WO2017209082A1 - Piezoelectric sensor and display using said piezoelectric sensor - Google Patents

Piezoelectric sensor and display using said piezoelectric sensor Download PDF

Info

Publication number
WO2017209082A1
WO2017209082A1 PCT/JP2017/019983 JP2017019983W WO2017209082A1 WO 2017209082 A1 WO2017209082 A1 WO 2017209082A1 JP 2017019983 W JP2017019983 W JP 2017019983W WO 2017209082 A1 WO2017209082 A1 WO 2017209082A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
film
layer
refractive index
display
Prior art date
Application number
PCT/JP2017/019983
Other languages
French (fr)
Japanese (ja)
Inventor
憲俊 木曽
基希 拝師
孝伸 矢野
浩史 別府
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017104592A external-priority patent/JP7050426B2/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020187026693A priority Critical patent/KR102365236B1/en
Priority to CN201780033709.3A priority patent/CN109196321A/en
Publication of WO2017209082A1 publication Critical patent/WO2017209082A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a piezoelectric sensor for detecting pressure and a display using the piezoelectric sensor.
  • a touch panel is attached to the front surface of a display of an electronic device and used for operation of the electronic device.
  • the touch panel only detects the position coordinates, but it can also detect the pressing force by adding a pressure sensor.
  • the following patent document 1 discloses a touch panel that can also detect a pressing force.
  • the end of a film-like piezoelectric sensor is bonded to a display with an adhesive. There is a space between the film-like piezoelectric sensor and the display.
  • the film-like piezoelectric sensor is pressed, the pressed portion is bent toward the display, and the pressed portion is extended. The pressing force is detected based on the intensity of a signal generated by the shape change of the film-like piezoelectric sensor.
  • the touch panel of Patent Document 1 may deteriorate light transmittance and haze due to the space between the film-like piezoelectric sensor and the display.
  • An object of the present invention is to provide a piezoelectric sensor having improved light transmittance and haze as compared with the conventional one and a display using the piezoelectric sensor.
  • the present invention is a piezoelectric sensor disposed on the front surface of the display.
  • the piezoelectric sensor includes a piezoelectric film in which a coating layer having piezoelectricity is laminated on a base film or a single film having piezoelectricity, and a transparent electrode disposed directly or indirectly on at least one side of the piezoelectric film, A transparent filling layer filling the space between the transparent electrode and the display.
  • the refractive index of the transparent filling layer is a refractive index between the refractive index of the transparent electrode and the refractive index of the display.
  • the transparent filling layer is an adhesive or a resin.
  • the piezoelectric coating layer and the piezoelectric single film include a fluororesin.
  • the fluororesin is a copolymer of two or more of vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, or a polymer of vinylidene fluoride.
  • a refractive index adjusting layer is provided on at least one of the piezoelectric film between the base film and the coating layer, between the piezoelectric film and the transparent electrode, or on the single film having piezoelectricity. Further, the anchor coat layer is formed on either one of the piezoelectric film between the base film and the coating layer, or on the surface of the base film opposite to the coating layer, or on the piezoelectric single element film.
  • the thickness of the coating layer is 0.5 to 10 ⁇ m, the thickness of the refractive index adjustment layer is 80 to 160 nm, and the thickness of the transparent electrode is 20 nm or more.
  • the coating layer has a refractive index of 1.40 to 1.50, the refractive index adjustment layer has a refractive index of 1.50 to 1.70, and the transparent electrode has a refractive index of 1.90 to 2.10.
  • a touch panel may be disposed on the opposite side of the display in the piezoelectric film.
  • the display of the present invention includes the piezoelectric sensor, and the space between the piezoelectric sensor and the display is filled with the transparent filling layer.
  • the piezoelectric sensor of the present invention is provided with a transparent filling layer so as to cover the entire surface facing the display. Therefore, unlike a film-like piezoelectric sensor having an air layer between the display and a conventional display, it is difficult to reduce optical characteristics such as total light transmittance and haze.
  • the refractive index of the transparent electrode, the transparent filling layer, and the display is gradually changed, and there is little reflection / scattering of light, and it is difficult to deteriorate optical characteristics.
  • the display of the present invention includes the above-described piezoelectric sensor, and there is no air layer at the boundary between the display and the piezoelectric sensor, and a transparent filling layer is filled. Therefore, it is difficult to reduce optical characteristics such as total light transmittance and haze when the display is viewed.
  • the piezoelectric sensors 10 and 11 of the present invention shown in FIGS. 1A and 1B are arranged on the display surface of the display 12.
  • the piezoelectric sensors 10 and 11 include a piezoelectric film 15 having piezoelectricity, transparent electrodes 16 and 17 formed on one surface and the other surface of the piezoelectric film 15, and transparent formed on the opposite surface of the piezoelectric film 15 in one transparent electrode 17.
  • a packed bed 18 is provided.
  • the piezoelectric film 15 is a film in which a base film 13 is laminated with a piezoelectric coating layer 14.
  • base film 13 examples include polymer films such as polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene.
  • the base film 13 is preferably a polyethylene terephthalate film (PET film) excellent in transparency, heat resistance, and mechanical properties, but is not limited thereto.
  • the thickness of the base film 13 is preferably 10 ⁇ m or more and 200 ⁇ m or less, but is not limited thereto. However, if the thickness of the base film 13 is less than 10 ⁇ m, handling may be difficult. Moreover, when the thickness of the base film 13 exceeds 200 ⁇ m, it may be difficult to wind up the piezoelectric film into a roll. On the other hand, if the thickness of the base film 13 exceeds 200 ⁇ m, the piezoelectric film 15 may be too thick when mounted on the touch panel.
  • the coating layer 14 having piezoelectricity is a thin film coated on the base film 13.
  • the coating layer 14 having piezoelectricity is not particularly limited as long as the coated film has piezoelectricity.
  • the coating layer 14 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
  • the coating layer 14 having piezoelectricity is, for example, a solution obtained by dissolving the material of the coating layer in a solvent, and coating the substrate film 13 thinly and uniformly by a known coating apparatus such as a bar coater or a gravure coater, Thereafter, it is obtained by drying.
  • the vertical direction of the piezoelectric film 15 relative to the display 12 is not limited.
  • the base film 13 is on the display 12
  • the piezoelectric coating layer 14 is on the display 12.
  • the material of the coating layer 14 having piezoelectricity for example, a material containing a fluorine resin is preferably used.
  • the material containing a fluororesin include polyvinylidene fluoride, a vinylidene fluoride component-containing polymer, a vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene.
  • a polymer, a copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, and a copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride can be selected.
  • polymers can be used alone or as a mixture. More preferred are a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride polymer.
  • the molar ratio of vinylidene fluoride to trifluoroethylene is 100 as a whole, and (70 to 75): (30 to 25) is appropriate. It is.
  • a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer is used as the material for the coating layer 14, the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is 100 as a whole. 63 to 65): (27 to 29): (10 to 6) is appropriate.
  • the thickness of the coating layer 14 having piezoelectricity after drying is not limited, but considering the optical characteristics described later, 0.5 ⁇ m or more and 20 ⁇ m or less, preferably 0.5 ⁇ m or more and 5 ⁇ m or less are appropriate. is there. If the thickness of the coating layer 14 having piezoelectricity after drying is less than 0.5 ⁇ m, the formed film may be incomplete. If the thickness of the coating layer 14 having piezoelectricity after drying exceeds 20 ⁇ m, the optical properties (haze and total light transmittance) may become inappropriate.
  • the haze value of the piezoelectric film 15 is preferably 5% or less, the total light transmittance is preferably 85% or more, more preferably 88% or more, and further 90% or more. preferable. If the haze value of the piezoelectric film 15 exceeds 5%, or if the total light transmittance is less than 85%, the image on the display 12 may not be clearly visible.
  • the transparent electrodes 16 and 17 are disposed on both surfaces of the piezoelectric film 15. When the piezoelectric sensors 10 and 11 are pressed, the piezoelectric coating layer 14 is polarized, and a change in the potential of the piezoelectric coating layer 14 is detected by one transparent electrode 16. The other transparent electrode 17 becomes a reference potential (ground potential). The transparent electrodes 16 and 17 are formed so as to cover the entire surfaces of the piezoelectric film 15.
  • the transparent electrodes 16 and 17 include indium composite oxides, typically indium tin composite oxide (ITO) and indium zinc composite oxide. Tetravalent metal ions or divalent metal ions are used as the transparent electrodes 16 and 17.
  • An example is doped indium oxide (In203). Indium composite oxides are characterized by high transmittance of 80% or more in the visible light region (380 to 780 nm) and low surface resistance per unit area (30 to 1000 ⁇ / ⁇ ).
  • the surface resistance value of the indium composite oxide is preferably 300 ⁇ / ⁇ (ohms per square) or less, and more preferably 150 ⁇ / ⁇ .
  • the transparent electrodes 16 and 17 having a low surface resistance are formed by, for example, forming an amorphous layer of an indium composite oxide on a cured resin layer by sputtering or vacuum vapor deposition, and then performing heat treatment at 100 to 200 ° C. It can be obtained by changing the amorphous layer into a crystalline layer.
  • the transparent electrodes 16 and 17 are not limited to the above materials, and transparent conductive oxides such as tin zinc oxide, zinc oxide, and fluorine-doped tin oxide, and conductive polymers such as polyethylenedioxythiophene can be used. .
  • the refractive index adjusting layer (at least between the base film 13 and the coating layer 14, between the base film 13 and the transparent electrode 17, or between the coating layer 14 and the transparent electrode 16).
  • An Index matching layer may be provided.
  • the refractive index adjustment layer is formed between the base film 13 and the coating layer 14 and on any surface of the piezoelectric film 15.
  • the refractive index adjustment layer is a thin layer of about several nm to several tens of nm and adjusts the reflectance.
  • the above layers may be formed similarly.
  • An anchor coat layer may be formed between the base film 13 and the coating layer 14 on the surface of the base film 13 opposite to the coating layer 14.
  • the anchor coat layer can improve the adhesion between the layers.
  • an anti-blocking layer may be provided between the base film 13 and the transparent electrodes 16 and 17.
  • the anti-blocking layer has an effect of preventing the stacked films from being pressed (blocked).
  • the interlayer not one of the above-described layers is formed, but a plurality of types of layers may be formed in one piezoelectric sensor 10, 11.
  • the transparent filling layer 18 is formed on the entire opposite surface of the piezoelectric film 15 in one transparent electrode 17. A space between the transparent electrode 17 and the display 12 is filled with a transparent filling layer 18.
  • the transparent filling layer 18 uses an adhesive or resin made of an optical transparent adhesive material or an optical transparent adhesive material.
  • the transparent filling layer 18 in the form of a sheet may be bonded to the surface of the transparent electrode 17 to form the transparent filling layer 18, or the liquid transparent filling layer 18 is applied to the surface of the transparent electrode 17 and irradiated with ultraviolet rays. Then, the transparent filling layer 18 may be formed by curing.
  • the transparent filling layer 18 is formed when the piezoelectric sensors 10 and 11 are attached to the display 12. It is also possible to form the transparent filling layer 18 on the front surface of the display 12 instead of the transparent electrode 17.
  • the refractive index of the transparent filling layer 18 is a refractive index between the refractive index of the transparent electrode 17 and the refractive index of the display 12.
  • the refractive index is gradually changed to suppress light scattering and the like.
  • an adhesive or resin is used for the transparent filling layer 18, and a PET film is used for the outermost layer of the functional film on the front surface of the display 12, the transparent electrode 17, the transparent filling layer 18, and the outermost layer of the display 12
  • Each of the refractive indexes can be about 1.7, 1.5, and 1.3.
  • a flat display such as a liquid crystal display or an organic EL display can be used.
  • Piezoelectric sensors 10 and 11 are arranged on the front surface of the display 12.
  • the piezoelectric sensors 10 and 11 are bonded to the display 12 by the transparent filling layer 18 of the piezoelectric sensors 10 and 11. There is no air layer between the piezoelectric sensors 10, 11 and the display 12, and the transparent filling layer 18 covers the entire front surface of the display 12.
  • a touch panel may be disposed on the transparent electrode 16 of the piezoelectric sensors 10 and 11.
  • the piezoelectric sensors 10 and 11 and the touch panel are stacked on the display 12 in this order. Between the piezoelectric sensors 10 and 11 and the touch panel, the same material as the transparent filling layer 18 may be filled and bonded.
  • Touch panel includes any touch panel such as capacitance type and resistive film type.
  • the position pressed on the touch panel is detected.
  • the transparent electrode 16 on the upper side of the piezoelectric sensors 10 and 11 may function as a touch panel electrode. Since the piezoelectric sensors 10 and 11 do not bend as in the prior art, a capacitive touch panel can be used without being bent. The detection accuracy of the pressed position can be increased, and the life of the touch panel can be extended.
  • the transparent electrodes 16 and 17 may be disposed indirectly with respect to the piezoelectric film 15. Only one transparent electrode 16 may be directly formed on the piezoelectric film 15 as in the piezoelectric sensors 20 and 21 in FIGS.
  • Layer 18 is applied to display 12.
  • the transparent filling layers 18 and 25 cover the entire surface of the laminate 24 and the other surface.
  • the base film 23 and the transparent filling layer 25 can use the same thing as the base film 13 and the transparent filling layer 18 of FIG.
  • Only the other transparent electrode 17 may be directly formed on the piezoelectric film 15 as in the piezoelectric sensors 30 and 31 of FIGS.
  • the base film 32 and the transparent filling layer 34 can be the same as the base film 13 and the transparent filling layer 18 of FIG.
  • the 4 may be configured by combining the piezoelectric sensors 20, 21, 30, and 31 of FIG. 2 and FIG. 3, like the piezoelectric sensors 40 and 41 of FIG.
