TWI733819B - Piezoelectric film with transparent electrode and pressure sensor - Google Patents

Piezoelectric film with transparent electrode and pressure sensor Download PDF

Info

Publication number
TWI733819B
TWI733819B TW106117764A TW106117764A TWI733819B TW I733819 B TWI733819 B TW I733819B TW 106117764 A TW106117764 A TW 106117764A TW 106117764 A TW106117764 A TW 106117764A TW I733819 B TWI733819 B TW I733819B
Authority
TW
Taiwan
Prior art keywords
transparent electrode
piezoelectric film
piezoelectric
film
layer
Prior art date
Application number
TW106117764A
Other languages
Chinese (zh)
Other versions
TW201743177A (en
Inventor
拝師基希
矢野孝伸
別府浩史
木曽憲俊
梨木智剛
Original Assignee
日商日東電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日東電工股份有限公司 filed Critical 日商日東電工股份有限公司
Publication of TW201743177A publication Critical patent/TW201743177A/en
Application granted granted Critical
Publication of TWI733819B publication Critical patent/TWI733819B/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/1051Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Abstract

本發明之課題在於實現一種霧度值較小且全光線透過率較高之附透明電極之壓電膜。 本發明之附透明電極之壓電膜1具備:壓電膜13,其包含第1基材膜11與具有壓電性之塗層12之積層體;及第1透明電極14,其積層於具有壓電性之塗層12。具有壓電性之塗層12包含氟樹脂。氟樹脂係偏二氟乙烯之聚合物、或(偏二氟乙烯、三氟乙烯、三氟氯乙烯)中之2種以上之共聚物。具有壓電性之塗層12係將氟樹脂之溶液塗佈於第1基材膜11並加以乾燥而獲得。The subject of the present invention is to realize a piezoelectric film with a transparent electrode with a small haze value and a high total light transmittance. The piezoelectric film 1 with a transparent electrode of the present invention includes: a piezoelectric film 13 including a laminate of a first base film 11 and a piezoelectric coating layer 12; and a first transparent electrode 14 laminated with Piezoelectric coating 12. The piezoelectric coating 12 contains fluororesin. Fluorine resin is a polymer of vinylidene fluoride, or a copolymer of two or more types of (vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene). The piezoelectric coating layer 12 is obtained by applying a fluororesin solution to the first base film 11 and drying it.

Description

附透明電極之壓電膜及壓力感測器Piezoelectric film and pressure sensor with transparent electrode

本發明係關於一種附透明電極之壓電膜及壓力感測器。The invention relates to a piezoelectric film and pressure sensor with transparent electrodes.

一般而言,於觸控面板中,會檢測觸碰觸控面板之表面之手指或筆於表面上之二維位置(以下,將「手指或筆」簡稱為「手指」,將手指或筆於觸控面板之表面上之二維位置稱為「手指之XY座標」)。於該情形時,無法檢測出手指觸碰壓力(以下,關於手指觸碰壓力之大小,取Z軸方向者,且稱為「手指之Z座標」)。即,不管手指觸碰壓力(手指之Z座標)之大小如何,所檢測者僅為手指觸碰位置之XY座標。 但根據觸控面板中所使用之應用軟體不同,有亦需識別手指觸碰壓力(手指之Z座標)之情形。於普通靜電電容式觸控面板中,藉由用手指觸碰,所觸碰之位置得以選擇,同時位於所觸碰之位置之命令得以執行。於靜電電容式觸控面板之感度非常高之情形時,手指只要接近靜電電容式觸控面板(即便手指未觸碰到面板),最接近手指之位置即被選擇,同時位於該位置之命令被執行。但例如於不允許在工作機械之操作面板等上執行錯誤命令之情形時,較理想為將選擇與執行分離。即,命令會藉由用手指觸碰(或藉由將手指靠近面板)而得以選擇,但僅僅如此並不會執行命令,只有繼而用手指施加壓力,命令才會被執行,藉此防止誤動作,因此較為理想。 亦可檢測此種手指觸碰壓力(手指之Z座標)之觸控面板例如於專利文獻1(日本專利特開2010-26938)中有所記載。於專利文獻1之觸控面板中,使用在含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之兩面積層透明電極而成之積層體。含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之厚度為20 μm~300 μm。 根據記載,專利文獻1之含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層係利用流延法或擠壓法而製造,故而可認為是獨立膜(不積層於其他膜上之膜)。於專利文獻1之記載中,含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之霧度值(haze value)為5%~7%,全光線透過率為95%。 但專利文獻1之實施例之霧度值、全光線透過率係被積層透明電極之前之含有聚偏二氟乙烯-四氟乙烯共聚物的壓電體層單體之值。於在含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之兩面積層透明電極而成之積層體中,認為全光線透過率降低,但未記載其測定值。 根據本案發明者之實驗,位於觸控面板背面之顯示器之圖像視認性至少會受到霧度值與全光線透過率之影響。於專利文獻1之在含有聚偏二氟乙烯-四氟乙烯共聚物之壓電體層之兩面積層透明電極而成之積層體中,有位於觸控面板背面之顯示器之圖像視認性因霧度值與全光線透過率中任一者或兩者而降低之虞。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2010-26938號公報Generally speaking, in a touch panel, the two-dimensional position of the finger or pen touching the surface of the touch panel on the surface is detected (hereinafter, "finger or pen" is simply referred to as "finger", and the finger or pen is placed on the surface). The two-dimensional position on the surface of the touch panel is called "XY coordinates of the finger"). In this case, the finger touch pressure cannot be detected (hereinafter, regarding the magnitude of the finger touch pressure, the direction of the Z axis is taken, and it is referred to as "the Z coordinate of the finger"). That is, regardless of the size of the finger touch pressure (the Z coordinate of the finger), the detected one is only the XY coordinate of the finger touch position. However, depending on the application software used in the touch panel, there are situations where it is also necessary to recognize the pressure of the finger touch (the Z coordinate of the finger). In an ordinary electrostatic capacitive touch panel, by touching with a finger, the touched position can be selected, and at the same time, the command at the touched position can be executed. When the sensitivity of the capacitive touch panel is very high, as long as the finger is close to the capacitive touch panel (even if the finger does not touch the panel), the position closest to the finger is selected, and the command at that position is selected. implement. However, for example, when the wrong command is not allowed to be executed on the operation panel of the machine tool, it is better to separate the selection from the execution. That is, the command will be selected by touching it with your finger (or by bringing your finger close to the panel), but this alone will not execute the command. Only when pressure is applied with the finger, the command will be executed, thereby preventing misoperation. Therefore it is ideal. A touch panel that can also detect such a finger touch pressure (the Z coordinate of the finger) is described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2010-26938). In the touch panel of Patent Document 1, a laminate in which transparent electrodes are layered on two areas of a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer is used. The thickness of the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer is 20 μm to 300 μm. According to the record, the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer of Patent Document 1 is manufactured by the casting method or the extrusion method, so it can be regarded as an independent film (a film that is not laminated on other films). ). According to Patent Document 1, the piezoelectric layer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer has a haze value of 5% to 7%, and a total light transmittance of 95%. However, the haze value and total light transmittance of the examples of Patent Document 1 are the values of the piezoelectric layer monomer containing the polyvinylidene fluoride-tetrafluoroethylene copolymer before the transparent electrode is laminated. In a laminate composed of two-area layered transparent electrodes of a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer, it is considered that the total light transmittance is lowered, but the measured value is not described. According to the experiment of the inventor of the present case, the visibility of the image of the display located on the back of the touch panel is at least affected by the haze value and the total light transmittance. In Patent Document 1, in a laminate composed of two-area layered transparent electrodes of a piezoelectric layer containing a polyvinylidene fluoride-tetrafluoroethylene copolymer, the visibility of the image of the display located on the back of the touch panel is due to haze Either or both of the value and the total light transmittance may be lowered. [Prior Art Document] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2010-26938

[發明所欲解決之問題] 根據本案發明者之實驗,就位於觸控面板背面之顯示器之圖像視認性之降低而言,霧度值之影響大於全光線透過率之影響。因此,本發明之目的在於實現霧度值較小進而全光線透過率較高之附透明電極之壓電膜。 [解決問題之技術手段] (1)本發明之附透明電極之壓電膜具備:壓電膜,其包含第1基材膜與具有壓電性之塗層之積層體;及至少1層第1透明電極,其設於具有壓電性之塗層之與第1基材膜呈相反側之表面。 (2)本發明之附透明電極之壓電膜進而於第1基材膜之與具有壓電性之塗層呈相反側之表面具備至少1層第2透明電極。 (3)本發明之附透明電極之壓電膜進而於第1基材膜之與具有壓電性之塗層呈相反側之表面,進而具備依如下順序而設之至少1層透明黏著層、至少1層第2透明電極、及至少1層第2基材膜。 (4)本發明之附透明電極之壓電膜進而於第2透明電極與第2基材膜之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 (5)本發明之附透明電極之壓電膜進而於具有壓電性之塗層與第1透明電極之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 (6)本發明之附透明電極之壓電膜進而係具有壓電性之塗層之厚度為0.5~10 μm,光學調整層之厚度為80~160 nm,第1透明電極之厚度為20 nm以上。 (7)本發明之附透明電極之壓電膜進而係具有壓電性之塗層之折射率為1.40~1.50,光學調整層之折射率為1.50~1.70,第1透明電極之折射率為1.90~2.10。 (8)本發明之附透明電極之壓電膜進而於第1基材膜與具有壓電性之塗層之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 (9)本發明之附透明電極之壓電膜進而具備至少1層抗黏連層,該抗黏連層設於第1基材膜或第2基材膜之與具有壓電性之塗層呈相反側之表面。 (10)本發明之附透明電極之壓電膜具備:壓電膜,其包含第1基材膜與具有壓電性之塗層之積層體;及至少1層第1透明電極,其設於第1基材膜之與具有壓電性之塗層呈相反側之表面。 (11)本發明之附透明電極之壓電膜進而於具有壓電性之塗層之與第1基材膜呈相反側之表面具備至少1層第2透明電極。 (12)本發明之附透明電極之壓電膜進而於具有壓電性之塗層之與第1基材膜呈相反側之表面,進而具備依如下順序而設之至少1層透明黏著層、至少1層第2透明電極、及至少1層第2基材膜。 (13)本發明之附透明電極之壓電膜進而於第2透明電極與第2基材膜之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 (14)本發明之附透明電極之壓電膜進而於第1基材膜與具有壓電性之塗層之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 (15)本發明之附透明電極之壓電膜進而於第1基材膜與第1透明電極之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 (16)本發明之附透明電極之壓電膜進而於第2基材膜之與第2透明電極呈相反側之表面具備至少1層抗黏連層。 (17)於本發明之附透明電極之壓電膜中,具有壓電性之塗層包含氟樹脂。 (18)於本發明之附透明電極之壓電膜中,氟樹脂係偏二氟乙烯之聚合物、或(偏二氟乙烯、三氟乙烯、三氟氯乙烯)中之2種以上之共聚物。 (19)於本發明之附透明電極之壓電膜中,氟樹脂係偏二氟乙烯與三氟乙烯之共聚物,且共聚物中所含有之偏二氟乙烯與三氟乙烯之莫耳比於整體計為100時,係為(50~85):(50~15)之範圍。 (20)於本發明之附透明電極之壓電膜中,氟樹脂係偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物,且共聚物中所含有之偏二氟乙烯與三氟乙烯及三氟氯乙烯之莫耳比於整體計為100時,係為(63~65):(27~29):(10~6)之範圍。 (21)於本發明之附透明電極之壓電膜中,具有壓電性之塗層係將氟樹脂之溶液塗佈於第1基材膜並加以乾燥而獲得之塗層。 (22)於本發明之附透明電極之壓電膜中,具有壓電性之塗層之厚度為0.5 μm~20 μm。 (23)於本發明之附透明電極之壓電膜中,第1透明電極及第2透明電極中之任一者或兩者經過圖案化。 (24)於本發明之附透明電極之壓電膜中,第1透明電極及第2透明電極中之任一者或兩者包含銦。 (25)於本發明之附透明電極之壓電膜中,第1透明電極及第2透明電極中之任一者或兩者包含銦錫氧化物(Indium Tin Oxide:ITO)。 (26)於本發明之附透明電極之壓電膜中,第1透明電極及第2透明電極中之任一者或兩者之厚度為15 nm~50 nm。 (27)於本發明之附透明電極之壓電膜中,第1透明電極及第2透明電極中之任一者或兩者為結晶質。 (28)於本發明之附透明電極之壓電膜中,基材膜之材料選自聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚烯烴、聚環烯烴、環烯烴共聚物、聚碳酸酯、聚醚碸、聚芳酯、聚醯亞胺、聚醯胺、聚苯乙烯、聚降冰片烯中之至少1種。 (29)於本發明之附透明電極之壓電膜中,霧度值為5%以下。 (30)於本發明之附透明電極之壓電膜中,全光線透過率為82%以上。 (31)本發明之壓力感測器具備上述附透明電極之壓電膜。 [發明之效果] 於本發明之附透明電極之壓電膜中,壓電體層係藉由塗佈而形成,因此壓電體層之厚度較先前之由獨立膜構成之壓電體層薄。故而,壓電體層所致之霧度值之上升與全光線透過率之降低較由獨立膜構成之壓電體膜更少。藉由該效果,霧度值較小進而全光線透過率較高之附透明電極之壓電膜得以實現。若將本發明之附透明電極之壓電膜用作觸控面板之Z座標檢測用壓電膜,則可實現位於觸控面板背面之顯示器之視認性良好且具有Z座標(手指之按壓力)檢測功能之觸控面板。[Problem to be Solved by the Invention] According to the experiment of the inventor of the present case, in terms of the reduction of the visibility of the image of the display located on the back of the touch panel, the influence of the haze value is greater than the influence of the total light transmittance. Therefore, the object of the present invention is to realize a piezoelectric film with a transparent electrode with a small haze value and a high total light transmittance. [Technical Means for Solving the Problem] (1) The piezoelectric film with transparent electrode of the present invention includes: a piezoelectric film including a laminate of a first substrate film and a piezoelectric coating; and at least one second layer 1 Transparent electrode, which is provided on the surface of the piezoelectric coating on the opposite side of the first substrate film. (2) The piezoelectric film with a transparent electrode of the present invention further includes at least one second transparent electrode on the surface of the first base film opposite to the piezoelectric coating. (3) The piezoelectric film with transparent electrode of the present invention is further provided with at least one transparent adhesive layer on the surface of the first base film opposite to the piezoelectric coating layer in the following order, At least one second transparent electrode and at least one second base film. (4) The piezoelectric film with a transparent electrode of the present invention further includes at least one of an undercoat layer, an optical adjustment layer, and an anti-blocking layer between the second transparent electrode and the second base film. (5) The piezoelectric film with transparent electrode of the present invention is further provided with at least one of an undercoat layer, an optical adjustment layer, and an anti-blocking layer between the piezoelectric coating and the first transparent electrode By. (6) The piezoelectric film with transparent electrode of the present invention further has a piezoelectric coating with a thickness of 0.5-10 μm, the thickness of the optical adjustment layer is 80-160 nm, and the thickness of the first transparent electrode is 20 nm above. (7) The piezoelectric film with transparent electrode of the present invention further has a piezoelectric coating. The refractive index is 1.40-1.50, the refractive index of the optical adjustment layer is 1.50-1.70, and the refractive index of the first transparent electrode is 1.90 ~ 2.10. (8) The piezoelectric film with transparent electrode of the present invention further includes at least one of an undercoat layer, an optical adjustment layer, and an anti-blocking layer between the first substrate film and the piezoelectric coating layer One. (9) The piezoelectric film with transparent electrode of the present invention further includes at least one anti-adhesion layer provided on the first base film or the second base film and the piezoelectric coating The surface is on the opposite side. (10) The piezoelectric film with transparent electrode of the present invention includes: a piezoelectric film including a laminate of a first substrate film and a coating layer having piezoelectricity; and at least one layer of the first transparent electrode, which is provided in The surface of the first base film is on the opposite side to the piezoelectric coating. (11) The piezoelectric film with transparent electrode of the present invention further includes at least one second transparent electrode on the surface of the piezoelectric coating layer opposite to the first base film. (12) The piezoelectric film with transparent electrode of the present invention is further provided with at least one transparent adhesive layer provided in the following order on the surface of the piezoelectric coating layer opposite to the first substrate film, At least one second transparent electrode and at least one second base film. (13) The piezoelectric film with transparent electrode of the present invention further includes at least one of an undercoat layer, an optical adjustment layer, and an anti-blocking layer between the second transparent electrode and the second base film. (14) The piezoelectric film with transparent electrode of the present invention further includes at least one of an undercoat layer, an optical adjustment layer, and an anti-blocking layer between the first substrate film and the piezoelectric coating layer One. (15) The piezoelectric film with transparent electrode of the present invention further includes at least one of an undercoat layer, an optical adjustment layer, and an anti-blocking layer between the first base film and the first transparent electrode. (16) The piezoelectric film with a transparent electrode of the present invention further includes at least one anti-blocking layer on the surface of the second base film on the opposite side to the second transparent electrode. (17) In the piezoelectric film with transparent electrode of the present invention, the piezoelectric coating contains fluororesin. (18) In the piezoelectric film with transparent electrode of the present invention, the fluororesin is a polymer of vinylidene fluoride, or a copolymer of two or more of (vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene) Things. (19) In the piezoelectric film with transparent electrode of the present invention, the fluororesin is a copolymer of vinylidene fluoride and trifluoroethylene, and the copolymer contains a molar ratio of vinylidene fluoride to trifluoroethylene When the total is 100, it is the range of (50~85): (50~15). (20) In the piezoelectric film with transparent electrode of the present invention, the fluororesin is a copolymer of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene, and the vinylidene fluoride and trifluoroethylene contained in the copolymer are When the molar ratio of ethylene and chlorotrifluoroethylene is 100 as a whole, it is in the range of (63 to 65): (27 to 29): (10 to 6). (21) In the piezoelectric film with transparent electrode of the present invention, the piezoelectric coating is a coating obtained by applying a fluororesin solution to the first substrate film and drying it. (22) In the piezoelectric film with transparent electrode of the present invention, the thickness of the piezoelectric coating is 0.5 μm to 20 μm. (23) In the piezoelectric film with transparent electrode of the present invention, either or both of the first transparent electrode and the second transparent electrode are patterned. (24) In the piezoelectric film with transparent electrode of the present invention, either or both of the first transparent electrode and the second transparent electrode contain indium. (25) In the piezoelectric film with transparent electrode of the present invention, either or both of the first transparent electrode and the second transparent electrode include indium tin oxide (ITO). (26) In the piezoelectric film with transparent electrode of the present invention, the thickness of either or both of the first transparent electrode and the second transparent electrode is 15 nm-50 nm. (27) In the piezoelectric film with transparent electrode of the present invention, either or both of the first transparent electrode and the second transparent electrode are crystalline. (28) In the piezoelectric film with transparent electrode of the present invention, the material of the base film is selected from polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycycloolefin, and cycloolefin copolymer At least one of polycarbonate, polycarbonate, polyether agglomerate, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene. (29) In the piezoelectric film with transparent electrode of the present invention, the haze value is 5% or less. (30) In the piezoelectric film with transparent electrode of the present invention, the total light transmittance is 82% or more. (31) The pressure sensor of the present invention includes the piezoelectric film with transparent electrodes described above. [Effects of the Invention] In the piezoelectric film with transparent electrode of the present invention, the piezoelectric layer is formed by coating, so the thickness of the piezoelectric layer is thinner than the previous piezoelectric layer composed of an independent film. Therefore, the increase in the haze value and the decrease in the total light transmittance caused by the piezoelectric body layer are less than that of the piezoelectric body film composed of an independent film. With this effect, a piezoelectric film with a transparent electrode with a small haze value and a high total light transmittance can be realized. If the piezoelectric film with transparent electrode of the present invention is used as the piezoelectric film for detecting the Z coordinate of the touch panel, the display located on the back of the touch panel can have good visibility and the Z coordinate (finger pressing pressure) Touch panel with detection function.

