WO2017208896A1 - 表示装置 - Google Patents
表示装置 Download PDFInfo
- Publication number
- WO2017208896A1 WO2017208896A1 PCT/JP2017/019161 JP2017019161W WO2017208896A1 WO 2017208896 A1 WO2017208896 A1 WO 2017208896A1 JP 2017019161 W JP2017019161 W JP 2017019161W WO 2017208896 A1 WO2017208896 A1 WO 2017208896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarized wave
- light
- polarizing plate
- liquid crystal
- display
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
- G02F1/133536—Reflective polarizers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/005—Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
- G02B6/0055—Reflecting element, sheet or layer
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/13362—Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1347—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1347—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
- G02F1/13476—Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which at least one liquid crystal cell or layer assumes a scattering state
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0056—Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0033—Means for improving the coupling-out of light from the light guide
- G02B6/0063—Means for improving the coupling-out of light from the light guide for extracting light out both the major surfaces of the light guide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1334—Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
- G02F1/13345—Network or three-dimensional gels
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/01—Function characteristic transmissive
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2203/00—Function characteristic
- G02F2203/66—Normally white display, i.e. the off state being white
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
- G09G2320/064—Adjustment of display parameters for control of overall brightness by time modulation of the brightness of the illumination source
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3406—Control of illumination source
- G09G3/342—Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
Definitions
- the present invention relates to a display device, and more particularly to a display device that also functions as a see-through display with a transparent background.
- see-through display a display that not only displays an image based on an image signal given from the outside but also functions as a display that can be viewed from the front side to the back side.
- see-through display include a liquid crystal panel, a combination of transparent organic EL (Organic Light-Emitting Diode) and a transparent metal ITO (Indium Tin Oxide) thin film, projector method, etc. There are various methods.
- the liquid crystal display device module described in Patent Document 1 is a see-through display using the reflection and transmission characteristics of cholesteric liquid crystal. This liquid crystal display module improves the visibility of the image by directly entering light from a backlight unit arranged on the side of the liquid crystal panel, and improves the visibility of the liquid crystal panel when used as a see-through display. Improve transparency.
- a backlight unit that irradiates backlight light between two liquid crystal cells is disposed, and reflective polarizing plates are attached to both surfaces of the backlight unit, respectively. It has been. Accordingly, the display device can display a bright image on the two liquid crystal cells. In addition, since two liquid crystal panels are simultaneously irradiated with one backlight unit, the number of backlight units can be reduced, and power consumption can be reduced.
- the amount of light emitted to the front side and the back side of the liquid crystal panel is equal, and the light emitted to the back side cannot be reused. For this reason, the utilization efficiency of the light incident on the liquid crystal panel from the backlight unit is lowered.
- the display device described in Patent Document 2 the reflective polarizing plates on both sides of the light guide plate are attached so that the reflection axes are orthogonal to each other. For this reason, the said display apparatus cannot be used as a see-through display which can visually recognize the back side from the front side.
- the present invention reduces the stress felt by the viewer by increasing the amount of light transmitted to the front side by improving the use efficiency of backlight light and suppressing glare on the back side. It is an object of the present invention to provide a display device that can perform the above-described operation.
- a first aspect is a display device including a display that displays an image based on an image signal and also functions as a see-through display,
- the display is A light source that emits light including a first polarized wave and a second polarized wave having a polarization axis orthogonal to the polarization axis of the first polarized wave;
- a light guide plate that emits light from the light source toward a display surface side and a back surface side of the display;
- the transmission mode is arranged on the back surface of the light guide plate and outputs without changing the polarization state of the incident polarized wave, and is converted so that the ratio of the first polarized wave and the second polarized wave approaches 1: 1.
- a light scattering switching element having a scattering mode to output A reflective polarizing plate disposed on the back surface of the light scattering switching element;
- a first polarizing plate disposed in order from the light guide plate toward the front side, a polarization modulator, and a second polarizing plate;
- the polarization modulation element includes a plurality of pixels to which a voltage can be applied, and controls and outputs a polarization state of the first polarization wave or the second polarization wave incident on the pixel by the voltage,
- the reflective polarizing plate and the first polarizing plate transmit either one of the first polarized wave or the second polarized wave, and the second polarizing plate transmits the other polarized wave. It is characterized by.
- the second aspect is the first aspect,
- the first polarizing plate and the second polarizing plate are both absorption-type polarizing plates.
- the third aspect is the first aspect,
- the first polarizing plate is an absorptive polarizing plate, and the second polarizing plate is a reflective polarizing plate.
- the fourth aspect is the first aspect,
- the first polarizing plate is a reflective polarizing plate, and the second polarizing plate is an absorption polarizing plate.
- the fifth aspect is any one of the second to fourth aspects,
- the polarization modulation element is a liquid crystal panel.
- the sixth aspect is the fifth aspect,
- the liquid crystal panel is a normally white type panel.
- the seventh aspect is the fifth aspect,
- the liquid crystal panel is a twisted nematic panel.
- the eighth aspect is the first aspect, A color filter disposed between the polarization modulator and the second polarizing plate is further provided.
- the ninth aspect is the first aspect,
- the light source includes a plurality of types of light emitters that emit light of a color capable of expressing at least white, and the plurality of types of light emitters emit light sequentially in a time-division manner.
- the tenth aspect is the first aspect,
- the light scattering switching element is in the scattering mode when an electric field is turned on and in the transmission mode when the electric field is turned off.
- the eleventh aspect is the tenth aspect,
- the light scattering switching element includes a liquid crystal layer, a polymer network formed in the liquid crystal layer, and a sealing member having an electrode formed on a surface thereof, and the liquid crystal layer and the polymer network are sealed.
- a polymer-dispersed liquid crystal element having a structure sandwiched between fixing members.
- the twelfth aspect is the eleventh aspect
- the sealing member of the light scattering switching element is either an isotropic film sheet or an isotropic glass plate.
- the light scattering switching of the scattering mode is performed not only from one of the polarized waves emitted from the light guide plate to the display surface side but also from the first polarized wave and the second polarized wave emitted from the back surface side. Any one polarized wave included in the light converted by the element is also converted into the other polarized wave by the polarization modulation element and transmitted to the front side. Thereby, the utilization efficiency of the light radiate
- the amount of one polarized wave transmitted to the back side is Less. Thereby, the stress by the glare which the viewer who is on the back side feels is relieved.
- the light use efficiency can be improved, and the amount of the polarized wave transmitted to the back surface side can be reduced. Also, when the display is used as a see-through display, the amount of polarized light transmitted to the front side or the back side is reduced, so the brightness of the screen viewed by the viewer becomes dark, but the turbidity of the light guide plate is low. Since it becomes smaller, the viewer can visually recognize the clearly displayed background without blurring.
- the same effect as in the case of the first invention can be obtained. Further, if the display is used as a see-through display, the same effect as in the second invention can be obtained. Furthermore, since the reflective polarizing plate disposed on the surface of the display functions as a mirror that reflects the first polarized wave incident from the front side, a display with excellent design can be realized.
- the same effect as in the case of the first invention can be obtained. Further, if the display is used as a see-through display, the same effect as in the second invention can be obtained.
- the polarization modulation element is a liquid crystal panel, the polarization state of incident light can be easily controlled.
- the polarization modulation element is a normally white liquid crystal panel, it functions as a see-through display when the power of the liquid crystal panel is off, and the viewer is in the back side state or the front side state. Can be visually recognized.
- the liquid crystal panel that is a polarization modulation element is a twisted nematic system, conversion between the first polarized wave and the second polarized wave can be easily performed.
- the light transmitted from the back side or the front side or the light emitted from the light guide plate to the front side is a color filter. Transparent. Therefore, the viewer on the front side can visually recognize the color image and can visually recognize the state of the back side or the front side in color.
- the viewer on the front side can visually recognize the color image or the back side by irradiating at least the light of a color capable of expressing white in time division and sequentially irradiating the polarization modulator.
- the state of can be visually confirmed in color. Furthermore, since there is no need to provide a color filter, light is not absorbed by the color filter, and the image and the state of the back surface can be displayed with higher luminance.
- a reverse mode type light scattering switching element that is in a transmission mode when the electric field is turned off is used, it can function as a see-through display with the display powered off. Thereby, the power consumption of the display when functioning as a see-through display can be reduced.
- the light scattering switching element is a polymer dispersed liquid crystal element having a structure in which a liquid crystal layer and a polymer network formed in the liquid crystal layer are sandwiched between sealing members, And the scattering mode can be easily switched.
- an isotropic film sheet or an isotropic glass plate is used as the sealing member of the light scattering switching element so that birefringence does not occur in the sealing member.
- (A) shows the relationship between the appearance of a background or the brightness of a screen when turbidity is large.
- (B) is a figure which shows the appearance of a background, and the brightness of a screen when turbidity is small.
- 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment. It is sectional drawing which shows the structure of the display contained in the liquid crystal display device which concerns on 1st Embodiment. It is sectional drawing which shows the structure of the polymer dispersion-type liquid crystal element which adjusts the ratio of a 1st polarized wave and a 2nd polarized wave, and more specifically, (A) is the high mode which became the transmission mode by turning on an electric field.
- (B) is sectional drawing of the polymer dispersion type liquid crystal element which became a scattering mode by turning off an electric field.
- (B) is sectional drawing of the polymer dispersion type liquid crystal element which became a scattering mode by turning off an electric field.
- FIG. 9 it is a figure which shows the light ray locus
- FIG. 9 it is a figure which shows a light ray locus
- the display of 3rd Embodiment it is a figure which represents the light quantity of the 1st and 2nd polarized wave radiate
- a film or glass plate that exhibits birefringence is used as a sealing member for a polymer-dispersed liquid crystal element, and the ray trajectory of light that is transmitted from the back side to the front side when the light source is not turned on. It is a figure for demonstrating.
- a birefringent film or glass plate is used as a sealing member for a polymer-dispersed liquid crystal element, and the ray trajectory of light emitted from the light guide plate in a state where the light source is turned on. It is a figure for demonstrating. It is sectional drawing which shows the structure of the display of a color filter system which displays an image and a background with a color.
- FIG. 1 is a diagram showing a ray trajectory when light incident from the back side is transmitted to the front side in the display 11 used in the first basic study.
- the second absorption polarizing plate 42, the liquid crystal panel 30, the first absorption polarizing plate 41, and the light guide plate 20 are arranged from the front side to the back side.
- the liquid crystal panel 30 is a normally white panel driven by a TN (Twisted Nematic) method.
- each pixel of the liquid crystal panel 30 is either in a state where a signal voltage corresponding to the image signal DV is not written or a state where a signal voltage of 0V is written.
- the polarization axis of the incident polarized wave is rotated by 90 degrees and outputted in a certain non-driven state (off state).
- the driving state (ON state) in which the maximum signal voltage is written is output as it is without rotating the polarization axis of the polarized wave.
- the polarization wave whose polarization axis is rotated by 90 degrees and the polarization wave whose polarization axis is not rotated are in proportion to the voltage value. Is output.
- a first absorption polarizing plate 41 is disposed on the back side of the liquid crystal panel 30, and a second absorption polarizing plate having a transmission axis orthogonal to the transmission axis of the first absorption polarizing plate 41 on the display surface side. 42 is arranged.
- the first polarized wave incident on the pixel in the off state is rotated by the polarization axis by passing through the pixel to become the second polarized wave, passes through the second absorption-type polarizing plate 42, and exits to the front side.
- the first polarized wave incident on the pixel in the ON state is output as it is and is absorbed by the second absorption polarizing plate 42.
- “X” is attached to the tip of the arrow indicating the traveling direction of the polarized wave absorbed by the absorption polarizing plate.
- a light source 25 such as an LED (Light Emitting Device) is attached to the end of the light guide plate 20, but the light source 25 is turned off in FIG.
- the first polarized wave and the second polarized wave included in the light incident from the back side are transmitted through the light guide plate 20 and incident on the first absorption polarizing plate 41.
- the first polarized wave is transmitted through the first absorption polarizing plate 41, and the second polarized wave is absorbed.
- the first polarized wave that has passed through the first absorption polarizing plate 41 is incident on the liquid crystal panel 30. Since the liquid crystal panel 30 is of the TN system, the first polarized wave incident on the off-state pixel among the first polarized waves incident on the liquid crystal panel 30 is rotated by the liquid crystal panel 30 to rotate the polarization axis. It is converted into a wave and emitted.
- the first polarized wave incident on the pixel in the on state is emitted as the first polarized wave without rotating the polarization axis.
- the second polarized wave emitted from the liquid crystal panel 30 passes through the second absorption polarizing plate 42, and the first polarized wave is absorbed by the second absorption polarizing plate 42.
- the second polarized wave that has passed through the pixel in the off state is transmitted to the front side.
- the viewer on the front side displays the back side state at a position corresponding to the pixel in the off state, and can visually recognize the screen displayed in black at the position corresponding to the pixel in the on state.
- FIG. 2 is a diagram showing a ray trajectory when light incident from the front side is transmitted to the back side in the display 11 shown in FIG.
- a description will be given of the ray trajectory when light is incident from the front side when the light source 25 attached to the end of the light guide plate 20 is turned off and the liquid crystal panel 30 is in a driving state.
- the first polarized wave out of the light incident on the second absorption polarizing plate 42 from the front side is absorbed by the second absorption polarizing plate 42, and the second polarized wave is absorbed by the second absorption polarizing plate 42. 42 passes through 42 and enters the liquid crystal panel 30.
- the second polarized wave incident on the on-state pixel is emitted as the second polarized wave without rotating the polarization axis by the liquid crystal panel 30.
- the second polarized wave incident on the pixel in the off state is converted into the first polarized wave by rotating the polarization axis and emitted.
- These polarized waves are incident on the first absorption type polarizing plate 41, the first polarized wave is transmitted through the first absorption type polarizing plate 41, and the second polarized wave is absorbed by the first absorption type polarizing plate 41.
- the first polarized wave passes through the light guide plate 20 and escapes to the back side.
- the viewer on the back side can visually recognize the state in which the front side state is displayed at the position corresponding to the pixel in the off state and the black state is displayed in the position corresponding to the pixel in the on state.
- the display 11 functions as a see-through display.
- FIG. 3 is a diagram showing a ray trajectory when light emitted from the light guide plate 20 is transmitted to the front side and the back side when the light source 25 is lit in the display 11 shown in FIG.
- the light emitted from the light source 25 includes a first polarized wave and a second polarized wave.
- the first polarized wave and the second polarized wave emitted from the light guide plate 20 to the back side are transmitted to the back side as they are. For this reason, the viewer on the back side feels dazzled when viewing the display 11.
- the first polarized wave and the second polarized wave emitted to the display surface side are incident on the first absorption polarizing plate 41.
- the ray trajectory from when these polarized waves enter the first absorption-type polarizing plate 41 until only the second polarized wave transmits to the front side is the same as that shown in FIG. .
- the viewer on the front side can view the screen in which the light emission state is displayed at the position corresponding to the pixel in the off state and displayed black at the position corresponding to the pixel in the on state.
- the first polarized wave included in the light emitted from the light guide plate 20 to the display surface side contributes to the brightness of the screen.
- the wave is absorbed by the first absorption type polarizing plate 41 and does not contribute to the brightness of the screen.
- neither the first nor second polarized wave emitted from the light guide plate 20 to the back side contributes to the brightness of the screen.
- the light emitted from the light guide plate 20 to the back side often has a brightness peak in a specific angle direction with respect to the light guide plate 20, depending on the structure of the display 11. In this case, if the viewer looks at the back surface of the display 11 from the angle direction, the brightness becomes the brightest direction, so that the viewer is likely to feel stress due to glare.
- FIG. 4 is a diagram showing a ray trajectory when light incident from the back side is transmitted to the front side in the display 12 used in the second basic study.
- the second absorption type polarizing plate 42, the liquid crystal panel 30, the first absorption type polarizing plate 41, the second reflection type polarizing plate 52, and the light guide plate 20 and the first reflective polarizing plate 51 are disposed.
- the liquid crystal panel 30 is assumed to be a normally white type panel driven by the TN method.
- the display 12 includes two first and second reflection types in the display 11 shown in FIG.
- Polarizing plates 51 and 52 are added.
- the first and second reflective polarizing plates 51 and 52 transmit the first polarized wave and reflect the second polarized wave.
- FIG. 4 a light ray locus of light incident from the back side when the light source 25 attached to the end portion of the light guide plate 20 is turned off and the liquid crystal panel 30 is driven will be described.
- the second polarized wave incident on the first reflective polarizing plate 51 from the back side is reflected by the first reflective polarizing plate 51 and returned to the back side.
- the first polarized wave incident from the back side is the first reflective polarizing plate.
- 51, the light guide plate 20, the second reflective polarizing plate 52, and the first absorption polarizing plate 41 are sequentially transmitted and enter the liquid crystal panel 30.
- the ray trajectory of the first polarized wave incident on the liquid crystal panel 30 is the same as that in the case of FIG. 1 described in the first basic study, the description thereof is omitted.
- only the first polarized wave transmitted through the pixel in the off state is converted into the second polarized wave and transmitted to the front side.
- the viewer on the front side can see the screen on the back side displayed at the position corresponding to the pixel in the off state and the screen displayed black at the position corresponding to the pixel in the on state.
- FIG. 5 is a diagram showing a ray trajectory when light incident from the front side is transmitted to the back side in the display 12 shown in FIG.
- a light ray locus of light incident from the front side when the light source 25 attached to the end portion of the light guide plate 20 is turned off and the liquid crystal panel 30 is driven will be described.
- the first polarized wave incident on the second absorption polarizing plate 42 from the front side is absorbed by the second absorption polarizing plate 42, and the second polarized wave passes through the second absorption polarizing plate 42.
- the light passes through and enters the liquid crystal panel 30. Since the ray trajectory of the second polarized wave incident on the liquid crystal panel 30 is the same as in the case of FIG.