  • Two laminated bodies 24 and 33 are bonded to the piezoelectric sensor 15 with transparent filling layers 25 and 36, and two transparent electrodes 16 and 17 are indirectly arranged.
  • the laminate 24 is disposed on the transparent electrode 16 directly formed on the piezoelectric film 15 via the transparent filling layer 25.
  • the transparent electrode 17 of the laminated body 24 becomes a reference potential.
  • the piezoelectric film 15 has the piezoelectric coating layer 14 disposed on the display 12 side, but the base film 13 may be disposed on the display 12 side. Moreover, although the laminated body 24 has arrange
  • the transparent electrode 16 is not directly formed on the piezoelectric film 15 in the piezoelectric sensor 50 of FIG. 5, and the laminate 33 is prepared and adhered to the piezoelectric film 15 by the transparent filling layer 34. You may do it.
  • the laminate 33 has the base film 32 disposed on the display 12 side, but the transparent electrode 16 side may be disposed on the display 12 side.
  • the two transparent electrodes 16 and 17 may not be formed on separate base sheets, but a laminate 71 formed on one base film 72 may be used.
  • the laminated body 71 has transparent electrodes 16 and 17 formed on one surface and the other surface of the base film 72.
  • One of the laminates 71 is adhered to the piezoelectric film 15 by the transparent filling layer 34, and the other of the laminates 71 is adhered to the display 12 by the transparent filling layer 18.
  • the base film 71 can be the same as the base film 13 of the piezoelectric film 15.
  • a single film 81 having piezoelectricity may be used as the piezoelectric film 15 in FIG. 1 like the piezoelectric sensor 80 in FIG.
  • the piezoelectric sensor 80 has the same configuration as that of the piezoelectric sensor 10 of FIG. 1 except for a single film 81 having piezoelectricity.
  • the single film 81 having piezoelectricity will be described, but the other configuration is described in the touch sensor 10 and thus omitted.
  • the single film 81 having piezoelectricity is not particularly limited as long as it has piezoelectricity.
  • the single film 81 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
  • the material of the single film 81 having piezoelectricity for example, a material containing a fluorine resin is preferably used.
  • the material containing a fluororesin include polyvinylidene fluoride, a vinylidene fluoride component-containing polymer, a vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene.
  • a polymer, a copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, and a copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride can be selected.
  • polymers can be used alone or as a mixture. More preferred are a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride polymer.
  • the molar ratio of vinylidene fluoride and trifluoroethylene is 100 as a whole, (70 to 75): (30 to 25) is appropriate.
  • a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer is used as the material for the coating layer 14
  • the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is 100 as a whole.
  • 63 to 65): (27 to 29): (10 to 6) is appropriate.
  • the thickness of the single film 81 having piezoelectricity is not limited, in consideration of the optical characteristics described later, 0.5 ⁇ m or more and 20 ⁇ m or less, preferably 0.5 ⁇ m or more and 5 ⁇ m or less are appropriate. If the thickness of the single film 81 having piezoelectricity is less than 0.5 ⁇ m, the formed film may be incomplete. If the thickness of the single film 81 having piezoelectricity exceeds 20 ⁇ m, the optical characteristics (haze and total light transmittance) may become inappropriate.
  • At least one of an anchor coat layer (anchor coat layer), a refractive index adjustment layer (index match layer) (optical adjustment layer), and an anti-blocking layer may be formed on at least one surface of the single film 81 having piezoelectricity.
  • the refractive index adjustment layer is a thin layer of about several nm to several tens of nm and adjusts the reflectance.
  • the anchor coat layer can improve the adhesion between the layers.
  • the anti-blocking layer has an effect of preventing the stacked films from being pressed (blocked).
  • the piezoelectric film 15 may be replaced with a single film 81 having piezoelectricity.
  • the piezoelectric sensor 80 When the piezoelectric sensor 80 is pressed, the single film 81 having piezoelectricity is polarized, and the change in potential at that time is detected by the transparent electrode 16, whereby the pressing force can be detected.
  • the above refractive index adjusting layer and the like may be applied to the piezoelectric sensors 10, 11, 20, 21, 30, 31, 40, 41, 50, 60, 70 of FIGS.
  • a refractive index adjusting layer 92 is laminated between the piezoelectric film 15 and the transparent electrode 16 like the piezoelectric sensors 90 and 91 in FIG.
  • the thickness of the coating layer 14 having piezoelectricity is 0.5 to 10 ⁇ m
  • the thickness of the refractive index adjustment layer 92 is 80 to 160 nm
  • the thickness of the transparent electrode 16 is 20 nm or more.
  • the refractive index of the coating layer 14 having piezoelectricity is 1.40 to 1.50
  • the refractive index of the refractive index adjusting layer 92 is 1.50 to 1.70
  • the refractive index of the transparent electrode 16 is 1.90 to 2. .10 is an example.
  • the thickness of the base film 13 is set to 2 to 100 ⁇ m
  • the refractive index is set to 1.50 to 1.70.
  • Example 1 In Example 1, a glass substrate was used in place of the display 12 in FIG. 1A in order to measure the optical characteristics of the piezoelectric sensor 10, and the total light transmittance and haze were confirmed.
  • the piezoelectric film 15 was produced by coating a polyethylene terephthalate base film with a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene.
  • the polyethylene terephthalate base film was LR-50JBN manufactured by Mitsubishi Plastics, Inc. and had a thickness of 50 ⁇ m.
  • the copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was Piezotech RT TM TS manufactured by Arkema Co., Ltd., and a solution was prepared in MIBK (methyl isobutyl ketone) by ultrasonic waves.
  • MIBK methyl isobutyl ketone
  • a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was coated on a polyethylene terephthalate base film by a bar coater.
  • the polyethylene terephthalate base film and the undried coating layer were dried at 110 ° C. for 5 minutes to prepare a coating layer.
  • the thickness of the coating layer after drying was 1 ⁇ m.
  • Indium tin oxide was formed on both surfaces of the piezoelectric film 15 by sputtering, and a sheet-like transparent filling layer was further attached.
  • the thickness of the indium tin oxide layer was 23 nm.
  • the sheet-shaped transparent packed bed is No. manufactured by Nitto Denko Corporation. 25 and the thickness was 25 ⁇ m.
  • the glass substrate was MICRO SLIDE GLASS manufactured by Matsunami Co., Ltd., and the thickness was 1.2 to 1.5 mm.
  • the glass substrate is a substitute for a display and has a refractive index of 1.5.
  • the total light transmittance including the piezoelectric sensor 10 and the display 12 was 83.9%, and the haze was 1.8%.
  • Example 2 In Example 2, a glass substrate was used in place of the display 12 in FIG. 2A in order to measure the optical characteristics of the piezoelectric sensor 21, and the total light transmittance and haze were confirmed.
  • the materials used and the method for producing the piezoelectric film 15 are the same as in the first embodiment.
  • the total light transmittance was 85.0%, and the haze was 1.4%.
  • Example 2 has better total light transmittance and haze than Example 1.
  • the transparent electrode 17 is formed directly on the base film 13, but in FIG. 2A, there is a transparent filling layer 25 between the base film 13 and the transparent electrode 22.
  • the surface of the transparent electrode 22 (indium tin oxide here) has fine irregularities, and it is considered that light scattering can be prevented by covering with the transparent filling layer 25 as shown in FIG.
  • Comparative Example 1 In Comparative Example 1, the transparent filling layer in Example 1 was changed to an air layer, and the total light transmittance and haze were confirmed. The transparent filling layer was not attached to the entire surface of indium tin oxide, but was attached to the end of indium tin oxide to form an air layer in the center. The total light transmittance was 75.8%, and the haze was 2.5%, both of which were worse than Example 1.
  • Comparative Example 2 In Comparative Example 2, the transparent filling layer facing the display in Example 2 was changed to an air layer, and the total light transmittance and haze were confirmed in the portion where the air layer was formed. The total light transmittance was 79.7% and the haze was 1.8%, both of which were worse than Example 2.
  • the thicknesses in the above examples and comparative examples were measured by observing the cross section using a transmission electron microscope (H-7670, manufactured by Hitachi, Ltd.) when the thickness of the coating layer 14 of the piezoelectric film 15 was less than 1.0 ⁇ m. .
  • the thickness of 1.0 ⁇ m or more such as the base film 13 was measured using a film thickness meter (Peacock, digital dial gauge DG-205).
  • the total light transmittance and haze were measured using a Direct reading haze computer (SGM Test Instruments HGM-ZDP).
  • Table 1 summarizes the above examples and comparative examples.
  • Example 1 and Comparative Example 1 are compared, and Example 2 and Comparative Example 2 are compared, it can be seen that all Examples have better total light transmittance and haze than the Comparative Example, and that the present application has better optical characteristics than the conventional example.
  • the total light transmittance and haze of the piezoelectric film used alone in the examples and comparative examples were measured in the same manner as in the examples. The total light transmittance was 91.6%, the haze was 0.9%, and the total light transmittance was 85% or more and the haze was 5% or less.
  • the optical characteristics are improved by using the transparent filling layer instead of the conventional air layer.
  • the piezoelectric sensor of the present application hardly reduces the visibility of the display.
  • Examples 3 to 8 Further, as shown in FIG. 10, a coating layer 14 having a piezoelectric property, a refractive index adjusting layer 92, and a transparent electrode 16 were formed on a base film 13 having a thickness of 23 ⁇ m, and the thickness and refractive index were measured. The results are shown in Table 2.
  • the “first layer” is the piezoelectric coating layer 14, the “second layer” is the refractive index adjustment layer 92, and the “third layer” is the transparent electrode 16. Except for the formation of the refractive index adjustment layer 92, this embodiment is the same as the above embodiment.
  • the refractive index adjustment layer 92 may have a refractive index of 1.54, 1.62, 1.7. Since the manufacturing method differs depending on the refractive index, each refractive index will be described.
  • a thermosetting resin having a weight ratio of 2: 2: 1 of melamine resin: alkyd resin: organosilane condensate (refractive index of light) is formed on one surface of the coating layer 14 having piezoelectricity.
  • n 1.54
  • a refractive index adjusting layer 92 having a thickness of 120 nm was formed.
  • an optical adjustment composition containing 47 parts by mass of ultraviolet curable resin, 57 parts by mass of zirconia oxide particles (median diameter 40 nm) and PGME on one surface of the coating layer 14 having piezoelectricity (Manufactured by JSR, “OPSTAR Z7412”, solid content: 12% by mass) was applied using a gravure coater, and immediately heated and dried at 60 ° C. for 1 minute in a windless state (less than 0.1 m / s). Then, the curing process was performed by irradiating ultraviolet rays with an integrated light amount of 250 mJ / cm 2 with a high-pressure mercury lamp.
  • a refractive index adjusting layer 92 having a thickness of 90, 120, or 150 nm and a refractive index of 1.62 was formed on the coating layer 14 having piezoelectricity.
  • melamine resin: alkyd resin: organosilane condensate 2: 2: 1
  • the mixing amount of the TiO 2 fine particles was adjusted so that the refractive index of the resin composition was 1.70.
  • the said resin composition was apply
  • a hard coat layer 94 having an anti-blocking function is formed on the opposite surface of the base film 13 to the coating layer 14.
  • the thickness of the coating layer 14 having piezoelectricity is 0.5 to 10 ⁇ m
  • the thickness of the refractive index adjustment layer 92 is 80 to 160 nm
  • the thickness of the transparent electrode 16 is 20 nm or more.
  • the refractive index of the coating layer 14 having piezoelectricity is 1.40 to 1.50
  • the refractive index of the refractive index adjusting layer 92 is 1.50 to 1.70
  • the refractive index of the transparent electrode 16 is 1.90 to 2. .10.
  • the difference in reflectance between the transparent electrode 16 and the refractive index adjustment layer 92 was 2% or less, and the appearance was good.
  • the transparent electrode 16 is etched to become a desired electrode or the like as necessary.
  • the refractive index of the refractive index adjusting layer 92 was the portion where the transparent electrode 16 was removed by etching. Therefore, the reflectance difference was calculated
  • the refractive index adjustment layer 92 is obtained by diluting silica sol (Colcoat P, Colcoat P) with ethanol so that the solid content concentration is 2%. It is applied on one of the coating layers 14 having piezoelectricity by a silica coating method, and then dried and cured at 150 ° C. for 2 minutes to form a layer having a thickness of 120 nm (SiO 2 film, refractive index of light 1.. 46) to form a refractive index adjusting layer 92.
  • the manufacturing method of the other configuration is the same as that of the example.
  • the transparent electrode 16 may be colored yellow or brown to impair the appearance.
  • the refractive index adjustment layer 92 as in the present invention, the thickness and refractive index of the transparent electrode 16, the refractive index adjustment layer 92, and the coating layer 14 having piezoelectricity are adjusted to be in the above-described range. As shown in Table 2, it was found that the difference in reflectance can be reduced and the appearance is not impaired. It has been found that even if a configuration in which the refractive index adjustment layer 92 and the transparent electrode 16 are laminated on the piezoelectric film 15 is disposed on the front surface of the display, the appearance of the display is hardly impaired.
  • the piezoelectric sensor of the present invention can be used integrally with a touch panel arranged on the front surface of the display.
  • Piezoelectric sensor 12 Display 13, 23, 32, 72: Base film 14: Having piezoelectricity Coating layer 15: Piezoelectric films 16, 17, 22: Transparent electrodes 18, 25, 34: Transparent filling layers 24, 33: Laminate 81: Single film 92 having piezoelectricity: Refractive index adjusting layer 94: Anti-blocking function Hard coat layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide: a piezoelectric sensor which has improved light transmission properties and improved haze in comparison to conventional piezoelectric sensors; and a display which uses this piezoelectric sensor. [Solution] A piezoelectric sensor 10, 11 according to the present invention is to be arranged on the display surface of a display 12. The piezoelectric sensor 10, 11 is provided with: a piezoelectric film 15 having piezoelectricity; transparent electrodes 16, 17 which are formed on one surface and the other surface of the piezoelectric film 15; and a transparent filling layer 18 which is formed on a surface of one of the transparent electrodes 16, 17, said surface being on the reverse side of the piezoelectric film 15-side surface. The piezoelectric film 15 is in the form of a film wherein a piezoelectric coating layer 14 is laminated on a base film 13. A simple film having piezoelectricity is also able to be used as the piezoelectric film 15.