[附透明電極之壓電膜之基本構成] 圖1表示本發明之附透明電極之壓電膜的第1例之模式圖。本發明之附透明電極之壓電膜101包含由第1基材膜11與具有壓電性之塗層12之積層體構成之壓電膜13。於具有壓電性之塗層12積層有至少1層第1透明電極14。所謂至少1層第1透明電極14係指第1透明電極14亦可為2層以上之多層膜。第1透明電極14亦可經過圖案化。於第1基材膜11與具有壓電性之塗層12之間,亦可積層有未圖示之易接著層(關於易接著層,於以後之例中共通)。 圖2表示本發明之附透明電極之壓電膜的第2例之模式圖。本發明之附透明電極之壓電膜102係於本發明之附透明電極之壓電膜101之與具有壓電性之塗層12呈相反側之表面,積層有至少1層第2透明電極15者。所謂至少1層第2透明電極15係指第2透明電極15亦可為2層以上之多層膜。第2透明電極15亦可經過圖案化。於第1基材膜11與第2透明電極15之間,亦可具備至少1層透明黏著層。所謂至少1層透明黏著層係指透明黏著層亦可為2層以上之多層膜。 圖3表示本發明之附透明電極之壓電膜的第3例之模式圖。本發明之附透明電極之壓電膜103係於本發明之附透明電極之壓電膜101之第1基材膜11的與具有壓電性之塗層12呈相反側之表面,進而積層有至少1層透明黏著層21、至少1層第2透明電極15、至少1層第2基材膜17者。所謂至少1層透明黏著層21係指透明黏著層21亦可為2層以上之多層膜。所謂至少1層第2透明電極15係指第2透明電極15亦可為2層以上之多層膜。所謂至少1層第2基材膜17係指第2基材膜17亦可為2層以上之多層膜。 圖4表示本發明之附透明電極之壓電膜的第4例之模式圖。本發明之附透明電極之壓電膜104係於本發明之附透明電極之壓電膜103之第2透明電極15與第2基材膜17之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。底塗層18(或增黏塗層)具有提高附透明電極之壓電膜之各層間之密接性的功能。光學調整層19(Index matching layer)(亦稱為折射率調整層)具有調整附透明電極之壓電膜之光反射率的功能。光學調整層19亦可為2層以上之多層膜。抗黏連層20具有防止堆積、或捲繞之附透明電極之壓電膜彼此壓接(黏連)的功能。抗黏連層20亦可為2層以上之多層膜。 圖5表示本發明之附透明電極之壓電膜的第5例之模式圖。本發明之附透明電極之壓電膜105係於本發明之附透明電極之壓電膜101之具有壓電性之塗層12與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 例如對在圖5中使用光學調整層19之情形進行說明。作為具有壓電性之塗層12之厚度可列舉0.5~10 μm為一例,作為光學調整層19之厚度可列舉80~160 nm為一例,作為第1透明電極14之厚度可列舉20 nm以上為一例。又,作為具有壓電性之塗層12之折射率可列舉1.40~1.50為一例,作為光學調整層19之折射率可列舉1.50~1.70為一例,作為第1透明電極14之折射率可列舉1.90~2.10為一例。又,將基材膜11之厚度設定為2~100 μm,並將折射率設定為1.50~1.70。藉由設定為以上厚度與折射率,第1透明電極14與光學調整層19之反射率差成為2.0%以下,美觀度變佳。 再者,於圖2之壓電膜102中,亦可於基材膜11與第2透明電極15之間積層底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層。 圖6表示本發明之附透明電極之壓電膜的第6例之模式圖。本發明之附透明電極之壓電膜106係於本發明之附透明電極之壓電膜102之具有壓電性之塗層12與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖7表示本發明之附透明電極之壓電膜的第7例之模式圖。本發明之附透明電極之壓電膜107係於本發明之附透明電極之壓電膜103之具有壓電性之塗層12與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖8表示本發明之附透明電極之壓電膜的第8例之模式圖。本發明之附透明電極之壓電膜108係於本發明之附透明電極之壓電膜104之具有壓電性之塗層12與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖9表示本發明之附透明電極之壓電膜的第9例之模式圖。本發明之附透明電極之壓電膜109係於本發明之附透明電極之壓電膜101之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖10表示本發明之附透明電極之壓電膜的第10例之模式圖。本發明之附透明電極之壓電膜110係於本發明之附透明電極之壓電膜102之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖11表示本發明之附透明電極之壓電膜的第11例之模式圖。本發明之附透明電極之壓電膜111係於本發明之附透明電極之壓電膜103之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖12表示本發明之附透明電極之壓電膜的第12例之模式圖。本發明之附透明電極之壓電膜112係於本發明之附透明電極之壓電膜104之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖13表示本發明之附透明電極之壓電膜的第13例之模式圖。本發明之附透明電極之壓電膜113係於本發明之附透明電極之壓電膜105之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖14表示本發明之附透明電極之壓電膜的第14例之模式圖。本發明之附透明電極之壓電膜114係於本發明之附透明電極之壓電膜106之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖15表示本發明之附透明電極之壓電膜的第15例之模式圖。本發明之附透明電極之壓電膜115係於本發明之附透明電極之壓電膜107之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖16表示本發明之附透明電極之壓電膜的第16例之模式圖。本發明之附透明電極之壓電膜116係於本發明之附透明電極之壓電膜108之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖17表示本發明之附透明電極之壓電膜的第17例之模式圖。本發明之附透明電極之壓電膜117係於本發明之附透明電極之壓電膜101之第1基材膜11的與具有壓電性之塗層12呈相反側之表面積層有至少1層抗黏連層20者。 圖18表示本發明之附透明電極之壓電膜的第18例之模式圖。本發明之附透明電極之壓電膜118係於本發明之附透明電極之壓電膜103之第2基材膜17的與具有壓電性之塗層12呈相反側之表面積層有至少1層抗黏連層20者。 圖19表示本發明之附透明電極之壓電膜的第19例之模式圖。本發明之附透明電極之壓電膜119係於本發明之附透明電極之壓電膜104之第2基材膜17的與具有壓電性之塗層12呈相反側之表面積層有至少1層抗黏連層20者。 圖20表示本發明之附透明電極之壓電膜的第20例之模式圖。本發明之附透明電極之壓電膜120係於本發明之附透明電極之壓電膜105之第1基材膜11的與具有壓電性之塗層12呈相反側之表面積層有至少1層抗黏連層20者。 圖21表示本發明之附透明電極之壓電膜的第21例之模式圖。本發明之附透明電極之壓電膜121係於本發明之附透明電極之壓電膜107之第2基材膜17的與具有壓電性之塗層12呈相反側之表面積層有至少1層抗黏連層20者。 圖22表示本發明之附透明電極之壓電膜的第22例之模式圖。本發明之附透明電極之壓電膜122係於本發明之附透明電極之壓電膜108之第2基材膜17的與具有壓電性之塗層12呈相反側之表面積層有至少1層抗黏連層20者。 圖23表示本發明之附透明電極之壓電膜的第23例之模式圖。本發明之附透明電極之壓電膜123具備包含第1基材膜11與具有壓電性之塗層12之積層體之壓電膜13。於第1基材膜11之與具有壓電性之塗層12呈相反側之表面,積層有至少1層第1透明電極14。 圖24表示本發明之附透明電極之壓電膜的第24例之模式圖。本發明之附透明電極之壓電膜124係於本發明之附透明電極之壓電膜123之具有壓電性之塗層12的與第1基材膜11呈相反側之表面,積層有至少1層第2透明電極15者。 圖25表示本發明之附透明電極之壓電膜的第25例之模式圖。本發明之附透明電極之壓電膜125係於本發明之附透明電極之壓電膜123之具有壓電性之塗層12的與第1基材膜11呈相反側之表面,進而積層有至少1層透明黏著層21、至少1層第2透明電極15、至少1層第2基材膜17者。 圖26表示本發明之附透明電極之壓電膜的第26例之模式圖。本發明之附透明電極之壓電膜126係於本發明之附透明電極之壓電膜125之第2透明電極15與第2基材膜17之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖27表示本發明之附透明電極之壓電膜的第27例之模式圖。本發明之附透明電極之壓電膜127係於本發明之附透明電極之壓電膜123之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖28表示本發明之附透明電極之壓電膜的第28例之模式圖。本發明之附透明電極之壓電膜128係於本發明之附透明電極之壓電膜124之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖29表示本發明之附透明電極之壓電膜的第29例之模式圖。本發明之附透明電極之壓電膜129係於本發明之附透明電極之壓電膜125之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖30表示本發明之附透明電極之壓電膜的第30例之模式圖。本發明之附透明電極之壓電膜130係於本發明之附透明電極之壓電膜126之第1基材膜11與具有壓電性之塗層12之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖31表示本發明之附透明電極之壓電膜的第31例之模式圖。本發明之附透明電極之壓電膜131係於本發明之附透明電極之壓電膜123之第1基材膜11與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖32表示本發明之附透明電極之壓電膜的第32例之模式圖。本發明之附透明電極之壓電膜132係於本發明之附透明電極之壓電膜124之第1基材膜11與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖33表示本發明之附透明電極之壓電膜的第33例之模式圖。本發明之附透明電極之壓電膜133係於本發明之附透明電極之壓電膜125之第1基材膜11與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖34表示本發明之附透明電極之壓電膜的第34例之模式圖。本發明之附透明電極之壓電膜134係於本發明之附透明電極之壓電膜126之第1基材膜11與第1透明電極14之間,積層有底塗層18、光學調整層19、及抗黏連層20中任一者之至少1層者。 圖35表示本發明之附透明電極之壓電膜的第35例之模式圖。本發明之附透明電極之壓電膜135係於本發明之附透明電極之壓電膜125之第2基材膜17的與第2透明電極15呈相反側之表面積層有至少1層抗黏連層20者。 [基材膜] 第1基材膜11及第2基材膜17例如由聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚烯烴、聚環烯烴、環烯烴共聚物、聚碳酸酯、聚醚碸、聚芳酯、聚醯亞胺、聚醯胺、聚苯乙烯、聚降冰片烯等高分子膜構成。第1基材膜11及第2基材膜17之材料並不限定於其等,較佳為透明性、耐熱性、及機械特性優異之聚對苯二甲酸乙二酯(PET)。 第1基材膜11及第2基材膜17之厚度較佳為10 μm~200 μm,但並不限定於此。其中,若第1基材膜11及第2基材膜17之厚度未達10 μm,則有難以操作之虞。又,若第1基材膜11及第2基材膜17之厚度超過200 μm,則有難以將附透明電極之壓電膜(101~135)捲繞成卷之虞。又,若第1基材膜11及第2基材膜17之厚度超過200 μm,則有將附透明電極之壓電膜(101~135)安裝於觸控面板等時厚度變得過厚之虞。 [具有壓電性之塗層] 具有壓電性之塗層12之材料只要是能呈薄膜狀塗佈於第1基材膜11之表面且塗佈後之薄膜具有壓電性者,便不特別限定。具有壓電性之塗層12較理想為即便未施以極化(分極處理)亦表現出壓電性者,但亦可為於極化後表現出壓電性者。 作為極化(分極處理),有非接觸式之極化與接觸式之極化。於非接觸式之極化中,例如,藉由對塗層12實施電暈放電處理而使塗層12分極。於接觸式之極化中,例如,以2張金屬板夾住塗層12,並於2張金屬板之間施加電壓而使塗層12分極。 具有壓電性之塗層12例如係以如下方式獲得:使具有壓電性之塗層12之材料溶解於溶媒中製成溶液,藉由棒式塗佈機或凹版塗佈機等已知之塗佈裝置於基材膜之表面薄薄地且均勻地進行塗佈,其後使其乾燥。 [具有壓電性之塗層之材料] 作為具有壓電性之塗層12之材料,例如可較佳地使用包含氟樹脂之材料。若具體地例示包含氟樹脂之材料,則可列舉偏二氟乙烯之聚合物、偏二氟乙烯與三氟乙烯之共聚物、偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物、六氟丙烯與偏二氟乙烯之共聚物、全氟乙烯醚與偏二氟乙烯之共聚物、四氟乙烯與偏二氟乙烯之共聚物、六氟環氧丙烷與偏二氟乙烯之共聚物、六氟丙烯與四氟乙烯及偏二氟乙烯之共聚物。該等聚合物既可單獨使用亦可形成混合體而使用。 包含氟樹脂之材料較佳為偏二氟乙烯與三氟乙烯之共聚物、或偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物。將偏二氟乙烯與三氟乙烯之共聚物稱為二元系共聚物。將偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物稱為三元系共聚物。 於將偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)用作具有壓電性之塗層12之材料之情形時,偏二氟乙烯與三氟乙烯之莫耳比當整體計為100時,適宜為(50~85):(50~15)之範圍。 又,於將偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)用作具有壓電性之塗層12之材料之情形時,偏二氟乙烯與三氟乙烯及三氟氯乙烯之莫耳比當整體計為100時,適宜為(63~65):(27~29):(10~6)之範圍。 [具有壓電性之塗層之厚度] 對於具有壓電性之塗層12之厚度並不限定,考慮到下述光學特性,較佳為0.5 μm~20 μm,更佳為0.5 μm~10 μm,進而更佳為0.5 μm~5 μm。若具有壓電性之塗層12之厚度未達0.5 μm,則所形成之膜有變得不完善之虞。若具有壓電性之塗層12之厚度超過20 μm,則有光學特性(霧度值及全光線透過率)變得不合適之虞。 [透明電極] 第1透明電極14及第2透明電極15只要為於可見光區域(380 nm~780 nm)具有透光性且具有導電性者,則其構成及材料便不特別限定。