- the first polarized wave and the second polarized wave are emitted from the liquid crystal panel 30 and are incident on the first absorption-type polarizing plate 41.
- the first polarized wave is transmitted through the first absorption polarizing plate 41 and is incident on the second reflective polarizing plate 52, and the second polarized wave is absorbed by the first absorption polarizing plate 41.
- the first polarized wave is transmitted through the second reflective polarizing plate 52. Then, the light is transmitted through the light guide plate 20 and the first reflective polarizing plate 51 in order, and comes out to the back side.
- the viewer on the back side can see the screen on the front side displayed at the position corresponding to the pixel in the off state and the screen displayed black at the position corresponding to the pixel in the on state.
- the display 12 also functions as a see-through display.
- FIG. 6 is a diagram showing a light ray locus when light emitted from the light guide plate 20 is transmitted to the front side and the back side when the light source 25 is lit in the display 12 shown in FIG.
- the light source 25 attached to the end of the light guide plate 20 is turned on, and the light ray trajectory of the light emitted from the light guide plate 20 to the display surface side and the back surface side when the liquid crystal panel 30 is in the driving state. explain.
- the first polarized wave emitted from the light guide plate 20 to the back side is transmitted through the first reflective polarizing plate 51 and to the back side.
- the first polarized wave emitted to the display surface side passes through the second reflective polarizing plate 52 and enters the first absorbing polarizing plate 41. Since the ray trajectory from when the first polarized wave incident on the first absorption-type polarizing plate 41 passes through the second absorption-type polarizing plate 42 to the front side is the same as the ray locus shown in FIG. The description is omitted.
- the first polarized wave transmitted through the pixels in the off state is converted into the second polarized wave by the liquid crystal panel 30, passes through the second absorption polarizing plate 42, and exits to the front side.
- the first polarized wave transmitted through the pixel in the on state is incident on the second absorption type polarizing plate 42 as the first polarized wave and is absorbed.
- the second polarized wave emitted from the light guide plate 20 to the back side is reflected by the first reflective polarizing plate 51 and enters the light guide plate 20.
- the second polarized wave incident on the light guide plate 20 passes through the polarization scattering element in the light guide plate 20, the second polarized wave is disturbed, and becomes a combined wave of the first polarized wave and the second polarized wave.
- the light is emitted toward the two-reflection type polarizing plate 52.
- the first polarized wave included in the synthesized wave passes through the second reflective polarizing plate 52 and enters the first absorbing polarizing plate 41.
- the ray trajectory from the incidence on the first absorption type polarizing plate 41 to the transmission to the front side is the same as the ray trajectory of the first polarized wave emitted from the light guide plate 20 shown in FIG. The description is omitted.
- the second polarized wave included in the synthesized wave is reflected by the second reflective polarizing plate 52 and enters the light guide plate 20.
- the second polarized wave incident on the light guide plate 20 passes through the polarization scattering element in the light guide plate 20 again, thereby generating a combined wave including the first polarized wave and the second polarized wave, and the first reflective polarizing plate. It is emitted toward 51.
- the first polarized wave included in the combined wave passes through the first reflective polarizing plate 51 and exits to the back side.
- the second polarized wave is reflected by the first reflective polarizing plate 51 and enters the light guide plate 20.
- the second polarized wave reflected by the first or second reflective polarizing plate 51, 52 passes through the polarization scattering element in the light guide plate 20, thereby causing the first polarized wave and the second polarized wave. It repeats that the synthetic wave containing is generated.
- the ray trajectory of the second polarized wave emitted from the light guide plate 20 to the display surface side is substantially the same as that of the second polarized wave emitted to the back surface side, and the description thereof is omitted. .
- the first polarized wave emitted from the light guide plate 20 to the display surface side and the synthesized wave generated from the second polarized wave emitted from the light guide plate 20 to the back surface side or the display surface side are included in the first wave.
- the first polarized wave is converted into the second polarized wave by entering the off-state pixel of the liquid crystal panel 30, passes through the second absorption polarizing plate 42, and exits to the front side.
- the light emission state is displayed at a position corresponding to the off-state pixel of the liquid crystal panel 30.
- the first polarized wave incident on the pixel in the on state is emitted as the first polarized wave and is absorbed by the second absorption type polarizing plate 42. Thereby, black is displayed at the position corresponding to the pixel in the on state.
- the first polarized wave emitted from the light guide plate 20 to the display surface side but also the second polarized wave emitted to the display surface side and the back surface side are polarized and scattered in the light guide plate 20. Disturbances are caused by passing through the elements. Accordingly, a combined wave including the first polarized wave and the second polarized wave is generated from the second polarized wave, and the first polarized wave included in the combined wave is also transmitted to the front side. In this case, in order to further improve the light utilization efficiency, it is necessary to increase the proportion of the first polarized wave included in the synthesized wave by increasing the number of polarization scattering elements.
- the ratio of the first polarized wave and the second polarized wave included in the synthesized wave generated in the light guide plate 20 from the second polarized wave satisfies the following formula (1). It is preferable to make it.
- First polarized wave: second polarized wave 1: 1 (1)
- the utilization efficiency of the second polarized wave is improved, so that the amount of the second polarized wave transmitted to the front side is increased, and as a result the screen Becomes brighter.
- the turbidity (haze) indicating the transparency of the light guide plate 20 is also increased.
- the turbidity increases, there is a problem that when the display 12 is viewed from the front side to the back side, the entire screen becomes cloudy and the background becomes blurred and difficult to see.
- the polarization scattering element is reduced, the turbidity is reduced, so that the white turbidity of the screen is reduced and the background becomes easier to see.
- the ratio of the first polarized wave included in the synthesized wave generated from the second polarized wave is reduced, the utilization efficiency of the second polarized wave cannot be improved.
- transmits a back side increases compared with a 1st basic examination, the problem that a viewer feels more dazzling if the display 12 is visually recognized from the back side is not solved. .
- FIG. 7 is a diagram showing the relationship between the turbidity of the light guide plate 20 and the background appearance or screen brightness. More specifically, FIG. 7A shows the background appearance when the turbidity is large. It is a figure which shows the relationship with the brightness of a screen, FIG.7 (B) is a figure which shows the appearance of a background and screen brightness when a turbidity is small. When the turbidity is large, the screen becomes bright as shown in FIG. 7A, but the background appears blurred. However, when the turbidity decreases, the background becomes clear as shown in FIG. 7B, but the brightness of the screen becomes dark.
- FIG. 8 is a block diagram showing a configuration of the liquid crystal display device 110 according to the first embodiment.
- FIG. 8 is a block diagram showing a configuration of a liquid crystal display device 110 having a display 15 described later.
- the liquid crystal display device 110 is an active matrix display device including a display 15, a display control circuit 112, a scanning signal line driving circuit 113, and a data signal line driving circuit 114.
- the display 15 includes not only the liquid crystal panel 30 but also a light guide plate to which a light source is attached, various polarizing plates, and the like, which are not shown.
- the liquid crystal panel 30 included in the display 15 includes n scanning signal lines G1 to Gn, m data signal lines S1 to Sm, and (m ⁇ n) pixels Pij (where m is An integer of 2 or more, j is an integer of 1 to m).
- the scanning signal lines G1 to Gn are arranged in parallel to each other, and the data signal lines S1 to Sm are arranged in parallel to each other so as to be orthogonal to the scanning signal lines G1 to Gn.
- Pixels Pij are arranged near the intersections of the scanning signal lines Gi and the data signal lines Sj. In this way, (m ⁇ n) pixels Pij are arranged two-dimensionally, m in the row direction and n in the column direction.
- the scanning signal line Gi is connected in common to the pixel Pij arranged in the i-th row, and the data signal line Sj is connected in common to the pixel Pij arranged in the j-th column.
- a control signal SC such as a horizontal synchronization signal HSYNC and a vertical synchronization signal VSYNC and an image signal DV are supplied from the outside of the liquid crystal display device 110. Based on these signals, the display control circuit 112 outputs a clock signal CK and a start pulse ST to the scanning signal line driving circuit 113, and outputs a control signal SC and an image signal DV to the data signal line driving circuit 114. Output.
- the scanning signal line driving circuit 113 supplies high level output signals to the scanning signal lines G1 to Gn one by one in order. As a result, the scanning signal lines G1 to Gn are sequentially selected one by one, and the pixels Pij for one row are selected at a time.
- the data signal line driving circuit 114 applies a signal voltage corresponding to the image signal DV to the data signal lines S1 to Sm based on the control signal SC and the image signal DV. As a result, a signal voltage corresponding to the image signal DV is written into the selected pixel Pij for one row. In this way, the liquid crystal display device 110 displays an image on the liquid crystal panel 30.
- FIG. 9 is a cross-sectional view illustrating a configuration of the display 15 included in the liquid crystal display device 110 according to the first embodiment.
- the second absorption type polarizing plate 42, the liquid crystal panel 30, the first absorption type polarizing plate 41, the light guide plate 20, and the reverse mode type arranged from the front side to the back side.
- the polymer dispersed liquid crystal element 60 and the reflective polarizing plate 53 are arranged in this order.
- the display 15 further includes the reverse mode type polymer dispersed liquid crystal element 60 and the reflective polarizing plate 53 on the back surface side of the light guide plate 20 in the display 11 shown in FIG.
- the light guide plate 20 is made of a transparent resin such as acrylic or polycarbonate, or glass, and has a dot pattern formed on the surface thereof so that light incident from the light source 25 can be emitted to the front side and the back side.
- a diffusing agent such as silica is added.
- an LED light emitting body
- the light guide plate 20 proceeds while repeating total reflection on the surface of the light guide plate 20, and enters the dot pattern or the diffusing agent. 20 is emitted to the display surface side or the back surface side.
- the polymer-dispersed liquid crystal element 60 generates a first polarized wave and a second polarized wave that are adjusted to approach one-to-one when the first polarized wave, the second polarized wave, or light including them enters. Then exit.
- FIG. 10 is a cross-sectional view showing the configuration of the polymer dispersion type liquid crystal element 60 that adjusts the ratio of the first polarized wave and the second polarized wave. More specifically, FIG. 10A shows that the electric field is turned on.
- FIG. 10B is a cross-sectional view of the polymer dispersed liquid crystal element 60 that is in the scattering mode by turning off the electric field.
- the polymer dispersed liquid crystal element 60 has a polymer network 63 and a liquid crystal sealed in a space sandwiched between two sealing members 61 in which a transparent electrode 62 is formed.
- a glass plate is used as the sealing member 61.
- the liquid crystal molecules 64 of the liquid crystal sealed together with the polymer network 63 are aligned in the same direction.
- the polarization direction of the incident light incident on the polymer dispersed liquid crystal element 60 is transmitted through the polymer dispersed liquid crystal element 60 without being converted. For example, if the incident light is the first polarized wave, the transmitted light remains the first polarized wave.
- the mode of the polymer dispersed liquid crystal element 60 at this time is referred to as a “transmission mode”.
- the orientation of the liquid crystal molecules 64 sealed together with the polymer network 63 becomes random.
- the light incident on the polymer dispersion type liquid crystal element 60 is scattered, and the ratio of the first polarized wave and the second polarized wave included in the scattered light is adjusted to be close to 1: 1.
- the mode of the polymer dispersed liquid crystal element 60 at this time is referred to as a “scattering mode”.
- the reverse mode type polymer dispersed liquid crystal element 60 that is in the transmission mode when the electric field is off and is in the scattering mode when the electric field is on is a reverse mode type polymer network / liquid crystal composite film (PDLC (Polymer Dispersed Liquid Crystal) : Polymer dispersed liquid crystal))).
- PDLC Polymer Dispersed Liquid Crystal
- the scattering mode and the transmission mode of the polymer dispersed liquid crystal element 60 are switched in synchronization with the light source 25 being turned on / off. Specifically, when the light source 25 is turned on, the polymer dispersed liquid crystal element 60 is in a scattering mode, and when the light source 25 is turned off, the polymer dispersed liquid crystal element 60 is switched to a transmission mode. In this way, the mode of the polymer dispersed liquid crystal element 60 and the turning on / off of the light source 25 are synchronized. For this reason, as will be described later, if the light source 25 is turned on and the polymer dispersed liquid crystal element 60 is set to the scattering mode, the proportion of the light transmitted from the light guide plate 20 to the front side increases. Light utilization efficiency is improved.
- the polymer dispersion type liquid crystal element 60 When the light source 25 is turned on, the polymer dispersion type liquid crystal element 60 may be set to the transmission mode, and when the light source 25 is turned off, the polymer dispersion type liquid crystal element 60 may be set to the scattering mode. The description is omitted.
- a general polymer dispersion type liquid crystal element is a normal type which is in a transmission mode when the electric field is on and is in a scattering mode when the electric field is off.
- the polymer dispersion type liquid crystal element 60 used in the present invention is a reverse mode type in which the scattering mode is set when the electric field is on and the transmission mode is set when the electric field is off. This is because, in order to suppress the power consumption of the liquid crystal display device 110, it is preferable to design the display 15 to be a see-through display when the power of the display 15 is turned off.
- the polymer dispersion type liquid crystal element 60 will be described as a reverse mode type unless otherwise specified.
- a normal polymer dispersed liquid crystal element can be used.
- the transmission axis of the reflective polarizing plate 53 and the transmission axis of the first absorption polarizing plate 41 are the same direction, and the transmission axis of the first absorption polarizing plate 41 and the transmission of the second absorption polarizing plate 42.
- the axes are orthogonal to each other.
- FIG. 11 is a diagram showing a ray trajectory when light incident from the back side is transmitted to the front side in the display 15 shown in FIG.
- the polymer dispersion type liquid crystal element 60 is in a transmission mode, and the light source 25 is turned off.
- the second polarized wave incident from the back side is reflected by the reflective polarizing plate 53 to the back side.
- the first polarized wave incident from the back side passes through the reflective polarizing plate 53 and enters the polymer dispersed liquid crystal element 60. Since the polymer dispersed liquid crystal element 60 is in the transmission mode, the first polarized wave is transmitted as it is without being converted.
- the first polarized wave is further transmitted through the light guide plate 20 and the first absorption polarizing plate 41 to form a liquid crystal panel. 30 is incident.
- the description thereof is omitted.
- the first polarized wave transmitted through the pixel in the off state is converted into the second polarized wave, and the second polarized wave passes through the second absorption polarizing plate 42 and exits to the front side.
- the first polarized wave transmitted through the pixel in the on state is emitted as the first polarized wave without being converted, and is absorbed by the second absorption polarizing plate 42.
- the viewer on the front side displays the back side state at a position corresponding to the pixel in the off state, and can visually recognize the screen displayed in black at the position corresponding to the pixel in the on state.
- FIG. 12 is a diagram showing a ray trajectory when light incident from the front side is transmitted to the back side in the display 15 shown in FIG. Similarly to the case shown in FIG. 11, in the case of FIG. 12, the polymer dispersion type liquid crystal element 60 is in the transmission mode, and the light source 25 is turned off. The first polarized wave incident from the front side is absorbed by the second absorption polarizing plate 42, and the second polarized wave passes through the second absorption polarizing plate 42 and enters the liquid crystal panel 30.
- the first polarized wave incident on the on-state pixel of the liquid crystal panel 30 is emitted as it is without being converted and is absorbed by the first absorption-type polarizing plate 41.
- the second polarized wave incident on the pixel in the off state is converted into the first polarized wave, passes through the first absorption type polarizing plate 41 and the light guide plate 20, and enters the polymer dispersed liquid crystal element 60. Since the polymer dispersion type liquid crystal element 60 is in the transmission mode, the incident first polarized wave is transmitted as it is and is incident on the reflective polarizing plate 53.
- the transmission axis of the reflective polarizing plate 53 is the same direction as the transmission axis of the first absorption polarizing plate 41, the first polarized wave passes through the reflective polarizing plate 53 and escapes to the back side.
- the viewer on the back side can view the screen in which the front side state is displayed at a position corresponding to the pixel in the off state and black is displayed at the position corresponding to the pixel in the on state.
- the display 15 functions as a see-through display.
- FIG. 13 is a diagram showing a light ray locus when light emitted from the light guide plate 20 is transmitted to the front side and the back side when the light source 25 is lit in the display 15 shown in FIG.
- the polymer dispersed liquid crystal element 60 is in the scattering mode, and the light source 25 is lit.
- the first polarized wave and the second polarized wave emitted from the light guide plate 20 to the display surface side enter the first absorption polarizing plate 41.
- the first absorption polarizing plate 41 absorbs the second polarized wave in the incident light and transmits the first polarized wave.
- the ray trajectory from when the first polarized wave transmitted through the first absorption type polarizing plate 41 enters the liquid crystal panel 30 until it is transmitted to the front side is the same as that shown in FIG. .
- the polymer dispersed liquid crystal element 60 when the first polarized wave emitted from the light guide plate 20 to the back side is incident on the polymer dispersed liquid crystal element 60, the polymer dispersed liquid crystal element 60 has a one-to-one correspondence from the incident first polarized wave.
- the first polarized wave and the second polarized wave adjusted so as to approach each other are generated and emitted toward the reflective polarizing plate 53.
- the first polarized wave passes through the reflective polarizing plate 53 and passes to the back side, and the second polarized wave is reflected by the reflective polarizing plate 53 and enters the polymer dispersed liquid crystal element 60 again.
- the polymer dispersion type liquid crystal element 60 receives 1 from the incident second polarized wave.
- a first polarized wave and a second polarized wave adjusted so as to approach the pair 1 are generated and emitted toward the reflective polarizing plate 53.
- the first polarized wave passes through the reflective polarizing plate 53 and exits to the back side.
- the second polarized wave is reflected by the reflective polarizing plate 53 and enters the polymer dispersed liquid crystal element 60 again.