Description

圧電センサおよびその圧電センサを用いたディスプレイPiezoelectric sensor and display using the piezoelectric sensor
 本発明は、押圧を検出する圧電センサおよびその圧電センサを用いたディスプレイに関するものである。 The present invention relates to a piezoelectric sensor for detecting pressure and a display using the piezoelectric sensor.
 従来、電子機器のディスプレイの前面にタッチパネルが取り付けられ、電子機器の操作に使用されている。タッチパネルは位置座標の検出だけであるが、感圧センサを追加することで押圧力も検出できる。たとえば、下記の特許文献1に押圧力も検出できるタッチパネルが開示されている。 Conventionally, a touch panel is attached to the front surface of a display of an electronic device and used for operation of the electronic device. The touch panel only detects the position coordinates, but it can also detect the pressing force by adding a pressure sensor. For example, the following patent document 1 discloses a touch panel that can also detect a pressing force.
 特許文献1のタッチパネルは、フィルム状の圧電センサの端部を接着剤でディスプレイに接着している。フィルム状の圧電センサとディスプレイの間は空間になっている。フィルム状の圧電センサを押圧すると、押圧した部分がディスプレイに向けて撓み、押圧した部分がのびる。このフィルム状の圧電センサの形状変化によって発生する信号の強度により、押圧力を検出している。 In the touch panel of Patent Document 1, the end of a film-like piezoelectric sensor is bonded to a display with an adhesive. There is a space between the film-like piezoelectric sensor and the display. When the film-like piezoelectric sensor is pressed, the pressed portion is bent toward the display, and the pressed portion is extended. The pressing force is detected based on the intensity of a signal generated by the shape change of the film-like piezoelectric sensor.
 しかし、特許文献1のタッチパネルは、フィルム状の圧電センサとディスプレイの間の空間によって光透過性とヘイズが悪化する恐れがある。 However, the touch panel of Patent Document 1 may deteriorate light transmittance and haze due to the space between the film-like piezoelectric sensor and the display.
特開2014-134452JP 2014-134452 A
 本発明の目的は、従来に比べて光透過性およびヘイズを改善した圧電センサおよびその圧電センサを用いたディスプレイを提供することにある。 An object of the present invention is to provide a piezoelectric sensor having improved light transmittance and haze as compared with the conventional one and a display using the piezoelectric sensor.
 本発明は、ディスプレイの前面に配置される圧電センサである。圧電センサは、基材フィルムに圧電性を有するコーティング層が積層された圧電フィルムまたは圧電性を有する単体フィルムと、前記圧電フィルムの少なくとも一面側に直接的または間接的に配置された透明電極と、前記透明電極とディスプレイの間を満たす透明充填層とを備える。 The present invention is a piezoelectric sensor disposed on the front surface of the display. The piezoelectric sensor includes a piezoelectric film in which a coating layer having piezoelectricity is laminated on a base film or a single film having piezoelectricity, and a transparent electrode disposed directly or indirectly on at least one side of the piezoelectric film, A transparent filling layer filling the space between the transparent electrode and the display.
 前記透明充填層の屈折率は、前記透明電極の屈折率とディスプレイの屈折率の間の屈折率である。 The refractive index of the transparent filling layer is a refractive index between the refractive index of the transparent electrode and the refractive index of the display.
 前記透明充填層は接着剤または樹脂である。 The transparent filling layer is an adhesive or a resin.
 前記圧電性を有するコーティング層、圧電性を有する単体フィルムはフッ素系樹脂を含む。 The piezoelectric coating layer and the piezoelectric single film include a fluororesin.
 前記フッ素系樹脂はフッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロチレンのうちの2種類以上の共重合体またはフッ化ビニリデンの重合体である。 The fluororesin is a copolymer of two or more of vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, or a polymer of vinylidene fluoride.
 前記圧電フィルムの基材フィルムとコーティング層の間または圧電フィルムと透明電極の間の少なくとも1つの間に、または、前記圧電性を有する単体フィルムのどちらか一方に屈折率調整層を有する。また、前記圧電フィルムの基材フィルムとコーティング層の間、または基材フィルムにおけるコーティング層の反対側の面のどちらか一方に、または前記圧電性を有する単体フィルムのどちらか一方に、アンカーコート層を有する。 A refractive index adjusting layer is provided on at least one of the piezoelectric film between the base film and the coating layer, between the piezoelectric film and the transparent electrode, or on the single film having piezoelectricity. Further, the anchor coat layer is formed on either one of the piezoelectric film between the base film and the coating layer, or on the surface of the base film opposite to the coating layer, or on the piezoelectric single element film. Have
 前記コーティング層の厚みが0.5~10μm、屈折率調整層の厚みが80~160nm、透明電極の厚みが20nm以上である。また、前記コーティング層の屈折率が1.40~1.50、屈折率調整層の屈折率が1.50~1.70、透明電極の屈折率が1.90~2.10である。 The thickness of the coating layer is 0.5 to 10 μm, the thickness of the refractive index adjustment layer is 80 to 160 nm, and the thickness of the transparent electrode is 20 nm or more. The coating layer has a refractive index of 1.40 to 1.50, the refractive index adjustment layer has a refractive index of 1.50 to 1.70, and the transparent electrode has a refractive index of 1.90 to 2.10.
 前記圧電フィルムにおけるディスプレイの反対側にタッチパネルを配置しても良い。 A touch panel may be disposed on the opposite side of the display in the piezoelectric film.
 本発明のディスプレイは、上記圧電センサを備えており、圧電センサとディスプレイの間が前記透明充填層で満たされている。 The display of the present invention includes the piezoelectric sensor, and the space between the piezoelectric sensor and the display is filled with the transparent filling layer.
 本発明の圧電センサは、ディスプレイに対向する面の全体を覆うように透明充填層を設けている。そのため、従来のようにディスプレイとの間に空気層を備えたフィルム状の圧電センサと違い、全光線透過率やヘイズなどの光学特性を低下させにくい。透明電極、透明充填層およびディスプレイの屈折率が徐々に変化するようになっており、光の反射・散乱が少なく、光学特性を低下させにくい。 The piezoelectric sensor of the present invention is provided with a transparent filling layer so as to cover the entire surface facing the display. Therefore, unlike a film-like piezoelectric sensor having an air layer between the display and a conventional display, it is difficult to reduce optical characteristics such as total light transmittance and haze. The refractive index of the transparent electrode, the transparent filling layer, and the display is gradually changed, and there is little reflection / scattering of light, and it is difficult to deteriorate optical characteristics.
 本発明のディスプレイは、上記の圧電センサを備えており、ディスプレイと圧電センサの境界に空気層は無く、透明充填層が充填されている。そのため、ディスプレイを視認したときの全光線透過率やヘイズなどの光学特性を低下させにくい。 The display of the present invention includes the above-described piezoelectric sensor, and there is no air layer at the boundary between the display and the piezoelectric sensor, and a transparent filling layer is filled. Therefore, it is difficult to reduce optical characteristics such as total light transmittance and haze when the display is viewed.
本発明の圧電センサの構成を模式的に示す図である。It is a figure which shows typically the structure of the piezoelectric sensor of this invention. 本発明の一方の透明電極を間接的に配置した圧電センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the piezoelectric sensor which has arrange | positioned one transparent electrode of this invention indirectly. 本発明の一方の透明電極を間接的に配置した圧電センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the piezoelectric sensor which has arrange | positioned one transparent electrode of this invention indirectly. 本発明の両方の透明電極を間接的に配置した圧電センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the piezoelectric sensor which has arrange | positioned both the transparent electrodes of this invention indirectly. 本発明の圧電センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the piezoelectric sensor of this invention. 本発明の圧電センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the piezoelectric sensor of this invention. 本発明の圧電センサの他の構成を模式的に示す図である。It is a figure which shows typically the other structure of the piezoelectric sensor of this invention. 本発明の圧電性を有する単体フィルムを使用した圧電センサの構成を模式的に示す図である。It is a figure which shows typically the structure of the piezoelectric sensor using the single-piece | unit film which has piezoelectricity of this invention. 図1の圧電センサに屈折率調整層を備えた構成を模式的に示す図である。It is a figure which shows typically the structure provided with the refractive index adjustment layer in the piezoelectric sensor of FIG. 実施例3~9をおこなった構成を模式的に示す図である。It is a figure which shows typically the structure which performed Example 3-9.
 本発明の圧電センサおよびディスプレイについて図面を使用して説明する。 The piezoelectric sensor and display of the present invention will be described with reference to the drawings.
 図1(a)、(b)に示す本発明の圧電センサ10、11は、ディスプレイ12の表示面に配置されるものである。圧電センサ10、11は、圧電性を有する圧電フィルム15、圧電フィルム15の一面および他面に形成された透明電極16、17、一方の透明電極17における圧電フィルム15の反対面に形成された透明充填層18を備える。 The piezoelectric sensors 10 and 11 of the present invention shown in FIGS. 1A and 1B are arranged on the display surface of the display 12. The piezoelectric sensors 10 and 11 include a piezoelectric film 15 having piezoelectricity, transparent electrodes 16 and 17 formed on one surface and the other surface of the piezoelectric film 15, and transparent formed on the opposite surface of the piezoelectric film 15 in one transparent electrode 17. A packed bed 18 is provided.
 圧電フィルム15は、基材フィルム13に圧電性を有するコーティング層14を積層したフィルム状のものである。 The piezoelectric film 15 is a film in which a base film 13 is laminated with a piezoelectric coating layer 14.
 [基材フィルム]
 基材フィルム13は、たとえばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ポリシクロオレフィン、ポリカーボネート、ポリエーテルスルフォン、ポリアリレート、ポリイミド、ポリアミド、ポリスチレン、ポリノルボルネンなどの高分子フィルムが挙げられる。基材フィルム13は透明性、耐熱性、および機械特性に優れるポリエチレンテレフタレートフィルム(PETフィルム)が好ましいが、これに限定されない。
[Base film]
Examples of the base film 13 include polymer films such as polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, polycarbonate, polyether sulfone, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene. The base film 13 is preferably a polyethylene terephthalate film (PET film) excellent in transparency, heat resistance, and mechanical properties, but is not limited thereto.
 基材フィルム13の厚さは、好ましくは、10μm以上、200μm以下であるが、これに限定されることはない。ただし基材フィルム13の厚さが10μm未満であると取り扱いが困難になるおそれがある。また基材フィルム13の厚さが200μmを超えると、圧電フィルムを巻き取ってロールにするのが難しくなるおそれがある。また基材フィルム13の厚さが200μmを超えると、圧電フィルム15をタッチパネルに実装したときに厚さが厚くなりすぎるおそれがある。 The thickness of the base film 13 is preferably 10 μm or more and 200 μm or less, but is not limited thereto. However, if the thickness of the base film 13 is less than 10 μm, handling may be difficult. Moreover, when the thickness of the base film 13 exceeds 200 μm, it may be difficult to wind up the piezoelectric film into a roll. On the other hand, if the thickness of the base film 13 exceeds 200 μm, the piezoelectric film 15 may be too thick when mounted on the touch panel.
 [圧電性を有するコーティング層]
 圧電性を有するコーティング層14は、基材フィルム13の上に薄膜状にコーティングされたものである。圧電性を有するコーティング層14は、コーティング後の膜が圧電性を有するものであれば、特に限定されない。圧電性を有するコーティング層14は、ポーリング(分極処理)を行なわなくても圧電性を示すものが望ましいが、ポーリング後に圧電性を示すものでもよい。
[Coating layer with piezoelectricity]
The coating layer 14 having piezoelectricity is a thin film coated on the base film 13. The coating layer 14 having piezoelectricity is not particularly limited as long as the coated film has piezoelectricity. The coating layer 14 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
 圧電性を有するコーティング層14は、例えば、コーティング層の材料を溶媒に溶解させて溶液とし、バーコーターやグラビアコーターなどの既知のコーティング装置によって基材フィルム13の上に薄く一様にコーティングし、その後乾燥させて得られる。 The coating layer 14 having piezoelectricity is, for example, a solution obtained by dissolving the material of the coating layer in a solvent, and coating the substrate film 13 thinly and uniformly by a known coating apparatus such as a bar coater or a gravure coater, Thereafter, it is obtained by drying.
 図1(a)と(b)に示すように、ディスプレイ12に対する圧電フィルム15の上下方向は限定されない。図1(a)は基材フィルム13がディスプレイ12の方にあり、図1(b)は圧電性を有するコーティング層14がディスプレイ12の方にある。 1A and 1B, the vertical direction of the piezoelectric film 15 relative to the display 12 is not limited. In FIG. 1A, the base film 13 is on the display 12, and in FIG. 1B, the piezoelectric coating layer 14 is on the display 12.
 [圧電性を有するコーティング層の材料]
 圧電性を有するコーティング層14の材料は、例えば、フッ素系樹脂を含む材料が好適に用いられる。フッ素系樹脂を含む材料を具体的に例示すると、フッ化ビニリデン成分含有ポリマーであるポリフッ化ビニリデン、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体、ヘキサフルオロプロピレン-ビニリデンフロライドの共重合体、パーフルオロビニルエーテル-ビニリデンフロライドの共重合体、テトラフルオロエチレン-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシド-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシド-テトラフルオロエチレン-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレン-テトラフルオロエチレン-ビニリデンフロライドの共重合体から選ぶことができる。そしてこれらのポリマーは単独でも混合体でも用いることができる。より好ましくは、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデンの重合体である。
[Material of coating layer having piezoelectricity]
As the material of the coating layer 14 having piezoelectricity, for example, a material containing a fluorine resin is preferably used. Specific examples of the material containing a fluororesin include polyvinylidene fluoride, a vinylidene fluoride component-containing polymer, a vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene. Copolymer, copolymer of hexafluoropropylene-vinylidene fluoride, copolymer of perfluorovinyl ether-vinylidene fluoride, copolymer of tetrafluoroethylene-vinylidene fluoride, copolymer of hexafluoropropylene oxide-vinylidene fluoride A polymer, a copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, and a copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride can be selected. These polymers can be used alone or as a mixture. More preferred are a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride polymer.
