparent electrode 83 intersect with each other through an insulator 84 so as not to be short-circuited.
 図9では第4'透明電極83の上を第3'透明電極82が交差するようになっているが、第3'透明電極82の上を第4'透明電極83が交差するようにしても良い。静電容量センサ81の方向は限定されず、透明電極82、83が透明充填層13に接着される構成であっても良い。 In FIG. 9, the third ′ transparent electrode 82 intersects the fourth ′ transparent electrode 83. However, the fourth ′ transparent electrode 83 intersects the third ′ transparent electrode 82. good. The direction of the capacitance sensor 81 is not limited, and the transparent electrodes 82 and 83 may be bonded to the transparent filling layer 13.
 実施形態1から6で説明したタッチセンサ10、30、40、45、50、55、60に使用される静電容量センサ12を静電容量センサ81に変更することが可能である。 It is possible to change the capacitance sensor 12 used in the touch sensors 10, 30, 40, 45, 50, 55, 60 described in the first to sixth embodiments to the capacitance sensor 81.
 [実施形態8]
 静電容量センサは2本の透明電極20、23で静電容量の変化を検出する構成に限定されない。図10のタッチセンサ90の静電容量センサ91は、第6基材フィルム72の一面に縦横に配列された矩形状の透明電極92を備える。矩形状の透明電極92に引出配線93が接続されている。矩形状の透明電極92と引出配線93は、第3透明電極20と第4透明電極23と同じ材料で形成されている。
[Embodiment 8]
The capacitance sensor is not limited to a configuration in which a change in capacitance is detected by the two transparent electrodes 20 and 23. The capacitive sensor 91 of the touch sensor 90 of FIG. 10 includes a rectangular transparent electrode 92 arranged vertically and horizontally on one surface of the sixth substrate film 72. A lead wiring 93 is connected to the rectangular transparent electrode 92. The rectangular transparent electrode 92 and the lead-out wiring 93 are made of the same material as the third transparent electrode 20 and the fourth transparent electrode 23.
 実施形態1から6で説明したタッチセンサ10、30、40、45、50、55、60に使用される静電容量センサ12を静電容量センサ91に変更することが可能である。 It is possible to change the capacitance sensor 12 used for the touch sensors 10, 30, 40, 45, 50, 55, and 60 described in the first to sixth embodiments to the capacitance sensor 91.
 [実施形態9]
 本願は静電容量センサと圧電センサを完全に分離した形態に限定されない。たとえば、図11(a)のタッチセンサ100は、図1のタッチセンサ10と比較して第1透明電極17を省略している。圧電フィルム16の一面側に配置された第4透明電極23が、静電容量方式によってタッチ位置の座標を検出する電極であり、かつ圧電性を有するコーティング層15が分極したときの電位を検出するための電極である。第4透明電極23が上記実施形態の第1透明電極17の機能も備える。
[Embodiment 9]
The present application is not limited to a form in which the capacitance sensor and the piezoelectric sensor are completely separated. For example, the touch sensor 100 of FIG. 11A omits the first transparent electrode 17 as compared with the touch sensor 10 of FIG. The fourth transparent electrode 23 arranged on the one surface side of the piezoelectric film 16 is an electrode that detects the coordinates of the touch position by a capacitance method, and detects the potential when the coating layer 15 having piezoelectricity is polarized. Electrode. The fourth transparent electrode 23 also has the function of the first transparent electrode 17 of the above embodiment.
 タッチセンサ100は、圧電センサ101と静電容量センサ12が駆動できる。圧電センサ101が動作するときは第4透明電極23と第2透明電極18を使用する。静電容量センサ12が動作するときは第3透明電極20と第4透明電極23を使用する。圧電センサ101と静電容量センサ12が駆動するときの各電極18、20、23での電位の検出方法は、上記実施形態の方法と同じである。第4透明電極23が圧電センサ101と静電容量センサ12で使用されれば、圧電センサ101と静電容量センサ12の駆動方法は限定されない。 The touch sensor 100 can drive the piezoelectric sensor 101 and the capacitance sensor 12. When the piezoelectric sensor 101 operates, the fourth transparent electrode 23 and the second transparent electrode 18 are used. When the capacitance sensor 12 operates, the third transparent electrode 20 and the fourth transparent electrode 23 are used. The method of detecting the potential at each of the electrodes 18, 20, and 23 when the piezoelectric sensor 101 and the capacitance sensor 12 are driven is the same as the method of the above embodiment. As long as the fourth transparent electrode 23 is used in the piezoelectric sensor 101 and the capacitance sensor 12, the driving method of the piezoelectric sensor 101 and the capacitance sensor 12 is not limited.
 図11(b)のタッチセンサ102のように、図11(a)と比較して圧電性を有するコーティング層15と第1基材フィルム14の位置を入れ替えた圧電センサ103であっても良い。 11 may be a piezoelectric sensor 103 in which the positions of the coating layer 15 having piezoelectricity and the first base film 14 are interchanged as in the touch sensor 102 of FIG. 11B.
 タッチセンサ100、102は、図1のタッチセンサ10に比べて第1透明電極17を省略しており、タッチセンサ100、102は薄型化できる。 In the touch sensors 100 and 102, the first transparent electrode 17 is omitted as compared with the touch sensor 10 of FIG. 1, and the touch sensors 100 and 102 can be thinned.
 [実施形態10]
 また、図12(a)のタッチセンサ110の圧電センサ111のように、第2透明電極18を圧電フィルム16に直接形成しない構成であっても良い。図5の圧電センサ41、46と同様に、圧電センサ111は第4基材フィルム42のいずれかの面に第2透明電極18を積層した第4積層体43を準備し、透明充填層44によって第4積層体43と圧電フィルム16を接着している。
[Embodiment 10]
Moreover, the structure which does not form the 2nd transparent electrode 18 directly in the piezoelectric film 16 like the piezoelectric sensor 111 of the touch sensor 110 of Fig.12 (a) may be sufficient. Similar to the piezoelectric sensors 41 and 46 of FIG. 5, the piezoelectric sensor 111 prepares a fourth laminated body 43 in which the second transparent electrode 18 is laminated on any surface of the fourth base film 42, and the transparent filling layer 44 The fourth laminate 43 and the piezoelectric film 16 are bonded.
 図11のタッチセンサ100、102と同様に、タッチセンサ110は、第4透明電極23が静電容量センサ12と圧電センサ111に使用される。第4透明電極24が静電容量センサ12と圧電センサ111で使用されれば、静電容量センサ12と圧電センサ111の駆動方法は限定されない。静電容量センサ12が駆動するときは第3透明電極20と第4透明電極23を使用する。圧電センサ111が駆動するときは第2透明電極18と第4透明電極23を使用する。 11, the fourth transparent electrode 23 is used for the capacitance sensor 12 and the piezoelectric sensor 111 in the touch sensor 110, similarly to the touch sensors 100 and 102 in FIG. 11. As long as the fourth transparent electrode 24 is used in the capacitance sensor 12 and the piezoelectric sensor 111, the driving method of the capacitance sensor 12 and the piezoelectric sensor 111 is not limited. When the capacitance sensor 12 is driven, the third transparent electrode 20 and the fourth transparent electrode 23 are used. When the piezoelectric sensor 111 is driven, the second transparent electrode 18 and the fourth transparent electrode 23 are used.