- the polymer dispersed liquid crystal element 60 generates a first polarized wave and a second polarized wave that are adjusted to approach one-to-one from the second polarized wave reflected by the reflective polarizing plate 53, and the light guide plate 20. Exit toward The first polarized wave and the second polarized wave pass through the light guide plate 20 and enter the first absorption polarizing plate 41. The subsequent ray trajectories of the first polarized wave and the second polarized wave are the same as the ray trajectories of the first polarized wave and the second polarized wave emitted from the light guide plate 20 to the display surface side, and the description thereof is omitted. .
- the viewer on the front side displays the light emission state at a position corresponding to the pixel in the off state, and can visually recognize the screen displayed in black at the position corresponding to the pixel in the on state.
- the display 15 can display a combination of the light emitting state and the black display.
- the ray trajectory and the light amount in the display 11 used in the first basic study and the display 12 used in the second basic study are considered the relationship.
- the light source 25 is turned on, and the total amount of light emitted from the light guide plate 20 to the display surface side and the back surface side at that time is “1”, and the loss of light amount due to various members is ignored. .
- FIG. 14 is a diagram showing the ray trajectory in the display 11 used in the first basic study and the light quantity of each ray trajectory.
- the ratios of the first and second polarized waves emitted from the light guide plate 20 to the display surface side and the back surface side are both “0.25”.
- the ratio of the first and second polarized waves transmitted to the back side is “0.25”.
- the ratio of the second polarized wave converted from the first polarized wave emitted from the light guide plate 20 to the display surface side and transmitted to the front surface side is also “0.25”.
- the second polarized wave emitted from the light guide plate 20 to the display surface side is absorbed by the first absorption polarizing plate 41 and cannot be transmitted to the front surface side.
- the ratio of light transmitted to the front side is “0.25”, and the ratio of light transmitted to the rear side is “0.50”.
- FIG. 15 is a diagram showing the ray trajectory in the display 12 used in the second basic study and the light quantity of each ray trajectory.
- the first and second polarized waves emitted from the light guide plate 20 to the display surface side and the back surface side the first and second reflective polarizing plates 51 and 52.
- the ratio of the light transmitted to the front side or the back side without being reflected by the light is “0.25”.
- the second polarized wave is reflected by the first reflective polarizing plate 51 and enters the light guide plate 20 again.
- the second polarized wave incident on the light guide plate 20 is scattered by passing through the polarization scattering element in the light guide plate 20, and becomes a combined wave including the first polarized wave and the second polarized wave.
- the ratio of the first polarized wave and the second polarized wave included in this synthesized wave is usually not 1: 1. Therefore, if the ratio of the first polarized wave included in the synthesized wave is “ ⁇ ”, “ ⁇ ” is a value that satisfies the following equation (2). ⁇ ⁇ 0.25 (2)
- the first polarized wave with the ratio “ ⁇ ” included in the synthesized wave generated from the second polarized wave reflected by the first reflective polarizing plate 51 is the second reflective polarizing plate 52, the first absorbing polarized light.
- the light passes through the plate 41 and enters the liquid crystal panel 30.
- the first polarized wave incident on the liquid crystal panel 30 is converted into a second polarized wave, passes through the second absorption polarizing plate 42, and exits to the front side.
- the ratio of the second polarized wave transmitted to the front side is “ ⁇ ”.
- the ratio of light transmitted to the front side and the back side is both “0.25 + ⁇ ”.
- FIG. 16 is a diagram showing the relationship between the ray trajectory and the amount of light in the display 15 of the present embodiment. As shown in FIG. 16, the ratios of the first and second polarized waves emitted from the light guide plate 20 to the display surface side and the back surface side are both “0.25”, and the polymer dispersed liquid crystal element 60 is It is a scattering mode.
- the light emitted from the light guide plate 20 to the back side and transmitted through the polymer dispersed liquid crystal element 60 will be described.
- the light incident on the polymer dispersed liquid crystal element 60 is a first polarized wave having a ratio of “0.25” and a second polarized wave having a ratio of “0.25” emitted from the light guide plate 20 to the back side. is there.
- the first polarized wave is adjusted by the polymer dispersion type liquid crystal element 60 so that the ratio of the first polarized wave and the second polarized wave approaches 1: 1.
- the first polarized wave with the ratio “0.25” is converted into the first polarized wave with “0.125” and the second polarized wave with “0.125”.
- the second polarized wave having the ratio “0.25” is converted into the first polarized wave “0.125” and the second polarized wave “0.125”.
- the ratio of the first polarized wave emitted from the polymer dispersed liquid crystal element 60 toward the reflective polarizing plate 53 is the sum of the ratio of the two first polarized waves “0.125”. .25 ".
- the ratio of the second polarized wave emitted from the polymer dispersed liquid crystal element 60 toward the reflective polarizing plate 53 is the sum of the ratios of the two second polarized waves “0.125”. 0.25 ".
- the first polarized wave having a ratio of “0.125” generated from the first polarized wave and the second polarized wave passes through the reflective polarizing plate 53 and exits to the back side.
- the second polarized wave having a ratio of “0.125” reflected by the reflective polarizing plate 53 is incident on the polymer dispersed liquid crystal element 60, and the ratio is 1: 1 by the polymer dispersed liquid crystal element 60.
- the first polarized wave and the second polarized wave having a ratio of “0.0625” are obtained.
- the first polarized wave and the second polarized wave having a ratio of “0.0625” are transmitted through the light guide plate 20 and incident on the first absorption polarizing plate 41.
- the first absorption type polarizing plate 41 absorbs the second polarized wave and transmits the first polarized wave
- the first polarized wave having a ratio of “0.0625” is transmitted and enters the liquid crystal panel 30.
- the second polarized wave converted by the liquid crystal panel 30 passes through the second absorption polarizing plate 42 and exits to the front side.
- the ratio “0.125” of the first polarized wave emitted from the liquid crystal panel 30 is the sum of the two first polarized waves incident on the liquid crystal panel 30 and having the ratio “0.0625”.
- the ratio of the second polarized wave transmitted to the front side is “0.375” which is the sum of “0.25” and “0.125”.
- the ratio of the first polarized wave transmitted to the back side is “0.25” which is the sum of “0.125” and “0.125”.
- the second polarized wave transmitted to the front side is compared between the case of the present embodiment, the case of the first basic study, and the case of the second basic study.
- the ratio of the first polarized wave transmitted to the front side is “0.25”.
- the ratio of the first polarized wave transmitted to the front side is “0.25 + ⁇ ”. Since “ ⁇ ” is a value in the range represented by the above equation (2), “0.25 + ⁇ ” is “0.5” at the maximum.
- this embodiment as shown in FIG. 16, it is “0.375”.
- the second polarized wave having a larger amount of light is transmitted to the front side than in the case of the first basic study.
- the second polarized wave with a larger amount of light may be transmitted to the front side than in the case of the present embodiment. If the amount of light transmitted to the front side is increased in the second basic study, the problem described later arises.
- the first polarized wave transmitted to the back side is compared with the case of the present embodiment, the case of the first basic study, and the case of the second basic study.
- the first basic study as shown in FIG. 14, the light transmitted to the back side is a first polarized wave having a ratio of “0.25” and a second polarized wave having a ratio of “0.25”. . Therefore, the ratio of the light transmitted to the back side is “0.50” which is the sum of them.
- the second basic study as shown in FIG. 15, only the first polarized wave is transmitted to the back side, and the ratio is “0.25 + ⁇ ”. Since “ ⁇ ” is a value in the range represented by the above formula (2), it is “at least“ 0.25 ”or more.
- the light transmitted to the side is only the first polarized wave, and the ratio is “0.25.” Therefore, in the case of this embodiment, the amount of light transmitted to the back side is the case of any basic study. Furthermore, as described in the first basic study, the light transmitted from the light guide plate 20 to the back side has a brightness peak in a specific angle direction with respect to the light guide plate 20. However, according to the present embodiment, the brightness peak is distributed over a wider angle than the specific angle direction, thereby reducing the glare felt by the viewer.
- FIG. 17 is a diagram comparing the effects of this embodiment with the first and second basic studies.
- the amount of light transmitted to the front surface side can be increased by 1.5 times. Thereby, the utilization efficiency of light can be improved and the screen can be brightened.
- the amount of light transmitted to the back side can be halved, and the brightness peak can be dispersed over a wide angle to reduce glare when viewing the display 15 from the back side. Can do.
- the amount of light transmitted to the front side is “0.25 + ⁇ ”, and depending on the value of “ ⁇ ”, the amount of light transmitted is greater than in the case of this embodiment, so the screen becomes brighter. .
- the turbidity of the light guide plate 20 increases. Accordingly, as shown in FIG. 7A, the background blur seen when viewing the background side from the front side is shown. Becomes larger. On the other hand, in this embodiment, the viewer can visually recognize the background clearly displayed on the bright screen.
- the present embodiment not only the first polarized wave emitted from the light guide plate 20 to the display surface side, but also the polymer dispersed liquid crystal in a scattering mode from the first polarized wave and the second polarized wave emitted to the back surface side.
- the first polarized wave included in the light converted by the element 60 is also converted into the second polarized wave by the liquid crystal panel 30 and transmitted to the front side.
- the first polarized wave and the second polarized wave emitted from the light guide plate 20 to the back surface side is reflected to the display surface side by the reflective polarizing plate 53, the first polarized wave transmitted through the back surface side.
- the amount of light decreases. This makes it difficult for viewers on the back side to feel dazzling.
- the display 15 when the viewer uses the display 15 as a see-through display, the brightness of the screen becomes dark, but the turbidity of the light guide plate 20 becomes small, so that the viewer can visually recognize the clearly displayed background without blurring. can do.
- FIG. 18 is a diagram showing a ray trajectory when light incident from the back side is transmitted to the front side in the display 16 of the present embodiment, and FIG. 19 is incident from the front side of the display 16 of the present embodiment.
- FIG. 20 is a diagram showing a ray trajectory when light is transmitted to the back side, and FIG. It is a figure which shows the light ray locus at the time.
- the polymer dispersion type liquid crystal element 60 is in the transmission mode, and the light source 25 is turned off.
- the polymer dispersed liquid crystal element 60 is in a scattering mode, and the light source 25 is lit.
- the ray trajectories of the first and second polarized waves incident from the back side, the second polarized wave incident from the front side, and the first and second polarized waves emitted from the light guide plate 20 are shown in FIG. Since it is the same as that shown in FIGS. However, in the present embodiment, the first polarized wave incident on the reflective polarizing plate 54 from the front side is reflected by the reflective polarizing plate 54 and returned to the front side. In any case, the first polarized wave that is transmitted through the liquid crystal panel 30 and is incident on the reflective polarizing plate 54 is reflected by the reflective polarizing plate 54 and is incident on the liquid crystal panel 30 again. The description is omitted because it is not directly related.
- the first polarized wave is reflected from the light incident on the reflective polarizing plate 54 from the front side.
- the viewer on the front side enters a mirror state by the reflected first polarized wave, reflects the front side, and displays it at a position corresponding to the pixel in the off state, for example, in the case shown in FIG. In the case shown in FIG. 20, the light emission state displayed at the position corresponding to the pixel in the off state can be visually recognized.
- the display 16 becomes a display excellent in design.
- the configuration and operation of the liquid crystal display device according to the present embodiment are the same as those of the first embodiment shown in FIG. 8, a diagram and description thereof are omitted.
- the configuration of the display 17 of the present embodiment is the first of the components of the display 15 of the first embodiment shown in FIG. 9 that is disposed at a position sandwiched between the liquid crystal panel 30 and the light guide plate 20. Only the reflection type polarizing plate 55 is arranged instead of the absorption type polarizing plate 41, and the arrangement of other components is the same as that shown in FIG. For this reason, the figure which shows the structure and description are abbreviate
- the polarization axis of the reflective polarizing plate 55 is the same direction as the polarization axis of the reflective polarizing plate 53.
- the display 17 of the present embodiment functions as a see-through display, transmits the first polarized wave incident from the rear side to the front side as the second polarized wave, and transmits the second polarized wave incident from the front side to the first polarized wave.
- these ray trajectories are substantially the same as those in the first embodiment shown in FIGS. 11 and 12, respectively.
- 21 to 23 are diagrams showing, in time series, the ray trajectories of the first and second polarized waves emitted from the light guide plate 20 and the light amounts of the respective ray trajectories in the display 17 of the present embodiment.
- the light quantity of each ray trajectory when the light source 25 is turned on and the polymer dispersion type liquid crystal element 60 is in the scattering mode will be described.
- the ray trajectories other than the ray trajectory of the second polarized wave reflected by the reflective polarizing plate 55 are the same as the ray trajectories shown in FIG. Is omitted.
- the ratio of the first polarized wave emitted from the light guide plate 20 to the display surface side and the back surface side is “0.25”, respectively.
- the first polarized wave emitted to the display surface side passes through the reflective polarizing plate 55, the liquid crystal panel 30, and the second absorption polarizing plate 42 and exits to the front side.
- the second polarized wave converted from the first polarized wave by the liquid crystal panel 30, and the ratio is “0.25”.
- the first polarized wave emitted to the back side is transmitted through the scattering mode polymer dispersion type liquid crystal element 60 and the reflection type polarizing plate 53 and escapes to the back side.
- the second polarized wave is transmitted to the back side, and the ratio is “0.25” as described in FIG.
- the second polarized wave emitted from the light guide plate 20 toward the display surface is reflected by the reflective polarizing plate 55 and travels toward the back side. Therefore, the second polarized wave is referred to as “second polarized wave A”, and the ray trajectory thereof will be described with reference to FIG.
- the second polarized wave emitted from the light guide plate 20 to the back surface side is transmitted through the scattering mode polymer dispersed liquid crystal element 60 and is incident on the reflective polarizing plate 53.
- the reason why the ratio of the second polarized wave incident on the reflective polarizing plate 53 is “0.25” has been described with reference to FIG.
- the second polarized wave incident on the reflective polarizing plate 53 is reflected and incident on the polymer dispersed liquid crystal element 60.
- the polymer-dispersed liquid crystal element 60 generates and emits a first polarized wave and a second polarized wave that are adjusted to approach one-to-one from the second polarized wave.
- the ratio of the emitted first polarized wave and second polarized wave is both “0.125”.
- the first polarized wave and the second polarized wave pass through the light guide plate 20 and enter the reflective polarizing plate 55.
- the reflective polarizing plate 55 transmits the first polarized wave with a ratio of “0.125” and reflects the second polarized wave with “0.125”.
- the first polarized wave that has passed through the reflective polarizing plate 55 is then transmitted through the liquid crystal panel 30 and the second absorption polarizing plate 42 to escape to the front side.
- the second polarized wave converted by the liquid crystal panel 30, and the ratio thereof is “0.125”.
- the ratio of the second polarized wave transmitted to the front side is “0.375”, and the ratio of the first polarized wave transmitted to the back side is “0.25”. It can be seen that “0.375”, which is the sum of “0.125” and “0.125”.
- second polarized wave B the second polarized wave reflected by the reflective polarizing plate 55 and having a ratio of “0.125” is referred to as “second polarized wave B”, and the subsequent ray trajectory will be described with reference to FIG.
- the second polarized wave A passes through the light guide plate 20 and enters the polymer dispersed liquid crystal element 60.
- the polymer-dispersed liquid crystal element 60 generates and emits a first polarized wave and a second polarized wave that are adjusted to approach one-to-one from the second polarized wave A.
- the ratios of the emitted first polarized wave and second polarized wave are both “0.125”.
- the first polarized wave having a ratio of “0.125” passes through the reflective polarizing plate 53 and exits to the back side.
- the second polarized wave having a ratio of “0.125” is reflected by the reflective polarizing plate 53.
- the second polarized wave reflected by the reflective polarizing plate 53 is incident on the polymer dispersed liquid crystal element 60 again.
- the polymer-dispersed liquid crystal element 60 generates and emits a first polarized wave and a second polarized wave that are adjusted to approach one-to-one from the second polarized wave.
- the ratio of the emitted first polarized wave and second polarized wave is both “0.0625”.
- the first polarized wave and the second polarized wave pass through the light guide plate 20 and enter the reflective polarizing plate 55.
- the reflective polarizing plate 55 transmits the first polarized wave having a ratio of “0.0625” and reflects the second polarized wave having “0.0625”.
- the first polarized wave that has passed through the reflective polarizing plate 55 is then transmitted through the liquid crystal panel 30 and the second absorption polarizing plate 42 to escape to the front side.
- the second polarized wave converted by the liquid crystal panel 30 exits to the front side, and the ratio is “0.0625”.
- the ratio of the second polarized wave transmitted to the front side is “0.0625”, and the ratio of the first polarized wave transmitted to the back side is “0.125”. It can be seen that it is.
- the second polarized wave having a ratio of “0.0625” emitted from the light guide plate 20 to the display surface side is reflected by the reflective polarizing plate 55.
- a description of the subsequent ray trajectory of the second polarized wave C, which is the second polarized wave, is omitted.
- the second polarized wave B having a ratio of “0.125” reflected by the reflective polarizing plate 53 passes through the light guide plate 20 and enters the polymer dispersed liquid crystal element 60.
- the polymer-dispersed liquid crystal element 60 generates and emits a first polarized wave and a second polarized wave that are adjusted to approach one-to-one from the second polarized wave B.
- the ratio of the emitted first polarized wave and second polarized wave is both “0.0625”.
- the first polarized wave with the ratio “0.0625” is transmitted through the reflective polarizing plate 53 and passes to the back side, and the second polarized wave with the ratio “0.0625” is reflected by the reflective polarizing plate 53.
- the second polarized wave reflected by the reflective polarizing plate 53 enters the polymer dispersed liquid crystal element 60.
- the polymer-dispersed liquid crystal element 60 generates and emits a first polarized wave and a second polarized wave that are adjusted to approach one-to-one from the second polarized wave.
- the ratio of the emitted first polarized wave and second polarized wave is both “0.03125”.
- These first and second polarized waves pass through the light guide plate 20 and enter the reflective polarizing plate 55.
- the reflective polarizing plate 55 transmits the first polarized wave with a ratio of “0.03125” and reflects the second polarized wave with “0.03125”.