 フッ化ビニリデン-トリフルオロエチレンの共重合体をコーティング層14の材料として用いる場合、フッ化ビニリデンとトリフルオロエチレンのモル比は全体を100として、(70~75):(30~25)が適切である。また、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体をコーティング層14の材料として用いる場合、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンのモル比は全体を100として、(63~65):(27~29):(10~6)が適切である。 When a vinylidene fluoride-trifluoroethylene copolymer is used as the material for the coating layer 14, the molar ratio of vinylidene fluoride to trifluoroethylene is 100 as a whole, and (70 to 75): (30 to 25) is appropriate. It is. When a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer is used as the material for the coating layer 14, the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is 100 as a whole. 63 to 65): (27 to 29): (10 to 6) is appropriate.
 [圧電性を有するコーティング層の厚さ]
 圧電性を有するコーティング層14の乾燥後の厚さが限定されることはないが、後述する光学特性を考慮すると、0.5μm以上、20μm以下、好ましくは0.5μm以上、5μm以下が適切である。圧電性を有するコーティング層14の乾燥後の厚さが0.5μm未満であると、形成された膜が不完全であるおそれがある。圧電性を有するコーティング層14の乾燥後の厚さが20μmを超えると、光学特性(ヘイズおよび全光線透過率)が不適切になるおそれがある。
[Thickness of coating layer having piezoelectricity]
The thickness of the coating layer 14 having piezoelectricity after drying is not limited, but considering the optical characteristics described later, 0.5 μm or more and 20 μm or less, preferably 0.5 μm or more and 5 μm or less are appropriate. is there. If the thickness of the coating layer 14 having piezoelectricity after drying is less than 0.5 μm, the formed film may be incomplete. If the thickness of the coating layer 14 having piezoelectricity after drying exceeds 20 μm, the optical properties (haze and total light transmittance) may become inappropriate.
 [圧電フィルムの光学特性]
 ディスプレイ12の画像が明瞭に視認されなければならないため、圧電フィルム15のヘイズ値は5%以下が好ましく、全光線透過率は85%以上が好ましく、88%以上がより好ましく、90%以上が更に好ましい。圧電フィルム15のヘイズ値が5%を超えた場合、あるいは、全光線透過率が85%未満となった場合、ディスプレイ12の画像が明瞭に視認できなくなるおそれがある。
[Optical characteristics of piezoelectric film]
Since the image of the display 12 must be clearly seen, the haze value of the piezoelectric film 15 is preferably 5% or less, the total light transmittance is preferably 85% or more, more preferably 88% or more, and further 90% or more. preferable. If the haze value of the piezoelectric film 15 exceeds 5%, or if the total light transmittance is less than 85%, the image on the display 12 may not be clearly visible.
 [透明電極]
 透明電極16、17は、圧電フィルム15の両面に配置されている。圧電センサ10,11を押圧すると圧電性を有するコーティング層14が分極し、一方の透明電極16で圧電性を有するコーティング層14の電位の変化を検出する。他方の透明電極17は基準電位(アース電位)となる。透明電極16、17は圧電フィルム15のそれぞれの面の全体を覆うように形成する。
[Transparent electrode]
The transparent electrodes 16 and 17 are disposed on both surfaces of the piezoelectric film 15. When the piezoelectric sensors 10 and 11 are pressed, the piezoelectric coating layer 14 is polarized, and a change in the potential of the piezoelectric coating layer 14 is detected by one transparent electrode 16. The other transparent electrode 17 becomes a reference potential (ground potential). The transparent electrodes 16 and 17 are formed so as to cover the entire surfaces of the piezoelectric film 15.
 透明電極16、17は、インジウム系複合酸化物、代表的にはインジウムスズ複合酸化物(ITO:Indium Tin Oxide)、インジウム亜鉛複合酸化物が挙げられるが、4価金属イオンまたは2価金属イオンがドープされた酸化インジウム(In203)が挙げられる。インジウム系複合酸化物は、可視光領域(380~780nm)で透過率が80%以上と高く、かつ単位面積当たりの表面抵抗が低い(30~1000Ω/□)という特徴を有している。 Examples of the transparent electrodes 16 and 17 include indium composite oxides, typically indium tin composite oxide (ITO) and indium zinc composite oxide. Tetravalent metal ions or divalent metal ions are used as the transparent electrodes 16 and 17. An example is doped indium oxide (In203). Indium composite oxides are characterized by high transmittance of 80% or more in the visible light region (380 to 780 nm) and low surface resistance per unit area (30 to 1000 Ω / □).
 上記インジウム系複合酸化物の表面抵抗値は、好ましくは300Ω/□(ohms per square)以下であり、さらに好ましくは150Ω/□である。表面抵抗の小さい透明電極16、17は、たとえば、スパッタリング法または真空蒸着法により、インジウム系複合酸化物の非晶質層を硬化樹脂層上に形成した後、100~200℃で加熱処理して、非晶質層を結晶質層に変化することにより得られる。 The surface resistance value of the indium composite oxide is preferably 300Ω / □ (ohms per square) or less, and more preferably 150Ω / □. The transparent electrodes 16 and 17 having a low surface resistance are formed by, for example, forming an amorphous layer of an indium composite oxide on a cured resin layer by sputtering or vacuum vapor deposition, and then performing heat treatment at 100 to 200 ° C. It can be obtained by changing the amorphous layer into a crystalline layer.
 透明電極16、17は上記の材料に限定されず、スズ亜鉛酸化物、酸化亜鉛、フッ素ドープスズ酸化物などの透明導電性酸化物、ポリエチレンジオキシチオフェンなどの導電性高分子、を用いることができる。 The transparent electrodes 16 and 17 are not limited to the above materials, and transparent conductive oxides such as tin zinc oxide, zinc oxide, and fluorine-doped tin oxide, and conductive polymers such as polyethylenedioxythiophene can be used. .
 [層間]
 たとえば図1(a)において、基材フィルム13とコーティング層14の間、基材フィルム13と透明電極17の間またはコーティング層14と透明電極16の間の少なくとも1つの間に屈折率調整層(Index matching layer)を設けても良い。複数の屈折率調整層を形成する場合、屈折率調整層は、基材フィルム13とコーティング層14の間と圧電フィルム15のいずれかの面に形成する。屈折率調整層は数nm~数十nm程度の薄層であり、反射率を調整する。図1(b)においても上記の層を同様に形成しても良い。
[Interlayer]
For example, in FIG. 1A, the refractive index adjusting layer (at least between the base film 13 and the coating layer 14, between the base film 13 and the transparent electrode 17, or between the coating layer 14 and the transparent electrode 16). An Index matching layer) may be provided. In the case of forming a plurality of refractive index adjustment layers, the refractive index adjustment layer is formed between the base film 13 and the coating layer 14 and on any surface of the piezoelectric film 15. The refractive index adjustment layer is a thin layer of about several nm to several tens of nm and adjusts the reflectance. In FIG. 1B, the above layers may be formed similarly.
 基材フィルム13とコーティング層14の間、基材フィルム13におけるコーティング層14の反対側の面にアンカーコート層(anchor coat layer)を形成しても良い。アンカーコート層は層間の密着性を高めることができる。 An anchor coat layer (anchor coat layer) may be formed between the base film 13 and the coating layer 14 on the surface of the base film 13 opposite to the coating layer 14. The anchor coat layer can improve the adhesion between the layers.
 さらに、基材フィルム13と透明電極16、17の間にアンチブロッキング層を設けても良い。アンチブロッキング層は積み重ねられたフィルムが圧着(ブロッキング)することを防止する効果がある。 Furthermore, an anti-blocking layer may be provided between the base film 13 and the transparent electrodes 16 and 17. The anti-blocking layer has an effect of preventing the stacked films from being pressed (blocked).
 層間については、上述した層のいずれかが形成されるのではなく、1つの圧電センサ10、11に複数種の層を形成しても良い。 As for the interlayer, not one of the above-described layers is formed, but a plurality of types of layers may be formed in one piezoelectric sensor 10, 11.
 [透明充填層]
 透明充填層18は、一方の透明電極17における圧電フィルム15の反対面の全体に形成されている。透明電極17とディスプレイ12の間は透明充填層18が充填されて満たされている。
[Transparent packing layer]
The transparent filling layer 18 is formed on the entire opposite surface of the piezoelectric film 15 in one transparent electrode 17. A space between the transparent electrode 17 and the display 12 is filled with a transparent filling layer 18.
 透明充填層18は光学透明接着材料または光学透明粘着材料から成る接着剤または樹脂を用いる。シート状になった透明充填層18を透明電極17の表面に貼りあわせて透明充填層18を形成しても良いし、液状の透明充填層18を透明電極17の表面に塗布し、紫外線を照射して硬化させることで透明充填層18を形成しても良い。透明充填層18はディスプレイ12に圧電センサ10、11を取り付けるときに形成する。透明電極17ではなくディスプレイ12の前面に透明充填層18を形成しておくことも可能である。 The transparent filling layer 18 uses an adhesive or resin made of an optical transparent adhesive material or an optical transparent adhesive material. The transparent filling layer 18 in the form of a sheet may be bonded to the surface of the transparent electrode 17 to form the transparent filling layer 18, or the liquid transparent filling layer 18 is applied to the surface of the transparent electrode 17 and irradiated with ultraviolet rays. Then, the transparent filling layer 18 may be formed by curing. The transparent filling layer 18 is formed when the piezoelectric sensors 10 and 11 are attached to the display 12. It is also possible to form the transparent filling layer 18 on the front surface of the display 12 instead of the transparent electrode 17.
 透明充填層18の屈折率は、透明電極17の屈折率とディスプレイ12の屈折率の間の屈折率である。屈折率を徐々に変化させ、光の散乱等を抑制する。透明電極17に酸化インジウムスズ、透明充填層18に接着剤または樹脂、ディスプレイ12の前面の機能フィルムの最表層にPETフィルムを用いた場合、透明電極17、透明充填層18、ディスプレイ12の最表層のそれぞれの屈折率は1.7、1.5、1.3程度にすることができる。 The refractive index of the transparent filling layer 18 is a refractive index between the refractive index of the transparent electrode 17 and the refractive index of the display 12. The refractive index is gradually changed to suppress light scattering and the like. When indium tin oxide is used for the transparent electrode 17, an adhesive or resin is used for the transparent filling layer 18, and a PET film is used for the outermost layer of the functional film on the front surface of the display 12, the transparent electrode 17, the transparent filling layer 18, and the outermost layer of the display 12 Each of the refractive indexes can be about 1.7, 1.5, and 1.3.
 [ディスプレイ]
 ディスプレイ12は液晶ディスプレイまたは有機ELディスプレイなどの平面ディスプレイを使用することができる。ディスプレイ12の前面に圧電センサ10、11が配置される。圧電センサ10、11の透明充填層18によって圧電センサ10、11がディスプレイ12に接着されている。圧電センサ10、11とディスプレイ12の間には空気層が無く、透明充填層18がディスプレイ12の前面全体を覆っている。
[display]
As the display 12, a flat display such as a liquid crystal display or an organic EL display can be used. Piezoelectric sensors 10 and 11 are arranged on the front surface of the display 12. The piezoelectric sensors 10 and 11 are bonded to the display 12 by the transparent filling layer 18 of the piezoelectric sensors 10 and 11. There is no air layer between the piezoelectric sensors 10, 11 and the display 12, and the transparent filling layer 18 covers the entire front surface of the display 12.
 [タッチパネル]
 圧電センサ10、11の透明電極16の上にタッチパネルを配置しても良い。ディスプレイ12の上に圧電センサ10、11、タッチパネルの順番に積層される。圧電センサ10、11とタッチパネルの間は、上記透明充填層18と同じ材料を充填し、接着しても良い。
[Touch panel]
A touch panel may be disposed on the transparent electrode 16 of the piezoelectric sensors 10 and 11. The piezoelectric sensors 10 and 11 and the touch panel are stacked on the display 12 in this order. Between the piezoelectric sensors 10 and 11 and the touch panel, the same material as the transparent filling layer 18 may be filled and bonded.
 タッチパネルは静電容量式や抵抗膜式など任意のタッチパネルを含む。タッチパネルで押圧した位置を検出する。圧電センサ10、11の上側の透明電極16をタッチパネルの電極として機能させても良い。圧電センサ10、11が従来のように撓まないため、静電容量式のタッチパネルであれば撓まさずに使用できる。押圧位置の検出精度を高めることができ、タッチパネルの寿命を延ばせる。 Touch panel includes any touch panel such as capacitance type and resistive film type. The position pressed on the touch panel is detected. The transparent electrode 16 on the upper side of the piezoelectric sensors 10 and 11 may function as a touch panel electrode. Since the piezoelectric sensors 10 and 11 do not bend as in the prior art, a capacitive touch panel can be used without being bent. The detection accuracy of the pressed position can be increased, and the life of the touch panel can be extended.
 以上、本発明の実施形態を説明したが、本発明は上記の実施形態に限定されない。たとえば、圧電フィルム15に対して間接的に透明電極16、17を配置しても良い。図2(a)、(b)の圧電センサ20、21のように、一方の透明電極16のみを圧電フィルム15に直接形成しても良い。基材フィルム23の上に透明電極17を積層した積層体24を形成し、積層体24の両面に透明充填層18、25を設け、一方の透明充填層25を圧電フィルム15、他方の透明充填層18をディスプレイ12に貼りつける。透明充填層18、25は積層体24の一面と他面の全体を覆うようにする。なお、基材フィルム23および透明充填層25は、図1の基材フィルム13および透明充填層18と同じものを使用できる。 As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. For example, the transparent electrodes 16 and 17 may be disposed indirectly with respect to the piezoelectric film 15. Only one transparent electrode 16 may be directly formed on the piezoelectric film 15 as in the piezoelectric sensors 20 and 21 in FIGS. A laminate 24 in which a transparent electrode 17 is laminated on a base film 23 is formed, transparent filling layers 18 and 25 are provided on both sides of the laminate 24, one transparent filling layer 25 is a piezoelectric film 15, and the other transparent filling is provided. Layer 18 is applied to display 12. The transparent filling layers 18 and 25 cover the entire surface of the laminate 24 and the other surface. In addition, the base film 23 and the transparent filling layer 25 can use the same thing as the base film 13 and the transparent filling layer 18 of FIG.
 図3(a)、(b)の圧電センサ30、31のように、圧電フィルム15に他方の透明電極17のみを直接形成しても良い。一方の透明電極16を基材フィルム32に積層した積層体33を形成し、積層体33と圧電フィルム15を透明充填層34で接着する。基材フィルム32および透明充填層34は、図1の基材フィルム13および透明充填層18と同じものを使用できる。 Only the other transparent electrode 17 may be directly formed on the piezoelectric film 15 as in the piezoelectric sensors 30 and 31 of FIGS. A laminated body 33 in which one transparent electrode 16 is laminated on the base film 32 is formed, and the laminated body 33 and the piezoelectric film 15 are bonded by the transparent filling layer 34. The base film 32 and the transparent filling layer 34 can be the same as the base film 13 and the transparent filling layer 18 of FIG.
 図4(a)、(b)の圧電センサ40、41のように、図2と図3の圧電センサ20、21、30、31を組み合わせた構成であっても良い。2つの積層体24、33が透明充填層25、36で圧電センサ15に接着され、2つの透明電極16、17が間接的に配置されている。 4 may be configured by combining the piezoelectric sensors 20, 21, 30, and 31 of FIG. 2 and FIG. 3, like the piezoelectric sensors 40 and 41 of FIG. Two laminated bodies 24 and 33 are bonded to the piezoelectric sensor 15 with transparent filling layers 25 and 36, and two transparent electrodes 16 and 17 are indirectly arranged.