第1透明電極14及第2透明電極15例如為以金屬之導電性氧化物(例如氧化銦)為主成分之透明薄膜、或以含有主金屬(例如銦)與1種以上雜質金屬(例如錫)之複合金屬氧化物為主成分之透明薄膜。 作為第1透明電極14及第2透明電極15,例如,可使用氧化銦、銦錫氧化物(ITO:Indium Tin Oxide)、銦鋅氧化物(IZO:Indium Zinc Oxide)、銦鎵鋅氧化物(IGZO:Indium Gallium Zinc Oxide)等銦系複合氧化物,但自低比電阻及透過色相之觀點而言,尤佳為銦錫氧化物(ITO)。 銦系複合氧化物具有於可見光區域透過率高達80%以上且每單位面積之表面電阻值低至30 Ω/□~1000 Ω/□(ohmsper square,每平方歐姆值)之特徵。銦系複合氧化物之每單位面積之表面電阻值較佳為300 Ω/□以下,更佳為150 Ω/□以下。 第1透明電極14及第2透明電極15中亦可進而包含鈦Ti、鎂Mg、鋁Al、金Au、銀Ag、銅Cu等雜質金屬元素。第1透明電極14及第2透明電極15係藉由濺鍍法、真空蒸鍍法等而形成,但製法並不限定於此。 於第1透明電極14及第2透明電極15係以銦錫氧化物(ITO)形成之情形時,銦錫氧化物(ITO)中之氧化錫(SnO2 )之含量相對於氧化銦(In2 O3 )與氧化錫(SnO2 )之合計量,較佳為0.5重量%~15重量%,更佳為3重量%~15重量%,進而更佳為5重量%~13重量%。若氧化錫(SnO2 )未達0.5重量%,則有第1透明電極14及第2透明電極15之表面電阻值變高之虞。若氧化錫(SnO2 )超過15重量%,則有第1透明電極14及第2透明電極15之面內的表面電阻值之均勻性受損之虞。 以低溫形成之例如由銦錫氧化物(ITO)構成之第1透明電極14及第2透明電極15係非晶質,藉由對其進行加熱處理可將其自非晶質轉化為結晶質。第1透明電極14及第2透明電極15若轉化為結晶質則其表面電阻值變低。因此,第1透明電極14及第2透明電極15較理想為結晶質。使第1透明電極14及第2透明電極15轉化為結晶質時之熱處理條件適宜為80℃~200℃,但自生產性之觀點而言,較佳為140℃以下且30分鐘以下。 第1透明電極14及第2透明電極15之厚度較佳為15 nm~50 nm。若第1透明電極14及第2透明電極15之厚度低於15 nm,則有第1透明電極14及第2透明電極15之表面電阻值上升之虞。若第1透明電極14及第2透明電極15之厚度超過50 nm,則有第1透明電極14及第2透明電極15因全光線透過率之降低或內部應力之上升而發生龜裂之擔憂。第1透明電極14及第2透明電極15亦可為由2層以上透明導電膜積層而成之積層膜。 第1透明電極14及第2透明電極15亦可為聚乙二氧基噻吩(PEDOT:PSS,Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (seefigure),摻聚苯乙烯磺酸:聚(3,4-亞乙二氧基噻吩))、聚吡咯、聚苯胺等導電性高分子之薄膜。又,第1透明電極14及第2透明電極15亦可為線徑為5 μm~10 μm左右之銀或銅之極細金屬線呈網眼狀形成於透明膜上而成之導電性極細網。或者,第1透明電極14及第2透明電極15亦可為包含碳奈米纖維、銀奈米線、石墨烯等之薄膜。 [透明黏著層] 透明黏著層21較佳為由光學透明黏著劑構成。例如,可使用光學透明黏著劑之片材形成透明黏著層21。亦可使用透明接著層代替透明黏著層21。於該情形時,透明接著層較佳為由光學透明接著劑構成。例如,可塗佈液狀之光學透明接著劑,並照射紫外線使其硬化,而形成透明接著層。透明黏著層21或透明接著層之折射率較理想為積層於其兩側之材料各自之折射率之中間值。藉由如此選擇透明黏著層21或透明接著層之折射率,可抑制光於透明黏著層21或透明接著層與積層於其兩側之材料之界面上的反射。 [附透明電極之壓電膜之光學特性] 一般而言,即便霧度值增大,由於光不被吸收而會散射,故而全光線透過率亦不會降低。但即便全光線透過率不降低,隨著霧度值增大,顯示器之圖像視認性亦會降低。因此,僅根據全光線透過率之值,並無法判斷顯示器之圖像視認性。根據本案發明者之實驗,為清晰視認位於附透明電極之壓電膜背面之顯示器之圖像,附透明電極之壓電膜之霧度值較佳為5%以下,更佳為4%以下,進而更佳為3%以下,尤佳為2%以下,最佳為1%以下。附透明電極之壓電膜之全光線透過率較佳為82%以上,更佳為85%以上,進而更佳為86%以上,尤佳為88%以上。於附透明電極之壓電膜之霧度值超過5%之情形時、或全光線透過率未達82%之情形時,有顯示器之圖像變得無法清晰視認之虞。 [實施例] [實施例1] [壓電膜] 實施例1之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例1之附透明電極之壓電膜中包含之壓電膜13係於第1基材膜11(聚對苯二甲酸乙二酯膜)之表面首先形成未圖示之易接著層,其次塗佈偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)之溶液所製作而成。第1基材膜11(聚對苯二甲酸乙二酯膜)之厚度為23 μm。 製作具有壓電性之塗層12時,首先,將偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)藉由超音波溶解於常溫之甲基乙基酮中,製作出偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)之溶液。偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)中所含有之偏二氟乙烯與三氟乙烯之莫耳比為75/25。 其次,將偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)之溶液藉由棒式塗佈機塗佈於第1基材膜11(聚對苯二甲酸乙二酯膜)之表面。其次,將第1基材膜11(聚對苯二甲酸乙二酯膜)及未乾燥之塗層以60℃、5分鐘之乾燥條件加以乾燥,而獲得具有壓電性之塗層12。乾燥後之具有壓電性之塗層12之厚度為5 μm。 [透明電極] 將積層有具有壓電性之塗層12之第1基材膜11(聚對苯二甲酸乙二酯膜)安置於濺鍍裝置,藉由濺鍍法,將厚度為25 nm、由銦錫氧化物(ITO)構成之第1透明電極14成膜於具有壓電性之塗層12之表面。此時,設定氬氣:氧氣之壓力比為99:1且總氣壓為0.3 Pa之濺鍍環境,通入電力密度為1.0 W/cm2 之電力,對由10重量%之氧化錫與90重量%之氧化銦之燒結體構成之銦錫氧化物靶進行濺鍍,而成膜第1透明電極14。 其次,於第1基材膜11(聚對苯二甲酸乙二酯膜)之表面,以與第1透明電極14相同之成膜條件成膜第2透明電極15。以此方式製作出附透明電極之壓電膜。於該階段,第1透明電極14及第2透明電極15為非晶質。 [透明電極之結晶化] 對於第1透明電極14及第2透明電極15為非晶質之附透明電極之壓電膜利用加熱烘箱內以80℃加熱12小時,進行第1透明電極14及第2透明電極15之結晶化處理,而獲得第1透明電極14及第2透明電極15為結晶質之附透明電極之壓電膜。結晶化後之第1透明電極14及第2透明電極15之表面電阻值分別為150 Ω/□。 [實施例2] 實施例2之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第1例(101)之構成。實施例2之附透明電極之壓電膜中包含之壓電膜13係以與實施例1之附透明電極之壓電膜中包含之壓電膜13相同之方式製作而成。實施例2之附透明電極之壓電膜中包含之第1透明電極14係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14相同之方式成膜,並實施至將第1透明電極14結晶化之步驟為止。 [實施例3] 實施例3之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第23例(123)之構成。實施例3之附透明電極之壓電膜中包含之壓電膜13係以與實施例1之附透明電極之壓電膜中包含之壓電膜13相同之方式製作而成。實施例3之附透明電極之壓電膜中包含之第1透明電極14係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14相同之方式成膜,並實施至將第1透明電極14結晶化之步驟為止。 [實施例4] 實施例4之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例4之附透明電極之壓電膜係以除具有壓電性之塗層12之厚度為1 μm以外,其他與實施例1相同之方式製作而成。 [實施例5] 實施例5之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例5之附透明電極之壓電膜係以除具有壓電性之塗層12之厚度為10 μm以外,其他與實施例1之附透明電極之壓電膜相同之方式製作而成。 [實施例6] 實施例6之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例6之附透明電極之壓電膜係以除具有壓電性之塗層12之厚度為20 μm以外,其他與實施例1之附透明電極之壓電膜相同之方式製作而成。 [實施例7] 實施例7之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第25例(125)之構成。實施例7之附透明電極之壓電膜中包含之第1透明電極14、第1基材膜11、具有壓電性之塗層12係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14、第1基材膜11、具有壓電性之塗層12相同之方式製作而成,並實施至將第1透明電極14結晶化之步驟為止。 實施例7之附透明電極之壓電膜中包含之第2透明電極15、第2基材膜17係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14、第1基材膜11相同之方式製作而成,並實施至將第2透明電極15結晶化之步驟為止。 最後,使用透明黏著層21將具有壓電性之塗層12與第2透明電極15貼合並加以固定。藉此,獲得由第1透明電極14、第1基材膜11、具有壓電性之塗層12、透明黏著層21、第2透明電極15、第2基材膜17依序積層而成之、實施例7之附透明電極之壓電膜。作為透明黏著層21,使用丙烯酸系黏著劑(日東電工株式會公司製造)。 [實施例8] 實施例8之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第3例(103)之構成。實施例8之附透明電極之壓電膜中包含之第1透明電極14、具有壓電性之塗層12、第1基材膜11係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14、具有壓電性之塗層12、第1基材膜11相同之方式製作而成。 實施例8之附透明電極之壓電膜中包含之第2透明電極15、第2基材膜17係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14、第1基材膜11相同之方式製作而成,並實施至將第2透明電極15結晶化之步驟為止。 最後,使用透明黏著層21將第1基材膜11與第2透明電極15貼合並加以固定。藉此,獲得由第1透明電極14、具有壓電性之塗層12、第1基材膜11、透明黏著層21、第2透明電極15、第2基材膜17依序積層而成之、實施例8之附透明電極之壓電膜。作為透明黏著層21,使用丙烯酸系黏著劑(日東電工株式會公司製造)。 [實施例9] 實施例9之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例9之附透明電極之壓電膜係以除第1透明電極14及第2透明電極15未經結晶化處理故而為非晶質、及厚度分別為20 nm以外,其他與實施例1之附透明電極之壓電膜相同之方式製作而成。 [實施例10] 實施例10之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例10之附透明電極之壓電膜係以除第1透明電極14及第2透明電極15之厚度分別為40 nm以外,其他與實施例1之附透明電極之壓電膜相同之方式製作而成。 [實施例11] 實施例11之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例11之附透明電極之壓電膜係以除第1透明電極14及第2透明電極15未經結晶化處理故而為非晶質以外,其他與實施例1之附透明電極之壓電膜相同之方式製作而成。 [實施例12] 實施例12之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例12之附透明電極之壓電膜係以除具有壓電性之塗層12之材料為偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)以外,其他與實施例1之附透明電極之壓電膜相同之方式製作而成。 製作具有壓電性之塗層12時,首先,將偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)藉由超音波溶解於常溫之甲基異丁基酮中,製作出偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)之溶液。偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)中所含有之偏二氟乙烯與三氟乙烯及三氟氯乙烯之莫耳比為64.2/27.1/8.7。 其次,將偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)之溶液藉由棒式塗佈機塗佈於第1基材膜11(聚對苯二甲酸乙二酯膜)之表面。其次,將第1基材膜11(聚對苯二甲酸乙二酯膜)及未乾燥之塗層以60℃、5分鐘之乾燥條件加以乾燥,而獲得具有壓電性之塗層12。乾燥後之具有壓電性之塗層12之厚度為1 μm。 [實施例13] 實施例13之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例13之附透明電極之壓電膜係以除具有壓電性之塗層12之厚度為5 μm以外,其他與實施例12之附透明電極之壓電膜相同之方式製作而成。 [實施例14] 實施例14之附透明電極之壓電膜包含本發明之附透明電極之壓電膜的第2例(102)之構成。實施例14之附透明電極之壓電膜係以除具有壓電性之塗層12之厚度為10 μm以外,其他與實施例12之附透明電極之壓電膜相同之方式製作而成。 [比較例1] 比較例1之附透明電極之壓電膜包含由第1透明電極夾持偏二氟乙烯之聚合物(聚偏二氟乙烯)之獨立膜之一面,由第2透明電極夾持另一面而將其等積層之構成。偏二氟乙烯之聚合物(聚偏二氟乙烯)之膜之厚度為40 μm。厚度為40 μm之偏二氟乙烯之聚合物(聚偏二氟乙烯)之膜係以如下方式製作:將偏二氟乙烯之聚合物(聚偏二氟乙烯)藉由超音波溶解於常溫之甲基異丁基酮中,將所得之溶液以乾燥後之厚度成為40 μm之方式塗佈於聚對苯二甲酸乙二酯膜之表面,乾燥後剝去聚對苯二甲酸乙二酯膜。比較例1之附透明電極之壓電膜中包含之第1透明電極及第2透明電極係以與實施例1之附透明電極之壓電膜中包含之第1透明電極14及第2透明電極15相同之方式製作而成。   [表1]