- the first polarized wave that has passed through the reflective polarizing plate 55 is then transmitted through the liquid crystal panel 30 and the first absorption polarizing plate 41 to escape to the front side.
- the second polarized wave converted by the liquid crystal panel 30 exits to the front side, and the ratio is “0.03125”.
- the ratio of the second polarized wave transmitted to the front side is “0.03125”, and the ratio of the first polarized wave transmitted to the back side is “0.0625”. It can be seen that it is.
- the second polarized wave having a ratio of “0.03125” emitted from the light guide plate 20 to the display surface side is reflected by the reflective polarizing plate 55. Description of the subsequent ray trajectory of the second polarized wave D, which is the second polarized wave, is omitted.
- the second polarized wave emitted from the light guide plate 20 toward the display surface is reflected by the reflective polarizing plate 55 and the reflective polarizing plate 53 and is generated from the second polarized wave by the polymer dispersed liquid crystal element 60.
- the first polarized wave transmitted through the reflective polarizing plate 55 passes through to the front side. Thereby, the light quantity of the 2nd polarization wave which passes through to the front side increases.
- the first polarized wave generated by the polymer dispersed liquid crystal element 60 passes through the reflective polarizing plate 53 and exits to the back side. Thereby, the light quantity of the 1st polarization wave which passes through to the back side also increases.
- the ratio of the second polarized wave transmitted to the front side and the first polarized wave transmitted to the rear side is further increased by the second polarized wave C and the second polarized wave D, which are not described in FIGS. .
- the first polarized wave having a ratio of “0.25” emitted from the light guide plate 20 to the display surface side is also converted by the liquid crystal panel 30 and the ratio is “0.25”. It transmits to the front side as the second polarized wave.
- the ratio of the second polarized wave transmitted to the front surface side is “0.50” which is the sum thereof.
- FIG. 24 is a diagram comparing the effects of the present embodiment with the cases of the first and second basic studies.
- the amount of light transmitted to the front side is doubled, so that the light use efficiency is improved and the screen can be brightened.
- the amount of light transmitted to the front side is “0.25 + ⁇ ”, and if the value of “ ⁇ ” is “0.25”, it is the same as in the present embodiment.
- the light use efficiency can be improved to the same extent as in the case of the present embodiment.
- the turbidity of the light guide plate 20 increases. There is a problem that is blurred.
- the viewer can visually recognize the background clearly displayed on the bright screen.
- the polymer-dispersed liquid crystal element 60 in the scattering mode includes the first polarized wave and the second polarized wave at a ratio close to 1: 1. Converted to light.
- the converted first polarized wave is transmitted through the reflective polarizing plate 55 disposed on the front surface of the light guide plate 20 and transmitted to the front surface side, so that the amount of light transmitted to the front surface side can be further increased. As a result, the light utilization efficiency can be further improved and the screen can be brightened.
- the liquid crystal display device is characterized by the configuration of the polymer dispersed liquid crystal element 60 included in each of the displays 15 to 17. Therefore, the configuration and operation of the liquid crystal display device according to the following embodiments are the same as the configuration and operation shown in FIG.
- FIG. 25 shows the display 15 shown in FIG. 9, in which a film sheet showing birefringence is used as the sealing member 61 of the polymer dispersion type liquid crystal element 60, and the light source 25 is turned off, and the back side to the front side. It is a figure for demonstrating the light ray locus
- the first polarized wave incident on the polymer dispersion type liquid crystal element 60 in the transmission mode cannot be transmitted through the polymer dispersion type liquid crystal element 60 as the first polarization wave, and the sealing exhibits birefringence. Birefringed by the member 61.
- the light emitted from the polymer dispersion type liquid crystal element 60 includes the second polarized wave, for example, the first polarized wave and the second polarized wave as 0.9 to 0.1.
- the ratio of one polarized wave is lowered.
- the first polarized wave is transmitted through the first absorption polarizing plate 41
- the second polarized wave converted by the liquid crystal panel 30 is transmitted to the front side
- the second polarized wave is transmitted to the first absorption polarizing plate 41. Absorbed. Since the amount of the second polarized wave transmitted to the front side is smaller than that shown in FIG. 11, the brightness of the screen becomes dark.
- FIG. 26 shows a ray trajectory of light emitted from the light guide plate 20 in the state where a film sheet showing birefringence is used as the sealing member 61 of the polymer dispersed liquid crystal element 60 and the light source 25 is turned on. It is a figure for demonstrating.
- the first polarized wave and the second polarized wave are in a ratio close to 1: 1. It is not included but birefringent by the film sheet which is the sealing member 61 showing birefringence.
- the light emitted from the polymer dispersed liquid crystal element 60 includes a larger amount of the second polarized wave such that the ratio of the first polarized wave and the second polarized wave is 0.4 to 0.6, for example, Accordingly, the first polarized wave decreases. Thereafter, the first polarized wave is transmitted through the first absorption type polarizing plate 41, and the second polarized wave converted by the liquid crystal panel 30 is transmitted to the front side. Since the amount of the second polarized wave is smaller than that shown in FIG. 13, the brightness of the screen becomes dark.
- the polymer dispersion type liquid crystal element 60 emits the incident first polarized wave as it is in the transmission mode, and the ratio of the first polarized wave and the second polarized wave approaches 1: 1 in the scattering mode.
- the light is adjusted as follows. Thereafter, the first polarized wave is transmitted through the first absorption type polarizing plate 41, and the second polarized wave converted by the liquid crystal panel 30 is transmitted to the front side. In either case, the amount of the second polarized wave transmitted to the front surface side is larger than that shown in FIGS. 25 and 26, so that the brightness of the screen becomes brighter.
- a film sheet that does not exhibit birefringence as the sealing member 61 for the polymer dispersed liquid crystal element 60, birefringence is prevented from occurring in the sealing member 61.
- a film that does not exhibit birefringence for example, a TAC (Triacetylcellulose) film (triacetylcellulose film) manufactured by a solution-flow film forming method can be used.
- a glass plate that does not exhibit birefringence may be used as the sealing member 61 that does not exhibit birefringence.
- the sealing member 61 that does not exhibit birefringence a glass plate that does not exhibit birefringence may be used.
- the screen be brightened, but also the rigidity of the display can be improved as compared with the case where a film sheet is used.
- the manufacturing method of the glass plate which does not show birefringence is well-known, the description is abbreviate
- a film sheet that does not exhibit birefringence may be referred to as an “isotropic film sheet”, and a glass plate that does not exhibit birefringence may be referred to as an “isotropic glass sheet”.
- the light source 25 is not only attached to any one side of the light guide plate 20, but may be attached to any two or three sides, or may be attached to four sides.
- FIG. 27 is a cross-sectional view showing the configuration of a color filter type display 18 that displays an image or background in color.
- a color filter 80 is disposed between the liquid crystal panel 30 and the second absorption polarizing plate 42.
- the liquid crystal panel 30 driven by the TN system is used as an element for controlling the polarization state of the light transmitted through the displays 15 to 17.
- the liquid crystal panel that can be used is not limited to the TN system.
- the element is driven by another system such as a VA (Virtical Alignment) system
- VA Virtual Alignment
- Any element can be used as long as it can be controlled so as to transmit the polarized wave in one of the non-driven states and not transmit the polarized wave in the other. Therefore, such an element is sometimes referred to as a “polarization modulation element”.
- the polarization modulation element may be either a normally white type or a normally black type.
- the polarization modulation element becomes transparent when it is in an off state, that is, when not driven.
- the normally black type it is transparent when the polarization modulation element is in the on state, that is, in the driving state.
- the normally black type polarization modulation element must be driven not only when an image is displayed but also when a see-through state is entered. For this reason, the normally white polarization modulation element has an advantage that it can be driven with less power consumption than the normally black polarization modulation element.
- the ratio of the first polarized wave and the second polarized wave is adjusted so as to approach 1: 1, and in the transparent mode, the polymer dispersed liquid crystal element 60 is used as an element that can be transmitted as it is.