 また、図5の圧電センサ50は、圧電フィルム15に直接形成した透明電極16の上に、透明充填層25を介して上記積層体24を配置している。積層体24の透明電極17が基準電位となる。 Further, in the piezoelectric sensor 50 of FIG. 5, the laminate 24 is disposed on the transparent electrode 16 directly formed on the piezoelectric film 15 via the transparent filling layer 25. The transparent electrode 17 of the laminated body 24 becomes a reference potential.
 図5において、圧電フィルム15は圧電性を有するコーティング層14をディスプレイ12側に配置しているが、基材フィルム13をディスプレイ12側に配置しても良い。また、積層体24は基材フィルム23をディスプレイ12側に配置しているが、透明電極17をディスプレイ12側に配置しても良い。 5, the piezoelectric film 15 has the piezoelectric coating layer 14 disposed on the display 12 side, but the base film 13 may be disposed on the display 12 side. Moreover, although the laminated body 24 has arrange | positioned the base film 23 on the display 12 side, you may arrange | position the transparent electrode 17 on the display 12 side.
 図6の圧電センサ60のように、図5の圧電センサ50において、透明電極16を圧電フィルム15に直接形成せず、上記積層体33を準備して、透明充填層34によって圧電フィルム15に接着しても良い。図5と同様に、積層体33は基材フィルム32をディスプレイ12側に配置しているが、透明電極16側をディスプレイ12側に配置しても良い。 As in the piezoelectric sensor 60 of FIG. 6, the transparent electrode 16 is not directly formed on the piezoelectric film 15 in the piezoelectric sensor 50 of FIG. 5, and the laminate 33 is prepared and adhered to the piezoelectric film 15 by the transparent filling layer 34. You may do it. As in FIG. 5, the laminate 33 has the base film 32 disposed on the display 12 side, but the transparent electrode 16 side may be disposed on the display 12 side.
 図7の圧電センサ70のように2つの透明電極16、17を別々の基材シートに形成せず、1つの基材フィルム72に形成した積層体71を使用しても良い。積層体71は基材フィルム72の一面と他面に透明電極16、17を形成している。積層体71の一方を透明充填層34によって圧電フィルム15に接着し、積層体71の他方を透明充填層18によってディスプレイ12に接着している。なお、基材フィルム71は圧電フィルム15の基材フィルム13と同じものを使用できる。 As shown in the piezoelectric sensor 70 of FIG. 7, the two transparent electrodes 16 and 17 may not be formed on separate base sheets, but a laminate 71 formed on one base film 72 may be used. The laminated body 71 has transparent electrodes 16 and 17 formed on one surface and the other surface of the base film 72. One of the laminates 71 is adhered to the piezoelectric film 15 by the transparent filling layer 34, and the other of the laminates 71 is adhered to the display 12 by the transparent filling layer 18. The base film 71 can be the same as the base film 13 of the piezoelectric film 15.
 さらに上記の圧電フィルム15を使用することに限定されない。たとえば、図8の圧電センサ80のように、図1の圧電フィルム15として圧電性を有する単体フィルム81を使用しても良い。圧電センサ80において、圧電性を有する単体フィルム81以外は図1の圧電センサ10と同じ構成である。以下、圧電性を有する単体フィルム81について説明するが、他の構成はタッチセンサ10で説明しているので省略する。 Furthermore, it is not limited to using the piezoelectric film 15 described above. For example, a single film 81 having piezoelectricity may be used as the piezoelectric film 15 in FIG. 1 like the piezoelectric sensor 80 in FIG. The piezoelectric sensor 80 has the same configuration as that of the piezoelectric sensor 10 of FIG. 1 except for a single film 81 having piezoelectricity. Hereinafter, the single film 81 having piezoelectricity will be described, but the other configuration is described in the touch sensor 10 and thus omitted.
 [圧電性を有する単体フィルム]
 圧電性を有する単体フィルム81は、圧電性を有するものであれば、特に限定されない。圧電性を有する単体フィルム81は、ポーリング(分極処理)を行なわなくても圧電性を示すものが望ましいが、ポーリング後に圧電性を示すものでもよい。
[Single film with piezoelectric properties]
The single film 81 having piezoelectricity is not particularly limited as long as it has piezoelectricity. The single film 81 having piezoelectricity desirably exhibits piezoelectricity without performing poling (polarization treatment), but may exhibit piezoelectricity after poling.
 ポーリングにはコロナ放電処理分極による非接触式と、2枚の金属板でフィルムを挟み電圧を印加して分極する接触式との、2種類の方式が知られている。 There are two known types of poling, a non-contact type using corona discharge treatment polarization and a contact type in which a film is sandwiched between two metal plates and polarized by applying a voltage.
[圧電性を有する単体フィルムの材料]
 圧電性を有する単体フィルム81の材料は、例えば、フッ素系樹脂を含む材料が好適に用いられる。フッ素系樹脂を含む材料を具体的に例示すると、フッ化ビニリデン成分含有ポリマーであるポリフッ化ビニリデン、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体、ヘキサフルオロプロピレン-ビニリデンフロライドの共重合体、パーフルオロビニルエーテル-ビニリデンフロライドの共重合体、テトラフルオロエチレン-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシド-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレンオキシド-テトラフルオロエチレン-ビニリデンフロライドの共重合体、ヘキサフルオロプロピレン-テトラフルオロエチレン-ビニリデンフロライドの共重合体から選ぶことができる。そしてこれらのポリマーは単独でも混合体でも用いることができる。より好ましくは、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体、フッ化ビニリデン-トリフルオロエチレンの共重合体、フッ化ビニリデンの重合体である。
[Material of single film having piezoelectricity]
As the material of the single film 81 having piezoelectricity, for example, a material containing a fluorine resin is preferably used. Specific examples of the material containing a fluororesin include polyvinylidene fluoride, a vinylidene fluoride component-containing polymer, a vinylidene fluoride-trifluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene. Copolymer, copolymer of hexafluoropropylene-vinylidene fluoride, copolymer of perfluorovinyl ether-vinylidene fluoride, copolymer of tetrafluoroethylene-vinylidene fluoride, copolymer of hexafluoropropylene oxide-vinylidene fluoride A polymer, a copolymer of hexafluoropropylene oxide-tetrafluoroethylene-vinylidene fluoride, and a copolymer of hexafluoropropylene-tetrafluoroethylene-vinylidene fluoride can be selected. These polymers can be used alone or as a mixture. More preferred are a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer, a vinylidene fluoride-trifluoroethylene copolymer, and a vinylidene fluoride polymer.
 フッ化ビニリデン-トリフルオロエチレンの共重合体を圧電性を有する単体フィルム81の材料として用いる場合、フッ化ビニリデンとトリフルオロエチレンのモル比は全体を100として、(70~75):(30~25)が適切である。また、フッ化ビニリデン-トリフルオロエチレン-クロロトリフルオロエチレンの共重合体をコーティング層14の材料として用いる場合、フッ化ビニリデンとトリフルオロエチレンとクロロトリフルオロエチレンのモル比は全体を100として、(63~65):(27~29):(10~6)が適切である。 When a copolymer of vinylidene fluoride-trifluoroethylene is used as the material of the single film 81 having piezoelectricity, the molar ratio of vinylidene fluoride and trifluoroethylene is 100 as a whole, (70 to 75): (30 to 25) is appropriate. When a vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene copolymer is used as the material for the coating layer 14, the molar ratio of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene is 100 as a whole. 63 to 65): (27 to 29): (10 to 6) is appropriate.
 [圧電性を有する単体フィルムの厚さ]
 圧電性を有する単体フィルム81の厚さが限定されることはないが、後述する光学特性を考慮すると、0.5μm以上、20μm以下、好ましくは0.5μm以上、5μm以下が適切である。圧電性を有する単体フィルム81の厚さが0.5μm未満であると、形成された膜が不完全であるおそれがある。圧電性を有する単体フィルム81の厚さが20μmを超えると、光学特性(ヘイズおよび全光線透過率)が不適切になるおそれがある。
[Thickness of single film having piezoelectricity]
Although the thickness of the single film 81 having piezoelectricity is not limited, in consideration of the optical characteristics described later, 0.5 μm or more and 20 μm or less, preferably 0.5 μm or more and 5 μm or less are appropriate. If the thickness of the single film 81 having piezoelectricity is less than 0.5 μm, the formed film may be incomplete. If the thickness of the single film 81 having piezoelectricity exceeds 20 μm, the optical characteristics (haze and total light transmittance) may become inappropriate.
 圧電性を有する単体フィルム81の少なくとも1つの面にアンカーコート層(anchor coat layer)、屈折率調整層(Index matching layer)(光学調整層)、アンチブロッキング層の少なくとも1層を形成しても良い。屈折率調整層は数nm~数十nm程度の薄層であり、反射率を調整する。アンカーコート層は層間の密着性を高めることができる。さらに、アンチブロッキング層は積み重ねられたフィルムが圧着(ブロッキング)することを防止する効果がある。 At least one of an anchor coat layer (anchor coat layer), a refractive index adjustment layer (index match layer) (optical adjustment layer), and an anti-blocking layer may be formed on at least one surface of the single film 81 having piezoelectricity. . The refractive index adjustment layer is a thin layer of about several nm to several tens of nm and adjusts the reflectance. The anchor coat layer can improve the adhesion between the layers. Furthermore, the anti-blocking layer has an effect of preventing the stacked films from being pressed (blocked).
 また、図2~図7の圧電センサ20、21、30、31、40、41、50、60、70においても、圧電フィルム15が圧電性を有する単体フィルム81に置き換えられても良い。 Also, in the piezoelectric sensors 20, 21, 30, 31, 40, 41, 50, 60, and 70 shown in FIGS. 2 to 7, the piezoelectric film 15 may be replaced with a single film 81 having piezoelectricity.
 圧電センサ80を押圧すると圧電性を有する単体フィルム81が分極し、その際の電位の変化を透明電極16で検出することで、押圧力を検出することができる。 When the piezoelectric sensor 80 is pressed, the single film 81 having piezoelectricity is polarized, and the change in potential at that time is detected by the transparent electrode 16, whereby the pressing force can be detected.
 また、上記の屈折率調整層などは図1~7の圧電センサ10、11、20、21、30、31、40、41、50、60、70に適用しても良い。たとえば、図1では圧電フィルム15と透明電極16が積層されているが、図9の圧電センサ90、91のように、圧電フィルム15と透明電極16の間に屈折率調整層92を積層する。 Further, the above refractive index adjusting layer and the like may be applied to the piezoelectric sensors 10, 11, 20, 21, 30, 31, 40, 41, 50, 60, 70 of FIGS. For example, although the piezoelectric film 15 and the transparent electrode 16 are laminated in FIG. 1, a refractive index adjusting layer 92 is laminated between the piezoelectric film 15 and the transparent electrode 16 like the piezoelectric sensors 90 and 91 in FIG.
 圧電性を有するコーティング層14の厚さとして0.5~10μm、屈折率調整層92の厚さとして80~160nm、透明電極16の厚さとして20nm以上を一例としてあげられる。また、圧電性を有するコーティング層14の屈折率として1.40~1.50、屈折率調整層92の屈折率として1.50~1.70、透明電極16の屈折率として1.90~2.10が一例としてあげられる。また、基材フィルム13の厚さを2~100μm、屈折率を1.50~1.70にする。以上の厚さと屈折率にすることで、透明電極16と屈折率調整層92の反射率差が2.0%以下になり、圧電センサ90,91の見栄えが良くなる。 As an example, the thickness of the coating layer 14 having piezoelectricity is 0.5 to 10 μm, the thickness of the refractive index adjustment layer 92 is 80 to 160 nm, and the thickness of the transparent electrode 16 is 20 nm or more. Further, the refractive index of the coating layer 14 having piezoelectricity is 1.40 to 1.50, the refractive index of the refractive index adjusting layer 92 is 1.50 to 1.70, and the refractive index of the transparent electrode 16 is 1.90 to 2. .10 is an example. Further, the thickness of the base film 13 is set to 2 to 100 μm, and the refractive index is set to 1.50 to 1.70. By using the above thickness and refractive index, the difference in reflectance between the transparent electrode 16 and the refractive index adjustment layer 92 becomes 2.0% or less, and the appearance of the piezoelectric sensors 90 and 91 is improved.
 [実施例1]
 実施例1は圧電センサ10の光学特性を測定するために、図1(a)においてディスプレイ12の代わりにガラス基板を使用し、全光線透過率とヘイズを確認した。圧電フィルム15は、ポリエチレンテレフタレート基材フィルム上に、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレンの共重合体をコーティングして作製した。ポリエチレンテレフタレート基材フィルムは三菱樹脂(株)社製LR-50JBNであって、厚さは50μmであった。フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレンの共重合体はアルケマ(株)社製Piezotech RTTMTSであって、MIBK(メチルイソブチルケトン)に超音波により溶液を作製した。次にフッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレンの共重合体の溶液を、バーコーターによって、ポリエチレンテレフタレート基材フィルム上にコーティングした。次に、ポリエチレンテレフタレート基材フィルムおよび未乾燥のコーティング層を、110℃、5分で乾燥してコーティング層を作製した。乾燥後のコーティング層の厚さは1μmであった。
[Example 1]
In Example 1, a glass substrate was used in place of the display 12 in FIG. 1A in order to measure the optical characteristics of the piezoelectric sensor 10, and the total light transmittance and haze were confirmed. The piezoelectric film 15 was produced by coating a polyethylene terephthalate base film with a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene. The polyethylene terephthalate base film was LR-50JBN manufactured by Mitsubishi Plastics, Inc. and had a thickness of 50 μm. The copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was Piezotech RT TS manufactured by Arkema Co., Ltd., and a solution was prepared in MIBK (methyl isobutyl ketone) by ultrasonic waves. Next, a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene was coated on a polyethylene terephthalate base film by a bar coater. Next, the polyethylene terephthalate base film and the undried coating layer were dried at 110 ° C. for 5 minutes to prepare a coating layer. The thickness of the coating layer after drying was 1 μm.
 上記圧電フィルム15の両面にインジウムスズ酸化物をスパッタリングによって成膜し、さらにシート状の透明充填層を貼りつけた。インジウムスズ酸化物層の厚さは23nmであった。シート状の透明充填層は日東電工(株)社製No.25であって、厚さは25μmであった。 Indium tin oxide was formed on both surfaces of the piezoelectric film 15 by sputtering, and a sheet-like transparent filling layer was further attached. The thickness of the indium tin oxide layer was 23 nm. The sheet-shaped transparent packed bed is No. manufactured by Nitto Denko Corporation. 25 and the thickness was 25 μm.
 ガラス基板はMATSUNAMI(株)社製MICRO SLIDE GLASSであって、厚さは1.2~1.5mmであった。ガラス基板はディスプレイの代わりであり、屈折率は1.5である。 The glass substrate was MICRO SLIDE GLASS manufactured by Matsunami Co., Ltd., and the thickness was 1.2 to 1.5 mm. The glass substrate is a substitute for a display and has a refractive index of 1.5.
 圧電センサ10とディスプレイ12を含めた全光線透過率は83.9%、ヘイズは1.8%であった。 The total light transmittance including the piezoelectric sensor 10 and the display 12 was 83.9%, and the haze was 1.8%.
 [実施例2]
 実施例2は圧電センサ21の光学特性を測定するために、図2(a)におけるディスプレイ12の代わりにガラス基板を使用し、全光線透過率とヘイズを確認した。使用材料および圧電フィルム15の作成方法は実施例1と同じである。全光線透過率は85.0%、ヘイズは1.4%であった。
[Example 2]
In Example 2, a glass substrate was used in place of the display 12 in FIG. 2A in order to measure the optical characteristics of the piezoelectric sensor 21, and the total light transmittance and haze were confirmed. The materials used and the method for producing the piezoelectric film 15 are the same as in the first embodiment. The total light transmittance was 85.0%, and the haze was 1.4%.