Figure 106117764-A0304-0001
表1中表示出本發明之壓電膜之實施例與比較例之構成、具有壓電性之層之種類及莫耳比與厚度、第1及第2透明電極之狀態(結晶性)與厚度、無透明電極時與有透明電極時之全光線透過率、有透明電極時之霧度值。於表1中,VDF表示偏二氟乙烯,TrFE表示三氟乙烯,CTFE表示三氟氯乙烯。P( )表示共聚物。因此,「P(VDF-TrFE)」係指「偏二氟乙烯與三氟乙烯之共聚物」。又,「P(VDF-TrFE-CTFE)」係指「偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物」。PVDF係指偏二氟乙烯之聚合物(聚偏二氟乙烯)。 對實施例1與實施例2加以比較,可知:於積層有第2透明電極15之情形時,全光線透過率變小,但霧度值不變。 對實施例2與實施例3加以比較,可知:即便具有壓電性之塗層12與第1基材膜11之積層順序顛倒,全光線透過率及霧度值亦不變。 對實施例1與實施例4加以比較,可知:即便具有壓電性之塗層12之厚度變為1/5,全光線透過率及霧度值亦不變。 對實施例1與實施例5加以比較,可知:即便具有壓電性之塗層12之厚度變為2倍,全光線透過率及霧度值亦不變。 對實施例1與實施例6加以比較,可知:於具有壓電性之塗層12之厚度變為4倍之情形時,全光線透過率不變,但霧度值變大。 對實施例1與實施例7加以比較,可知:即便將透明黏著層21與第2基材膜17積層,全光線透過率及霧度值亦不變。 對實施例7與實施例8加以比較,可知:即便第1基材膜11與具有壓電性之塗層12之積層順序顛倒,全光線透過率及霧度值亦不變。 對實施例1與實施例9加以比較,可知:厚度為25 nm之結晶質之第1透明電極14及第2透明電極15相較於厚度為20 nm之非晶質之第1透明電極14及第2透明電極15,全光線透過率更高,但霧度值等同。 對實施例1與實施例10加以比較,可知:於結晶質之第1透明電極14及第2透明電極15變厚時,全光線透過率降低,但霧度值不變。 對實施例10與實施例11加以比較,可知:厚度為40 nm之結晶質之第1透明電極14及第2透明電極15與厚度為25 nm之非晶質之第1透明電極14及第2透明電極15的全光線透過率及霧度值等同。 對實施例4與實施例12加以比較,可知:於具有壓電性之塗層12之厚度較薄之情形時,具有壓電性之塗層12為偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)時,與其為偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)時相比,全光線透過率及霧度值等同。 對實施例1與實施例13加以比較,可知:於具有壓電性之塗層12之厚度不薄之情形時,具有壓電性之塗層12為偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)時,與其為偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)時相比,全光線透過率不變,但霧度值變大。 對實施例5與實施例14加以比較,可知:於具有壓電性之塗層12之厚度較厚之情形時,具有壓電性之塗層12為偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)時,與其為偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)時相比,全光線透過率不變,但霧度值變大。 對實施例12~實施例14加以比較,可知:具有壓電性之塗層12為偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物(三元系共聚物)時,隨著具有壓電性之塗層12變厚,全光線透過率不變,霧度值變大。但實施例12~實施例14之全光線透過率及霧度值係無任何問題之位準。 對實施例1、實施例4、實施例5加以比較,可知:具有壓電性之塗層12為偏二氟乙烯與三氟乙烯之共聚物(二元系共聚物)時,即便具有壓電性之塗層12變厚,全光線透過率及霧度值亦不變。 對實施例1、實施例4、實施例5、實施例9~實施例11、比較例1加以比較,可知:使用偏二氟乙烯之聚合物(聚偏二氟乙烯)之獨立膜的附透明電極之壓電膜與使用具有壓電性之塗層12的附透明電極之壓電膜相比,全光線透過率為相同程度,但霧度值明顯較大。自比較例1可知:即便霧度值變大,全光線透過率亦未必降低。 [測定方法] [厚度] 未達1 μm之膜之厚度係使用穿透式電子顯微鏡(日立製作所製造之H-7650)觀察剖面而測定。超過1 μm之膜或薄膜之厚度係使用膜厚計(Peacock公司製造之數位度盤規DG-205)而測定。 [霧度值、全光線透過率] 霧度值、全光線透過率係使用直讀式霧度電腦(Direct Reading Haze Computer,Suga Test Instruments公司製造之HGM-ZDP)而測定。 [實施例15~20] 又,於圖5中,測定出具有壓電性之塗層12、光學調整層19、第1透明電極14之厚度及折射率。壓電膜13與上述實施例相同,係於PET膜塗佈有偏二氟乙烯與三氟乙烯之共聚物者。 光學調整層19如下表2所示,有折射率為1.54、1.62、1.7之情形。製造方法因折射率而異,故而針對每種折射率逐一進行說明。於折射率為1.54之情形時,在具有壓電性之塗層12之一面藉由三聚氰胺樹脂:醇酸樹脂:有機矽烷縮合物之重量比為2:2:1之熱硬化型樹脂(光之折射率n=1.54)而形成厚度為120 nm之光學調整層19。 於折射率為1.62之情形時,在具有壓電性之塗層12之一面使用凹版塗佈機塗佈含有47質量份紫外線硬化性樹脂、57質量份氧化氧化鋯粒子(中值粒徑為40 nm)及PGME(Propylene Glycol Monomethyl Ether,丙二醇單甲醚)之光學調整組成物(JSR公司製造,「Opstar Z7412」,固形物成分為12質量%),並於無風狀態(未達0.1 m/s)下立即以60℃進行1分鐘加熱乾燥。其後,藉由高壓水銀燈照射累計光量為250 mJ/cm2 之紫外線實施硬化處理。藉由該方法,將厚度為90、120、或150 nm且折射率為1.62之光學調整層19形成於具有壓電性之塗層12之上。 於折射率為1.7之情形時,製備在包含三聚氰胺樹脂、醇酸樹脂及有機矽烷縮合物之熱硬化型樹脂(以重量比計,三聚氰胺樹脂:醇酸樹脂:有機矽烷縮合物=2:2:1)中混合TiO2 (折射率=2.35)之微粒子而成之樹脂組成物。此時,以上述樹脂組成物之折射率成為1.70之方式調整TiO2 微粒子之混合量。然後,於具有壓電性之塗層12之上塗佈上述樹脂組成物,並使其硬化,而形成厚度為150 nm之光學調整層19(折射率為1.70)。 又,第1透明電極14係藉由濺鍍成膜銦錫氧化物而成。再者,雖於圖5中未加以圖示,但於第1基材膜11之與具有壓電性之塗層12相反之面形成有具有抗黏連功能之硬塗層。 將其結果示於表2中,「第1層」係具有壓電性之塗層12,「第2層」係光學調整層19,「第3層」係第1透明電極14。各實施例如上所述,具有壓電性之塗層12之厚度成為0.5~10 μm,光學調整層19之厚度成為80~160 nm,第1透明電極14之厚度成為20 nm以上。又,具有壓電性之塗層12之折射率成為1.40~1.50,光學調整層19之折射率成為1.50~1.70,第1透明電極14之折射率成為1.90~2.10。第1透明電極14與光學調整層19之反射率差為2%以下,美觀度較佳。 再者,視需要對第1透明電極14進行蝕刻使其成為所期望之電極等。獲得上述折射率時,光學調整層19之折射率係使用藉由蝕刻將第1透明電極14去掉後之部分。因此,藉由自各折射率求出空氣與第1透明電極14、空氣與光學調整層19之反射率,而求出反射率差。 [比較例2~3] 作為與實施例15~20相對之比較例,實施了無光學調整層19之情形(比較例2)及光學調整層19之折射率小於1.5之情形(比較例3)。於無光學調整層19之情形時,反射率差係第1透明電極14與具有壓電性之塗層12之差。反射率差大於2%,美觀度變差。 再者,折射率為1.46之情形時(比較例4)之光學調整層19係以如下方式製作而成:將矽溶膠(COLCOAT(股)製造,COLCOATP)以固形物成分濃度成為2%之方式藉由乙醇加以稀釋,藉由二氧化矽塗佈法將其塗佈於具有壓電性之塗層12之一面之上,其後以150℃進行2分鐘乾燥,使其硬化,形成厚度為120 nm之層(SiO2 膜,光之折射率為1.46),將其作為光學調整層19。於比較例中,其他構成之製造方法與實施例相同。     [表2]
Figure AA2
因為於具有壓電性之塗層12之上具備第1透明電極14,故而有藉由透明電極14而呈現黃色或茶色從而有損美觀度之情形。可知:藉由如上述實施例般設置光學調整層19,並將透明電極14、光學調整層19、具有壓電性之塗層12之厚度及折射率以處於上述值之範圍內之方式加以調節,可如表2所示般縮小反射率差,而無損美觀度。可知:即便將於壓電膜13積層有光學調整層19及透明電極14之構成配置於顯示器之前表面,亦不易損害顯示器之美觀度。 [產業上之可利用性] 對於本發明之附透明電極之壓電膜之利用並不限制,其尤其合適用作觸控面板之Z座標(手指觸碰壓力)檢測用壓電膜。[Basic structure of piezoelectric film with transparent electrode] Fig. 1 shows a schematic diagram of the first example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 101 of the present invention includes a piezoelectric film 13 composed of a laminate of a first base film 11 and a coating layer 12 having piezoelectricity. At least one layer of the first transparent electrode 14 is laminated on the coating layer 12 having piezoelectricity. At least one layer of the first transparent electrode 14 means that the first transparent electrode 14 may be a multilayer film of two or more layers. The first transparent electrode 14 may be patterned. An easy-adhesive layer (not shown) may be laminated between the first base film 11 and the piezoelectric coating layer 12 (the easy-adhesive layer is common to the following examples). Fig. 2 is a schematic diagram showing a second example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film 102 with transparent electrode of the present invention is on the surface of the piezoelectric film with transparent electrode 101 of the present invention opposite to the piezoelectric coating 12, and at least one second transparent electrode 15 is laminated By. At least one layer of the second transparent electrode 15 means that the second transparent electrode 15 may be a multilayer film of two or more layers. The second transparent electrode 15 may be patterned. At least one transparent adhesive layer may be provided between the first base film 11 and the second transparent electrode 15. The term "at least one transparent adhesive layer" means that the transparent adhesive layer may be a multilayer film with two or more layers. Fig. 3 is a schematic view showing a third example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 103 of the present invention is formed on the surface of the first substrate film 11 of the piezoelectric film with transparent electrode 101 of the present invention on the opposite side to the piezoelectric coating 12, and is further laminated with At least one transparent adhesive layer 21, at least one second transparent electrode 15, and at least one second base film 17. At least one transparent adhesive layer 21 means that the transparent adhesive layer 21 may be a multilayer film of two or more layers. At least one layer of the second transparent electrode 15 means that the second transparent electrode 15 may be a multilayer film of two or more layers. The at least one layer of the second base film 17 means that the second base film 17 may be a multilayer film of two or more layers. Fig. 4 is a schematic view showing a fourth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 104 of the present invention is located between the second transparent electrode 15 and the second base film 17 of the piezoelectric film with transparent electrode 103 of the present invention, and a primer layer 18 and an optical adjustment layer are laminated 19. At least one layer of any one of the anti-adhesion layer 20. The primer layer 18 (or the adhesion-promoting coating) has the function of improving the adhesion between the layers of the piezoelectric film with transparent electrode. The index matching layer 19 (index matching layer) (also referred to as a refractive index adjustment layer) has the function of adjusting the light reflectivity of the piezoelectric film with transparent electrode. The optical adjustment layer 19 may be a multilayer film of two or more layers. The anti-adhesion layer 20 has a function of preventing the piezoelectric films with transparent electrodes from being stacked or wound from being crimped (adhered) to each other. The anti-adhesion layer 20 may also be a multilayer film with more than two layers. Fig. 5 is a schematic view showing a fifth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 105 of the present invention is located between the piezoelectric coating 12 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 101 of the present invention. At least one of the adjustment layer 19 and the anti-blocking layer 20. For example, a case where the optical adjustment layer 19 is used in FIG. 5 will be described. An example of the thickness of the coating layer 12 having piezoelectricity is 0.5-10 μm, an example of the thickness of the optical adjustment layer 19 is 80-160 nm, and an example of the thickness of the first transparent electrode 14 is 20 nm or more. One case. In addition, as an example, the refractive index of the coating layer 12 having piezoelectricity is 1.40 to 1.50, as an example the refractive index of the optical adjustment layer 19 is 1.50 to 1.70, and as an example the refractive index of the first transparent electrode 14 is 1.90 ~ 2.10 is an example. In addition, the thickness of the base film 11 is set to 2 to 100 μm, and the refractive index is set to 1.50 to 1.70. By setting the above thickness and refractive index, the reflectance difference between the first transparent electrode 14 and the optical adjustment layer 19 becomes 2.0% or less, and the aesthetics is improved. Furthermore, in the piezoelectric film 102 of FIG. 2, any one of the primer layer 18, the optical adjustment layer 19, and the anti-blocking layer 20 may be laminated between the base film 11 and the second transparent electrode 15 At least 1 layer. Fig. 6 is a schematic view showing a sixth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 106 of the present invention is located between the piezoelectric coating 12 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 102 of the present invention. At least one of the adjustment layer 19 and the anti-blocking layer 20. Fig. 7 is a schematic view showing a seventh example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 107 of the present invention is located between the piezoelectric coating 12 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 103 of the present invention. At least one of the adjustment layer 19 and the anti-blocking layer 20. Fig. 8 is a schematic view showing an eighth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 108 of the present invention is between the piezoelectric coating 12 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 104 of the present invention. At least one of the adjustment layer 19 and the anti-blocking layer 20. Fig. 9 is a schematic view showing a ninth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 109 of the present invention is located between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 101 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 10 is a schematic view showing a tenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 110 of the present invention is located between the first substrate film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 102 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 11 is a schematic view showing an eleventh example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 111 of the present invention is located between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 103 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 12 is a schematic view showing a twelfth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 112 of the present invention is between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 104 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 13 is a schematic view showing a thirteenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 113 of the present invention is between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 105 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 14 is a schematic view showing a fourteenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 114 of the present invention is located between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 106 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 15 is a schematic view showing a fifteenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 115 of the present invention is located between the first substrate film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 107 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 16 is a schematic view showing a 16th example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film 116 with transparent electrode of the present invention is between the first substrate film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 108 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 17 is a schematic view showing a seventeenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 117 of the present invention is based on the first substrate film 11 of the piezoelectric film with transparent electrode 101 of the present invention. The surface area layer opposite to the piezoelectric coating 12 has at least 1 Layer of anti-adhesion layer 20. Fig. 18 is a schematic view showing an eighteenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 118 of the present invention is the second substrate film 17 of the piezoelectric film with transparent electrode 103 of the present invention. The surface area layer opposite to the piezoelectric coating 12 has at least 1 Layer of anti-adhesion layer 20. Fig. 19 is a schematic view showing a nineteenth example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 119 of the present invention is based on the second substrate film 17 of the piezoelectric film with transparent electrode 104 of the present invention. The surface area layer opposite to the piezoelectric coating 12 has at least 1 Layer of anti-adhesion layer 20. Fig. 20 is a schematic view showing a twentieth example of the piezoelectric film with transparent electrodes of the present invention. The piezoelectric film with transparent electrode 120 of the present invention is based on the first substrate film 11 of the piezoelectric film with transparent electrode 105 of the present invention. The surface area layer opposite to the piezoelectric coating 12 has at least 1 Layer of anti-adhesion layer 20. Fig. 21 is a schematic view showing a twenty-first example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 121 of the present invention is the second substrate film 17 of the piezoelectric film with transparent electrode 107 of the present invention. The surface area layer opposite to the piezoelectric coating 12 has at least 1 Layer of anti-adhesion layer 20. Fig. 22 is a schematic view showing a twenty-second example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 122 of the present invention is the second base film 17 of the piezoelectric film with transparent electrode 108 of the present invention. The surface area layer opposite to the piezoelectric coating 12 has at least 1 Layer of anti-adhesion layer 20. Fig. 23 is a schematic view showing a twenty-third example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film 123 with a transparent electrode of the present invention includes a piezoelectric film 13 including a laminate of a first base film 11 and a coating layer 12 having piezoelectricity. At least one first transparent electrode 14 is laminated on the surface of the first base film 11 opposite to the piezoelectric coating layer 12. Fig. 24 is a schematic view showing a twenty-fourth example of the piezoelectric film with transparent electrodes of the present invention. The piezoelectric film 124 with a transparent electrode of the present invention is on the surface of the piezoelectric coating 12 of the piezoelectric film 123 with a transparent electrode of the present invention on the opposite side to the first base film 11, and is laminated with at least 1 layer of the second transparent electrode 15. Fig. 25 is a schematic view showing a twenty-fifth example of the piezoelectric film with transparent electrodes of the present invention. The piezoelectric film with transparent electrode 125 of the present invention is on the surface of the piezoelectric coating 12 of the piezoelectric film with transparent electrode 123 of the present invention on the opposite side to the first base film 11, and is further laminated with At least one transparent adhesive layer 21, at least one second transparent electrode 15, and at least one second base film 17. Fig. 26 is a schematic view showing the 26th example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 126 of the present invention is located between the second transparent electrode 15 and the second base film 17 of the piezoelectric film with transparent electrode 125 of the present invention, and a primer layer 18 and an optical adjustment layer are laminated 19. At least one layer of any one of the anti-adhesion layer 20. Fig. 27 is a schematic view showing a twenty-seventh example of the piezoelectric film with transparent electrodes of the present invention. The piezoelectric film with transparent electrode 127 of the present invention is located between the first substrate film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 123 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 28 is a schematic view showing a 28th example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 128 of the present invention is located between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 124 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 29 is a schematic view showing a twenty-ninth example of the piezoelectric film with transparent electrodes of the present invention. The piezoelectric film with transparent electrode 129 of the present invention is located between the first base film 11 and the piezoelectric coating layer 12 of the piezoelectric film with transparent electrode 125 of the present invention, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 30 is a schematic view showing the 30th example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 130 of the present invention is between the first base film 11 of the piezoelectric film with transparent electrode 126 of the present invention and the piezoelectric coating layer 12, and a primer layer 18, At least one layer of any one of the optical adjustment layer 19 and the anti-blocking layer 20. Fig. 31 is a schematic view showing the 31st example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 131 of the present invention is located between the first base film 11 and the first transparent electrode 14 of the piezoelectric film 123 with transparent electrode of the present invention, and a primer layer 18 and an optical adjustment layer are laminated 19. At least one layer of any one of the anti-adhesion layer 20. Fig. 32 is a schematic view showing the 32nd example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 132 of the present invention is between the first base film 11 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 124 of the present invention, and a primer layer 18 and an optical adjustment layer are laminated 19. At least one layer of any one of the anti-adhesion layer 20. Fig. 33 is a schematic view showing the 33rd example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 133 of the present invention is located between the first base film 11 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 125 of the present invention, and a primer layer 18 and an optical adjustment layer are laminated 19. At least one layer of any one of the anti-adhesion layer 20. Fig. 34 is a schematic view showing the 34th example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 134 of the present invention is located between the first base film 11 and the first transparent