 図12(b)のタッチセンサ112の圧電センサ113ように、圧電センサ111に対して第4積層体43の方向を変更しても良い。第4基材フィルム43を透明充填層44に接着させる。 As in the piezoelectric sensor 113 of the touch sensor 112 in FIG. 12B, the direction of the fourth stacked body 43 may be changed with respect to the piezoelectric sensor 111. The fourth base film 43 is adhered to the transparent filling layer 44.
 さらに、図12(a)、(b)の圧電センサ111、113は、圧電フィルム16の方向を変更することも可能である。図12では圧電性を有するコーティング層15が第1基材フィルム14の上になっているが、第1基材フィルム14が圧電性を有するコーティング層15の上になっても良い。 Furthermore, the piezoelectric sensors 111 and 113 shown in FIGS. 12A and 12B can change the direction of the piezoelectric film 16. In FIG. 12, the coating layer 15 having piezoelectricity is on the first base film 14, but the first base film 14 may be on the coating layer 15 having piezoelectricity.
 [実施形態11]
 図13(a)のタッチセンサ120のように圧電フィルム16に第4透明電極23を直接形成しても良い。圧電フィルム16の一面に第4透明電極23、圧電フィルム16の他面に第2透明電極18が積層されている。第3透明電極20から第4透明電極23までが121になっており、第4透明電極23から第2透明電極18までが圧電センサ122になっている。
[Embodiment 11]
The fourth transparent electrode 23 may be directly formed on the piezoelectric film 16 as in the touch sensor 120 in FIG. A fourth transparent electrode 23 is laminated on one surface of the piezoelectric film 16, and a second transparent electrode 18 is laminated on the other surface of the piezoelectric film 16. The third transparent electrode 20 to the fourth transparent electrode 23 are 121, and the fourth transparent electrode 23 to the second transparent electrode 18 are the piezoelectric sensors 122.
 タッチセンサ120は、図11と図12のタッチセンサ100、102、110、112と同様に、第4透明電極23が静電容量センサ121と圧電センサ122で使用される。 In the touch sensor 120, the fourth transparent electrode 23 is used as the capacitance sensor 121 and the piezoelectric sensor 122 in the same manner as the touch sensors 100, 102, 110, and 112 in FIGS. 11 and 12.
 図13(b)のタッチセンサ123の圧電センサ124のように、圧電センサ122と比較して圧電フィルム16の方向を変更しても良い。圧電センサ124は圧電性を有するコーティング層15に第4透明電極23が積層され、第1基材フィルム14に第2透明電極18が積層されている。 The direction of the piezoelectric film 16 may be changed as compared with the piezoelectric sensor 122, like the piezoelectric sensor 124 of the touch sensor 123 in FIG. In the piezoelectric sensor 124, the fourth transparent electrode 23 is laminated on the coating layer 15 having piezoelectricity, and the second transparent electrode 18 is laminated on the first base film 14.
 [実施形態12]
 図14(a)のタッチセンサ130の圧電センサ131のように、第2透明電極18を圧電フィルム16に直接形成しない構成であっても良い。図5の圧電センサ41、46と同様に、圧電センサ131は、第4基材フィルム42のいずれかの面に第2透明電極18を積層した第4積層体43を準備し、透明充填層44によって第4積層体43と圧電フィルム16を接着している。
[Embodiment 12]
As in the piezoelectric sensor 131 of the touch sensor 130 in FIG. 14A, the second transparent electrode 18 may not be directly formed on the piezoelectric film 16. Similar to the piezoelectric sensors 41 and 46 of FIG. 5, the piezoelectric sensor 131 prepares a fourth laminated body 43 in which the second transparent electrode 18 is laminated on any surface of the fourth base film 42, and the transparent filling layer 44. Thus, the fourth laminate 43 and the piezoelectric film 16 are bonded together.
 また、図14(b)のタッチセンサ132の圧電センサ133のように、圧電フィルム16の方向を変更しても良い。圧電性を有するコーティング層15に第4透明電極23を積層する。 Further, the direction of the piezoelectric film 16 may be changed like the piezoelectric sensor 133 of the touch sensor 132 in FIG. The fourth transparent electrode 23 is laminated on the coating layer 15 having piezoelectricity.
 さらに、図14の圧電センサ131、133において、第4積層体43の方向を変更しても良い。第4積層体43の第4基材フィルム42が透明接着層44に接着されるようにする。 Furthermore, in the piezoelectric sensors 131 and 133 shown in FIG. 14, the direction of the fourth stacked body 43 may be changed. The fourth base film 42 of the fourth laminate 43 is adhered to the transparent adhesive layer 44.
 [実施形態13]
 実施形態11、12において、図8の静電容量センサ71を使用しても良い。図15(a)のタッチセンサ140のように、第6基材フィルム72の一面に第3透明電極20、他面に第4透明電極23を積層した静電容量センサ71を使用する。圧電センサ141は圧電フィルム16の他面に第2透明電極18を積層し、一面を透明充填層25に接着する。透明充填層25は第4透明電極23に接着されており、第4透明電極23から第2透明電極18までが圧電センサ141である。
[Embodiment 13]
In the eleventh and twelfth embodiments, the capacitance sensor 71 shown in FIG. 8 may be used. Like the touch sensor 140 in FIG. 15A, a capacitance sensor 71 in which the third transparent electrode 20 is laminated on one surface of the sixth base film 72 and the fourth transparent electrode 23 is laminated on the other surface is used. In the piezoelectric sensor 141, the second transparent electrode 18 is laminated on the other surface of the piezoelectric film 16, and one surface is bonded to the transparent filling layer 25. The transparent filling layer 25 is bonded to the fourth transparent electrode 23, and the piezoelectric sensor 141 is from the fourth transparent electrode 23 to the second transparent electrode 18.
 本実施形態においても第4透明電極23が静電容量センサ71と圧電センサ141に使用されれば、静電容量センサ71と圧電センサ141の駆動方法は限定されない。 Also in this embodiment, if the fourth transparent electrode 23 is used for the capacitance sensor 71 and the piezoelectric sensor 141, the driving method of the capacitance sensor 71 and the piezoelectric sensor 141 is not limited.
 また、図15(b)のタッチセンサ142の圧電センサ143のように、第1基材フィルム14に第2透明電極18を積層し、圧電性を有するコーティング層15を透明充填層25に接着しても良い。 Further, like the piezoelectric sensor 143 of the touch sensor 142 in FIG. 15B, the second transparent electrode 18 is laminated on the first base film 14, and the coating layer 15 having piezoelectricity is adhered to the transparent filling layer 25. May be.