- the present invention is not limited to the polymer dispersed liquid crystal element 60, and any element having the above function may be used. Therefore, such an element may be referred to as a “light scattering switching element”.
- a light scattering switching element is more preferably a reverse mode type regardless of its type.
- first polarizing plate 41 and the reflection polarizing plate 55 in the above embodiment are collectively referred to as “first polarizing plate”, and the second absorption polarizing plate 42 and the reflection polarizing plate 54 are collectively referred to as “second polarizing plate”.
- second polarizing plate Sometimes referred to as “polarizing plate”.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
- Dispersion Chemistry (AREA)
- Planar Illumination Modules (AREA)
Abstract
バックライト光の利用効率を向上させることによって、前面側に透過する光の光量を増加させるとともに、背面側の眩しさを抑制することによって視聴者が感じるストレスを緩和することが可能な表示装置を提供する。 導光板20から表示面側に出射された第1偏光波だけでなく、裏面側に出射された第1偏光波および第2偏光波から散乱モードの高分子分散型液晶素子60によって変換された光に含まれる第1偏光波も、液晶パネル30によって第2偏光波に変換され前面側に透過する。これにより、導光板20から出射された光の利用効率が向上する。また、導光板20から裏面側に出射された第1偏光波および第2偏光波の一部が反射型偏光板53によって表示面側に反射されるので、背面側に透過する第1偏光波の光量が少なくなる。
Description
本発明は、表示装置に関し、特に、背景が透けて見えるシースルーディスプレイとしても機能する表示装置に関する。
近年、外部から与えられた画像信号に基づく画像を表示するだけでなく、前面側から背面側を視認することが可能なディスプレイ(以下、「シースルーディスプレイ」と呼ぶ場合がある)としても機能する表示装置の開発が活発に進められている。このようなシースルーディスプレイには、液晶パネルを用いる方式、透明な有機EL(Organic Light-Emitting Diode)と透明金属であるITO(Indium Tin Oxide:酸化インジウム錫)薄膜とを組み合わせる方式、プロジェクタ方式などの様々な方式がある。
特許文献1に記載された液晶表示装置モジュールは、コレステリック液晶の反射および透過特性を利用したシースルーディスプレイである。この液晶表示装置モジュールは、液晶パネルの側面に配置したバックライトユニットから光を直接入射させて画像を表示することにより、画像の視認性を向上させると共に、シースルーディスプレイとして使用したときの液晶パネルの透明度を改善する。
また、特許文献2に記載された表示装置では、2つの液晶セルの間にそれらにバックライト光を照射するバックライトユニットが配置され、当該バックライトユニットの両面にそれぞれ反射型偏光板が貼り付けられている。これにより、表示装置は、2つの液晶セルに明るい画像を表示することができる。また、1つのバックライトユニットで2つの液晶パネルを同時に照射するので、バックライトユニットの個数を減らすことができ、消費電力の低減が可能になる。
しかし、例えば液晶パネルを用いる方式のシースルーディスプレイでは、背面側を視認しやすくするために、表示装置内に透明度の高い光学部材を配置する必要がある。このような光学部材を配置すると、背面側に透過する光が多くなるので、導光板から出射される光のうち前面側に透過する光が少なくなる。このため、導光板から出射される光の利用効率が低下する。また、導光板から光を取り出す方法にもよるが、表示装置の裏面から背面側に出射される光は導光板に対して特定の角度方向にピークを有する場合が多い。このため、背面側にいる視聴者が当該特定の角度方向から表示装置の裏面を視認したときに、最も明るい光が目に入り、視聴者はストレスを感じやすくなる。
特許文献1に記載の液晶表示装置モジュールでは、液晶パネルの前面側および背面側に出射される光量は等しく、しかも背面側に出射された光を再利用することはできない。このため、バックライトユニットから液晶パネルに入射した光の利用効率が低下する。また、特許文献2に記載の表示装置では、導光板の両面の反射型偏光板は、反射軸が互いに直交するように貼り付けられている。このため、当該表示装置は、前面側から背面側を視認することが可能なシースルーディスプレイとして使用することができない。
そこで、本発明は、バックライト光の利用効率を向上させることによって、前面側に透過する光の光量を増加させるとともに、背面側の眩しさを抑制することによって視聴者が感じるストレスを緩和することが可能な表示装置を提供することを目的とする。
第1の局面は、画像信号に基づく画像を表示すると共に、シースルーディスプレイとしても機能するディスプレイを備えた表示装置であって、
前記ディスプレイは、
第1偏光波および前記第1偏光波の偏光軸と直交する偏光軸を有する第2偏光波を含む光を射出する光源と、
前記光源からの光を前記ディスプレイの表示面側および裏面側に向けて出射する導光板と、
前記導光板の裏面に配置され、入射する偏光波の偏光状態を変換することなく出力する透過モードと、前記第1偏光波と前記第2偏光波の割合が1対1に近づくように変換して出力する散乱モードとを有する光散乱切替素子と、
前記光散乱切替素子の裏面に配置された反射型偏光板と、
前記導光板から前面側に向かって順に配置された第1偏光板と、偏光変調素子と、第2偏光板とを備え、
偏光変調素子は、電圧を印加可能な複数の画素を含み、前記電圧によって前記画素に入射する前記第1偏光波または前記第2偏光波の偏光状態を制御して出力し、
前記反射型偏光板および前記第1偏光板は、前記第1偏光波および前記第2偏光波のうちいずれか一方の偏光波を透過し、前記第2偏光板は他方の偏光波を透過することを特徴とする。
前記ディスプレイは、
第1偏光波および前記第1偏光波の偏光軸と直交する偏光軸を有する第2偏光波を含む光を射出する光源と、
前記光源からの光を前記ディスプレイの表示面側および裏面側に向けて出射する導光板と、
前記導光板の裏面に配置され、入射する偏光波の偏光状態を変換することなく出力する透過モードと、前記第1偏光波と前記第2偏光波の割合が1対1に近づくように変換して出力する散乱モードとを有する光散乱切替素子と、
前記光散乱切替素子の裏面に配置された反射型偏光板と、
前記導光板から前面側に向かって順に配置された第1偏光板と、偏光変調素子と、第2偏光板とを備え、
偏光変調素子は、電圧を印加可能な複数の画素を含み、前記電圧によって前記画素に入射する前記第1偏光波または前記第2偏光波の偏光状態を制御して出力し、
前記反射型偏光板および前記第1偏光板は、前記第1偏光波および前記第2偏光波のうちいずれか一方の偏光波を透過し、前記第2偏光板は他方の偏光波を透過することを特徴とする。
第2の局面は、第1の局面において、
前記第1偏光板および前記第2偏光板は、いずれも吸収型偏光板であることを特徴とする。
前記第1偏光板および前記第2偏光板は、いずれも吸収型偏光板であることを特徴とする。
第3の局面は、第1の局面において、
前記第1偏光板は吸収型偏光板であり、前記第2偏光板は反射型偏光板であることを特徴とする。
前記第1偏光板は吸収型偏光板であり、前記第2偏光板は反射型偏光板であることを特徴とする。
第4の局面は、第1の局面において、
前記第1偏光板は反射型偏光板であり、前記第2偏光板は吸収型偏光板であることを特徴とする。
前記第1偏光板は反射型偏光板であり、前記第2偏光板は吸収型偏光板であることを特徴とする。
第5の局面は、第2から第4のいずれかの局面において、
前記偏光変調素子は液晶パネルであることを特徴とする。
前記偏光変調素子は液晶パネルであることを特徴とする。
第6の局面は、第5の局面において、
前記液晶パネルはノーマリホワイト型のパネルであることを特徴とする。
前記液晶パネルはノーマリホワイト型のパネルであることを特徴とする。
第7の局面は、第5の局面において、
前記液晶パネルは,ねじれネマティック方式のパネルであることを特徴とする。
前記液晶パネルは,ねじれネマティック方式のパネルであることを特徴とする。
第8の局面は、第1の局面において、
前記偏光変調素子と前記第2偏光板との間に配置されたカラーフィルタをさらに備えることを特徴とする。
前記偏光変調素子と前記第2偏光板との間に配置されたカラーフィルタをさらに備えることを特徴とする。
第9の局面は、第1の局面において、
前記光源は、少なくとも白色の表現が可能な色の光を発する複数種類の発光体を含み、前記複数種類の発光体を時分割して順に発光させることを特徴とする。
前記光源は、少なくとも白色の表現が可能な色の光を発する複数種類の発光体を含み、前記複数種類の発光体を時分割して順に発光させることを特徴とする。
第10の局面は、第1の局面において、
前記光散乱切替素子は、電界をオンしたときに前記散乱モードとなり、前記電界をオフしたときに前記透過モードになることを特徴とする。
前記光散乱切替素子は、電界をオンしたときに前記散乱モードとなり、前記電界をオフしたときに前記透過モードになることを特徴とする。
第11の局面は、第10の局面において、
前記光散乱切替素子は、液晶層と、前記液晶層内に形成された高分子ネットワークと、表面に電極が形成された封止部材とを備え、前記液晶層と前記高分子ネットワークとを前記封止部材によって挟んだ構造の高分子分散型液晶素子であることを特徴とする。
前記光散乱切替素子は、液晶層と、前記液晶層内に形成された高分子ネットワークと、表面に電極が形成された封止部材とを備え、前記液晶層と前記高分子ネットワークとを前記封止部材によって挟んだ構造の高分子分散型液晶素子であることを特徴とする。
第12の局面は、第11の局面において、
前記光散乱切替素子の前記封止部材は、等方性フィルムシートまたは等方性ガラス板のいずれかであることを特徴とする。
前記光散乱切替素子の前記封止部材は、等方性フィルムシートまたは等方性ガラス板のいずれかであることを特徴とする。
第1の局面によれば、導光板から表示面側に出射されたいずれか一方の偏光波だけでなく、裏面側に出射された第1偏光波および第2偏光波から散乱モードの光散乱切替素子によって変換された光に含まれるいずれか一方の偏光波も、偏光変調素子によって他方の偏光波に変換されて前面側に透過する。これにより、導光板から出射された光の利用効率が向上し、画面が明るくなる。また、導光板から裏面側に出射された第1偏光波および第2偏光波の一部が反射型偏光板によって表示面側に反射されるので、背面側に透過する一方の偏光波の光量が少なくなる。これにより、背面側にいる視聴者が感じる眩しさによるストレスが緩和される。
第2の局面によれば、第1の発明の場合と同様に、光の利用効率を向上させることができるとともに、背面側に透過する偏光波の光量を少なくすることができる。また、ディスプレイをシースルーディスプレイとして使用する際に、前面側または背面側に透過する偏光波の光量が少なくなるので、視聴者が視認する画面の明るさは暗くなる、しかし、導光板の濁度が小さくなるので、視聴者はぼやけることなくくっきりと表示された背景を視認することができる。
第3の局面によれば、第1の発明の場合と同様の効果が得られる。また、ディスプレイをシースルーディスプレイとして使用すれば、第2の発明と同様の効果が得られる。さらに、ディスプレイの表面に配置された反射型偏光板は前面側から入射した第1偏光波を反射するミラーとして機能するので、デザイン性に優れたディスプレイを実現することができる。
第4の局面によれば、第1の発明の場合と同様の効果が得られる。また、ディスプレイをシースルーディスプレイとして使用すれば、第2の発明と同様の効果が得られる。
第5の局面によれば、偏光変調素子は液晶パネルであるため、入射した光の偏光状態の制御を容易に行うことができる。
第6の局面によれば、偏光変調素子はノーマリホワイト型の液晶パネルであるため、液晶パネルの電源がオフ状態のときにはシースルーディスプレイとして機能し、視聴者は背面側の状態や前面側の状態を視認することができる。
第7の局面によれば、偏光変調素子である液晶パネルは、ねじれネマティック方式であるため、第1偏光波と第2偏光波との間の変換を容易に行うことができる。
第8の局面によれば、偏光変調素子と第2偏光板との間にカラーフィルタを設けることにより、背面側または前面側から透過した光や導光板から前面側に出射された光はカラーフィルタを透過する。このため、前面側にいる視聴者は、カラー画像を視認したり、背面側または前面側の状態をカラーで視認したりできる。
第9の局面によれば、少なくとも白色の表現が可能な色の光を時分割して順に偏光変調素子に照射することにより、前面側にいる視聴者は、カラー画像を視認したり、背面側の状態をカラーで視認したりできる。さらに、カラーフィルタを設ける必要がないので、カラーフィルタによる光の吸収がなく、画像や背面の状態をより高い輝度で表示できる。
第10の局面によれば、電界オフ時に透過モードになるリバースモード型の光散乱切替素子を使用すれば、ディスプレイの電源をオフした状態で、シースルーディスプレイとして機能させることができる。これにより、シースルーディスプレイとして機能しているときのディスプレイの消費電力を低減することができる。
第11の局面によれば、光散乱切替素子は、液晶層と前記液晶層内に形成された高分子ネットワークとを封止部材によって挟んだ構造の高分子分散型液晶素子であるので、透過モードと散乱モードの切り替えを容易に行うことができる。
第12の局面によれば、光散乱切替素子の封止部材として、等方性フィルムシートまたは等方性ガラス板を使用し、封止部材で複屈折が生じないようにする。これにより、光散乱切替素子を透過する透過光の光量の減少を防ぐことができるので、光の利用効率が向上し、画面の明るさが明るくなる。
<1.基礎検討>
各実施形態について説明する前に、シースルーディスプレイとして機能する従来の液晶表示装置が有している問題点を明らかにするために発明者が行った第1および第2の基礎検討について説明する。
各実施形態について説明する前に、シースルーディスプレイとして機能する従来の液晶表示装置が有している問題点を明らかにするために発明者が行った第1および第2の基礎検討について説明する。
<1.1 第1の基礎検討>
図1は、第1の基礎検討で使用したディスプレイ11において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図である。図1に示すように、ディスプレイ11では、前面側から背面側に向かって、第2吸収型偏光板42、液晶パネル30、第1吸収型偏光板41、および導光板20が配置されている。なお、液晶パネル30は、TN(Twisted Nematic(ねじれネマティック))方式で駆動される、ノーマリホワイト型のパネルであるとする。
図1は、第1の基礎検討で使用したディスプレイ11において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図である。図1に示すように、ディスプレイ11では、前面側から背面側に向かって、第2吸収型偏光板42、液晶パネル30、第1吸収型偏光板41、および導光板20が配置されている。なお、液晶パネル30は、TN(Twisted Nematic(ねじれネマティック))方式で駆動される、ノーマリホワイト型のパネルであるとする。
液晶パネル30は、TN方式で駆動されるため、液晶パネル30の各画素は、画像信号DVに応じた信号電圧が書き込まれていない状態または0Vの信号電圧が書き込まれている状態のいずれかである非駆動状態(オフ状態)のときに入射した偏光波の偏光軸を90度回転させて出力する。最大の信号電圧が書き込まれる駆動状態(オン状態)になると、偏光波の偏光軸を回転させることなくそのまま出力する。また、書き込まれた信号電圧の電圧値が両者の中間値である場合には、偏光軸が90度回転された偏光波と、偏光軸が回転されない偏光波とがその電圧値に応じた割合で出力される。
ディスプレイ11では、液晶パネル30の裏面側に第1吸収型偏光板41が配置され、表示面側に、第1吸収型偏光板41の透過軸と直交する透過軸を有する第2吸収型偏光板42が配置されている。このため、オフ状態の画素に入射した第1偏光波は、画素を透過することによって偏光軸を回転されて第2偏光波となり、第2吸収型偏光板42を透過して前面側に抜ける。一方、オン状態の画素に入射した第1偏光波はそのまま出力され、第2吸収型偏光板42に吸収される。なお、本願の光線軌跡を表す各図において、吸収型偏光板に吸収される偏光波には、その進行方向を示す矢印の先端に「×」が付されている。
図1を参照して、導光板20に取り付けられた光源25が消灯(オフ)され、液晶パネル30が駆動状態のときに、背面側から入射した光の光線軌跡を説明する。導光板20の端部には、例えばLED(Light Emitting Device)などの光源25が取り付けられているが、図1では光源25は消灯されている。
図1に示すように、背面側から入射した光に含まれる第1偏光波および第2偏光波は、導光板20を透過して第1吸収型偏光板41に入射する。第1偏光波は第1吸収型偏光板41を透過し、第2偏光波は吸収される。第1吸収型偏光板41を透過した第1偏光波は、液晶パネル30に入射する。液晶パネル30はTN方式であるので、液晶パネル30に入射した第1偏光波のうちオフ状態の画素に入射した第1偏光波は、液晶パネル30によって偏光軸を回転されることにより第2偏光波に変換されて出射される。オン状態の画素に入射した第1偏光波は偏光軸を回転されることなく第1偏光波のまま出射される。液晶パネル30から出射された第2偏光波は第2吸収型偏光板42を透過し、第1偏光波は第2吸収型偏光板42に吸収される。これにより、オフ状態の画素を透過した第2偏光波だけが前面側に透過する。その結果、前面側にいる視聴者はオフ状態の画素に対応する位置に背面側の状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。
図2は、図1に示すディスプレイ11において、前面側から入射した光が背面側に透過するときの光線軌跡を示す図である。図2を参照して、導光板20の端部に取り付けられた光源25が消灯され、液晶パネル30が駆動状態のときに、前面側から光が入射したときの光線軌跡を説明する。図2に示すように、前面側から第2吸収型偏光板42に入射した光のうち第1偏光波は第2吸収型偏光板42に吸収され、第2偏光波は第2吸収型偏光板42を透過して液晶パネル30に入射する。液晶パネル30に入射した第2偏光波のうち、オン状態の画素に入射した第2偏光波は液晶パネル30によって偏光軸を回転されることなく第2偏光波のまま出射される。オフ状態の画素に入射した第2偏光波は偏光軸を回転されることにより第1偏光波に変換されて出射される。これらの偏光波は第1吸収型偏光板41に入射し、第1偏光波は第1吸収型偏光板41を透過し、第2偏光波は第1吸収型偏光板41に吸収される。第1偏光波は導光板20を透過して背面側に抜ける。その結果、背面側にいる視聴者はオフ状態の画素に対応する位置に前面側の状態が表示され、オン状態の画素に対応する位置に黒表示された状態を視認することができる。このように、図1および図2に示す光線軌跡から、ディスプレイ11はシースルーディスプレイとして機能することがわかる。
図3は、図1に示すディスプレイ11において、光源25が点灯しているときに導光板20から出射された光が前面側と背面側に透過するときの光線軌跡を示す図である。図3を参照して、導光板20に取り付けられた光源25が点灯(オン)され、液晶パネル30が駆動状態のときに、光源25から出射された光の光線軌跡を説明する。光源25から出射された光は、第1偏光波と第2偏光波を含み、導光板20に入射すると、導光板20の内部を全反射しながら進み、導光板20からディスプレイ11の表示面側および背面側に出射される。図3に示すように、導光板20から背面側に出射された第1偏光波および第2偏光波はそのまま背面側に透過する。このため、背面側にいる視聴者はディスプレイ11を見ると眩しく感じる。
表示面側に出射された第1偏光波および第2偏光波は第1吸収型偏光板41に入射する。これらの偏光波が第1吸収型偏光板41に入射してから、第2偏光波だけが前面側に透過するまでの光線軌跡は図1に示す場合と同じであるので、その説明を省略する。この結果、前面側にいる視聴者はオフ状態の画素に対応する位置に発光状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。
第1の基礎検討によれば、光源25を点灯させたとき、導光板20から表示面側に出射された光に含まれる第1偏光波は、画面の明るさに寄与するが、第2偏光波は第1吸収型偏光板41に吸収され、画面の明るさに寄与しない。また、導光板20から背面側に出射された第1および第2偏光波はいずれも画面の明るさに寄与しない。このように、光源25から出射された光のうちの多くは表示面の明るさに寄与しないので、光の利用効率が低いという問題点がある。さらに、導光板20から背面側に出射された光は、ディスプレイ11の構造にもよるが、導光板20に対して特定の角度方向に明るさのピークを有する場合が多い。この場合、視聴者が当該角度方向からディスプレイ11の裏面を見れば、明るさが最も明るくなる方向なので、視聴者は眩しさのためにストレスを感じやすくなるという問題点も有する。
<1.2 第2の基礎検討>