electrode 14 of the piezoelectric film with transparent electrode 126 of the present invention, and a primer layer 18 and an optical adjustment layer are laminated 19. At least one layer of any one of the anti-adhesion layer 20. Fig. 35 is a schematic view showing a 35th example of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode 135 of the present invention is based on the second base film 17 of the piezoelectric film with transparent electrode 125 of the present invention. The surface area opposite to the second transparent electrode 15 has at least one anti-sticking layer. Even 20 people. [Base film] The first base film 11 and the second base film 17 are made of, for example, polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycyclic olefin, cyclic olefin copolymer, and polyolefin. It is composed of a polymer film such as carbonate, polyether agglomerate, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene. The materials of the first base film 11 and the second base film 17 are not limited to them, but are preferably polyethylene terephthalate (PET) excellent in transparency, heat resistance, and mechanical properties. The thickness of the first base film 11 and the second base film 17 is preferably 10 μm to 200 μm, but is not limited to this. However, if the thickness of the first base film 11 and the second base film 17 is less than 10 μm, it may be difficult to handle. In addition, if the thickness of the first base film 11 and the second base film 17 exceeds 200 μm, it may be difficult to wind the piezoelectric film with transparent electrode (101 to 135) into a roll. In addition, if the thickness of the first base film 11 and the second base film 17 exceeds 200 μm, the piezoelectric film with transparent electrodes (101 to 135) may become too thick when mounted on a touch panel, etc. Yu. [Coating with piezoelectricity] The material of the coating layer 12 with piezoelectricity is not required as long as it can be coated on the surface of the first substrate film 11 in the form of a film and the film after coating has piezoelectricity. Specially limited. The coating layer 12 having piezoelectricity is preferably one that exhibits piezoelectricity even if it is not subjected to polarization (polarization treatment), but it may also exhibit piezoelectricity after polarization. As polarization (polarization processing), there are non-contact polarization and contact polarization. In the non-contact polarization, for example, the coating 12 is polarized by performing a corona discharge treatment on the coating 12. In the contact polarization, for example, two metal plates are used to sandwich the coating 12, and a voltage is applied between the two metal plates to polarize the coating 12. The piezoelectric coating 12 is obtained, for example, by dissolving the material of the piezoelectric coating 12 in a solvent to make a solution, and coating it with a bar coater or a gravure coater. The cloth device coats the surface of the substrate film thinly and uniformly, and then it is dried. [Material with piezoelectricity coating layer] As the material for the piezoelectricity coating layer 12, for example, a material containing fluororesin can be preferably used. Specific examples of materials containing fluororesin include polymers of vinylidene fluoride, copolymers of vinylidene fluoride and trifluoroethylene, copolymers of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene, Copolymer of hexafluoropropylene and vinylidene fluoride, copolymer of perfluorovinyl ether and vinylidene fluoride, copolymer of tetrafluoroethylene and vinylidene fluoride, copolymer of hexafluoropropylene oxide and vinylidene fluoride , Copolymer of hexafluoropropylene, tetrafluoroethylene and vinylidene fluoride. These polymers can be used alone or as a mixture. The fluororesin-containing material is preferably a copolymer of vinylidene fluoride and trifluoroethylene, or a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene. The copolymer of vinylidene fluoride and trifluoroethylene is called a binary system copolymer. The copolymer of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene is called a ternary copolymer. When the copolymer of vinylidene fluoride and trifluoroethylene (binary system copolymer) is used as the material of the coating layer 12 with piezoelectricity, the molar ratio of vinylidene fluoride and trifluoroethylene is as a whole When it is counted as 100, it is suitably in the range of (50 to 85): (50 to 15). In addition, when a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer) is used as the material of the coating layer 12 having piezoelectricity, vinylidene fluoride and trifluoroethylene When the molar ratio of ethylene and chlorotrifluoroethylene is 100 as a whole, it is suitably in the range of (63 to 65): (27 to 29): (10 to 6). [The thickness of the piezoelectric coating layer] The thickness of the piezoelectric coating layer 12 is not limited, but in consideration of the following optical characteristics, it is preferably 0.5 μm to 20 μm, more preferably 0.5 μm to 10 μm , And more preferably 0.5 μm to 5 μm. If the thickness of the piezoelectric coating 12 is less than 0.5 μm, the formed film may become imperfect. If the thickness of the piezoelectric coating 12 exceeds 20 μm, the optical properties (haze value and total light transmittance) may become inappropriate. [Transparent Electrode] The structure and material of the first transparent electrode 14 and the second transparent electrode 15 are not particularly limited as long as they are translucent and conductive in the visible light region (380 nm to 780 nm). The first transparent electrode 14 and the second transparent electrode 15 are, for example, a transparent film mainly composed of a conductive oxide of a metal (such as indium oxide), or a transparent film containing a main metal (such as indium) and one or more impurity metals (such as tin). ) Is a transparent film with composite metal oxide as the main component. As the first transparent electrode 14 and the second transparent electrode 15, for example, indium oxide, indium tin oxide (ITO: Indium Tin Oxide), indium zinc oxide (IZO: Indium Zinc Oxide), indium gallium zinc oxide ( IGZO: Indium-based composite oxides such as Indium Gallium Zinc Oxide, but from the viewpoint of low specific resistance and transmittance hue, indium tin oxide (ITO) is particularly preferred. Indium-based composite oxides have the characteristics of high transmittance in the visible light region of over 80% and surface resistance per unit area as low as 30 Ω/□~1000 Ω/□ (ohmsper square). The surface resistance value per unit area of the indium-based composite oxide is preferably 300 Ω/□ or less, more preferably 150 Ω/□ or less. The first transparent electrode 14 and the second transparent electrode 15 may further contain impurity metal elements such as titanium Ti, magnesium Mg, aluminum Al, gold Au, silver Ag, and copper Cu. The first transparent electrode 14 and the second transparent electrode 15 are formed by a sputtering method, a vacuum evaporation method, etc., but the manufacturing method is not limited to this. When the first transparent electrode 14 and the second transparent electrode 15 are formed of indium tin oxide (ITO), the content of tin oxide (SnO 2 ) in indium tin oxide (ITO) is relative to that of indium oxide (In 2 The total amount of O 3 ) and tin oxide (SnO 2 ) is preferably 0.5% by weight to 15% by weight, more preferably 3% by weight to 15% by weight, and still more preferably 5% by weight to 13% by weight. If tin oxide (SnO 2 ) is less than 0.5% by weight, the surface resistance of the first transparent electrode 14 and the second transparent electrode 15 may increase. If tin oxide (SnO 2 ) exceeds 15% by weight, the uniformity of the surface resistance values in the surfaces of the first transparent electrode 14 and the second transparent electrode 15 may be impaired. The first transparent electrode 14 and the second transparent electrode 15 formed at low temperature, for example, made of indium tin oxide (ITO) are amorphous, and can be converted from amorphous to crystalline by heating them. When the first transparent electrode 14 and the second transparent electrode 15 are converted to a crystalline substance, the surface resistance value of the first transparent electrode 14 and the second transparent electrode 15 become low. Therefore, the first transparent electrode 14 and the second transparent electrode 15 are preferably crystalline. The heat treatment conditions for converting the first transparent electrode 14 and the second transparent electrode 15 into crystalline quality are preferably 80°C to 200°C, but from the viewpoint of productivity, it is preferably 140°C or less and 30 minutes or less. The thickness of the first transparent electrode 14 and the second transparent electrode 15 is preferably 15 nm to 50 nm. If the thickness of the first transparent electrode 14 and the second transparent electrode 15 is less than 15 nm, the surface resistance value of the first transparent electrode 14 and the second transparent electrode 15 may increase. If the thickness of the first transparent electrode 14 and the second transparent electrode 15 exceeds 50 nm, the first transparent electrode 14 and the second transparent electrode 15 may crack due to a decrease in total light transmittance or an increase in internal stress. The first transparent electrode 14 and the second transparent electrode 15 may be laminated films formed by laminating two or more transparent conductive films. The first transparent electrode 14 and the second transparent electrode 15 may also be polyethylenedioxythiophene (PEDOT: PSS, Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (seefigure), and polystyrenesulfonate: poly(seefigure). (3,4-ethylenedioxythiophene)), polypyrrole, polyaniline and other conductive polymer films. In addition, the first transparent electrode 14 and the second transparent electrode 15 may be a conductive ultra-fine mesh formed by forming ultra-fine metal wires of silver or copper with a wire diameter of about 5 μm-10 μm on a transparent film in a mesh shape. Alternatively, the first transparent electrode 14 and the second transparent electrode 15 may also be thin films including carbon nanofibers, silver nanowires, graphene, and the like. [Transparent Adhesive Layer] The transparent adhesive layer 21 is preferably composed of an optically transparent adhesive. For example, a sheet of optically transparent adhesive can be used to form the transparent adhesive layer 21. It is also possible to use a transparent adhesive layer instead of the transparent adhesive layer 21. In this case, the transparent adhesive layer is preferably composed of an optically transparent adhesive. For example, a liquid optically transparent adhesive can be coated and irradiated with ultraviolet rays to harden it to form a transparent adhesive layer. The refractive index of the transparent adhesive layer 21 or the transparent adhesive layer is preferably an intermediate value of the respective refractive indexes of the materials laminated on both sides of the transparent adhesive layer 21 or the transparent adhesive layer. By selecting the refractive index of the transparent adhesive layer 21 or the transparent adhesive layer in this way, the reflection of light on the interface between the transparent adhesive layer 21 or the transparent adhesive layer and the materials laminated on both sides thereof can be suppressed. [Optical characteristics of piezoelectric film with transparent electrode] Generally speaking, even if the haze value increases, the light will not be absorbed but scattered, so the total light transmittance will not decrease. But even if the total light transmittance does not decrease, as the haze value increases, the image visibility of the display will also decrease. Therefore, it is impossible to judge the visibility of the display image based on the value of the total light transmittance alone. According to the experiment of the present inventor, in order to clearly see the image of the display on the back of the piezoelectric film with transparent electrode, the haze value of the piezoelectric film with transparent electrode is preferably 5% or less, more preferably 4% or less. Furthermore, it is more preferably 3% or less, particularly preferably 2% or less, and most preferably 1% or less. The total light transmittance of the piezoelectric film with transparent electrode is preferably 82% or more, more preferably 85% or more, still more preferably 86% or more, and particularly preferably 88% or more. When the haze value of the piezoelectric film with transparent electrode exceeds 5%, or when the total light transmittance is less than 82%, the image on the display may become unclear. [Example] [Example 1] [Piezoelectric film] The piezoelectric film with transparent electrode of Example 1 includes the structure of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film 13 included in the piezoelectric film with transparent electrode of Example 1 is formed on the surface of the first substrate film 11 (polyethylene terephthalate film), and an easy-adhesive layer (not shown) is formed first, and secondly It is made by coating a solution of a copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer). The thickness of the first base film 11 (polyethylene terephthalate film) is 23 μm. When making the coating 12 with piezoelectricity, firstly, the copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer) is dissolved in methyl ethyl ketone at room temperature by ultrasonic wave to produce the partial A solution of a copolymer of difluoroethylene and trifluoroethylene (binary copolymer). The molar ratio of vinylidene fluoride to trifluoroethylene contained in the copolymer of vinylidene fluoride and trifluoroethylene (binary system copolymer) is 75/25. Next, a solution of a copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer) was applied to the first base film 11 (polyethylene terephthalate film) by a bar coater的面。 The surface. Next, the first base film 11 (polyethylene terephthalate film) and the undried coating layer are dried under drying conditions of 60° C. for 5 minutes to obtain a coating layer 12 having piezoelectricity. The thickness of the piezoelectric coating 12 after drying is 5 μm. [Transparent electrode] The first base film 11 (polyethylene terephthalate film) on which the piezoelectric coating 12 is laminated is placed on a sputtering device, and the thickness is 25 nm by the sputtering method , The first transparent electrode 14 made of indium tin oxide (ITO) is formed on the surface of the coating layer 12 with piezoelectricity. At this time, set a sputtering environment with a pressure ratio of argon gas: oxygen gas of 99:1 and a total pressure of 0.3 Pa, and the power density of 1.0 W/cm 2 is applied to 10% by weight of tin oxide and 90% by weight. The first transparent electrode 14 is formed by sputtering on an indium tin oxide target composed of a sintered body of indium oxide. Next, on the surface of the first base film 11 (polyethylene terephthalate film), the second transparent electrode 15 is formed under the same film forming conditions as the first transparent electrode 14. In this way, a piezoelectric film with transparent electrodes is produced. At this stage, the first transparent electrode 14 and the second transparent electrode 15 are amorphous. [Crystalization of the transparent electrode] The piezoelectric film with transparent electrode in which the first transparent electrode 14 and the second transparent electrode 15 are amorphous is heated in a heating oven at 80°C for 12 hours to carry out the first transparent electrode 14 and the second transparent electrode. 2. Crystallization of the transparent electrode 15 to obtain a piezoelectric film with a transparent electrode in which the first transparent electrode 14 and the second transparent electrode 15 are crystalline. The surface resistance values of the first transparent electrode 14 and the second transparent electrode 15 after crystallization were 150 Ω/□, respectively. [Example 2] The piezoelectric film with transparent electrode of Example 2 includes the configuration of the first example (101) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film 13 included in the piezoelectric film with transparent electrode of Example 2 is produced in the same manner as the piezoelectric film 13 included in the piezoelectric film with transparent electrode of Example 1. The first transparent electrode 14 included in the piezoelectric film with transparent electrode of Example 2 is formed in the same manner as the first transparent electrode 14 included in the piezoelectric film with transparent electrode of Example 1, and implemented to Until the step of crystallizing the first transparent electrode 14. [Example 3] The piezoelectric film with transparent electrode of Example 3 includes the structure of the 23rd example (123) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film 13 included in the piezoelectric film with transparent electrode of Example 3 is manufactured in the same manner as the piezoelectric film 13 included in the piezoelectric film with transparent electrode of Example 1. The first transparent electrode 14 included in the piezoelectric film with transparent electrode of Example 3 was formed in the same manner as the first transparent electrode 14 included in the piezoelectric film with transparent electrode of Example 1, and implemented to Until the step of crystallizing the first transparent electrode 14. [Example 4] The piezoelectric film with transparent electrode of Example 4 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 4 was fabricated in the same manner as in Example 1, except that the thickness of the piezoelectric coating 12 was 1 μm. [Example 5] The piezoelectric film with transparent electrode of Example 5 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 5 is produced in the same manner as the piezoelectric film with transparent electrode of Example 1, except that the thickness of the piezoelectric coating 12 is 10 μm. [Example 6] The piezoelectric film with transparent electrode of Example 6 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 6 is produced in the same manner as the piezoelectric film with transparent electrode of Example 1, except that the thickness of the piezoelectric coating 12 is 20 μm. [Example 7] The piezoelectric film with transparent electrode of Example 7 includes the structure of the 25th example (125) of the piezoelectric film with transparent electrode of the present invention. The first transparent electrode 14, the first base film 11, and the piezoelectric coating 12 included in the piezoelectric film with transparent electrode of Example 7 are the same as those in the piezoelectric film with transparent electrode of Example 1. The included first transparent electrode 14, the first base film 11, and the piezoelectric coating layer 12 are fabricated in the same manner, and are implemented until the step of crystallizing the first transparent electrode 14. The second transparent electrode 15 and the second base film 17 included in the piezoelectric film with transparent electrode of Example 7 are the same as the first transparent electrode 14 and the second base film included in the piezoelectric film with transparent electrode of Example 1. 