 さらに、第2透明電極18は圧電フィルム16に直接形成せず、図14のタッチセンサ130、132のように、第4基材フィルム42に第2透明電極18を積層した第4積層体43を準備し、透明充填層44によって圧電フィルム16と第4積層体43を接着しても良い。第4積層体43の透明充填層44に接着される面は限定されない。 Further, the second transparent electrode 18 is not directly formed on the piezoelectric film 16, and the fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 as in the touch sensors 130 and 132 of FIG. 14. The piezoelectric film 16 and the fourth laminated body 43 may be bonded by the transparent filling layer 44. The surface bonded to the transparent filling layer 44 of the fourth laminate 43 is not limited.
 [実施形態14]
 図16(a)のタッチセンサ150のように、図9の静電容量センサ81を使用しても良い。圧電フィルム16の圧電性を有するコーティング層15に第2透明電極18を積層し、第1基材フィルム14と第6基材フィルム72が透明充填層13で接着されている。圧電センサ151は第2透明電極18から静電容量センサ81の第4'透明電極83までである。
[Embodiment 14]
Like the touch sensor 150 of FIG. 16A, the capacitance sensor 81 of FIG. 9 may be used. The second transparent electrode 18 is laminated on the piezoelectric coating layer 15 of the piezoelectric film 16, and the first base film 14 and the sixth base film 72 are bonded by the transparent filling layer 13. The piezoelectric sensor 151 extends from the second transparent electrode 18 to the fourth ′ transparent electrode 83 of the capacitance sensor 81.
 第4'透明電極83が静電容量センサ81と圧電センサ151に使用されれば、静電容量センサ81と圧電センサ151の駆動方法は限定されない。 If the 4 ′ transparent electrode 83 is used for the capacitance sensor 81 and the piezoelectric sensor 151, the driving method of the capacitance sensor 81 and the piezoelectric sensor 151 is not limited.
 また、図16(b)のタッチセンサ152の圧電センサ153のように、第1基材フィルム14に第2透明電極18を積層し、圧電性を有するコーティング層15を透明充填層13に接着しても良い。 Further, like the piezoelectric sensor 153 of the touch sensor 152 in FIG. 16B, the second transparent electrode 18 is laminated on the first base film 14, and the coating layer 15 having piezoelectricity is adhered to the transparent filling layer 13. May be.
 さらに、第2透明電極18は圧電フィルム16に直接形成せず、図14のタッチセンサ130、132のように、第4基材フィルム42に第2透明電極18を積層した第4積層体43を準備し、透明充填層44によって圧電フィルム16と第4積層体43を接着しても良い。第4積層体43の透明充填層44に接着される面は限定されない。 Further, the second transparent electrode 18 is not directly formed on the piezoelectric film 16, and the fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 as in the touch sensors 130 and 132 of FIG. 14. The piezoelectric film 16 and the fourth laminated body 43 may be bonded by the transparent filling layer 44. The surface bonded to the transparent filling layer 44 of the fourth laminate 43 is not limited.
 [実施形態15]
 図17(a)のタッチセンサ160のような静電容量センサ161を使用しても良い。静電容量センサ161は、圧電フィルム16の一面側に図9の静電容量センサ81の2方向の透明電極82、83を形成している。なお、説明の便宜上、圧でフィルム161よりも上側を静電容量センサ161としているが、第4'透明電極83よりも上を静電容量センサ161としても良い。
[Embodiment 15]
You may use the electrostatic capacitance sensor 161 like the touch sensor 160 of Fig.17 (a). The capacitance sensor 161 is formed with transparent electrodes 82 and 83 in two directions of the capacitance sensor 81 of FIG. 9 on one surface side of the piezoelectric film 16. For convenience of explanation, the capacitance sensor 161 is above the film 161 by pressure, but the capacitance sensor 161 may be above the fourth ′ transparent electrode 83.
 タッチセンサ160の圧電センサ162は、圧電フィルム16の一面に第4'透明電極83、他面に第2透明電極18を形成したものである。 The piezoelectric sensor 162 of the touch sensor 160 is formed by forming the fourth 'transparent electrode 83 on one surface of the piezoelectric film 16 and the second transparent electrode 18 on the other surface.
 図16のタッチセンサ150、152と同様に、第4'透明電極83が静電容量センサ81と圧電センサ151に使用されれば、静電容量センサ81と圧電センサ151の駆動方法は限定されない。 As in the case of the touch sensors 150 and 152 in FIG. 16, if the fourth 'transparent electrode 83 is used for the capacitance sensor 81 and the piezoelectric sensor 151, the driving method of the capacitance sensor 81 and the piezoelectric sensor 151 is not limited.
 また、図17(b)のタッチセンサ164の圧電センサ165のように、第1基材フィルム14に第2透明電極18を積層し、圧電性を有するコーティング層15を透明充填層13に接着しても良い。 Further, like the piezoelectric sensor 165 of the touch sensor 164 in FIG. 17B, the second transparent electrode 18 is laminated on the first base film 14, and the piezoelectric coating layer 15 is adhered to the transparent filling layer 13. May be.
 さらに、第2透明電極18は圧電フィルム16に直接形成せず、上記実施形態のように、第4基材フィルム42に第2透明電極18を積層した第4積層体43を準備し、透明充填層44によって圧電フィルム16と第4積層体43を接着しても良い。第4積層体43の透明充填層44に接着される面は限定されない。 Further, the second transparent electrode 18 is not directly formed on the piezoelectric film 16, and the fourth laminated body 43 in which the second transparent electrode 18 is laminated on the fourth base film 42 is prepared and transparently filled as in the above embodiment. The piezoelectric film 16 and the fourth laminated body 43 may be bonded by the layer 44. The surface bonded to the transparent filling layer 44 of the fourth laminate 43 is not limited.
 [実施形態16]
 圧電フィルム16の一面側と他面側にある透明電極が静電容量センサと圧電センサの両方で使用されるようにしても良い。たとえば、図18のタッチセンサ170のように、圧電フィルム16の一面に第3透明電極20、圧電フィルム16の他面に第4透明電極23を積層しても良い。
[Embodiment 16]
The transparent electrodes on the one surface side and the other surface side of the piezoelectric film 16 may be used in both the capacitance sensor and the piezoelectric sensor. For example, like the touch sensor 170 in FIG. 18, the third transparent electrode 20 may be laminated on one surface of the piezoelectric film 16 and the fourth transparent electrode 23 may be laminated on the other surface of the piezoelectric film 16.
 第3透明電極20と第4透明電極23は、静電容量方式によってタッチ位置の座標を検出する電極であり、かつ圧電性を有するコーティング層15が分極したときの電位を検出するための電極である。第3透明電極20と第4透明電極23は、静電容量センサ171と圧電センサ172に使用されれば、静電容量センサ170と圧電センサ172の駆動方法は限定されない。静電容量センサ171が駆動するときは、透明電極20、23によって静電容量の変化を検出する。圧電センサ172が駆動するときは、一方の透明電極20、23がアース電位になり、他方の電極23、20でコーティング層15の分極による電位の変化を検出する。 The third transparent electrode 20 and the fourth transparent electrode 23 are electrodes for detecting the coordinates of the touch position by a capacitance method, and are electrodes for detecting a potential when the coating layer 15 having piezoelectricity is polarized. is there. If the 3rd transparent electrode 20 and the 4th transparent electrode 23 are used for the electrostatic capacitance sensor 171 and the piezoelectric sensor 172, the drive method of the electrostatic capacitance sensor 170 and the piezoelectric sensor 172 will not be limited. When the capacitance sensor 171 is driven, a change in capacitance is detected by the transparent electrodes 20 and 23. When the piezoelectric sensor 172 is driven, one of the transparent electrodes 20 and 23 becomes the ground potential, and the other electrode 23 and 20 detects a change in potential due to polarization of the coating layer 15.