図4は、第2の基礎検討で使用したディスプレイ12において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図である。図4に示すように、ディスプレイ12では、前面側から背面側に向かって、第2吸収型偏光板42、液晶パネル30、第1吸収型偏光板41、第2反射型偏光板52、導光板20、および第1反射型偏光板51が配置されている。液晶パネル30は、TN方式で駆動される、ノーマリホワイト型のパネルであるとする。このように、ディスプレイ12には、図1に示すディスプレイ11において、導光板20を挟み、透過軸が第1吸収型偏光板41の透過軸と同じ方向の2枚の第1および第2反射型偏光板51、52が追加されている。この場合、第1および第2反射型偏光板51、52は、第1偏光波を透過し、第2偏光波を反射する。
図4は、第2の基礎検討で使用したディスプレイ12において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図である。図4に示すように、ディスプレイ12では、前面側から背面側に向かって、第2吸収型偏光板42、液晶パネル30、第1吸収型偏光板41、第2反射型偏光板52、導光板20、および第1反射型偏光板51が配置されている。液晶パネル30は、TN方式で駆動される、ノーマリホワイト型のパネルであるとする。このように、ディスプレイ12には、図1に示すディスプレイ11において、導光板20を挟み、透過軸が第1吸収型偏光板41の透過軸と同じ方向の2枚の第1および第2反射型偏光板51、52が追加されている。この場合、第1および第2反射型偏光板51、52は、第1偏光波を透過し、第2偏光波を反射する。
図4を参照して、導光板20の端部に取り付けられた光源25が消灯され、液晶パネル30が駆動状態において、背面側から入射した光の光線軌跡を説明する。背面側から第1反射型偏光板51に入射した第2偏光波は、第1反射型偏光板51によって反射され、背面側に戻される。
第1および第2反射型偏光板51、52の透過軸は第1吸収型偏光板41の透過軸と同じ方向であるので、背面側から入射した第1偏光波は、第1反射型偏光板51、導光板20、第2反射型偏光板52、第1吸収型偏光板41を順に透過し、液晶パネル30に入射する。液晶パネル30に入射した第1偏光波の光線軌跡は、第1の基礎検討において説明した図1の場合と同じであるので、その説明を省略する。これにより、オフ状態の画素を透過した第1偏光波だけが第2偏光波に変換されて前面側に透過する。その結果、前面側にいる視聴者は オフ状態の画素に対応する位置に背面側の状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。
図5は、図4に示すディスプレイ12において、前面側から入射した光が背面側に透過するときの光線軌跡を示す図である。図5を参照して、導光板20の端部に取り付けられた光源25が消灯され、液晶パネル30が駆動状態において、前面側から入射した光の光線軌跡を説明する。図5に示すように、前面側から第2吸収型偏光板42に入射した第1偏光波は、第2吸収型偏光板42によって吸収され、第2偏光波は第2吸収型偏光板42を透過して液晶パネル30に入射する。液晶パネル30に入射した第2偏光波の光線軌跡は、第1の基礎検討において説明した図2の場合と同じであるので、その説明を省略する。これにより、液晶パネル30から第1偏光波と第2偏光波が出射され、第1吸収型偏光板41に入射する。第1偏光波は第1吸収型偏光板41を透過して第2反射型偏光板52に入射し、第2偏光波は第1吸収型偏光板41に吸収される。
第2反射型偏光板52および第1反射型偏光板51の透過軸は、第1吸収型偏光板41の透過軸と同じ方向であるので、第1偏光波は、第2反射型偏光板52、導光板20、第1反射型偏光板51を順に透過して背面側に抜ける。その結果、背面側にいる視聴者はオフ状態の画素に対応する位置に前面側の状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。このように、図4および図5に示す光線軌跡から、ディスプレイ12もシースルーディスプレイとして機能することがわかる。
図6は、図4に示すディスプレイ12において、光源25が点灯しているときに導光板20から出射された光が前面側と背面側に透過するときの光線軌跡を示す図である。図6を参照して、導光板20の端部に取り付けられた光源25が点灯され、液晶パネル30が駆動状態において、導光板20から表示面側と裏面側に出射された光の光線軌跡を説明する。
図6を参照して、導光板20から裏面側に出射された第1偏光波は、第1反射型偏光板51を透過して背面側に透過する。一方、表示面側に出射された第1偏光波は、第2反射型偏光板52を透過して第1吸収型偏光板41に入射する。第1吸収型偏光板41に入射した第1偏光波が、第2吸収型偏光板42を透過して前面側に透過するまでの光線軌跡は、図3に示す光線軌跡と同じであるので、その説明を省略する。これにより、オフ状態の画素を透過した第1偏光波は、液晶パネル30によって第2偏光波に変換され、第2吸収型偏光板42を透過して前面側に抜ける。オン状態の画素を透過した第1偏光波は、第1偏光波のまま第2吸収型偏光板42に入射し吸収される。
導光板20から裏面側に出射された第2偏光波は、第1反射型偏光板51によって反射され、導光板20に入射する。導光板20に入射した第2偏光波は、導光板20内の偏光散乱要素を通過することによって第2偏光波に乱れが生じ、第1偏光波と第2偏光波の合成波になり、第2反射型偏光板52に向けて出射される。合成波に含まれる第1偏光波は第2反射型偏光板52を透過し、第1吸収型偏光板41に入射する。第1吸収型偏光板41に入射してから前面側に透過するまでの光線軌跡は、図3に示す導光板20から表示面側に出射された第1偏光波の光線軌跡と同じであるので、その説明を省略する。
合成波に含まれる第2偏光波は、第2反射型偏光板52によって反射され、導光板20に入射する。導光板20に入射した第2偏光波は、導光板20内の偏光散乱要素を再び通過することによって、第1偏光波と第2偏光波を含む合成波が生成され、第1反射型偏光板51に向けて出射される。合成波に含まれる第1偏光波は第1反射型偏光板51を透過して背面側に抜ける。一方、第2偏光波は、第1反射型偏光板51によって反射され導光板20に入射する。このようにして、第1または第2反射型偏光板51、52によって反射された第2偏光波は、導光板20内の偏光散乱要素を通過することによって、第1偏光波と第2偏光波を含む合成波が生成されることを繰り返す。なお、導光板20から表示面側に出射された第2偏光波の光線軌跡も、上述の裏面側に出射された第2偏光波の場合と実質的に同じであるので、その説明を省略する。
このように、導光板20から表示面側に出射された第1偏光波、および、導光板20から裏面側または表示面側に出射された第2偏光波から生成された合成波に含まれる第1偏光波は、液晶パネル30のオフ状態の画素を入射することによって第2偏光波に変換されて第2吸収型偏光板42を透過し、前面側に抜ける。これにより、液晶パネル30のオフ状態の画素に対応する位置には発光状態が表示される。また、オン状態の画素に入射した第1偏光波は第1偏光波のまま出射されるので、第2吸収型偏光板42に吸収される。これにより、オン状態の画素に対応する位置には黒表示がされる。
第2の基礎検討によれば、導光板20から表示面側に出射された第1偏光波だけでなく、表示面側および裏面側に出射された第2偏光波も導光板20内の偏光散乱要素を通過することによって乱れが生じる。これにより、第2偏光波から第1偏光波と第2偏光波を含む合成波が生成され、合成波に含まれる第1偏光波も前面側に透過する。この場合、光の利用効率をさらに向上させるためには、偏光散乱要素を多くして合成波に含まれる第1偏光波の割合を多くする必要がある。理想的な光利用効率にするためには、第2偏光波から導光板20内で生成された合成波に含まれる第1偏光波と第2偏光波の割合が次式(1)を満たすようにすることが好ましい。
第1偏光波:第2偏光波=1:1 … (1)
第1偏光波:第2偏光波=1:1 … (1)
式(1)を満たす偏光散乱要素を多く含む導光板20を使用すれば、第2偏光波の利用効率が向上するので、前面側に透過する第2偏光波の光量が多くなり、その結果画面が明るくなる。しかし、導光板20の透明度を表す濁度(ヘイズ(haze))も大きくなる。濁度が大きくなると、ディスプレイ12の前面側から背面側を視認したときに、画面全体が白濁し背景がぼやけて見えにくくなるという問題が生じる。
一方、偏光散乱要素を少なくすれば濁度が小さくなるので、画面の白濁が少なくなり、背景がより見やすくなる。しかし、第2偏光波から生成した合成波に含まれる第1偏光波の割合が少なくなるので、第2偏光波の利用効率を向上させることができない。また、第1の基礎検討と比較して、背面側に透過する第1偏光波の光量が増加するので、視聴者がディスプレイ12を背面側から視認すればより眩しく感じるという問題も解決されていない。
図7は、導光板20の濁度と、背景の見え方または画面の明るさとの関係を示す図であり、より詳しくは、図7(A)は濁度が大きい場合の背景の見え方と画面の明るさとの関係を示す図であり、図7(B)は濁度が小さい場合の背景の見え方と画面の明るさを示す図ある。濁度が大きい場合には、図7(A)に示すように、画面は明るくなるが、背景はぼやけて見える。しかし、濁度が小さくなると、図7(B)に示すように、背景はくっきり見えるようになるが、画面の明るさは暗くなる。
<2.第1の実施形態>
図8は、第1の実施形態に係る液晶表示装置110の構成を示すブロック図である。
図8は、第1の実施形態に係る液晶表示装置110の構成を示すブロック図である。
<2.1 表示装置の構成と動作>
本発明では、以下の各実施形態において詳細に説明するディスプレイを備える液晶表示装置110は公知のものを使用する。そこで、液晶表示装置110の構成について簡単に説明する。
本発明では、以下の各実施形態において詳細に説明するディスプレイを備える液晶表示装置110は公知のものを使用する。そこで、液晶表示装置110の構成について簡単に説明する。
図8は、後述するディスプレイ15を備えた液晶表示装置110の構成を示すブロック図である。図8に示すように、液晶表示装置110は、ディスプレイ15、表示制御回路112、走査信号線駆動回路113、および、データ信号線駆動回路114を備えたアクティブマトリクス型の表示装置である。このディスプレイ15は、液晶パネル30だけでなく、光源が取り付けられた導光板、各種の偏光板などを含むが、これらの図示は省略する。
ディスプレイ15に含まれる液晶パネル30は、n本の走査信号線G1~Gn、m本のデータ信号線S1~Sm、および、(m×n)個の画素Pijを含んでいる(ただし、mは2以上の整数、jは1以上m以下の整数)。走査信号線G1~Gnは互いに平行に配置され、データ信号線S1~Smは走査信号線G1~Gnと直交するように互いに平行に配置される。走査信号線Giとデータ信号線Sjの交点近傍には、画素Pijが配置される。このように(m×n)個の画素Pijは、行方向にm個ずつ、列方向にn個ずつ、2次元状に配置される。走査信号線Giはi行目に配置された画素Pijに共通して接続され、データ信号線Sjはj列目に配置された画素Pijに共通して接続される。
液晶表示装置110の外部からは、水平同期信号HSYNC、垂直同期信号VSYNCなどの制御信号SCと画像信号DVが供給される。表示制御回路112は、これらの信号に基づき、走査信号線駆動回路113に対してクロック信号CKと、スタートパルスSTを出力し、データ信号線駆動回路114に対して制御信号SCと画像信号DVを出力する。
走査信号線駆動回路113は、ハイレベルの出力信号を1つずつ順に走査信号線G1~Gnに与える。これにより、走査信号線G1~Gnが1本ずつ順に選択され、1行分の画素Pijが一括して選択される。データ信号線駆動回路114は、制御信号SCと画像信号DVに基づき、データ信号線S1~Smに対して画像信号DVに応じた信号電圧を印加する。これにより、選択された1行分の画素Pijに画像信号DVに応じた信号電圧が書き込まれる。このようにして、液晶表示装置110は液晶パネル30に画像を表示する。
<2.2 ディスプレイの構成>
図9は、第1の実施形態に係る液晶表示装置110に含まれるディスプレイ15の構成を示す断面図である。図9に示すように、ディスプレイ15では、前面側から背面側に向かって配置された、第2吸収型偏光板42、液晶パネル30、第1吸収型偏光板41、導光板20、リバースモード型の高分子分散型液晶素子60、および反射型偏光板53が順に配置されている。このように、ディスプレイ15は、図1に示すディスプレイ11において、導光板20の裏面側に、リバースモード型の高分子分散型液晶素子60および反射型偏光板53がさらに配置されている。
図9は、第1の実施形態に係る液晶表示装置110に含まれるディスプレイ15の構成を示す断面図である。図9に示すように、ディスプレイ15では、前面側から背面側に向かって配置された、第2吸収型偏光板42、液晶パネル30、第1吸収型偏光板41、導光板20、リバースモード型の高分子分散型液晶素子60、および反射型偏光板53が順に配置されている。このように、ディスプレイ15は、図1に示すディスプレイ11において、導光板20の裏面側に、リバースモード型の高分子分散型液晶素子60および反射型偏光板53がさらに配置されている。
導光板20は、アクリルやポリカーボネートなどの透明樹脂、またはガラスからなり、光源25から入射した光を前面側および背面側に射出することが可能なように、その表面にドットパターンが形成されていたり、シリカなどの拡散剤が添加されていたりする。導光板20の側面には光源25として例えばLED(発光体)が取り付けられている。このため、光源25が点灯されれば、光源25から出射された光は導光板20に入射し、導光板20の表面で全反射を繰り返しながら進み、ドットパターンや拡散剤に入射すると、導光板20から表示面側または裏面側に出射される。
高分子分散型液晶素子60は、第1偏光波、第2偏光波、またはそれらを含む光が入射すれば、1対1に近づくように調整された第1偏光波と第2偏光波を生成して出射する。図10は、第1偏光波と第2偏光波の割合を調整する高分子分散型液晶素子60の構成を示す断面図であり、より詳しくは、図10(A)は、電界をオンすることによって透過モードになった高分子分散型液晶素子60の断面図であり、図10(B)は、電界をオフすることによって散乱モードになった高分子分散型液晶素子60の断面図である。
図10(A)に示すように、高分子分散型液晶素子60は、透明電極62が形成された2枚の封止部材61によって挟まれた空間に、高分子ネットワーク63と液晶を封止した素子であり、封止部材61にはガラス板が使用されている。図10(A)に示すように、透明電極62に電圧を印加しないことによって電界をオフにしたときに、高分子ネットワーク63と共に封止された液晶の液晶分子64が同一方向に整列する。この場合、高分子分散型液晶素子60に入射した入射光の偏光方向は変換されることなく高分子分散型液晶素子60を透過する。例えば、入射光が第1偏光波であれば、透過光も第1偏光波のままである。このときの高分子分散型液晶素子60のモードを「透過モード」と呼ぶ。
一方、図10(B)に示すように、透明電極62に電圧を印加することによって電界をオンにしたときに、高分子ネットワーク63と共に封止された液晶分子64の向きがランダムになる。この場合、高分子分散型液晶素子60に入射した光は散乱され、散乱光に含まれる第1偏光波と第2偏光波の割合は1対1に近づくように調整される。このときの高分子分散型液晶素子60のモードを「散乱モード」と呼ぶ。このように、電界オフ時に透過モードになり、電界オン時に散乱モードになるリバースモード型の高分子分散型液晶素子60としては、リバースモード型高分子ネットワーク/液晶複合膜(PDLC(Polymer Dispersed Liquid Crystal:高分子分散型液晶))などがある。
本実施形態では、高分子分散型液晶素子60の散乱モードおよび透過モードは、光源25の点灯/消灯と同期して切り替わる。具体的には、光源25を点灯したときには、高分子分散型液晶素子60は散乱モードになり、光源25を消灯すれば、高分子分散型液晶素子60は透過モードに切り替わる。このように、高分子分散型液晶素子60のモードと、光源25の点灯/消灯を同期させる。このため、後述するように、光源25を点灯し、高分子分散型液晶素子60を散乱モードにすれば、導光板20から出射された光のうち前面側に透過する光の割合が多くなり、光の利用効率が向上する。
なお、光源25が点灯されたときには、高分子分散型液晶素子60を透過モードにし、光源25が消灯されれば、高分子分散型液晶素子60を散乱モードにしても良いが、本明細書ではその説明を省略する。
また、一般的な高分子分散型液晶素子は、上記高分子分散型液晶素子60と異なり、電界オン時に透過モードになり、電界オフ時に散乱モードになるノーマル型である。しかし、本発明で使用する高分子分散型液晶素子60は、上述のように電界オン時に散乱モードになり、電界オフ時に透過モードになるリバースモード型である。これは、液晶表示装置110の消費電力を抑制するために、ディスプレイ15の電源をオフしたときにシースルーディスプレイとなるように設計することが好ましいからである。そこで、以下では、特に断らない限り、高分子分散型液晶素子60はリバースモード型として説明する。しかし、シースルーディスプレイとして使用する際の消費電力が増加しても良い場合には、ノーマル型の高分子分散型液晶素子を使用することも可能である。
またディスプレイ15では、反射型偏光板53の透過軸と第1吸収型偏光板41の透過軸は同じ方向であり、第1吸収型偏光板41の透過軸と第2吸収型偏光板42の透過軸は互いに直交している。
<2.3 光線軌跡>
図11は、図9に示すディスプレイ15において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図である。図11に示すように、高分子分散型液晶素子60は透過モードであり、光源25は消灯されている。背面側から入射した第2偏光波は、反射型偏光板53によって背面側に反射される。一方、背面側から入射した第1偏光波は、反射型偏光板53を透過し、高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は透過モードであるので、第1偏光波は変換されることなく第1偏光波のまま透過する。反射型偏光板53の透過軸と第1吸収型偏光板41の透過軸とは同じ方向であるので、第1偏光波はさらに導光板20および第1吸収型偏光板41を透過して液晶パネル30に入射する。
図11は、図9に示すディスプレイ15において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図である。図11に示すように、高分子分散型液晶素子60は透過モードであり、光源25は消灯されている。背面側から入射した第2偏光波は、反射型偏光板53によって背面側に反射される。一方、背面側から入射した第1偏光波は、反射型偏光板53を透過し、高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は透過モードであるので、第1偏光波は変換されることなく第1偏光波のまま透過する。反射型偏光板53の透過軸と第1吸収型偏光板41の透過軸とは同じ方向であるので、第1偏光波はさらに導光板20および第1吸収型偏光板41を透過して液晶パネル30に入射する。
液晶パネル30に入射した第1偏光波の光線軌跡は、第1の基礎検討において説明した図1の場合と同じであるので、その説明を省略する。これにより、オフ状態の画素を透過した第1偏光波は第2偏光波に変換され、第2偏光波は第2吸収型偏光板42を透過して前面側に抜ける。オン状態の画素を透過した第1偏光波は変換されることなく第1偏光波のまま出射され、第2吸収型偏光板42に吸収される。その結果、前面側にいる視聴者はオフ状態の画素に対応する位置に背面側の状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。
図12は、図9に示すディスプレイ15において、前面側から入射した光が背面側に透過するときの光線軌跡を示す図である。図11に示す場合と同様に、図12の場合も高分子分散型液晶素子60は透過モードであり、光源25は消灯されている。前面側から入射した第1偏光波は、第2吸収型偏光板42に吸収され、第2偏光波は、第2吸収型偏光板42を透過し液晶パネル30に入射する。
液晶パネル30のオン状態の画素に入射した第1偏光波は変換されることなくそのまま出射され、第1吸収型偏光板41に吸収される。一方、オフ状態の画素に入射した第2偏光波は第1偏光波に変換され、第1吸収型偏光板41および導光板20を透過して高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は透過モードであるので、入射した第1偏光波はそのまま透過し、反射型偏光板53に入射する。反射型偏光板53の透過軸は、第1吸収型偏光板41の透過軸と同じ方向であるので、第1偏光波は、反射型偏光板53を透過して背面側に抜ける。その結果、背面側にいる視聴者は、オフ状態の画素に対応する位置に前面側の状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。このように、図11および図12に示す光線軌跡から、ディスプレイ15はシースルーディスプレイとして機能することがわかる。
図13は、図9に示すディスプレイ15において、光源25が点灯しているときに導光板20から出射された光が前面側と背面側に透過するときの光線軌跡を示す図である。この場合、図11および図12に示す場合と異なり、高分子分散型液晶素子60は散乱モードであり、光源25は点灯されている。図13に示すように、導光板20から表示面側に出射された第1偏光波と第2偏光波は、第1吸収型偏光板41に入射する。第1吸収型偏光板41は、入射した光のうち第2偏光波を吸収し、第1偏光波を透過する。第1吸収型偏光板41を透過した第1偏光波が液晶パネル30に入射してから前面側に透過するまでの光線軌跡は、図6に示す場合と同じであるので、その説明を省略する。
一方、導光板20から裏面側に出射された第1偏光波は、高分子分散型液晶素子60に入射すると、高分子分散型液晶素子60は、入射した第1偏光波から、1対1に近づくように調整された第1偏光波と第2偏光波を生成し、反射型偏光板53に向けて出射する。第1偏光波は反射型偏光板53を透過して背面側に抜け、第2偏光波は反射型偏光板53によって反射され、再び高分子分散型液晶素子60に入射する。