1 The base film 11 is produced in the same manner, and it is carried out until the step of crystallizing the second transparent electrode 15. Finally, the transparent adhesive layer 21 is used to attach and fix the piezoelectric coating 12 and the second transparent electrode 15. Thereby, a layered layer of the first transparent electrode 14, the first base film 11, the piezoelectric coating 12, the transparent adhesive layer 21, the second transparent electrode 15, and the second base film 17 in this order is obtained. , The piezoelectric film with transparent electrode of Example 7. As the transparent adhesive layer 21, an acrylic adhesive (manufactured by Nitto Denko Co., Ltd.) was used. [Example 8] The piezoelectric film with transparent electrode of Example 8 includes the configuration of the third example (103) of the piezoelectric film with transparent electrode of the present invention. The first transparent electrode 14, the piezoelectric coating 12, and the first base film 11 included in the piezoelectric film with transparent electrode of Example 8 are the same as those in the piezoelectric film with transparent electrode of Example 1. The included first transparent electrode 14, the piezoelectric coating 12, and the first base film 11 are manufactured in the same manner. The second transparent electrode 15 and the second base film 17 included in the piezoelectric film with transparent electrode of Example 8 are the same as the first transparent electrode 14 and the second base film included in the piezoelectric film with transparent electrode of Example 1. 1 The base film 11 is produced in the same manner, and it is carried out until the step of crystallizing the second transparent electrode 15. Finally, using the transparent adhesive layer 21, the first base film 11 and the second transparent electrode 15 are pasted and fixed. Thereby, a layered structure of the first transparent electrode 14, the piezoelectric coating 12, the first base film 11, the transparent adhesive layer 21, the second transparent electrode 15, and the second base film 17 is obtained in this order. , The piezoelectric film with transparent electrode of Example 8. As the transparent adhesive layer 21, an acrylic adhesive (manufactured by Nitto Denko Co., Ltd.) was used. [Example 9] The piezoelectric film with transparent electrode of Example 9 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 9 is the same as that of Example 1, except that the first transparent electrode 14 and the second transparent electrode 15 are amorphous without crystallization treatment, and the thickness is 20 nm. The piezoelectric film with transparent electrode is manufactured in the same way. [Example 10] The piezoelectric film with transparent electrode of Example 10 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 10 was produced in the same manner as the piezoelectric film with transparent electrode of Example 1, except that the thickness of the first transparent electrode 14 and the thickness of the second transparent electrode 15 were 40 nm, respectively. Become. [Example 11] The piezoelectric film with transparent electrode of Example 11 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 11 is the same as the piezoelectric film with transparent electrode of Example 1, except that the first transparent electrode 14 and the second transparent electrode 15 are amorphous without crystallization treatment. Made in the same way. [Example 12] The piezoelectric film with transparent electrode of Example 12 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 12 except that the material of the piezoelectric coating 12 is a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer), Others are fabricated in the same way as the piezoelectric film with transparent electrode of Example 1. When making the piezoelectric coating 12, firstly, the copolymer of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene (ternary copolymer) is dissolved in methyl isobutyl at room temperature by ultrasonic waves. In the ketone, a solution of a copolymer (terpolymer) of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene is produced. The molar ratio of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene contained in the copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer) is 64.2/27.1/8.7 . Next, a solution of a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer) was applied to the first substrate film 11 (polyterephthalic acid) by a bar coater. The surface of the ethylene glycol film). Next, the first base film 11 (polyethylene terephthalate film) and the undried coating layer are dried under drying conditions of 60° C. for 5 minutes to obtain a coating layer 12 having piezoelectricity. The thickness of the piezoelectric coating 12 after drying is 1 μm. [Example 13] The piezoelectric film with transparent electrode of Example 13 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 13 was fabricated in the same manner as the piezoelectric film with transparent electrode of Example 12 except that the thickness of the piezoelectric coating 12 was 5 μm. [Example 14] The piezoelectric film with transparent electrode of Example 14 includes the configuration of the second example (102) of the piezoelectric film with transparent electrode of the present invention. The piezoelectric film with transparent electrode of Example 14 was fabricated in the same manner as the piezoelectric film with transparent electrode of Example 12 except that the thickness of the piezoelectric coating 12 was 10 μm. [Comparative Example 1] The piezoelectric film with transparent electrode of Comparative Example 1 includes one side of an independent film in which a vinylidene fluoride polymer (polyvinylidene fluoride) is sandwiched by a first transparent electrode, and is sandwiched by a second transparent electrode. Holding the other side and layering them together. The thickness of the vinylidene fluoride polymer (polyvinylidene fluoride) film is 40 μm. The film of vinylidene fluoride polymer (polyvinylidene fluoride) with a thickness of 40 μm is made as follows: the polymer of vinylidene fluoride (polyvinylidene fluoride) is dissolved in the room temperature by ultrasonic In methyl isobutyl ketone, the resulting solution is coated on the surface of the polyethylene terephthalate film so that the thickness after drying becomes 40 μm, and the polyethylene terephthalate film is peeled off after drying . The first transparent electrode and the second transparent electrode included in the piezoelectric film with transparent electrode of Comparative Example 1 are the same as the first transparent electrode 14 and the second transparent electrode included in the piezoelectric film with transparent electrode of Example 1 15 made in the same way. [Table 1]
Figure 106117764-A0304-0001
Table 1 shows the composition of the piezoelectric film of the present invention and the comparative example, the type, molar ratio and thickness of the piezoelectric layer, the state (crystallinity) and thickness of the first and second transparent electrodes , The total light transmittance when there is no transparent electrode and when there is a transparent electrode, and the haze value when there is a transparent electrode. In Table 1, VDF means vinylidene fluoride, TrFE means trifluoroethylene, and CTFE means chlorotrifluoroethylene. P() represents copolymer. Therefore, "P(VDF-TrFE)" means "copolymer of vinylidene fluoride and trifluoroethylene". Also, "P(VDF-TrFE-CTFE)" means "copolymer of vinylidene fluoride, trifluoroethylene and chlorotrifluoroethylene". PVDF refers to a polymer of vinylidene fluoride (polyvinylidene fluoride). Comparing Example 1 and Example 2, it can be seen that when the second transparent electrode 15 is laminated, the total light transmittance becomes small, but the haze value does not change. Comparing Example 2 and Example 3, it can be seen that even if the stacking order of the piezoelectric coating 12 and the first base film 11 is reversed, the total light transmittance and the haze value do not change. Comparing Example 1 with Example 4, it can be seen that even if the thickness of the piezoelectric coating 12 becomes 1/5, the total light transmittance and the haze value remain unchanged. Comparing Example 1 and Example 5, it can be seen that even if the thickness of the piezoelectric coating 12 is doubled, the total light transmittance and haze value remain unchanged. Comparing Example 1 with Example 6, it can be seen that when the thickness of the piezoelectric coating layer 12 becomes 4 times, the total light transmittance does not change, but the haze value becomes larger. Comparing Example 1 and Example 7, it can be seen that even if the transparent adhesive layer 21 and the second base film 17 are laminated, the total light transmittance and the haze value do not change. Comparing Example 7 with Example 8, it can be seen that even if the stacking order of the first base film 11 and the piezoelectric coating layer 12 is reversed, the total light transmittance and the haze value do not change. Comparing Example 1 with Example 9, it can be seen that the crystalline first transparent electrode 14 and the second transparent electrode 15 with a thickness of 25 nm are compared with the amorphous first transparent electrode 14 and the amorphous layer with a thickness of 20 nm. The second transparent electrode 15 has a higher total light transmittance but the same haze value. Comparing Example 1 with Example 10, it can be seen that when the crystalline first transparent electrode 14 and the second transparent electrode 15 become thicker, the total light transmittance decreases, but the haze value does not change. Comparing Example 10 with Example 11, it can be seen that the crystalline first transparent electrode 14 and the second transparent electrode 15 with a thickness of 40 nm and the amorphous first transparent electrode 14 and the second electrode 14 with a thickness of 25 nm are compared. The total light transmittance and haze value of the transparent electrode 15 are equivalent. Comparing Example 4 with Example 12, it can be seen that when the thickness of the piezoelectric coating 12 is thinner, the piezoelectric coating 12 is vinylidene fluoride, trifluoroethylene, and trifluoroethylene. The total light transmittance and haze value of the copolymer of vinyl chloride (ternary copolymer) are equivalent to that of the copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer). Comparing Example 1 with Example 13, it can be seen that when the thickness of the piezoelectric coating 12 is not thin, the piezoelectric coating 12 is vinylidene fluoride, trifluoroethylene and trifluoroethylene. When the copolymer of vinyl chloride (ternary copolymer) is compared with the copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer), the total light transmittance does not change, but the haze value changes Big. Comparing Example 5 with Example 14, it can be seen that when the thickness of the piezoelectric coating 12 is thicker, the piezoelectric coating 12 is vinylidene fluoride, trifluoroethylene and trifluoroethylene. When the copolymer of vinyl chloride (ternary copolymer) is compared with the copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer), the total light transmittance does not change, but the haze value changes Big. Comparing Examples 12 to 14, it can be seen that when the piezoelectric coating 12 is a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene (ternary copolymer), it has The piezoelectric coating 12 becomes thicker, the total light transmittance remains unchanged, and the haze value becomes larger. However, the total light transmittance and haze values of Examples 12 to 14 are at the level without any problems. Comparing Example 1, Example 4, and Example 5, it can be seen that when the piezoelectric coating 12 is a copolymer of vinylidene fluoride and trifluoroethylene (binary copolymer), even with piezoelectricity The sexual coating 12 becomes thicker, and the total light transmittance and haze value also remain unchanged. Comparing Example 1, Example 4, Example 5, Example 9 to Example 11, and Comparative Example 1, it can be seen that the independent film using vinylidene fluoride polymer (polyvinylidene fluoride) is transparent Compared with the piezoelectric film with transparent electrode using the piezoelectric coating 12, the piezoelectric film of the electrode has the same level of total light transmittance, but the haze value is significantly larger. It can be seen from Comparative Example 1 that even if the haze value increases, the total light transmittance does not necessarily decrease. [Measuring method] [Thickness] The thickness of the film less than 1 μm is measured by observing the cross section using a transmission electron microscope (H-7650 manufactured by Hitachi, Ltd.). The thickness of the film or film exceeding 1 μm is measured using a film thickness meter (digital dial gauge DG-205 manufactured by Peacock). [Haze value, total light transmittance] The haze value and total light transmittance were measured using a direct reading haze computer (Direct Reading Haze Computer, HGM-ZDP manufactured by Suga Test Instruments). [Examples 15 to 20] In addition, in FIG. 5, the thickness and refractive index of the piezoelectric coating 12, the optical adjustment layer 19, and the first transparent electrode 14 were measured. The piezoelectric film 13 is the same as the above-mentioned embodiment, and is a PET film coated with a copolymer of vinylidene fluoride and trifluoroethylene. As shown in Table 2 below, the optical adjustment layer 19 has a refractive index of 1.54, 1.62, and 1.7. The manufacturing method differs depending on the refractive index, so each refractive index will be explained one by one. In the case of a refractive index of 1.54, a thermosetting resin (light Refractive index n=1.54) to form an optical adjustment layer 19 with a thickness of 120 nm. When the refractive index is 1.62, a gravure coater is used to coat 47 parts by mass of ultraviolet curable resin and 57 parts by mass of zirconia particles (median particle size is 40 nm) and PGME (Propylene Glycol Monomethyl Ether, propylene glycol monomethyl ether) optical adjustment composition (made by JSR company, "Opstar Z7412", solid content is 12% by mass), and in a no-wind state (less than 0.1 m/s ) Immediately heat and dry at 60°C for 1 minute. Thereafter, a high-pressure mercury lamp was irradiated with ultraviolet light with a cumulative light intensity of 250 mJ/cm 2 to perform curing treatment. By this method, an optical adjustment layer 19 with a thickness of 90, 120, or 150 nm and a refractive index of 1.62 is formed on the coating layer 12 having piezoelectricity. When the refractive index is 1.7, prepare a thermosetting resin containing melamine resin, alkyd resin and organosilane condensate (by weight ratio, melamine resin: alkyd resin: organosilane condensate = 2:2: 1) A resin composition in which fine particles of TiO 2 (refractive index = 2.35) are mixed. At this time, the mixing amount of the TiO 2 fine particles was adjusted so that the refractive index of the above-mentioned resin composition became 1.70. Then, the above-mentioned resin composition was coated on the piezoelectric coating layer 12 and cured to form an optical adjustment layer 19 (refractive index: 1.70) with a thickness of 150 nm. In addition, the first transparent electrode 14 is formed by forming a film of indium tin oxide by sputtering. Furthermore, although not shown in FIG. 5, a hard coating layer having an anti-blocking function is formed on the surface of the first base film 11 opposite to the piezoelectric coating layer 12. The results are shown in Table 2. The "first layer" is the coating layer 12 having piezoelectricity, the "second layer" is the optical adjustment layer 19, and the "third layer" is the first transparent electrode 14. In each embodiment, as described above, the thickness of the piezoelectric coating layer 12 is 0.5-10 μm, the thickness of the optical adjustment layer 19 is 80-160 nm, and the thickness of the first transparent electrode 14 is 20 nm or more. In addition, the refractive index of the piezoelectric coating layer 12 is 1.40 to 1.50, the refractive index of the optical adjustment layer 19 is 1.50 to 1.70, and the refractive index of the first transparent electrode 14 is 1.90 to 2.10. The reflectance difference between the first transparent electrode 14 and the optical adjustment layer 19 is 2% or less, and the aesthetics is better. Furthermore, if necessary, the first transparent electrode 14 is etched to become a desired electrode or the like. When the above-mentioned refractive index is obtained, the refractive index of the optical adjustment layer 19 is obtained by removing the first transparent electrode 14 by etching. Therefore, the reflectance difference between the air and the first transparent electrode 14, the air and the optical adjustment layer 19 is obtained from each refractive index, and the reflectance difference is obtained. [Comparative Examples 2 to 3] As a comparative example to Examples 15 to 20, the case without the optical adjustment layer 19 (Comparative Example 2) and the case where the refractive index of the optical adjustment layer 19 is less than 1.5 (Comparative Example 3) were implemented . When there is no optical adjustment layer 19, the difference in reflectance is the difference between the first transparent electrode 14 and the coating layer 12 having piezoelectricity. The reflectance difference is greater than 2%, and the aesthetics deteriorates. In addition, when the refractive index is 1.46 (Comparative Example 4), the optical adjustment layer 19 is made as follows: Silica sol (manufactured by COLCOAT (Stock), COLCOATP) is made so that the solid content concentration becomes 2% Dilute it with ethanol, apply it on one side of the piezoelectric coating 12 by a silicon dioxide coating method, and then dry it at 150°C for 2 minutes to harden it to a thickness of 120 The layer of nm (SiO 2 film, the refractive index of light is 1.46), which is used as the optical adjustment layer 19. In the comparative example, the manufacturing method of other configurations is the same as that of the embodiment. [Table 2]
Figure AA2
Since the first transparent electrode 14 is provided on the piezoelectric coating layer 12, the transparent electrode 14 may appear yellow or brown, which may impair the aesthetics. It can be seen that the thickness and refractive index of the transparent electrode 14, the optical adjustment layer 19, and the piezoelectric coating 12 are adjusted within the above-mentioned range by setting the optical adjustment layer 19 as in the above-mentioned embodiment. , Can reduce the reflectivity difference as shown in Table 2, without compromising the aesthetics. It can be seen that even if the piezoelectric film 13 is laminated with the optical adjustment layer 19 and the transparent electrode 14 and arranged on the front surface of the display, the aesthetics of the display will not be easily impaired. [Industrial Applicability] The use of the piezoelectric film with transparent electrodes of the present invention is not limited, and it is particularly suitable as a piezoelectric film for detecting the Z coordinate (finger touch pressure) of a touch panel.