 圧電センサ16の上下方向は任意である。第1基材フィルム14に第4透明電極23を積層し、圧電性を有するコーティング層15に第3透明電極20が積層されても良い。 The vertical direction of the piezoelectric sensor 16 is arbitrary. The 4th transparent electrode 23 may be laminated | stacked on the 1st base film 14, and the 3rd transparent electrode 20 may be laminated | stacked on the coating layer 15 which has piezoelectricity.
 圧電フィルム16に直接透明電極20、23を形成することに限定されない。たとえば、図19(a)のタッチセンサ190のように、第3基材フィルム22に第4透明電極23を積層した第3積層体24を準備し、第3積層体24を透明充填層44によって圧電フィルム16に接着しても良い。上記と同様に静電容量センサ191と圧電センサ192は、同じ透明電極20、23を交互に使用する。 It is not limited to forming the transparent electrodes 20 and 23 directly on the piezoelectric film 16. For example, like the touch sensor 190 of FIG. 19A, a third laminate 24 in which the fourth transparent electrode 23 is laminated on the third base film 22 is prepared, and the third laminate 24 is formed by the transparent filling layer 44. You may adhere to the piezoelectric film 16. Similarly to the above, the capacitance sensor 191 and the piezoelectric sensor 192 use the same transparent electrodes 20 and 23 alternately.
 また、図19(b)のタッチセンサ193は、第2基材フィルム19に第3透明電極20を積層した第2積層体21を準備し、第2積層体21を圧電フィルム16に接着している。上記と同様に静電容量センサ194と圧電センサ195は、同じ透明電極20、23を交互に使用する。 Further, the touch sensor 193 of FIG. 19B prepares a second laminate 21 in which the third transparent electrode 20 is laminated on the second base film 19, and adheres the second laminate 21 to the piezoelectric film 16. Yes. Similarly to the above, the capacitance sensor 194 and the piezoelectric sensor 195 use the same transparent electrodes 20 and 23 alternately.
 さらに、図19(c)のタッチセンサ196は、上記の第2積層体21と第3積層体24を準備し、圧電フィルム16に接着している。上記と同様に静電容量センサ197と圧電センサ198は、同じ透明電極20、23を交互に使用する。 Furthermore, the touch sensor 196 in FIG. 19C prepares the second laminated body 21 and the third laminated body 24 and adheres them to the piezoelectric film 16. Similar to the above, the capacitance sensor 197 and the piezoelectric sensor 198 use the same transparent electrodes 20 and 23 alternately.
 図19において、圧電フィルム16の方向は限定されず、第1基材フィルム14と圧電性を有するコーティング層15の位置が入れ替わり、第1基材フィルム14が透明充填層44に接着されても良い。また、第2積層体21の方向は限定されず、第3透明電極20が透明充填層25に接着されても良い。さらに第3積層体24の方向は限定されず、第3積層体22が透明充填層44に接着されても良い。 In FIG. 19, the direction of the piezoelectric film 16 is not limited, and the positions of the first base film 14 and the coating layer 15 having piezoelectricity are interchanged, and the first base film 14 may be adhered to the transparent filling layer 44. . The direction of the second stacked body 21 is not limited, and the third transparent electrode 20 may be bonded to the transparent filling layer 25. Further, the direction of the third stacked body 24 is not limited, and the third stacked body 22 may be bonded to the transparent filling layer 44.
 実施形態1で説明したアンダーコート層(ancher coat layer)、屈折率調整層(Index matching layer)(光学調整層)、アンチブロッキング層の少なくとも1層を圧電フィルム16と第3および第4透明電極20、23の間に形成しても良い。 At least one of the undercoat layer (ancher20coat 少 な く と も layer), the refractive index adjustment layer (index matching layer) (optical adjustment layer), and the anti-blocking layer described in the first embodiment is the piezoelectric film 16 and the third and fourth transparent electrodes 20. , 23 may be formed.
 [実施形態17]
 各実施形態において、タッチセンサとディスプレイの間に透明電極を配置しても良い。たとえば図20のタッチセンサ200のように、第7透明電極201を第7基材フィルム202の一面全体に積層した積層体を準備し、透明充填層203で接着する。第7透明電極201がシールドの役目を果たす。
[Embodiment 17]
In each embodiment, a transparent electrode may be disposed between the touch sensor and the display. For example, as in the touch sensor 200 of FIG. 20, a laminated body in which the seventh transparent electrode 201 is laminated on the entire surface of the seventh base film 202 is prepared and bonded with the transparent filling layer 203. The seventh transparent electrode 201 serves as a shield.
 [実施形態18]
 上記実施形態で屈折率調整層について説明したが、図21のタッチセンサ210のように圧電フィルム16と第2透明電極18の間に屈折率調整層210を配置しても良い。図21のタッチセンサ210は、図1のタッチセンサ10に屈折率調整層210を追加した以外は同じ構成である。また、屈折率調整層210は圧電フィルム16と第1透明電極17の間に配置されても良い。
[Embodiment 18]
Although the refractive index adjustment layer has been described in the above embodiment, the refractive index adjustment layer 210 may be disposed between the piezoelectric film 16 and the second transparent electrode 18 as in the touch sensor 210 of FIG. The touch sensor 210 in FIG. 21 has the same configuration except that the refractive index adjustment layer 210 is added to the touch sensor 10 in FIG. The refractive index adjustment layer 210 may be disposed between the piezoelectric film 16 and the first transparent electrode 17.
 圧電性を有するコーティング層15の厚さとして0.5~10μm、屈折率調整層210の厚さとして80~160nm、第2透明電極18の厚さとして20nm以上を一例としてあげられる。また、圧電性を有するコーティング層15の屈折率として1.40~1.50、屈折率調整層210の屈折率として1.50~1.70、第2透明電極18の屈折率として1.90~2.10が一例としてあげられる。また、第1基材フィルム14の厚さを2~100μm、屈折率を1.50~1.70にする。以上の厚さと屈折率にすることで、第2透明電極18と屈折率調整層210の反射率差が2.0%以下になり、見栄えが良くなる。 For example, the thickness of the coating layer 15 having piezoelectricity is 0.5 to 10 μm, the thickness of the refractive index adjustment layer 210 is 80 to 160 nm, and the thickness of the second transparent electrode 18 is 20 nm or more. Further, the refractive index of the coating layer 15 having piezoelectricity is 1.40 to 1.50, the refractive index of the refractive index adjusting layer 210 is 1.50 to 1.70, and the refractive index of the second transparent electrode 18 is 1.90. One example is ~ 2.10. Further, the thickness of the first base film 14 is set to 2 to 100 μm, and the refractive index is set to 1.50 to 1.70. By using the above thickness and refractive index, the difference in reflectance between the second transparent electrode 18 and the refractive index adjustment layer 210 becomes 2.0% or less, and the appearance is improved.