また、導光板20から裏面側に出射された第2偏光波は、散乱モードの高分子分散型液晶素子60に入射すると、高分子分散型液晶素子60は、入射した第2偏光波から、1対1に近づくように調整された第1偏光波と第2偏光波を生成し、反射型偏光板53に向けて出射する。入射した光のうち第1偏光波は、反射型偏光板53を透過して背面側に抜ける。第2偏光波は反射型偏光板53によって反射され再び高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は、反射型偏光板53によって反射された第2偏光波から、1対1に近づくように調整された第1偏光波と第2偏光波を生成し、導光板20に向けて出射する。第1偏光波および第2偏光波は、導光板20を透過して第1吸収型偏光板41に入射する。その後の第1偏光波および第2偏光波の光線軌跡は、導光板20から表示面側に出射された第1偏光波および第2偏光波の光線軌跡と同じであるので、その説明を省略する。
その結果、前面側にいる視聴者はオフ状態の画素に対応する位置に発光状態が表示され、オン状態の画素に対応する位置に黒表示された画面を視認することができる。このように、ディスプレイ15は、発光状態と黒表示とを組み合わせて表示することができる。
次に、本実施形態のディスプレイ15における光線軌跡と光量との関係について説明する前に、第1の基礎検討で使用したディスプレイ11、および第2基礎検討で使用したディスプレイ12における光線軌跡と光量との関係について検討する。いずれの場合も光源25は点灯され、そのときに導光板20から表示面側および裏面側に出射される光量の総和は“1”であるとし、各種部材による光量の損失は無視する物とする。
図14は、第1の基礎検討で使用したディスプレイ11における光線軌跡と各光線軌跡の光量を示す図である。図14に示すように、導光板20から表示面側および裏面側に出射される第1および第2偏光波の割合は、いずれも“0.25”である。この場合、背面側に透過する第1および第2偏光波の割合はそれぞれ“0.25”である。また、導光板20から表示面側に出射された第1偏光波から変換され、前面側に透過する第2偏光波の割合も“0.25”である。しかし、導光板20から表示面側に出射された第2偏光波は第1吸収型偏光板41によって吸収され、前面側に透過することができない。その結果、前面側に透過する光の割合は“0.25”であり、背面側に透過する光の割合は“0.50”となる。
図15は、第2の基礎検討で使用したディスプレイ12における光線軌跡と各光線軌跡の光量を示す図である。図15に示すように、第2の基礎検討では、導光板20から表示面側および裏面側に出射された第1および第2偏光波のうち、第1および第2反射型偏光板51、52で反射されることなく前面側または背面側に透過する光の割合は、それぞれ“0.25”になる。
しかし、第1の基礎検討の場合と異なり、導光板20から裏面側に出射される第2偏光波、または導光板20から表示面側に出射され、第2反射型偏光板52によって反射された第2偏光波は、第1反射型偏光板51によって反射され、再び導光板20に入射する。導光板20に入射した第2偏光波は、導光板20内の偏光散乱要素を通過することによって散乱され、第1偏光波と第2偏光波を含む合成波となる。この合成波に含まれる第1偏光波と第2偏光波の割合は、通常1対1ではない。そこで、合成波に含まれる第1偏光波の割合を“α”とすると、“α”は次式(2)を満たす値になる。
α≦0.25 … (2)
α≦0.25 … (2)
第1反射型偏光板51によって反射された第2偏光波から生成された合成波に含まれる、割合が“α”の第1偏光波は、第2反射型偏光板52、第1吸収型偏光板41を透過し液晶パネル30に入射する。液晶パネル30に入射した第1偏光波は、第2偏光波に変換され、第2吸収型偏光板42を透過して前面側に抜ける。その結果、前面側に透過する第2偏光波の割合は“α”になる。その結果、前面側および背面側に透過する光の割合はいずれも“0.25+α”となる。
図16は、本実施形態のディスプレイ15における光線軌跡と光量との関係を示す図である。図16に示すように、導光板20から表示面側および裏面側に出射される第1および第2偏光波の割合は、いずれも“0.25”であり、高分子分散型液晶素子60は散乱モードである。
導光板20から裏面側に出射され、高分子分散型液晶素子60を透過した光について説明する。高分子分散型液晶素子60に入射する光は、導光板20から裏面側に出射された割合が“0.25”の第1偏光波と、割合が“0.25”の第2偏光波である。第1偏光波は、高分子分散型液晶素子60によって、いずれも第1偏光波と第2偏光波の割合が1対1に近づくように調整される。その結果、割合が“0.25”の第1偏光波は、“0.125”の第1偏光波と、“0.125”の第2偏光波に変換される。
同様に、割合が“0.25”の第2偏光波は、“0.125”の第1偏光波と“0.125”の第2偏光波に変換される。その結果、高分子分散型液晶素子60から反射型偏光板53に向けて出射される第1偏光波の割合は、上記2つの第1偏光波の割合”0.125”の和である“0.25”になる。同様にして、高分子分散型液晶素子60から反射型偏光板53に向けて出射される第2偏光波の割合も、上記2つの第2偏光波の割合”0.125”の和である“0.25”になる。
このようにして第1偏光波および第2偏光波からそれぞれ生成された、割合が“0.125”の第1偏光波は反射型偏光板53を透過して背面側に抜ける。一方、反射型偏光板53によって反射された、割合が“0.125”の第2偏光波は、高分子分散型液晶素子60に入射し、高分子分散型液晶素子60によって割合が1対1に近づくように調整され、それぞれ割合が“0.0625”の第1偏光波と第2偏光波になる。割合が“0.0625”の第1偏光波および第2偏光波は、導光板20を透過して、第1吸収型偏光板41に入射する。
第1吸収型偏光板41は、第2偏光波を吸収し、第1偏光波を透過するので、割合が“0.0625”の第1偏光波が透過し、液晶パネル30に入射する。液晶パネル30によって変換された第2偏光波が第2吸収型偏光板42を透過して前面側に抜ける。このとき、液晶パネル30から出射された第1偏光波の割合“0.125”は、液晶パネル30に入射した、割合が“0.0625”である2つの第1偏光波の和である。その結果、前面側に透過する第2偏光波の割合は、“0.25”と“0.125”の和である“0.375”となる。一方、背面側に透過する第1偏光波の割合は、“0.125”と“0.125”の和である“0.25”となる。
上記結果から、以下のことがわかる。まず、前面側に透過する第2偏光波について、本実施形態の場合と、第1の基礎検討の場合および第2の基礎検討の場合とを比較する。第1の基礎検討では、図14に示すように、前面側に透過する第1偏光波の割合は“0.25”である。第2の基礎検討では、図15に示すように、前面側に透過する第1偏光波の割合は“0.25+α”である。“α”は上式(2)で表される範囲の値であるため、“0.25+α”は最大で“0.5”になる。これに対し、本実施形態の場合は、図16に示すように、“0.375”である。これらの結果から、本実施形態の場合は、第1の基礎検討の場合よりも多くの光量の第2偏光波が前面側に透過する。しかし、第2の基礎検討の場合には、本実施形態の場合よりもより多くの光量の第2偏光波が前面側に透過する場合がある。第2の基礎検討において前面側に透過する光の光量を多くすれば、後述する問題が生じる。
一方、背面側に透過する第1偏光波について、本実施形態の場合と、第1の基礎検討の場合および第2の基礎検討の場合と比較する。第1の基礎検討では、図14に示すように、背面側に透過する光は、割合が“0.25”の第1偏光波と、割合が“0.25”の第2偏光波である。このため、背面側に透過する光の割合はそれらの和である“0.50”となる。第2の基礎検討では、図15に示すように、背面側に透過するのは第1偏光波だけであり、その割合は“0.25+α”である。“α”は上式(2)で表される範囲の値であるため、“少なくとも“0.25”以上にある。これに対し、本実施形態の場合は、図16に示すように、背面側に透過する光は第1偏光波だけであり、その割合は“0.25”である。このことから、本実施形態の場合、背面側に透過する光の光量はいずれの基礎検討の場合よりも少なくなることがわかる。さらに、第1の基礎検討において説明したように、導光板20から背面側に透過する光は、導光板20に対して特定の角度方向に明るさのピークを有するが、本実施形態によれば明るさのピークが特定の角度方向よりも広い角度に分散される。これにより、視聴者が感じる眩しさが低減される。
図17は、本実施形態の効果を第1および第2の基礎検討の場合と比較した図である。第1の基礎検討の場合に比べて、本実施形態では前面側に透過する光の光量を1.5倍に増加させることができる。これにより、光の利用効率が向上し、画面を明るくすることができる。また、背面側に透過する光の光量を1/2にすることができ、さらに明るさのピークを広い角度に分散させることによって、背面側からディスプレイ15を見たときの眩しさを軽減することができる。第2の基礎検討では、前面側に透過する光量は“0.25+α”なり、“α”の値によっては、本実施形態の場合よりも透過する光の光量が多くなるので、画面が明るくなる。しかし、“α”の値が大きくなればなるほど、導光板20の濁度が大きくなり、それに伴って、図7(A)に示すように前面側から背景側を見たときに見える背景のぼやけが大きくなる。これに対し、本実施形態では、視聴者は明るい画面にくっきりと表示された背景を視認することができる。
<2.4 効果>
本実施形態によれば、導光板20から表示面側に出射された第1偏光波だけでなく、裏面側に出射された第1偏光波および第2偏光波から散乱モードの高分子分散型液晶素子60によって変換された光に含まれる第1偏光波も、液晶パネル30によって第2偏光波に変換され前面側に透過する。これにより、導光板20から出射された光の利用効率が向上するので、画面を明るくすることができる。
本実施形態によれば、導光板20から表示面側に出射された第1偏光波だけでなく、裏面側に出射された第1偏光波および第2偏光波から散乱モードの高分子分散型液晶素子60によって変換された光に含まれる第1偏光波も、液晶パネル30によって第2偏光波に変換され前面側に透過する。これにより、導光板20から出射された光の利用効率が向上するので、画面を明るくすることができる。
また、導光板20から裏面側に出射された第1偏光波および第2偏光波の一部が反射型偏光板53によって表示面側に反射されるので、背面側に透過する第1偏光波の光量が少なくなる。これにより、背面側にいる視聴者は眩しさを感じにくくなる。さらに、視聴者がディスプレイ15をシースルーディスプレイとして使用する場合に、画面の明るさは暗くなるが、導光板20の濁度が小さくなるので、視聴者はぼやけることなくくっきりと表示された背景を視認することができる。
<3.第2の実施形態>
本実施形態に係る液晶表示装置の構成および動作は、図8に示す第1の実施形態の場合と同じであるので、その構成を示す図および説明を省略する。また、本実施形態のディスプレイ16の構成は、図9に示す第1の実施形態のディスプレイ15の構成要素である第2吸収型偏光板42の代わりに、第1偏光波を反射し、第2偏光波を透過する反射型偏光板54が配置されていることだけが異なり、その他の構成要素の配置は図9に示す場合と同じであるので、その構成を示す図および説明を省略する。
本実施形態に係る液晶表示装置の構成および動作は、図8に示す第1の実施形態の場合と同じであるので、その構成を示す図および説明を省略する。また、本実施形態のディスプレイ16の構成は、図9に示す第1の実施形態のディスプレイ15の構成要素である第2吸収型偏光板42の代わりに、第1偏光波を反射し、第2偏光波を透過する反射型偏光板54が配置されていることだけが異なり、その他の構成要素の配置は図9に示す場合と同じであるので、その構成を示す図および説明を省略する。
<3.1 光線軌跡>
図18は、本実施形態のディスプレイ16において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図であり、図19は本実施形態のディスプレイ16において、前面側から入射した光が背面側に透過するときの光線軌跡を示す図であり、図20はディスプレイ16において、光源25が点灯しているときに導光板20から出射された光が前面側と背面側に透過するときの光線軌跡を示す図である。図18および図19では、高分子分散型液晶素子60は透過モードであり、光源25は消灯されている。図20では高分子分散型液晶素子60は散乱モードであり、光源25は点灯されている。
図18は、本実施形態のディスプレイ16において、背面側から入射した光が前面側に透過するときの光線軌跡を示す図であり、図19は本実施形態のディスプレイ16において、前面側から入射した光が背面側に透過するときの光線軌跡を示す図であり、図20はディスプレイ16において、光源25が点灯しているときに導光板20から出射された光が前面側と背面側に透過するときの光線軌跡を示す図である。図18および図19では、高分子分散型液晶素子60は透過モードであり、光源25は消灯されている。図20では高分子分散型液晶素子60は散乱モードであり、光源25は点灯されている。
いずれの場合も、背面側から入射した第1および第2偏光波、前面側から入射した第2偏光波、導光板20から出射された第1および第2偏光波の光線軌跡は、それぞれ図11、図12、図13に示す場合と同じであるので、説明を省略する。しかし、本実施形態では、前面側から反射型偏光板54に入射した第1偏光波は、反射型偏光板54によって反射されて前面側に戻される。なお、いずれの場合も液晶パネル30を透過して反射型偏光板54に入射した第1偏光波は、反射型偏光板54によって反射され再び液晶パネル30に入射するが、本実施形態の目的と直接関係していないので、その説明は省略する。
<3.2 効果>
本実施形態によれば、ディスプレイ16の表示面に反射型偏光板54が配置されているので、前面側から反射型偏光板54に入射した光のうち第1偏光波が反射される。これにより、前面側にいる視聴者は、反射された第1偏光波によってミラー状態になり、前面側を映すとともに、例えば図18に示す場合であれば、オフ状態の画素に対応する位置に表示される背面側の状態を視認することができ、図20に示す場合であれば、オフ状態の画素に対応する位置に表示される発光状態を視認することができる。これにより、ディスプレイ16はデザイン性に優れたディスプレイになる。
本実施形態によれば、ディスプレイ16の表示面に反射型偏光板54が配置されているので、前面側から反射型偏光板54に入射した光のうち第1偏光波が反射される。これにより、前面側にいる視聴者は、反射された第1偏光波によってミラー状態になり、前面側を映すとともに、例えば図18に示す場合であれば、オフ状態の画素に対応する位置に表示される背面側の状態を視認することができ、図20に示す場合であれば、オフ状態の画素に対応する位置に表示される発光状態を視認することができる。これにより、ディスプレイ16はデザイン性に優れたディスプレイになる。
<4.第3の実施形態>
本実施形態に係る液晶表示装置の構成および動作は、図8に示す第1の実施形態の場合と同じであるので、その構成を示す図および説明を省略する。また、本実施形態のディスプレイ17の構成は、図9に示す第1の実施形態のディスプレイ15の構成要素のうち、液晶パネル30と導光板20とに挟まれた位置に配置されていた第1吸収型偏光板41の代わりに、反射型偏光板55が配置されていることだけが異なり、その他の構成要素の配置は図9に示す場合と同じである。このため、その構成を示す図および説明を省略する。なお、反射型偏光板55の偏光軸は、反射型偏光板53の偏光軸と同じ方向である。
本実施形態に係る液晶表示装置の構成および動作は、図8に示す第1の実施形態の場合と同じであるので、その構成を示す図および説明を省略する。また、本実施形態のディスプレイ17の構成は、図9に示す第1の実施形態のディスプレイ15の構成要素のうち、液晶パネル30と導光板20とに挟まれた位置に配置されていた第1吸収型偏光板41の代わりに、反射型偏光板55が配置されていることだけが異なり、その他の構成要素の配置は図9に示す場合と同じである。このため、その構成を示す図および説明を省略する。なお、反射型偏光板55の偏光軸は、反射型偏光板53の偏光軸と同じ方向である。
<4.1 光線軌跡>
本実施形態のディスプレイ17は、シースルーディスプレイとして機能し、背面側から入射した第1偏光波を第2偏光波として前面側に透過し、また前面側から入射した第2偏光波を第1偏光波として背面側に透過する。しかし、それらの光線軌跡は、それぞれ第1の実施形態の図11および図12と実質的に同じであるので、光線軌跡を示す図およびその説明を省略する。
本実施形態のディスプレイ17は、シースルーディスプレイとして機能し、背面側から入射した第1偏光波を第2偏光波として前面側に透過し、また前面側から入射した第2偏光波を第1偏光波として背面側に透過する。しかし、それらの光線軌跡は、それぞれ第1の実施形態の図11および図12と実質的に同じであるので、光線軌跡を示す図およびその説明を省略する。
図21~図23は、本実施形態のディスプレイ17において、導光板20から出射された第1および第2偏光波の光線軌跡と各光線軌跡の光量を時系列で表す図である。図21~図23を参照して、光源25は点灯されており、高分子分散型液晶素子60は散乱モードである場合の各光線軌跡の光量を説明する。なお、図21~図23に示す光線軌跡のうち、反射型偏光板55によって反射される第2偏光波の光線軌跡以外の光線軌跡は、図16に示す光線軌跡と同じであるので、その説明を省略する。
図21に示すように、導光板20から表示面側および裏面側に出射された第1偏光波の割合は、それぞれ“0.25”である。そのうち表示面側に出射された第1偏光波は、反射型偏光板55、液晶パネル30、第2吸収型偏光板42を透過して前面側に抜ける。この場合、前面側に透過するのは、液晶パネル30によって第1偏光波から変換された第2偏光波であり、その割合は“0.25”である。また、裏面側に出射された第1偏光波は、散乱モードの高分子分散型液晶素子60および反射型偏光板53を透過して背面側に抜ける。この場合、背面側に透過するのは第2偏光波であり、その割合は図16において説明したように“0.25”である。
導光板20から表示面側に出射された第2偏光波は、反射型偏光板55によって反射され、背面側に向かう。そこで、この第2偏光波を「第2偏光波A」とし、図22においてその光線軌跡を説明する。
導光板20から裏面側に出射された第2偏光波は、散乱モードの高分子分散型液晶素子60を透過して、反射型偏光板53に入射する。なお、反射型偏光板53に入射する第2偏光波の割合が“0.25”になる理由は、図16において説明したので省略する。
反射型偏光板53に入射した第2偏光波は反射され、高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は、第2偏光波から、1対1に近づくように調整された第1偏光波と第2偏光波を生成して出射する。その結果、出射された第1偏光波および第2偏光波の割合は、いずれも“0.125”である。第1偏光波および第2偏光波は導光板20を透過して反射型偏光板55に入射する。反射型偏光板55は、割合が“0.125”の第1偏光波を透過し、“0.125”の第2偏光波を反射する。反射型偏光板55を透過した第1偏光波は、その後液晶パネル30、第2吸収型偏光板42を透過して前面側に抜ける。この場合、前面側に透過するのは、液晶パネル30によって変換された第2偏光波であり、その割合は“0.125”である。
以上の説明から、図21に示す段階では、前面側に透過する第2偏光波の割合は、“0.375”であり、背面側に透過する第1偏光波の割合は“0.25”と“0.125”の和である“0.375”であることがわかる。
なお、反射型偏光板55によって反射された、割合が“0.125”の第2偏光波を「第2偏光波B」とし、図23においてその後の光線軌跡を説明する。
次に、図22を参照して、図21の第2偏光波Aの光線軌跡を説明する。第2偏光波Aは、導光板20を透過して高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は、第2偏光波Aから、1対1に近づくように調整された第1偏光波と第2偏光波を生成して出射する。これにより、出射された第1偏光波および第2偏光波の割合は、いずれも“0.125”となる。割合が“0.125”の第1偏光波は反射型偏光板53を透過して背面側に抜ける。割合が“0.125”の第2偏光波は反射型偏光板53によって反射される。
反射型偏光板53によって反射された第2偏光波は、再び高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は、第2偏光波から、1対1に近づくように調整された第1偏光波と第2偏光波を生成して出射する。その結果、出射された第1偏光波および第2偏光波の割合は、いずれも“0.0625”となる。第1偏光波および第2偏光波は導光板20を透過して反射型偏光板55に入射する。反射型偏光板55は、割合が“0.0625”の第1偏光波を透過し、“0.0625”の第2偏光波を反射する。反射型偏光板55を透過した第1偏光波は、その後液晶パネル30、第2吸収型偏光板42を透過して前面側に抜ける。この場合、前面側に抜けるのは、液晶パネル30によって変換された第2偏光波であり、その割合は“0.0625”である。
以上の説明から、図22に示す段階では、前面側に透過する第2偏光波の割合は、“0.0625”であり、背面側に透過する第1偏光波の割合は“0.125”であることがわかる。
なお、導光板20から表示面側に出射された、割合が“0.0625”の第2偏光波は、反射型偏光板55によって反射される。この第2偏光波である第2偏光波Cのその後の光線軌跡の説明は省略する。
次に、図23を参照して、図21の第2偏光波Bの光線軌跡を説明する。反射型偏光板53によって反射された、割合が“0.125”の第2偏光波Bは、導光板20を透過して、高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は、第2偏光波Bから、1対1に近づくように調整された第1偏光波と第2偏光波を生成して出射する。この結果、出射された第1偏光波および第2偏光波の割合は、いずれも“0.0625”となる。割合が“0.0625”の第1偏光波は反射型偏光板53を透過して背面側に抜け、割合が“0.0625”の第2偏光波は反射型偏光板53によって反射される。