101~135‧‧‧壓電膜 11‧‧‧第1基材膜 12‧‧‧具有壓電性之塗層 13‧‧‧壓電膜 14‧‧‧第1透明電極 15‧‧‧第2透明電極 17‧‧‧第2基材膜 18‧‧‧底塗層 19‧‧‧光學調整層 20‧‧‧抗黏連層 21‧‧‧透明黏著層 101~135‧‧‧Piezoelectric film 11‧‧‧The first base film 12‧‧‧Coating with piezoelectricity 13‧‧‧Piezoelectric film 14‧‧‧The first transparent electrode 15‧‧‧Second transparent electrode 17‧‧‧Second base film 18‧‧‧Undercoating 19‧‧‧Optical adjustment layer 20‧‧‧Anti-adhesion layer 21‧‧‧Transparent adhesive layer

圖1係本發明之附透明電極之壓電膜的第1例之模式圖。 圖2係本發明之附透明電極之壓電膜的第2例之模式圖。 圖3係本發明之附透明電極之壓電膜的第3例之模式圖。 圖4係本發明之附透明電極之壓電膜的第4例之模式圖。 圖5係本發明之附透明電極之壓電膜的第5例之模式圖。 圖6係本發明之附透明電極之壓電膜的第6例之模式圖。 圖7係本發明之附透明電極之壓電膜的第7例之模式圖。 圖8係本發明之附透明電極之壓電膜的第8例之模式圖。 圖9係本發明之附透明電極之壓電膜的第9例之模式圖。 圖10係本發明之附透明電極之壓電膜的第10例之模式圖。 圖11係本發明之附透明電極之壓電膜的第11例之模式圖。 圖12係本發明之附透明電極之壓電膜的第12例之模式圖。 圖13係本發明之附透明電極之壓電膜的第13例之模式圖。 圖14係本發明之附透明電極之壓電膜的第14例之模式圖。 圖15係本發明之附透明電極之壓電膜的第15例之模式圖。 圖16係本發明之附透明電極之壓電膜的第16例之模式圖。 圖17係本發明之附透明電極之壓電膜的第17例之模式圖。 圖18係本發明之附透明電極之壓電膜的第18例之模式圖。 圖19係本發明之附透明電極之壓電膜的第19例之模式圖。 圖20係本發明之附透明電極之壓電膜的第20例之模式圖。 圖21係本發明之附透明電極之壓電膜的第21例之模式圖。 圖22係本發明之附透明電極之壓電膜的第22例之模式圖。 圖23係本發明之附透明電極之壓電膜的第23例之模式圖。 圖24係本發明之附透明電極之壓電膜的第24例之模式圖。 圖25係本發明之附透明電極之壓電膜的第25例之模式圖。 圖26係本發明之附透明電極之壓電膜的第26例之模式圖。 圖27係本發明之附透明電極之壓電膜的第27例之模式圖。 圖28係本發明之附透明電極之壓電膜的第28例之模式圖。 圖29係本發明之附透明電極之壓電膜的第29例之模式圖 圖30係本發明之附透明電極之壓電膜的第30例之模式圖。 圖31係本發明之附透明電極之壓電膜的第31例之模式圖。 圖32係本發明之附透明電極之壓電膜的第32例之模式圖。 圖33係本發明之附透明電極之壓電膜的第33例之模式圖。 圖34係本發明之附透明電極之壓電膜的第34例之模式圖。 圖35係本發明之附透明電極之壓電膜的第35例之模式圖。Fig. 1 is a schematic diagram of the first example of the piezoelectric film with transparent electrode of the present invention. Fig. 2 is a schematic diagram of a second example of the piezoelectric film with transparent electrode of the present invention. Fig. 3 is a schematic diagram of a third example of the piezoelectric film with transparent electrode of the present invention. Fig. 4 is a schematic diagram of a fourth example of the piezoelectric film with transparent electrodes of the present invention. Fig. 5 is a schematic diagram of a fifth example of the piezoelectric film with transparent electrode of the present invention. Fig. 6 is a schematic diagram of a sixth example of the piezoelectric film with transparent electrodes of the present invention. Fig. 7 is a schematic diagram of a seventh example of the piezoelectric film with transparent electrode of the present invention. Fig. 8 is a schematic diagram of an eighth example of the piezoelectric film with transparent electrode of the present invention. Fig. 9 is a schematic diagram of a ninth example of the piezoelectric film with transparent electrodes of the present invention. Fig. 10 is a schematic diagram of a tenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 11 is a schematic diagram of the eleventh example of the piezoelectric film with transparent electrode of the present invention. Fig. 12 is a schematic diagram of a twelfth example of the piezoelectric film with transparent electrode of the present invention. Fig. 13 is a schematic diagram of a thirteenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 14 is a schematic diagram of the fourteenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 15 is a schematic diagram of a fifteenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 16 is a schematic diagram of a sixteenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 17 is a schematic view of the seventeenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 18 is a schematic view of the eighteenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 19 is a schematic diagram of the nineteenth example of the piezoelectric film with transparent electrode of the present invention. Fig. 20 is a schematic diagram of a twentieth example of the piezoelectric film with transparent electrode of the present invention. Fig. 21 is a schematic diagram of a twenty-first example of the piezoelectric film with transparent electrode of the present invention. Fig. 22 is a schematic diagram of a twenty-second example of the piezoelectric film with transparent electrode of the present invention. Fig. 23 is a schematic diagram of a twenty-third example of the piezoelectric film with transparent electrodes of the present invention. Fig. 24 is a schematic diagram of a twenty-fourth example of the piezoelectric film with transparent electrode of the present invention. Fig. 25 is a schematic diagram of the twenty-fifth example of the piezoelectric film with transparent electrode of the present invention. Fig. 26 is a schematic diagram of the 26th example of the piezoelectric film with transparent electrode of the present invention. Fig. 27 is a schematic diagram of a twenty-seventh example of the piezoelectric film with transparent electrodes of the present invention. Fig. 28 is a schematic view of the 28th example of the piezoelectric film with transparent electrode of the present invention. Fig. 29 is a schematic view of the 29th example of the piezoelectric film with transparent electrodes of the present invention. Fig. 30 is a schematic view of the 30th example of the piezoelectric film with transparent electrodes of the present invention. Fig. 31 is a schematic diagram of the 31st example of the piezoelectric film with transparent electrode of the present invention. Fig. 32 is a schematic diagram of the 32nd example of the piezoelectric film with transparent electrode of the present invention. Fig. 33 is a schematic diagram of the 33rd example of the piezoelectric film with transparent electrode of the present invention. Fig. 34 is a schematic diagram of the 34th example of the piezoelectric film with transparent electrode of the present invention. Fig. 35 is a schematic diagram of a 35th example of the piezoelectric film with transparent electrode of the present invention.