 [実施例1~3]
 図12においてコーティング層15の厚みが1μm、5μm、10μmの場合のタッチセンサ10の全光線透過率とヘイズを測定したので、その結果を表1に示す。コーティング層15はP(VDF-TrFE)を使用し、モル比は72:25であった。基材フィルム14はPETを使用し、その厚みは23μmであった。全光線透過率およびヘイズはDirect reading haze computer(Suga Test Instruments社製 HGM-ZDP)を用いて測定した。
[Examples 1 to 3]
In FIG. 12, the total light transmittance and haze of the touch sensor 10 when the thickness of the coating layer 15 is 1 μm, 5 μm, and 10 μm were measured, and the results are shown in Table 1. The coating layer 15 used P (VDF-TrFE), and the molar ratio was 72:25. The base film 14 was made of PET and had a thickness of 23 μm. The total light transmittance and haze were measured using a Direct reading haze computer (HGM-ZDP manufactured by Suga Test Instruments).
 [比較例1]
 なお、比較例として、図22に示すタッチセンサ220のように、透明充填層221によって圧電フィルム222を第1基材フィルム14に貼りつけた場合について、全光線透過率とヘイズを測定した。圧電フィルム222はPVDFを使用して押出しで製造した単独のフィルムであり、厚みは80μmであった。透明充填層221は光学透明粘着剤を使用し、その厚みは22μmであった。その他の構成は実施例の場合と同じである。
[Comparative Example 1]
As a comparative example, the total light transmittance and haze were measured when the piezoelectric film 222 was attached to the first base film 14 with the transparent filling layer 221 as in the touch sensor 220 shown in FIG. The piezoelectric film 222 was a single film manufactured by extrusion using PVDF and had a thickness of 80 μm. The transparent filling layer 221 used an optical transparent adhesive, and its thickness was 22 μm. Other configurations are the same as those in the embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から全ての実施例は比較例よりも全光線透過率およびヘイズが良い。比較例は圧電フィルム222の厚みが厚くなりすぎ、その厚みによって特にヘイズが悪くなったと考えられる。 From Table 1, all examples have better total light transmittance and haze than the comparative examples. In the comparative example, it is considered that the thickness of the piezoelectric film 222 is too thick, and the haze is particularly deteriorated due to the thickness.
 [実施例4~9]
 また、図21の屈折率調整層211による見栄えの変化を確認するために、図23のように厚さ23μmの第1基材フィルム14の上に圧電性を有するコーティング層15、屈折率調整層211、第2透明電極18を作成し、厚さおよび屈折率を測定した。その結果を表2に示すが、「第1層」が圧電性を有するコーティング層15、「第2層」が屈折率調整層211、「第3層」が第2透明電極18である。
[Examples 4 to 9]
Further, in order to confirm the change in appearance due to the refractive index adjustment layer 211 in FIG. 21, a coating layer 15 having piezoelectricity, a refractive index adjustment layer on the first base film 14 having a thickness of 23 μm as shown in FIG. 211, the 2nd transparent electrode 18 was created, and thickness and refractive index were measured. The results are shown in Table 2. The “first layer” is the piezoelectric coating layer 15, the “second layer” is the refractive index adjustment layer 211, and the “third layer” is the second transparent electrode 18.
 圧電フィルム16は、ポリエチレンテレフタレート基材フィルム上に、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレンの共重合体をコーティングして作製した。フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレンの共重合体はアルケマ(株)社製Piezotech RTTMTSであって、MIBK(メチルイソブチルケトン)に超音波により溶液を作製した。次にフッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレンの共重合体の溶液を、バーコーターによって、ポリエチレンテレフタレート基材フィルム上にコーティングした。次に、ポリエチレンテレフタレート基材フィルムおよび未乾燥のコーティング層を、110℃、5分で乾燥してコーティング層を作製した。表2に示すコーティング層15の厚さは乾燥後の厚さである。 The piezoelectric film 16 was prepared by coating a polyethylene terephthalate base film with a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene. The copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was Piezotech RT TS manufactured by Arkema Co., Ltd., and a solution was prepared in MIBK (methyl isobutyl ketone) by ultrasonic waves. Next, a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was coated on a polyethylene terephthalate base film by a bar coater. Next, the polyethylene terephthalate base film and the undried coating layer were dried at 110 ° C. for 5 minutes to prepare a coating layer. The thickness of the coating layer 15 shown in Table 2 is the thickness after drying.
 屈折率調整層211は下の表に2に示すように、屈折率が1.54、1.62、1.7の場合がある。屈折率によって製造方法が異なるので屈折率ごとに説明する。屈折率が1.54の場合、圧電性を有するコーティング層15の一方の面に、メラミン樹脂:アルキド樹脂:有機シラン縮合物の重量比2:2:1の熱硬化型樹脂(光の屈折率n=1.54)により、厚さが120nmの屈折率調整層211を形成した。 As shown in Table 2 below, the refractive index adjustment layer 211 may have a refractive index of 1.54, 1.62, 1.7. Since the manufacturing method differs depending on the refractive index, each refractive index will be described. When the refractive index is 1.54, a thermosetting resin (refractive index of light) having a weight ratio of 2: 2: 1 of melamine resin: alkyd resin: organosilane condensate is formed on one surface of the coating layer 15 having piezoelectricity. n = 1.54), the refractive index adjustment layer 211 having a thickness of 120 nm was formed.
 屈折率が1.62の場合、圧電性を有するコーティング層15の一方の面に、紫外線硬化性樹脂47質量部、酸化ジルコニア粒子(メジアン径40nm)57質量部およびPGMEを含有した光学調整組成物(JSR社製、「オプスターZ7412」、固形分12質量%)をグラビアコーターを用いて塗布し、無風状態(0.1m/s未満)で直ちに60℃で1分間加熱乾燥した。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射して硬化処理を実施した。この方法により、厚み90、120、または150nmで屈折率1.62の屈折率調整層211を、圧電性を有するコーティング層15の上に形成した。 When the refractive index is 1.62, an optical adjustment composition containing 47 parts by mass of UV curable resin, 57 parts by mass of zirconia oxide particles (median diameter 40 nm) and PGME on one surface of the coating layer 15 having piezoelectricity (Manufactured by JSR, “OPSTAR Z7412”, solid content: 12% by mass) was applied using a gravure coater, and immediately heated and dried at 60 ° C. for 1 minute in a windless state (less than 0.1 m / s). Then, the curing process was performed by irradiating ultraviolet rays with an integrated light amount of 250 mJ / cm 2 with a high-pressure mercury lamp. By this method, a refractive index adjustment layer 211 having a thickness of 90, 120, or 150 nm and a refractive index of 1.62 was formed on the coating layer 15 having piezoelectricity.