 なお、実施例2は実施例1よりも全光線透過率とヘイズが良くなっている。図1(a)は基材フィルム13に直接透明電極17を形成しているが、図2(a)は基材フィルム13と透明電極22の間に透明充填層25が有る。透明電極22(ここではインジウムスズ酸化物)の表面に微細な凹凸が有り、図2(a)のように透明充填層25で覆うことで、光の散乱が防止できていると考えられる。 In addition, Example 2 has better total light transmittance and haze than Example 1. In FIG. 1A, the transparent electrode 17 is formed directly on the base film 13, but in FIG. 2A, there is a transparent filling layer 25 between the base film 13 and the transparent electrode 22. The surface of the transparent electrode 22 (indium tin oxide here) has fine irregularities, and it is considered that light scattering can be prevented by covering with the transparent filling layer 25 as shown in FIG.
 [比較例1]
 比較例1は、実施例1における透明充填層を空気層に変更し、全光線透過率とヘイズを確認した。透明充填層をインジウムスズ酸化物の全面に貼りつけず、インジウムスズ酸化物の端部に貼りつけて中央部に空気層を形成した。全光線透過率は75.8%、ヘイズは2.5%であり、いずれも実施例1よりも悪くなった。
[Comparative Example 1]
In Comparative Example 1, the transparent filling layer in Example 1 was changed to an air layer, and the total light transmittance and haze were confirmed. The transparent filling layer was not attached to the entire surface of indium tin oxide, but was attached to the end of indium tin oxide to form an air layer in the center. The total light transmittance was 75.8%, and the haze was 2.5%, both of which were worse than Example 1.
 [比較例2]
 比較例2は、実施例2におけるディスプレイに面する透明充填層を空気層に変更し、その空気層ができた部分において全光線透過率とヘイズを確認した。全光線透過率は79.7%、ヘイズは1.8%であり、いずれも実施例2よりも悪くなった。
[Comparative Example 2]
In Comparative Example 2, the transparent filling layer facing the display in Example 2 was changed to an air layer, and the total light transmittance and haze were confirmed in the portion where the air layer was formed. The total light transmittance was 79.7% and the haze was 1.8%, both of which were worse than Example 2.
 なお上記の実施例および比較例における厚みについて、圧電フィルム15のコーティング層14など1.0μm未満の場合、透過型電子顕微鏡(日立製作所製、H-7670)を用いて断面を観察して測定した。基材フィルム13など1.0μm以上の厚みは、膜厚計(Peacock社製、デジタルダイアルゲージDG-205)を用いて測定した。さらに、全光線透過率およびヘイズはDirect reading haze computer(Suga Test Instruments社製 HGM-ZDP)を用いて測定した。 The thicknesses in the above examples and comparative examples were measured by observing the cross section using a transmission electron microscope (H-7670, manufactured by Hitachi, Ltd.) when the thickness of the coating layer 14 of the piezoelectric film 15 was less than 1.0 μm. . The thickness of 1.0 μm or more such as the base film 13 was measured using a film thickness meter (Peacock, digital dial gauge DG-205). Furthermore, the total light transmittance and haze were measured using a Direct reading haze computer (SGM Test Instruments HGM-ZDP).
 上記実施例および比較例をまとめると表1のようになる。実施例1と比較例1、実施例2と比較例2を比較すると、いずれの実施例も全光線透過率とヘイズが比較例よりも良く、本願が従来よりも光学特性が良いことがわかる。なお、上記実施例および比較例にて使用した圧電フィルム単体の全光線透過率とヘイズを実施例等と同様に測定した。全光線透過率は91.6%、ヘイズは0.9%であり、全光線透過率85%以上、ヘイズ5%以下を満たしていた。 Table 1 summarizes the above examples and comparative examples. When Example 1 and Comparative Example 1 are compared, and Example 2 and Comparative Example 2 are compared, it can be seen that all Examples have better total light transmittance and haze than the Comparative Example, and that the present application has better optical characteristics than the conventional example. In addition, the total light transmittance and haze of the piezoelectric film used alone in the examples and comparative examples were measured in the same manner as in the examples. The total light transmittance was 91.6%, the haze was 0.9%, and the total light transmittance was 85% or more and the haze was 5% or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように、従来の空気層の代わりに透明充填層を使用することで、光学特性が向上することがわかる。ディスプレイの前面に圧電センサを配置するときに、本願の圧電センサはディスプレイの視認性を低下させにくい。 As described above, it is understood that the optical characteristics are improved by using the transparent filling layer instead of the conventional air layer. When the piezoelectric sensor is disposed on the front surface of the display, the piezoelectric sensor of the present application hardly reduces the visibility of the display.
 [実施例3~8]
 また、図10のように厚さ23μmの基材フィルム13の上に圧電性を有するコーティング層14、屈折率調整層92、透明電極16を作成し、厚さおよび屈折率を測定した。その結果を表2に示すが、「第1層」が圧電性を有するコーティング層14、「第2層」が屈折率調整層92、「第3層」が透明電極16である。屈折率調整層92の形成以外は、上記実施例と同じである。
[Examples 3 to 8]
Further, as shown in FIG. 10, a coating layer 14 having a piezoelectric property, a refractive index adjusting layer 92, and a transparent electrode 16 were formed on a base film 13 having a thickness of 23 μm, and the thickness and refractive index were measured. The results are shown in Table 2. The “first layer” is the piezoelectric coating layer 14, the “second layer” is the refractive index adjustment layer 92, and the “third layer” is the transparent electrode 16. Except for the formation of the refractive index adjustment layer 92, this embodiment is the same as the above embodiment.
 屈折率調整層92は下の表に2に示すように、屈折率が1.54、1.62、1.7の場合がある。屈折率によって製造方法が異なるので屈折率ごとに説明する。屈折率が1.54の場合、圧電性を有するコーティング層14の一方の面に、メラミン樹脂:アルキド樹脂:有機シラン縮合物の重量比2:2:1の熱硬化型樹脂(光の屈折率n=1.54)により、厚さが120nmの屈折率調整層92を形成した。 As shown in Table 2 below, the refractive index adjustment layer 92 may have a refractive index of 1.54, 1.62, 1.7. Since the manufacturing method differs depending on the refractive index, each refractive index will be described. When the refractive index is 1.54, a thermosetting resin having a weight ratio of 2: 2: 1 of melamine resin: alkyd resin: organosilane condensate (refractive index of light) is formed on one surface of the coating layer 14 having piezoelectricity. n = 1.54), a refractive index adjusting layer 92 having a thickness of 120 nm was formed.
 屈折率が1.62の場合、圧電性を有するコーティング層14の一方の面に、紫外線硬化性樹脂47質量部、酸化ジルコニア粒子(メジアン径40nm)57質量部およびPGMEを含有した光学調整組成物(JSR社製、「オプスターZ7412」、固形分12質量%)をグラビアコーターを用いて塗布し、無風状態(0.1m/s未満)で直ちに60℃で1分間加熱乾燥した。その後、高圧水銀ランプにて、積算光量250mJ/cmの紫外線を照射して硬化処理を実施した。この方法により、厚み90、120、または150nmで屈折率1.62の屈折率調整層92を、圧電性を有するコーティング層14の上に形成した。 When the refractive index is 1.62, an optical adjustment composition containing 47 parts by mass of ultraviolet curable resin, 57 parts by mass of zirconia oxide particles (median diameter 40 nm) and PGME on one surface of the coating layer 14 having piezoelectricity (Manufactured by JSR, “OPSTAR Z7412”, solid content: 12% by mass) was applied using a gravure coater, and immediately heated and dried at 60 ° C. for 1 minute in a windless state (less than 0.1 m / s). Then, the curing process was performed by irradiating ultraviolet rays with an integrated light amount of 250 mJ / cm 2 with a high-pressure mercury lamp. By this method, a refractive index adjusting layer 92 having a thickness of 90, 120, or 150 nm and a refractive index of 1.62 was formed on the coating layer 14 having piezoelectricity.
 屈折率が1.7の場合、メラミン樹脂、アルキド樹脂及び有機シラン縮合物からなる熱硬化型樹脂(重量比で、メラミン樹脂:アルキド樹脂:有機シラン縮合物=2:2:1)にTiO(屈折率=2.35)の微粒子を混合した樹脂組成物を調製した。この際、上記樹脂組成物の屈折率が1.70となるようにTiO微粒子の混合量を調整した。そして、圧電性を有するコーティング層14の上に上記樹脂組成物を塗工し、これを硬化させて、厚み150nmの屈折率調整層92(屈折率1.70)を形成した。 When the refractive index is 1.7, a thermosetting resin composed of a melamine resin, an alkyd resin, and an organic silane condensate (by weight ratio, melamine resin: alkyd resin: organosilane condensate = 2: 2: 1) and TiO 2 A resin composition in which fine particles (refractive index = 2.35) were mixed was prepared. At this time, the mixing amount of the TiO 2 fine particles was adjusted so that the refractive index of the resin composition was 1.70. And the said resin composition was apply | coated on the coating layer 14 which has piezoelectricity, this was hardened, and the 150-nm-thick refractive index adjustment layer 92 (refractive index 1.70) was formed.
 なお、基材フィルム13におけるコーティング層14の反対面にはアンチブロッキング機能を有するハードコート層94を形成している。 A hard coat layer 94 having an anti-blocking function is formed on the opposite surface of the base film 13 to the coating layer 14.
 各実施例は上記のように圧電性を有するコーティング層14の厚さが0.5~10μm、屈折率調整層92の厚さが80~160nm、透明電極16の厚さが20nm以上になっている。また、圧電性を有するコーティング層14の屈折率が1.40~1.50、屈折率調整層92の屈折率が1.50~1.70、透明電極16の屈折率が1.90~2.10になっている。透明電極16と屈折率調整層92の反射率差は2%以下であり、見栄えは良かった。 In each example, as described above, the thickness of the coating layer 14 having piezoelectricity is 0.5 to 10 μm, the thickness of the refractive index adjustment layer 92 is 80 to 160 nm, and the thickness of the transparent electrode 16 is 20 nm or more. Yes. The refractive index of the coating layer 14 having piezoelectricity is 1.40 to 1.50, the refractive index of the refractive index adjusting layer 92 is 1.50 to 1.70, and the refractive index of the transparent electrode 16 is 1.90 to 2. .10. The difference in reflectance between the transparent electrode 16 and the refractive index adjustment layer 92 was 2% or less, and the appearance was good.
 なお、必要に応じて透明電極16はエッチングされて所望の電極等になる。上記屈折率を求める際、屈折率調整層92の屈折率は透明電極16をエッチングによって取り除いた部分を用いた。そのため、各屈折率から空気と透明電極16、空気と屈折率調整層92の反射率を求めることで、反射率差を求めた。 Note that the transparent electrode 16 is etched to become a desired electrode or the like as necessary. When obtaining the refractive index, the refractive index of the refractive index adjusting layer 92 was the portion where the transparent electrode 16 was removed by etching. Therefore, the reflectance difference was calculated | required by calculating | requiring the reflectance of air and the transparent electrode 16, air, and the refractive index adjustment layer 92 from each refractive index.
 [比較例3~4]
 実施例3~8に対する比較例として、屈折率調整層92の無い場合(比較例3)と屈折率調整層92の屈折率が1.5より小さい場合(比較例4)をおこなった。屈折率調整層92が無い場合、反射率差は透明電極16と圧電性を有するコーティング層14の差である。反射率差が2%より大きくなり、見栄えが悪くなった。
[Comparative Examples 3 to 4]
As comparative examples for Examples 3 to 8, a case where the refractive index adjusting layer 92 was not provided (Comparative Example 3) and a case where the refractive index of the refractive index adjusting layer 92 was smaller than 1.5 (Comparative Example 4) were performed. When the refractive index adjusting layer 92 is not provided, the reflectance difference is a difference between the transparent electrode 16 and the coating layer 14 having piezoelectricity. The difference in reflectance was greater than 2% and the appearance was poor.
 なお、屈折率が1.46の場合(比較例4)の屈折率調整層92は、シリカゾル(コルコート(株)製,コルコートP)を、固形分濃度2%になるようにエタノールで希釈し、圧電性を有するコーティング層14の一方の上に、シリカコート法により塗布し、その後、150℃で2分間乾燥、硬化させて、厚さが120nmの層(SiO膜,光の屈折率1.46)を形成して屈折率調整層92とした。比較例において他の構成の製造方法は実施例と同じである。 In the case where the refractive index is 1.46 (Comparative Example 4), the refractive index adjustment layer 92 is obtained by diluting silica sol (Colcoat P, Colcoat P) with ethanol so that the solid content concentration is 2%. It is applied on one of the coating layers 14 having piezoelectricity by a silica coating method, and then dried and cured at 150 ° C. for 2 minutes to form a layer having a thickness of 120 nm (SiO 2 film, refractive index of light 1.. 46) to form a refractive index adjusting layer 92. In the comparative example, the manufacturing method of the other configuration is the same as that of the example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上より圧電性を有するコーティング層14の上に透明電極16を備えることで透明電極16によって黄色または茶色に呈色して見栄えを損ねる場合がある。本発明のように屈折率調整層92を設け、透明電極16、屈折率調整層92、圧電性を有するコーティング層14の厚さおよび屈折率を上述した値の範囲になるように調節することで、表2のように反射率差を小さくでき、見栄えを損ねないことがわかった。圧電フィルム15に屈折率調整層92と透明電極16を積層した構成をディスプレイの前面に配置してもディスプレイの見栄えを損ないにくいことがわかった。 As described above, by providing the transparent electrode 16 on the coating layer 14 having piezoelectricity, the transparent electrode 16 may be colored yellow or brown to impair the appearance. By providing the refractive index adjustment layer 92 as in the present invention, the thickness and refractive index of the transparent electrode 16, the refractive index adjustment layer 92, and the coating layer 14 having piezoelectricity are adjusted to be in the above-described range. As shown in Table 2, it was found that the difference in reflectance can be reduced and the appearance is not impaired. It has been found that even if a configuration in which the refractive index adjustment layer 92 and the transparent electrode 16 are laminated on the piezoelectric film 15 is disposed on the front surface of the display, the appearance of the display is hardly impaired.
 その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。 In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.
 本発明の圧電センサはディスプレイの前面に配置されるタッチパネルと一体として利用することができる。 The piezoelectric sensor of the present invention can be used integrally with a touch panel arranged on the front surface of the display.
10、11、20、21、30、31、40、41、50、60、70、80、90、91:圧電センサ
12:ディスプレイ
13、23、32、72:基材フィルム
14:圧電性を有するコーティング層
15:圧電フィルム
16、17、22:透明電極
18、25、34:透明充填層
24、33:積層体
81:圧電性を有する単体フィルム
92:屈折率調整層
94:アンチブロッキング機能を有するハードコート層
10, 11, 20, 21, 30, 31, 40, 41, 50, 60, 70, 80, 90, 91: Piezoelectric sensor 12: Display 13, 23, 32, 72: Base film 14: Having piezoelectricity Coating layer 15: Piezoelectric films 16, 17, 22: Transparent electrodes 18, 25, 34: Transparent filling layers 24, 33: Laminate 81: Single film 92 having piezoelectricity: Refractive index adjusting layer 94: Anti-blocking function Hard coat layer