101‧‧‧壓電膜 101‧‧‧Piezoelectric film

11‧‧‧第1基材膜 11‧‧‧The first base film

12‧‧‧具有壓電性之塗層 12‧‧‧Coating with piezoelectricity

13‧‧‧壓電膜 13‧‧‧Piezoelectric film

14‧‧‧第1透明電極 14‧‧‧The first transparent electrode

Claims (27)

一種附透明電極之壓電膜,其具備:壓電膜,其包含第1基材膜與具有壓電性之塗層之積層體;及至少1層第1透明電極,其設於上述具有壓電性之塗層之與上述第1基材膜呈相反側之表面。 A piezoelectric film with a transparent electrode, comprising: a piezoelectric film, which includes a laminate of a first substrate film and a coating having piezoelectricity; and at least one layer of a first transparent electrode, which is provided on the The electrical coating is on the opposite side of the first base film. 如請求項1之附透明電極之壓電膜,其中於上述第1基材膜之與上述具有壓電性之塗層呈相反側之表面具備至少1層第2透明電極。 The piezoelectric film with a transparent electrode according to claim 1, wherein at least one second transparent electrode is provided on the surface of the first base film on the opposite side to the piezoelectric coating. 如請求項1之附透明電極之壓電膜,其中於上述第1基材膜之與上述具有壓電性之塗層呈相反側之表面,進而具備依如下順序而設之至少1層透明黏著層、至少1層第2透明電極、及至少1層第2基材膜。 The piezoelectric film with transparent electrode of claim 1, wherein the surface of the first substrate film on the opposite side to the piezoelectric coating layer is further provided with at least one transparent adhesive layer in the following order Layer, at least one second transparent electrode, and at least one second base film. 如請求項3之附透明電極之壓電膜,其中於上述第2透明電極與上述第2基材膜之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 The piezoelectric film with transparent electrode of claim 3, wherein at least one of a primer layer, an optical adjustment layer, and an anti-blocking layer is provided between the second transparent electrode and the second substrate film By. 如請求項1之附透明電極之壓電膜,其中於上述具有壓電性之塗層與上述第1透明電極之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 The piezoelectric film with transparent electrode of claim 1, wherein there is at least one of a primer layer, an optical adjustment layer, and an anti-adhesion layer between the piezoelectric coating and the first transparent electrode Either. 如請求項5之壓電膜,其中上述具有壓電性之塗層之厚度為0.5~10 μm,光學調整層之厚度為80~160nm,第1透明電極之厚度為20nm以上。 Such as the piezoelectric film of claim 5, wherein the thickness of the above-mentioned piezoelectric coating is 0.5-10 μm, the thickness of the optical adjustment layer is 80~160nm, and the thickness of the first transparent electrode is 20nm or more. 如請求項5之壓電膜,其中上述具有壓電性之塗層之折射率為1.40~1.50,光學調整層之折射率為1.50~1.70,第1透明電極之折射率為1.90~2.10。 Such as the piezoelectric film of claim 5, wherein the refractive index of the piezoelectric coating is 1.40~1.50, the refractive index of the optical adjustment layer is 1.50~1.70, and the refractive index of the first transparent electrode is 1.90~2.10. 如請求項1之附透明電極之壓電膜,其中於上述第1基材膜與上述具有壓電性之塗層之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 The piezoelectric film with transparent electrode of claim 1, wherein at least one primer layer, optical adjustment layer, and anti-blocking layer are provided between the first substrate film and the piezoelectric coating layer Any of them. 如請求項1之附透明電極之壓電膜,其具備至少1層抗黏連層,該抗黏連層設於上述第1基材膜或第2基材膜之與上述具有壓電性之塗層呈相反側之表面。 The piezoelectric film with transparent electrode of claim 1, which is provided with at least one anti-adhesion layer provided on the first base film or the second base film and the above-mentioned piezoelectric film The coating is on the opposite side of the surface. 如請求項1之附透明電極之壓電膜,其中於上述具有壓電性之塗層與第1透明電極之間具備透明黏著層,於第1透明電極之與透明黏著層呈相反側具備第2基材膜。 The piezoelectric film with transparent electrode of claim 1, wherein a transparent adhesive layer is provided between the piezoelectric coating and the first transparent electrode, and the first transparent electrode is provided on the opposite side of the transparent adhesive layer. 2 Base film. 如請求項10之附透明電極之壓電膜,其中於上述第1透明電極與上述第2基材膜之間具備至少1層底塗層、光學調整層、及抗黏連層中之任一者。 The piezoelectric film with transparent electrode of claim 10, wherein at least one of a primer layer, an optical adjustment layer, and an anti-blocking layer is provided between the first transparent electrode and the second substrate film By. 如請求項10之附透明電極之壓電膜,其中於上述第2基材膜之與上述第2透明電極呈相反側之表面具備至少1層抗黏連層。 The piezoelectric film with transparent electrode of claim 10, wherein at least one anti-blocking layer is provided on the surface of the second base film opposite to the second transparent electrode. 如請求項1之附透明電極之壓電膜,其中上述具有壓電性之塗層包含氟樹脂。 According to claim 1, the piezoelectric film with transparent electrodes, wherein the piezoelectric coating layer includes a fluororesin. 如請求項1之附透明電極之壓電膜,其中上述氟樹脂係偏二氟乙烯之聚合物、或(偏二氟乙烯、三氟乙烯、三氟氯乙烯)中之2種以上之共聚物。 The piezoelectric film with transparent electrode of claim 1, wherein the above-mentioned fluororesin is a polymer of vinylidene fluoride, or a copolymer of two or more kinds of (vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene) . 如請求項14之附透明電極之壓電膜,其中上述氟樹脂係偏二氟乙烯與三氟乙烯之共聚物,且上述共聚物中所含有之上述偏二氟乙烯與上述三氟乙烯之莫耳比於整體計為100時,係為(50~85):(50~15)之範圍。 The piezoelectric film with transparent electrode of claim 14, wherein the fluororesin is a copolymer of vinylidene fluoride and trifluoroethylene, and the copolymer contains the vinylidene fluoride and the trifluoroethylene. When the ear ratio is 100 as a whole, it is in the range of (50~85): (50~15). 如請求項14之附透明電極之壓電膜,其中上述氟樹脂係偏二氟乙烯與三氟乙烯及三氟氯乙烯之共聚物,且上述共聚物中所含有之上述偏二氟乙烯與上述三氟乙烯及上述三氟氯乙烯之莫耳比於整體計為100時,係為(63~65):(27~29):(10~6)之範圍。 The piezoelectric film with transparent electrode of claim 14, wherein the fluororesin is a copolymer of vinylidene fluoride, trifluoroethylene, and chlorotrifluoroethylene, and the vinylidene fluoride contained in the copolymer and the above When the molar ratio of trifluoroethylene and the above-mentioned chlorotrifluoroethylene is 100 as a whole, it is in the range of (63~65): (27~29): (10~6). 如請求項14之附透明電極之壓電膜,其中上述具有壓電性之塗層係將上述氟樹脂之溶液塗佈於上述第1基材膜並加以乾燥而獲得之塗層。 The piezoelectric film with transparent electrode of claim 14, wherein the piezoelectric coating is a coating obtained by coating the fluororesin solution on the first substrate film and drying it. 如請求項1之壓電膜,其中上述具有壓電性之塗層之厚度為0.5μm~ 20μm。 Such as the piezoelectric film of claim 1, wherein the thickness of the above-mentioned piezoelectric coating is 0.5μm~ 20μm. 如請求項1之附透明電極之壓電膜,其中上述第1透明電極經過圖案化。 The piezoelectric film with transparent electrode of claim 1, wherein the first transparent electrode is patterned. 如請求項1之附透明電極之壓電膜,其中上述第1透明電極包含銦。 The piezoelectric film with transparent electrode of claim 1, wherein the first transparent electrode includes indium. 如請求項1之附透明電極之壓電膜,其中上述第1透明電極包含銦錫氧化物(Indium Tin Oxide:ITO)。 The piezoelectric film with transparent electrode of claim 1, wherein the first transparent electrode includes indium tin oxide (ITO). 如請求項21之附透明電極之壓電膜,其中上述第1透明電極及上述第2透明電極中之任一者或兩者之厚度為15nm~50nm。 The piezoelectric film with transparent electrode of claim 21, wherein the thickness of either or both of the first transparent electrode and the second transparent electrode is 15nm-50nm. 如請求項20之附透明電極之壓電膜,其中上述第1透明電極及上述第2透明電極中之任一者或兩者為結晶質。 The piezoelectric film with transparent electrode of claim 20, wherein either or both of the first transparent electrode and the second transparent electrode are crystalline. 如請求項1之附透明電極之壓電膜,其中上述第1基材膜之材料選自聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯、聚烯烴、聚環烯烴、環烯烴共聚物、聚碳酸酯、聚醚碸、聚芳酯、聚醯亞胺、聚醯胺、聚苯乙烯、聚降冰片烯中之至少1種。 The piezoelectric film with transparent electrode of claim 1, wherein the material of the first substrate film is selected from polyethylene terephthalate, polyethylene naphthalate, polyolefin, polycyclic olefin, and cycloolefin At least one of copolymer, polycarbonate, polyether sulfide, polyarylate, polyimide, polyamide, polystyrene, and polynorbornene. 如請求項1之附透明電極之壓電膜,其霧度值為5%以下。 For example, the piezoelectric film with transparent electrode of claim 1, its haze value is less than 5%. 如請求項1之附透明電極之壓電膜,其全光線透過率為82%以上。 For example, the piezoelectric film with transparent electrode of claim 1 has a total light transmittance of 82% or more. 一種壓力感測器,其具備如請求項1之附透明電極之壓電膜。 A pressure sensor provided with a piezoelectric film with transparent electrodes as in claim 1.
TW106117764A 2016-05-30 2017-05-26 Piezoelectric film with transparent electrode and pressure sensor TWI733819B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP??2016-107051 2016-05-30
JP2016107051 2016-05-30
JP??2017-104591 2017-05-26
JP2017104591A JP6907026B2 (en) 2016-05-30 2017-05-26 Piezoelectric film with transparent electrode and pressure sensor

Publications (2)

Publication Number Publication Date
TW201743177A TW201743177A (en) 2017-12-16
TWI733819B true TWI733819B (en) 2021-07-21

Family

ID=60575886

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117764A TWI733819B (en) 2016-05-30 2017-05-26 Piezoelectric film with transparent electrode and pressure sensor

Country Status (4)

Country Link
JP (1) JP6907026B2 (en)
KR (1) KR102452755B1 (en)
CN (1) CN109219895A (en)
TW (1) TWI733819B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106104825B (en) * 2014-02-26 2019-04-30 大金工业株式会社 Bimorph type piezoelectric film
JP2019104156A (en) * 2017-12-12 2019-06-27 日東電工株式会社 Electret film and electret film having transparent conductive layer
JP2019106440A (en) * 2017-12-12 2019-06-27 日東電工株式会社 Electret film
CN113805717A (en) 2020-06-16 2021-12-17 宸鸿科技(厦门)有限公司 Force-sensitive sensing module, manufacturing method thereof and electronic device
CN111829705A (en) * 2020-07-15 2020-10-27 中国科学院长春应用化学研究所 Impact force detection sensor based on piezoelectric polymer expansion ring
JP7434597B2 (en) * 2020-10-30 2024-02-20 株式会社クレハ Transparent piezoelectric laminated film and touch panel
CN112953301A (en) * 2021-03-10 2021-06-11 中国科学院上海硅酸盐研究所 Transparent piezoelectric energy collecting device
JPWO2022196198A1 (en) * 2021-03-19 2022-09-22
KR20230157437A (en) * 2021-04-20 2023-11-16 가부시끼가이샤 구레하 Transparent conductive piezoelectric laminated film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201439854A (en) * 2013-02-23 2014-10-16 Nissha Printing Touch panel provided with pressing force measurement
TWI502423B (en) * 2012-03-23 2015-10-01 Lg Innotek Co Ltd Touch panel
JP2015215734A (en) * 2014-05-09 2015-12-03 日東電工株式会社 Sheet sensor for touch panel
JP2015214053A (en) * 2014-05-09 2015-12-03 日東電工株式会社 Laminate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247282B2 (en) * 2006-07-27 2009-04-02 株式会社コイケ Piezoelectric substrate and manufacturing method thereof
JP2010026938A (en) 2008-07-23 2010-02-04 Daikin Ind Ltd Touch panel
US8564177B2 (en) * 2011-09-09 2013-10-22 Dvx, Llc Piezopolymer transducer with matching layer
US20160099403A1 (en) * 2013-04-10 2016-04-07 Mitsui Chemicals, Inc. Layered body
JP6866064B2 (en) * 2013-10-08 2021-04-28 ダイキン工業株式会社 Transparent piezoelectric panel
KR102313098B1 (en) * 2014-02-18 2021-10-14 케임브리지 터치 테크놀로지스 리미티드 Dynamic switching of power modes for touch screens using force touch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502423B (en) * 2012-03-23 2015-10-01 Lg Innotek Co Ltd Touch panel
TW201439854A (en) * 2013-02-23 2014-10-16 Nissha Printing Touch panel provided with pressing force measurement
JP2015215734A (en) * 2014-05-09 2015-12-03 日東電工株式会社 Sheet sensor for touch panel
JP2015214053A (en) * 2014-05-09 2015-12-03 日東電工株式会社 Laminate

Also Published As

Publication number Publication date
KR102452755B1 (en) 2022-10-07
CN109219895A (en) 2019-01-15
JP2017216451A (en) 2017-12-07
KR20190013777A (en) 2019-02-11
TW201743177A (en) 2017-12-16
JP6907026B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
TWI733819B (en) Piezoelectric film with transparent electrode and pressure sensor
JP4966924B2 (en) Transparent conductive film, transparent conductive laminate and touch panel, and method for producing transparent conductive film
KR102401028B1 (en) Display device with capacitive touch panel
TWI482178B (en) Production method of transparent conductive film
JP6879826B2 (en) Touch sensor
JP2017216450A (en) Piezoelectric film
TWI570600B (en) Transparent conductor and touch panel
JP7050469B2 (en) Piezoelectric film and piezo sensor
TWI746560B (en) Touch sensor
WO2017209081A1 (en) Piezoelectric film with transparent electrode, and pressure sensor
WO2017209080A1 (en) Piezoelectric film
JP7050426B2 (en) Piezoelectric sensor and display using the piezoelectric sensor
KR102365236B1 (en) A piezoelectric sensor and a display using the piezoelectric sensor
WO2022091828A1 (en) Piezoelectric film, touch panel, and piezoelectric film manufacturing method
TWI808671B (en) Conductive piezoelectric multilayer film and manufacturing method
WO2023224056A1 (en) Conductive piezoelectric film, device, and method for producing conductive piezoelectric film
US20140071533A1 (en) Transparent Conductive FILM And Touch Panel Provided With Same
KR20230154984A (en) Transparent conductive piezoelectric laminated film