 屈折率が1.7の場合、メラミン樹脂、アルキド樹脂及び有機シラン縮合物からなる熱硬化型樹脂(重量比で、メラミン樹脂:アルキド樹脂:有機シラン縮合物=2:2:1)にTiO(屈折率=2.35)の微粒子を混合した樹脂組成物を調製した。この際、上記樹脂組成物の屈折率が1.70となるようにTiO微粒子の混合量を調整した。そして、圧電性を有するコーティング層15の上に上記樹脂組成物を塗工し、これを硬化させて、厚み150nmの屈折率調整層211(屈折率1.70)を形成した。 When the refractive index is 1.7, a thermosetting resin composed of a melamine resin, an alkyd resin, and an organic silane condensate (by weight ratio, melamine resin: alkyd resin: organosilane condensate = 2: 2: 1) and TiO 2 A resin composition in which fine particles (refractive index = 2.35) were mixed was prepared. At this time, the mixing amount of the TiO 2 fine particles was adjusted so that the refractive index of the resin composition was 1.70. And the said resin composition was apply | coated on the coating layer 15 which has piezoelectricity, this was hardened, and the 150-nm-thick refractive index adjustment layer 211 (refractive index 1.70) was formed.
 なお、第1基材フィルム14におけるコーティング層15の反対面にはアンチブロッキング機能を有するハードコート層231を形成している。 Note that a hard coat layer 231 having an anti-blocking function is formed on the opposite surface of the first base film 14 to the coating layer 15.
 各実施例は上記のように圧電性を有するコーティング層15の厚さが0.5~10μm、屈折率調整層211の厚さが80~160nm、第2透明電極18の厚さが20nm以上になっている。また、圧電性を有するコーティング層15の屈折率が1.40~1.50、屈折率調整層211の屈折率が1.50~1.70、第2透明電極18の屈折率が1.90~2.10になっている。第2透明電極18と屈折率調整層211の反射率差は2%以下であり、見栄えは良かった。 In each example, the thickness of the coating layer 15 having piezoelectricity is 0.5 to 10 μm, the thickness of the refractive index adjustment layer 211 is 80 to 160 nm, and the thickness of the second transparent electrode 18 is 20 nm or more as described above. It has become. The refractive index of the coating layer 15 having piezoelectricity is 1.40 to 1.50, the refractive index of the refractive index adjusting layer 211 is 1.50 to 1.70, and the refractive index of the second transparent electrode 18 is 1.90. It is ~ 2.10. The difference in reflectance between the second transparent electrode 18 and the refractive index adjustment layer 211 was 2% or less, and the appearance was good.
 なお、必要に応じて第2透明電極18はエッチングされて所望の電極等になる。上記屈折率を求める際、屈折率調整層211の屈折率は第2透明電極18をエッチングによって取り除いた部分を用いた。そのため、各屈折率から空気と第2透明電極18、空気と屈折率調整層211の反射率を求めることで、反射率差を求めた。 The second transparent electrode 18 is etched to become a desired electrode or the like as necessary. When obtaining the refractive index, the refractive index of the refractive index adjusting layer 211 was the portion where the second transparent electrode 18 was removed by etching. Therefore, the reflectance difference was calculated | required by calculating | requiring the reflectance of air and the 2nd transparent electrode 18, air, and the refractive index adjustment layer 211 from each refractive index.
 [比較例2~3]
 実施例4~9に対する比較例として、屈折率調整層211の無い場合(比較例3)と屈折率調整層211の屈折率が1.5より小さい場合(比較例4)をおこなった。屈折率調整層211が無い場合、反射率差は第2透明電極18と圧電性を有するコーティング層15の差である。反射率差が2%より大きくなり、見栄えが悪くなった。
[Comparative Examples 2-3]
As comparative examples for Examples 4 to 9, a case where the refractive index adjustment layer 211 was not provided (Comparative Example 3) and a case where the refractive index of the refractive index adjustment layer 211 was smaller than 1.5 (Comparative Example 4) were performed. When the refractive index adjustment layer 211 is not provided, the reflectance difference is a difference between the second transparent electrode 18 and the coating layer 15 having piezoelectricity. The difference in reflectance was greater than 2% and the appearance was poor.
 なお、屈折率が1.46の場合(比較例4)の屈折率調整層211は、シリカゾル(コルコート(株)製,コルコートP)を、固形分濃度2%になるようにエタノールで希釈し、圧電性を有するコーティング層15の一方の上に、シリカコート法により塗布し、その後、150℃で2分間乾燥、硬化させて、厚さが120nmの層(SiO膜,光の屈折率1.46)を形成して屈折率調整層211とした。比較例において他の構成の製造方法は実施例と同じである。 In the case where the refractive index is 1.46 (Comparative Example 4), the refractive index adjusting layer 211 is prepared by diluting silica sol (Colcoat P, Colcoat P) with ethanol so that the solid content concentration is 2%. On one side of the coating layer 15 having piezoelectricity, it is applied by a silica coating method, then dried and cured at 150 ° C. for 2 minutes, and a layer having a thickness of 120 nm (SiO 2 film, refractive index of light 1.. 46) to form a refractive index adjusting layer 211. In the comparative example, the manufacturing method of the other configuration is the same as that of the example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上より圧電性を有するコーティング層15の上に第2透明電極18を備えることで第2透明電極18によって黄色または茶色に呈色して見栄えを損ねる場合がある。本発明のように屈折率調整層211を設け、第2透明電極18、屈折率調整層211、圧電性を有するコーティング層15の厚さおよび屈折率を上述した値の範囲になるように調節することで、表2のように反射率差を小さくでき、見栄えを損ねないことがわかった。圧電フィルム16に屈折率調整層211と第2透明電極18を積層した構成をディスプレイの前面に配置してもディスプレイの見栄えを損ないにくいことがわかった。 As described above, by providing the second transparent electrode 18 on the coating layer 15 having piezoelectricity, the second transparent electrode 18 may be colored yellow or brown to impair the appearance. The refractive index adjustment layer 211 is provided as in the present invention, and the thickness and the refractive index of the second transparent electrode 18, the refractive index adjustment layer 211, and the coating layer 15 having piezoelectricity are adjusted to be in the above-described range. Thus, it was found that the difference in reflectance can be reduced as shown in Table 2, and the appearance is not impaired. It has been found that even if a configuration in which the refractive index adjusting layer 211 and the second transparent electrode 18 are laminated on the piezoelectric film 16 is disposed on the front surface of the display, the appearance of the display is hardly impaired.
 その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。 In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.
 本発明のタッチセンサはディスプレイの前面に配置され、ディスプレイと一体として利用することができる。 The touch sensor of the present invention is disposed on the front surface of the display and can be used as an integral part of the display.