Claims (13)

  1. ディスプレイの前面に配置される圧電センサであって、
    圧電性を有する圧電フィルムと、
    前記圧電フィルムの少なくとも一面側に直接的または間接的に配置された透明電極と、
    前記透明電極とディスプレイの間を満たす透明充填層と、
    を備えた圧電センサ。
    A piezoelectric sensor disposed in front of the display,
    A piezoelectric film having piezoelectricity;
    A transparent electrode disposed directly or indirectly on at least one side of the piezoelectric film;
    A transparent filling layer filling between the transparent electrode and the display;
    Piezoelectric sensor with
  2. 前記透明充填層の屈折率が、前記透明電極の屈折率とディスプレイの屈折率の間の屈折率である請求項1の圧電センサ。 The piezoelectric sensor according to claim 1, wherein a refractive index of the transparent filling layer is a refractive index between a refractive index of the transparent electrode and a refractive index of a display.
  3. 前記透明充填層が接着剤または樹脂である請求項1または2に記載の圧電センサ。 The piezoelectric sensor according to claim 1, wherein the transparent filling layer is an adhesive or a resin.
  4. 前記圧電性を有する圧電フィルムが、基材フィルムに圧電性を有するコーティン層が蓄積されたことを特徴とし、圧電性を有するコーティング層にフッ素系樹脂を含む請求項1から3のいずれかに記載の圧電センサ。 4. The piezoelectric film according to claim 1, wherein the piezoelectric film has a piezoelectric coating layer accumulated on a base film, and the piezoelectric coating layer contains a fluororesin. Piezoelectric sensor.
  5. 前記圧電性を有する圧電フィルムが、フッ素系樹脂を含む単体フィルムであることを特徴とする請求項1から3のいずれかに記載の圧電センサ。 The piezoelectric sensor according to claim 1, wherein the piezoelectric film having piezoelectricity is a single film containing a fluorine-based resin.
  6. 前記フッ素系樹脂がフッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロチレンのうちの2種類以上の共重合体またはフッ化ビニリデンの重合体である請求項4から5に記載の圧電センサ。 6. The piezoelectric sensor according to claim 4, wherein the fluororesin is a copolymer of two or more of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene, or a polymer of vinylidene fluoride.
  7. 前記圧電フィルムの基材フィルムとコーティング層の間または圧電フィルムと透明電極の間の少なくとも1つの間に、屈折率調整層を有する請求項1から6のいずれかに記載の圧電センサ The piezoelectric sensor according to claim 1, further comprising a refractive index adjusting layer between at least one of the piezoelectric film between the base film and the coating layer or between the piezoelectric film and the transparent electrode.
  8. 前記コーティング層の厚みが0.5~10μm、屈折率調整層の厚みが80~160nm、透明電極の厚みが20nm以上である請求項7の圧電センサ。 8. The piezoelectric sensor according to claim 7, wherein the coating layer has a thickness of 0.5 to 10 μm, the refractive index adjustment layer has a thickness of 80 to 160 nm, and the transparent electrode has a thickness of 20 nm or more.
  9. 前記コーティング層の屈折率が1.40~1.50、屈折率調整層の屈折率が1.50~1.70、透明電極の屈折率が1.90~2.10である請求項7または8の圧電センサ。 The refractive index of the coating layer is 1.40 to 1.50, the refractive index of the refractive index adjusting layer is 1.50 to 1.70, and the refractive index of the transparent electrode is 1.90 to 2.10. 8 piezoelectric sensors.
  10. 前記圧電フィルムの基材フィルムとコーティング層の間、または基材フィルムにおけるコーティング層の反対側の面のどちらか一方にアンカーコート層を有する請求項4に記載の圧電センサ。 5. The piezoelectric sensor according to claim 4, wherein the piezoelectric film has an anchor coat layer on either the base film and the coating layer of the piezoelectric film or on the surface of the base film opposite to the coating layer.
  11. 前記圧電性を有する単体フィルムのどちらか一方の面にアンカーコート層を有する請求項5に記載の圧電センサ。 6. The piezoelectric sensor according to claim 5, further comprising an anchor coat layer on one surface of the single film having piezoelectricity.
  12. 前記圧電フィルムにおけるディスプレイの反対側にタッチパネルを配置した請求項1から11のいずれかに記載の圧電センサ。 The piezoelectric sensor according to claim 1, wherein a touch panel is disposed on the opposite side of the display in the piezoelectric film.
  13. 請求項1から12のいずれかに記載の圧電センサを備えたディスプレイであって、圧電センサとディスプレイの間が前記透明充填層で満たされたことを特徴とするディスプレイ。 A display comprising the piezoelectric sensor according to claim 1, wherein a space between the piezoelectric sensor and the display is filled with the transparent filling layer.
PCT/JP2017/019983 2016-05-30 2017-05-30 Piezoelectric sensor and display using said piezoelectric sensor WO2017209082A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187026693A KR102365236B1 (en) 2016-05-30 2017-05-30 A piezoelectric sensor and a display using the piezoelectric sensor
CN201780033709.3A CN109196321A (en) 2016-05-30 2017-05-30 Piezoelectric transducer and the display for having used the piezoelectric transducer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016107052 2016-05-30
JP2016-107052 2016-05-30
JP2017104592A JP7050426B2 (en) 2016-05-30 2017-05-26 Piezoelectric sensor and display using the piezoelectric sensor
JP2017-104592 2017-05-26

Publications (1)

Publication Number Publication Date
WO2017209082A1 true WO2017209082A1 (en) 2017-12-07

Family

ID=60477830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019983 WO2017209082A1 (en) 2016-05-30 2017-05-30 Piezoelectric sensor and display using said piezoelectric sensor

Country Status (2)

Country Link
KR (1) KR102365236B1 (en)
WO (1) WO2017209082A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683215A (en) * 2018-12-12 2019-04-26 深圳市赛菲鹿鸣科技有限公司 A kind of optical film and its production technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200145905A (en) 2019-06-19 2020-12-31 삼성디스플레이 주식회사 Display device and method for driving the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082338A (en) * 1998-09-07 2000-03-21 Toyobo Co Ltd Transparent conductive film, transparent touch panel, and liquid crystal display element
JP2009110247A (en) * 2007-10-30 2009-05-21 Seiko Epson Corp Touch panel, display device, and electronic equipment
JP2011222679A (en) * 2010-04-07 2011-11-04 Daikin Ind Ltd Transparent piezoelectric sheet
JP2012038288A (en) * 2010-08-11 2012-02-23 Samsung Electro-Mechanics Co Ltd Touch screen device
US20130241863A1 (en) * 2012-03-14 2013-09-19 Research In Motion Limited Touch-sensitive display with molded cover and method
JP2015186910A (en) * 2014-10-20 2015-10-29 三井化学株式会社 laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686443B2 (en) 2013-01-10 2015-03-18 日本写真印刷株式会社 Film pressure sensor with adhesive layer, touch pad using the same, protection panel with touch input function, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082338A (en) * 1998-09-07 2000-03-21 Toyobo Co Ltd Transparent conductive film, transparent touch panel, and liquid crystal display element
JP2009110247A (en) * 2007-10-30 2009-05-21 Seiko Epson Corp Touch panel, display device, and electronic equipment
JP2011222679A (en) * 2010-04-07 2011-11-04 Daikin Ind Ltd Transparent piezoelectric sheet
JP2012038288A (en) * 2010-08-11 2012-02-23 Samsung Electro-Mechanics Co Ltd Touch screen device
US20130241863A1 (en) * 2012-03-14 2013-09-19 Research In Motion Limited Touch-sensitive display with molded cover and method
JP2015186910A (en) * 2014-10-20 2015-10-29 三井化学株式会社 laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109683215A (en) * 2018-12-12 2019-04-26 深圳市赛菲鹿鸣科技有限公司 A kind of optical film and its production technology

Also Published As

Publication number Publication date
KR102365236B1 (en) 2022-02-18
KR20190012142A (en) 2019-02-08

Similar Documents

Publication Publication Date Title
JP6879826B2 (en) Touch sensor
JP7050469B2 (en) Piezoelectric film and piezo sensor
TWI746560B (en) Touch sensor
TWI733819B (en) Piezoelectric film with transparent electrode and pressure sensor
US10781134B2 (en) Opaque color stack for electronic device
JP6286553B2 (en) Opaque white coating with non-conductive mirror
JP7050426B2 (en) Piezoelectric sensor and display using the piezoelectric sensor
JP5116004B2 (en) Transparent conductive laminate and touch panel provided with the same
KR100911640B1 (en) Transparent conductive laminate and touch panel with the same
JP4508074B2 (en) Transparent conductive laminate and touch panel provided with the same
US20150109542A1 (en) Touch panel
KR20090110914A (en) Transparent conductive multilayer body and touch panel made of the same
JP2017216450A (en) Piezoelectric film
JP5906562B2 (en) Double-sided transparent conductive film excellent in visibility and method for producing the same
WO2017209082A1 (en) Piezoelectric sensor and display using said piezoelectric sensor
WO2017209080A1 (en) Piezoelectric film
WO2017209081A1 (en) Piezoelectric film with transparent electrode, and pressure sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187026693

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806637

Country of ref document: EP

Kind code of ref document: A1