10、30、40、45、50、55、60、70、80、90、100、102、110、112、120、123、130、132、140、142、150、152、160、164、170、190、193、196、200、210:タッチセンサ
11、41、46、56、61、101、103、111、113、122、124、131、133、141、143、151、153、162、165、172、192、195、198:圧電センサ
12、27、28、29、71、81、91、121、161、171、191、194、197:静電容量センサ
13、25、44、183:透明充填層
14、19、22、42、52、72、182:基材フィルム
15:圧電性を有するコーティング層
16、21、24、43、53、62、71、81:積層体
17、18、20、23、82、83、92、181:透明電極
84:絶縁体
211:屈折率調整層
231:アンチブロッキング機能を有するハードコート層
10, 30, 40, 45, 50, 55, 60, 70, 80, 90, 100, 102, 110, 112, 120, 123, 130, 132, 140, 142, 150, 152, 160, 164, 170, 190, 193, 196, 200, 210: Touch sensors 11, 41, 46, 56, 61, 101, 103, 111, 113, 122, 124, 131, 133, 141, 143, 151, 153, 162, 165, 172, 192, 195, 198: Piezoelectric sensors 12, 27, 28, 29, 71, 81, 91, 121, 161, 171, 191, 194, 197: Capacitance sensors 13, 25, 44, 183: Transparent filling Layers 14, 19, 22, 42, 52, 72, 182: base film 15: coating layers 16, 21, 24, 4 having piezoelectricity , 53,62,71,81: laminate 17,18,20,23,82,83,92,181: Transparent electrode 84: insulator 211: refractive index adjusting layer 231: a hard coat layer having anti-blocking function

Claims (15)

  1. 静電容量方式によってタッチ位置の座標を検出する静電容量センサと、
    前記静電容量センサの裏面に備えられ、基材フィルムに圧電性を有するコーティング層が積層された圧電フィルムを用い、押圧検出をおこなう圧電センサと、
    を備えたタッチセンサ。
    A capacitance sensor that detects the coordinates of the touch position by a capacitance method;
    A piezoelectric sensor that is provided on the back surface of the capacitance sensor and that performs pressure detection using a piezoelectric film in which a coating layer having piezoelectricity is laminated on a base film;
    Touch sensor equipped with.
  2. 基材フィルムの裏面に圧電性を有するコーティング層が積層された圧電フィルムを用い、押圧検出をおこなう圧電センサと、
    前記基材フィルムの表面に積層され、静電容量方式によってタッチ位置の座標を検出するための透明電極と、
    を備えたタッチセンサ。
    A piezoelectric sensor that performs pressure detection using a piezoelectric film in which a piezoelectric coating layer is laminated on the back surface of the base film; and
    Laminated on the surface of the base film, a transparent electrode for detecting the coordinates of the touch position by the capacitance method;
    Touch sensor equipped with.
  3. 基材フィルムに圧電性を有するコーティング層が積層された圧電フィルム、および該圧電フィルムの一面側と他面側に配置され、圧電性を有するコーティング層が分極したときの電位の変化を検出するための透明電極を備えた圧電センサと、
    前記圧電センサの一面側に配置され、静電容量方式によってタッチ位置の座標を検出するための透明電極と、
    を備えたタッチセンサ。
    A piezoelectric film in which a coating layer having piezoelectricity is laminated on a base film, and a change in potential when the piezoelectric coating layer is polarized on one side and the other side of the piezoelectric film. A piezoelectric sensor having a transparent electrode of
    A transparent electrode disposed on one side of the piezoelectric sensor for detecting coordinates of a touch position by a capacitance method;
    Touch sensor equipped with.
  4. 基材フィルムに圧電性を有するコーティング層が積層された圧電フィルム、および該圧電フィルムの一面側と他面側に配置され透明電極を備えた圧電センサと、
    前記圧電センサの一面側に配置され、静電容量方式によってタッチ位置の座標を検出する静電容量センサと、
    を備え、
    前記圧電フィルムの一面側に配置された透明電極が、圧電性を有するコーティング層が分極したときの電位の変化を検出するための透明電極および静電容量方式によってタッチ位置の座標を検出するための透明電極であるタッチセンサ。
    A piezoelectric film in which a coating layer having piezoelectricity is laminated on a base film, and a piezoelectric sensor provided with a transparent electrode disposed on one side and the other side of the piezoelectric film;
    A capacitance sensor that is disposed on one surface side of the piezoelectric sensor and detects the coordinates of the touch position by a capacitance method;
    With
    A transparent electrode disposed on one surface side of the piezoelectric film is used to detect a coordinate of a touch position by a transparent electrode for detecting a change in potential when a piezoelectric coating layer is polarized and a capacitance method. A touch sensor that is a transparent electrode.
  5. 基材フィルムに圧電性を有するコーティング層が積層された圧電フィルムと、
    前記圧電フィルムの一面側と他面側に配置された透明電極と、
    を備え、
    前記圧電フィルムの一面側と他面側に配置された透明電極が、圧電性を有するコーティング層が分極したときの電位の変化を検出するための透明電極であり、かつ少なくとも前記圧電フィルムの一面側に配置された透明電極が、静電容量方式によってタッチ位置の座標を検出するための透明電極であるタッチセンサ。
    A piezoelectric film in which a coating layer having piezoelectricity is laminated on a base film;
    Transparent electrodes disposed on one side and the other side of the piezoelectric film;
    With
    The transparent electrodes arranged on one side and the other side of the piezoelectric film are transparent electrodes for detecting a change in potential when the piezoelectric coating layer is polarized, and at least one side of the piezoelectric film The touch sensor is a transparent electrode for detecting the coordinates of the touch position by a capacitive method.
  6. 前記圧電性を有するコーティング層の厚みが0.5μmを越え、20μm未満である請求項1から5のいずれかに記載のタッチセンサ。 The touch sensor according to claim 1, wherein the thickness of the piezoelectric coating layer is more than 0.5 μm and less than 20 μm.
  7. 前記圧電性を有するコーティング層がフッ素樹脂を含む請求項1から6のいずれかに記載のタッチセンサ。 The touch sensor according to claim 1, wherein the piezoelectric coating layer contains a fluororesin.
  8. 前記フッ素系樹脂がフッ化ビニリデン、テトラフルオロエチレン、クロロトリフルオロチレンのうちの2種類以上の共重合体またはフッ化ビニリデンの重合体である請求項7に記載のタッチセンサ。 The touch sensor according to claim 7, wherein the fluororesin is a copolymer of two or more of vinylidene fluoride, tetrafluoroethylene, and chlorotrifluoroethylene, or a polymer of vinylidene fluoride.
  9. 前記基材フィルムと圧電性を有するコーティング層との間にアンダーコート層、屈折率調整層、アンチブロッキング層の少なくとも1層を備えた請求項1から8のいずれかに記載のタッチセンサ。 The touch sensor according to claim 1, further comprising at least one of an undercoat layer, a refractive index adjusting layer, and an anti-blocking layer between the base film and the coating layer having piezoelectricity.
  10. 前記圧電フィルムとタッチ位置の座標を検出するための透明電極との間、前記圧電フィルムと圧電性を有するコーティング層が分極したときの電位の変化を検出するための透明電極との間、またはその両方の間にアンダーコート層、屈折率調整層、アンチブロッキング層の少なくとも1層を備えた請求項1から9のいずれかに記載のタッチセンサ。 Between the piezoelectric film and the transparent electrode for detecting the coordinates of the touch position, between the piezoelectric film and the transparent electrode for detecting a change in potential when the piezoelectric coating layer is polarized, or the The touch sensor according to claim 1, further comprising at least one of an undercoat layer, a refractive index adjustment layer, and an anti-blocking layer between both.
  11. 前記コーティング層の厚みが0.5~10μm、屈折率調整層の厚みが80~160nm、透明電極の厚みが20nm以上である請求項10のタッチセンサ。 11. The touch sensor according to claim 10, wherein the coating layer has a thickness of 0.5 to 10 μm, the refractive index adjustment layer has a thickness of 80 to 160 nm, and the transparent electrode has a thickness of 20 nm or more.
  12. 前記コーティング層の屈折率が1.40~1.50、屈折率調整層の屈折率が1.50~1.70、透明電極の屈折率が1.90~2.10である請求項10または11のタッチセンサ。 The refractive index of the coating layer is 1.40 to 1.50, the refractive index of the refractive index adjusting layer is 1.50 to 1.70, and the refractive index of the transparent electrode is 1.90 to 2.10. 11 touch sensors.
  13. 前記タッチ位置の座標を検出するための透明電極、前記圧電性を有するコーティング層が分極したときの電位の変化を検出するための透明電極、またはその両方が前記圧電フィルムに直接形成された請求項1から12のいずれかに記載のタッチセンサ。 The transparent electrode for detecting the coordinates of the touch position, the transparent electrode for detecting a change in potential when the piezoelectric coating layer is polarized, or both are directly formed on the piezoelectric film. The touch sensor according to any one of 1 to 12.
  14. 前記基材フィルムが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、シクロオレフィンコポリマー、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンの少なくとも1種から選択される請求項1から13のいずれかに記載のタッチセンサ。 The base film is selected from at least one of polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, cycloolefin copolymer, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene. The touch sensor according to any one of 1 to 13.
  15. 前記透明電極が酸化インジウムを主成分とする透明電極である請求項1から14のいずれかに記載のタッチセンサ。 The touch sensor according to claim 1, wherein the transparent electrode is a transparent electrode mainly composed of indium oxide.
PCT/JP2017/019985 2016-05-30 2017-05-30 Touch sensor WO2017209084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780033500.7A CN109196452B (en) 2016-05-30 2017-05-30 Touch sensor
KR1020187027355A KR102342378B1 (en) 2016-05-30 2017-05-30 touch sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016107053 2016-05-30
JP2016-107053 2016-05-30
JP2017-104593 2017-05-26
JP2017104593A JP6879826B2 (en) 2016-05-30 2017-05-26 Touch sensor

Publications (1)

Publication Number Publication Date
WO2017209084A1 true WO2017209084A1 (en) 2017-12-07

Family

ID=60478575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019985 WO2017209084A1 (en) 2016-05-30 2017-05-30 Touch sensor

Country Status (4)

Country Link
KR (1) KR102342378B1 (en)
CN (1) CN109196452B (en)
TW (1) TWI746560B (en)
WO (1) WO2017209084A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020032255A1 (en) * 2018-08-10 2020-02-13 積水化学工業株式会社 Sensor system, and measuring device employing same
KR102251277B1 (en) * 2019-04-03 2021-05-11 재단법인대구경북과학기술원 Transistor module comprising capacitive touch sensor, piezoelectric sensor and dual-gate transistor
CN110190180B (en) * 2019-06-06 2023-10-31 苏州大学 Piezoelectric touch control film and piezoelectric touch control display panel comprising same
US11269435B1 (en) 2020-09-10 2022-03-08 Tpk Advanced Solutions Inc. Three-dimensional sensing panel and method of manufacturing the same and electronic apparatus
CN113918045A (en) * 2021-09-27 2022-01-11 安徽精卓光显技术有限责任公司 Touch module, touch screen, electronic equipment and manufacturing method of touch module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192541A1 (en) * 2013-05-27 2014-12-04 株式会社村田製作所 Display panel with pressing sensor, and electronic device with pressing input function
WO2015156195A1 (en) * 2014-04-07 2015-10-15 株式会社村田製作所 Touch sensor
JP2015186910A (en) * 2014-10-20 2015-10-29 三井化学株式会社 laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026938A (en) 2008-07-23 2010-02-04 Daikin Ind Ltd Touch panel
JP2010108490A (en) * 2008-10-03 2010-05-13 Daikin Ind Ltd Touch panel and transparent piezoelectric sheet
TWI386834B (en) * 2009-06-04 2013-02-21 Taiwan Electrets Electronics Co Ltd 3-d non-bias electrets multi-touch device
JP5722954B2 (en) 2013-06-23 2015-05-27 日本写真印刷株式会社 Touch panel with pressure detection function
CN203858612U (en) * 2013-08-29 2014-10-01 福建省辉锐材料科技有限公司 Transparent piezoelectric plate and touch panel
EP3048512A4 (en) * 2013-09-20 2017-05-31 Murata Manufacturing Co., Ltd. Touch sensor
WO2015050097A1 (en) * 2013-10-04 2015-04-09 株式会社村田製作所 Touch sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192541A1 (en) * 2013-05-27 2014-12-04 株式会社村田製作所 Display panel with pressing sensor, and electronic device with pressing input function
WO2015156195A1 (en) * 2014-04-07 2015-10-15 株式会社村田製作所 Touch sensor
JP2015186910A (en) * 2014-10-20 2015-10-29 三井化学株式会社 laminate

Also Published As

Publication number Publication date
TWI746560B (en) 2021-11-21
TW201800915A (en) 2018-01-01
KR102342378B1 (en) 2021-12-22
KR20190013700A (en) 2019-02-11
CN109196452A (en) 2019-01-11
CN109196452B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP6879826B2 (en) Touch sensor
WO2017209084A1 (en) Touch sensor
TWI502429B (en) Touch-control display and fabrication method thereof
TWI733819B (en) Piezoelectric film with transparent electrode and pressure sensor
TWI391886B (en) Flexible touch display apparatus
WO2019102635A1 (en) Piezoelectric film and piezoelectric sensor
US20150109542A1 (en) Touch panel
KR101879220B1 (en) Transparent electrode pattern structure and touch screen panel having the same
JP2017216450A (en) Piezoelectric film
KR101865685B1 (en) Transparent electrode pattern structure and touch screen panel having the same
TWI545594B (en) Transparent conductive film
TWI652603B (en) Touch sensing element and display device therewith
CN108121443B (en) Touch sensitive element and display device comprising the same
WO2017209081A1 (en) Piezoelectric film with transparent electrode, and pressure sensor
JP7050426B2 (en) Piezoelectric sensor and display using the piezoelectric sensor
WO2017209082A1 (en) Piezoelectric sensor and display using said piezoelectric sensor
WO2017209080A1 (en) Piezoelectric film
US20180157325A1 (en) Touch Sensitive Element and Display Device Comprising the Same
KR101219996B1 (en) Touch Panel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187027355

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806638

Country of ref document: EP

Kind code of ref document: A1