反射型偏光板53によって反射された第2偏光波は、高分子分散型液晶素子60に入射する。高分子分散型液晶素子60は、第2偏光波から、1対1に近づくように調整された第1偏光波と第2偏光波を生成して出射する。この結果、出射された第1偏光波および第2偏光波の割合は、いずれも“0.03125”となる。これらの第1および第2偏光波は、導光板20を透過して反射型偏光板55に入射する。反射型偏光板55は、割合が“0.03125”の第1偏光波を透過し、“0.03125”の第2偏光波を反射する。反射型偏光板55を透過した第1偏光波は、その後液晶パネル30、第1吸収型偏光板41を透過して前面側に抜ける。この場合、前面側に抜けるのは、液晶パネル30によって変換された第2偏光波であり、その割合は“0.03125”である。
以上の説明から、図23に示す段階では、前面側に透過する第2偏光波の割合は、“0.03125”であり、背面側に透過する第1偏光波の割合は“0.0625”であることがわかる。
なお、導光板20から表示面側に出射された、割合が“0.03125”の第2偏光波は、反射型偏光板55によって反射される。この第2偏光波である第2偏光波Dのその後の光線軌跡の説明は省略する。
このように、導光板20から表示面側に出射された第2偏光波は、反射型偏光板55および反射型偏光板53によって反射され、高分子分散型液晶素子60によって第2偏光波から生成された第1偏光波が反射型偏光板55を透過して前面側に抜ける。これにより、前面側に抜ける第2偏光波の光量が増加する。また、高分子分散型液晶素子60によって生成された第1偏光波が反射型偏光板53を透過して背面側に抜ける。これにより、背面側に抜ける第1偏光波の光量も増加する。なお、図22および図23において説明を省略
した第2偏光波Cおよび第2偏光波Dによって、前面側に透過する第2偏光波および背面側に透過する第1偏光波の割合はさらに高くなる。
した第2偏光波Cおよび第2偏光波Dによって、前面側に透過する第2偏光波および背面側に透過する第1偏光波の割合はさらに高くなる。
前面側および背面側に透過する第2偏光波の割合の和を求めていくと、それらは最終的に“0.25”になる。一方、図21に示すように、導光板20から表示面側に射出された、割合が“0.25”の第1偏光波も、液晶パネル30によって変換され、割合が“0.25”の第2偏光波として前面側に透過する。その結果、導光板20から出射される光のうち、前面側に透過する第2偏光波の割合はそれらの和である“0.50”になる。
図24は、本実施形態の効果を第1および第2基礎検討の場合と比較した図である。第1の基礎検討の場合に比べて、本実施形態では前面側に透過する光の光量は2倍に増加するので、光の利用効率が向上し、画面を明るくすることができる。また、第2の基礎検討では、前面側に透過する光量は“0.25+α”であり、“α”の値が“0.25”になれば、本実施形態の場合と同じになる。このため、第2の基礎検討の場合も、本実施形態の場合と同程度にまで、光の利用効率を向上させることができる。しかし、第2の基礎検討の場合には、図17でも説明したように、“α”の値が大きくなればなるほど、導光板20の濁度が大きくなり、前面側から背面を見た時に背景がぼやけるという問題がある。これに対し、本実施形態では、視聴者は明るい画面にくっきりと表示された背景を視認することができる。
<4.2 効果>
本実施形態によれば、導光板20と高分子分散型液晶素子60とを2枚の反射型偏光板53、55で挟むので、導光板20から表示面側および裏面側に出射される第2偏光波もこれらの反射型偏光板53、55の間で反射される際に、散乱モードの高分子分散型液晶素子60によって第1偏光波と第2偏光波を1対1に近い割合で含む光に変換される。変換された第1偏光波は、導光板20の前面に配置された反射型偏光板55を透過して前面側に透過するので、前面側に透過する光の光量をより増加させることができる。その結果、光の利用効率をさらに向上させることができ、画面をより明るくすることができる。
本実施形態によれば、導光板20と高分子分散型液晶素子60とを2枚の反射型偏光板53、55で挟むので、導光板20から表示面側および裏面側に出射される第2偏光波もこれらの反射型偏光板53、55の間で反射される際に、散乱モードの高分子分散型液晶素子60によって第1偏光波と第2偏光波を1対1に近い割合で含む光に変換される。変換された第1偏光波は、導光板20の前面に配置された反射型偏光板55を透過して前面側に透過するので、前面側に透過する光の光量をより増加させることができる。その結果、光の利用効率をさらに向上させることができ、画面をより明るくすることができる。
<5.第4の実施形態>
本実施形態に係る液晶表示装置は、上記各ディスプレイ15~17に含まれる高分子分散型液晶素子60の構成に特徴を有する。そこで、以下の各実施形態に係る液晶表示装置の構成および動作は、図8に示す構成および動作と同じであるため、図および説明を省略する。
本実施形態に係る液晶表示装置は、上記各ディスプレイ15~17に含まれる高分子分散型液晶素子60の構成に特徴を有する。そこで、以下の各実施形態に係る液晶表示装置の構成および動作は、図8に示す構成および動作と同じであるため、図および説明を省略する。
第1の実施形態において説明した高分子分散型液晶素子60において、高分子ネットワーク63と液晶を封止するための封止部材61として、複屈折性を示すフィルムシートを使用すれば以下のような問題が生じる。
図25は、図9に示すディスプレイ15において、高分子分散型液晶素子60の封止部材61として複屈折性を示すフィルムシートが使用され、光源25が消灯された状態で、背面側から前面側に透過する光の光線軌跡を説明するための図である。この場合、透過モードの高分子分散型液晶素子60に入射した第1偏光波は、第1偏光波のまま高分子分散型液晶素子60を透過することができず、複屈折性を示す封止部材61によって複屈折される。これにより、高分子分散型液晶素子60から出射される光は、例えば第1偏光波と第2偏光波を0.9対0.1のように、第2偏光波を含み、その分だけ第1偏光波の割合が低くなる。その後、第1偏光波は第1吸収型偏光板41を透過し、さらに液晶パネル30によって変換された第2偏光波が前面側に透過し、第2偏光波は第1吸収型偏光板41に吸収される。前面側に透過した第2偏光波の光量は、図11に示す場合に比べて少なくなるので、画面の明るさは暗くなる。
また、図26は、高分子分散型液晶素子60の封止部材61として複屈折性を示すフィルムシートが使用され、光源25が点灯された状態で、導光板20から出射された光の光線軌跡を説明するための図である。この場合、導光板20から裏面側に出射された第2偏光波は、散乱モードの高分子分散型液晶素子60に入射すると、第1偏光波と第2偏光波を1対1に近い割合で含むのではなく、複屈折性を示す封止部材61であるフィルムシートによって複屈折される。これにより、高分子分散型液晶素子60から出射される光は、例えば第1偏光波と第2偏光波の割合が0.4対0.6のように、第2偏光波をより多く含み、その分だけ第1偏光波は少なくなる。その後、第1偏光波は第1吸収型偏光板41を透過し、さらに液晶パネル30によって変換された第2偏光波が前面側に透過する。この第2偏光波の光量は、図13に示す場合に比べて少なくなるので、画面の明るさは暗くなる。
そこで、高分子分散型液晶素子60の封止部材61として、複屈折性を示すフィルムシートの代わりに、複屈折性を示さないフィルムシートを使用する。これによって、高分子分散型液晶素子60は、透過モードのときには、入射した第1偏光波をそのまま出射し、散乱モードのときには、第1偏光波と第2偏光波の割合が1対1に近づくように調整して出射する。その後、第1偏光波は第1吸収型偏光板41を透過し、さらに液晶パネル30によって変換された第2偏光波が前面側に透過する。いずれの場合も、前面側に透過する第2偏光波の光量は、図25および図26に示す場合に比べて多くなるので、画面の明るさは明るくなる。
このように、高分子分散型液晶素子60に、封止部材61として複屈折性を示さないフィルムシートを使用することによって、封止部材61で複屈折が生じないようにする。これにより、高分子分散型液晶素子60を透過する透過光の光量の減少を防ぐことができるので、光の利用効率が向上し、画面を明るくすることができる。このような複屈折性を示さないフィルムとしては、例えば溶液流涎成膜法によって製造されたTAC(Triacetylcellulose)フィルム(トリアセチルセルロースフィルム)を使用することができる。
また、複屈折性を示さない封止部材61として、複屈折性を示さないガラス板を使用しても良い。これにより、画面を明るくすることができるだけでなく、さらにフィルムシートを使用する場合に比べてディスプレイの剛性を向上させることができる。なお、複屈折性を示さないガラス板の製造方法は公知であるので、その説明を省略する。また、複屈折性を示さないフィルムシートを「等方性フィルムシート」と呼び、複屈折性を示さないガラス板を「等方性ガラス板」と呼ぶことがある。
<6.その他>
上記各実施形態において、光源25は導光板20の側面のいずれか1辺に取り付けられるだけでなく、いずれか2辺または3辺に取り付けられても良く、あるいは4辺に取り付けられても良い。
上記各実施形態において、光源25は導光板20の側面のいずれか1辺に取り付けられるだけでなく、いずれか2辺または3辺に取り付けられても良く、あるいは4辺に取り付けられても良い。
上記各実施形態では、各ディスプレイ15~17は、白黒の画像および背景を表示するとして説明したが、画像および背景をカラーで表示するようにしてもよい。ディスプレイ15~17のいずれも構成を少し変更するだけでカラー表示できるようにすることができるが、以下の説明では、第1の実施形態のディスプレイ15を例に挙げて、説明する。図27は、カラーで画像や背景を表示するカラーフィルタ方式のディスプレイ18の構成を示す断面図である。図27に示すように、ディスプレイ18では、液晶パネル30と第2吸収型偏光板42との間にカラーフィルタ80が配置されている。これにより、導光板20から出射された光や、前面側または背面側から入射した光がカラーフィルタ80を透過するので、画像や背景がカラーで表示される。
上記各実施形態では、ディスプレイ15~17を透過する光の偏光状態を制御するための素子として、TN方式で駆動される液晶パネル30を使用した。しかし、使用可能な液晶パネルはTN方式に限定されず、例えばVA(Virtical Alignment)方式などの他の方式で駆動される素子であっても、2枚の偏光板で挟んだ状態で駆動時または非駆動時のいずれか一方において偏光波を透過させ、他方において偏光波を透過させないように制御できる素子であれば良い。そこで、このような素子を「偏光変調素子」と呼ぶことがある。
また、ディスプレイ15~17がシースルーディスプレイとして機能するためには、偏光変調素子は、ノーマリホワイト型またはノーマリブラック型のいずれであっても良い。しかし、ノーマリホワイト型の場合には、偏光変調素子がオフ状態、すなわち非駆動時に透明になる。これに対し、ノーマリブラック型の場合には、偏光変調素子がオン状態、すなわち駆動状態のときに透明になる。このように、ノーマリブラック型の偏光変調素子は、画像を表示するときだけでなく、シースルー状態になるときも駆動しなければならない。このため、ノーマリホワイト型の偏光変調素子は、ノーマリブラック型の偏光変調素子に比べて、少ない消費電力で駆動できるメリットがある。
また、散乱モードでは、第1偏光波と第2偏光波の割合が1対1に近づくように調整し、透明モードではそのまま透過させることができる素子として、高分子分散型液晶素子60を使用した。しかし、高分子分散型液晶素子60に限定されず、上記のような機能を有する素子であれば良い。そこで、このような素子を「光散乱切替素子」と呼ぶことがある。このような光散乱切替素子は、その種類にかかわらずリバースモード型がより好ましい。
なお、上記実施形態における第1吸収型偏光板41および反射型偏光板55をまとめて「第1偏光板」と呼び、第2吸収型偏光板42および反射型偏光板54をまとめて「第2偏光板」と呼ぶことがある。
本願は、2016年5月30日に出願された「表示装置」という名称の日本の特願2016-107690号に基づく優先権を主張する出願であり、この出願の内容は引用することによって本願の中に含まれる。
15、16、17 … ディスプレイ
20 … 導光板
25 … 光源
30 … 液晶パネル(偏光変調素子)
41 … 第1吸収型偏光板
42 … 第2吸収型偏光板
51 … 第1反射型偏光板
52 … 第2反射型偏光板
53 … 反射型偏光板
54 … 反射型偏光板
55 … 反射型偏光板
60 … 高分子分散型液晶素子(光散乱切替素子)
61 … 封止部材
63 … 高分子ネットワーク
64 … 液晶分子
80 … カラーフィルタ
20 … 導光板
25 … 光源
30 … 液晶パネル(偏光変調素子)
41 … 第1吸収型偏光板
42 … 第2吸収型偏光板
51 … 第1反射型偏光板
52 … 第2反射型偏光板
53 … 反射型偏光板
54 … 反射型偏光板
55 … 反射型偏光板
60 … 高分子分散型液晶素子(光散乱切替素子)
61 … 封止部材
63 … 高分子ネットワーク
64 … 液晶分子
80 … カラーフィルタ
Claims (12)
- 画像信号に基づく画像を表示すると共に、シースルーディスプレイとしても機能するディスプレイを備えた表示装置であって、
前記ディスプレイは、
第1偏光波および前記第1偏光波の偏光軸と直交する偏光軸を有する第2偏光波を含む光を射出する光源と、
前記光源からの光を前記ディスプレイの表示面側および裏面側に向けて出射する導光板と、
前記導光板の裏面に配置され、入射する偏光波の偏光状態を変換することなく出力する透過モードと、前記第1偏光波と前記第2偏光波の割合が1対1に近づくように変換して出力する散乱モードとを有する光散乱切替素子と、
前記光散乱切替素子の裏面に配置された反射型偏光板と、
前記導光板から前面側に向かって順に配置された第1偏光板と、偏光変調素子と、第2偏光板とを備え、
偏光変調素子は、電圧を印加可能な複数の画素を含み、前記電圧によって前記画素に入射する前記第1偏光波または前記第2偏光波の偏光状態を制御して出力し、
前記反射型偏光板および前記第1偏光板は、前記第1偏光波および前記第2偏光波のうちいずれか一方の偏光波を透過し、前記第2偏光板は他方の偏光波を透過することを特徴とする、表示装置。 - 前記第1偏光板および前記第2偏光板は、いずれも吸収型偏光板であることを特徴とする、請求項1に記載の表示装置。
- 前記第1偏光板は吸収型偏光板であり、前記第2偏光板は反射型偏光板であることを特徴とする、請求項1に記載の表示装置。
- 前記第1偏光板は反射型偏光板であり、前記第2偏光板は吸収型偏光板であることを特徴とする、請求項1に記載の表示装置。
- 前記偏光変調素子は液晶パネルであることを特徴とする、請求項2から4のいずれかに記載の表示装置。
- 前記液晶パネルはノーマリホワイト型のパネルであることを特徴とする、請求項5に記載の表示装置。
- 前記液晶パネルは、ねじれネマティック方式のパネルであることを特徴とする、請求項5に記載の表示装置。
- 前記偏光変調素子と前記第2偏光板との間に配置されたカラーフィルタをさらに備えることを特徴とする、請求項1に記載の表示装置。
- 前記光源は、少なくとも白色の表現が可能な色の光を発する複数種類の発光体を含み、前記複数種類の発光体を時分割して順に発光させることを特徴とする、請求項1に記載の表示装置。
- 前記光散乱切替素子は、電界をオンしたときに前記散乱モードとなり、前記電界をオフしたときに前記透過モードになることを特徴とする、請求項1に記載の表示装置。
- 前記光散乱切替素子は、液晶層と、前記液晶層内に形成された高分子ネットワークと、表面に電極が形成された封止部材とを備え、前記液晶層と前記高分子ネットワークとを前記封止部材によって挟んだ構造の高分子分散型液晶素子であることを特徴とする、請求項10に記載の表示装置。
- 前記光散乱切替素子の前記封止部材は、等方性フィルムシートまたは等方性ガラス板のいずれかであることを特徴とする、請求項11に記載の表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/305,860 US20190171045A1 (en) | 2016-05-30 | 2017-05-23 | Display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016107690 | 2016-05-30 | ||
JP2016-107690 | 2016-05-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017208896A1 true WO2017208896A1 (ja) | 2017-12-07 |
Family
ID=60478559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/019161 WO2017208896A1 (ja) | 2016-05-30 | 2017-05-23 | 表示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20190171045A1 (ja) |
WO (1) | WO2017208896A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020152960A1 (ja) * | 2019-01-25 | 2020-07-30 | 株式会社ジャパンディスプレイ | 液晶表示装置及び撮像機能を有する電子機器 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6720008B2 (ja) * | 2016-07-22 | 2020-07-08 | 株式会社ジャパンディスプレイ | 表示装置および表示装置の駆動方法 |
US11663938B2 (en) | 2018-10-08 | 2023-05-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Viewing device and method for providing virtual content overlapping visual objects |
US11698554B2 (en) | 2019-02-25 | 2023-07-11 | Visteon Global Technologies, Inc. | Display system |
US11808957B2 (en) | 2019-02-25 | 2023-11-07 | Visteon Global Technologies, Inc. | System and method for adjusting light intensity in a display system |
US11782309B2 (en) | 2019-02-25 | 2023-10-10 | Visteon Global Technologies, Inc. | Display system |
US11953778B2 (en) | 2019-02-25 | 2024-04-09 | Visteon Global Technologies, Inc. | System and method for adjusting light intensity in a display system |
US11256135B2 (en) | 2019-02-25 | 2022-02-22 | Visteon Global Technologies, Inc. | System and method for adjusting light intensity in a display system |
US11747672B2 (en) | 2019-02-25 | 2023-09-05 | Visteon Global Technologies, Inc. | System and method for adjusting light intensity in a display system |
US11699403B2 (en) | 2019-02-25 | 2023-07-11 | Visteon Global Technologies, Inc. | Display system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146473A (ja) * | 1993-11-25 | 1995-06-06 | Sanyo Electric Co Ltd | 液晶表示装置 |
WO2005008322A1 (ja) * | 2003-07-23 | 2005-01-27 | Sharp Kabushiki Kaisha | 液晶表示装置 |
WO2016021360A1 (ja) * | 2014-08-04 | 2016-02-11 | シャープ株式会社 | 画像表示装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006323315A (ja) * | 2005-05-20 | 2006-11-30 | Citizen Electronics Co Ltd | 表裏一体型バックライト |
KR102181237B1 (ko) * | 2014-03-17 | 2020-11-23 | 삼성디스플레이 주식회사 | 디스플레이 장치 |
-
2017
- 2017-05-23 WO PCT/JP2017/019161 patent/WO2017208896A1/ja active Application Filing
- 2017-05-23 US US16/305,860 patent/US20190171045A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07146473A (ja) * | 1993-11-25 | 1995-06-06 | Sanyo Electric Co Ltd | 液晶表示装置 |
WO2005008322A1 (ja) * | 2003-07-23 | 2005-01-27 | Sharp Kabushiki Kaisha | 液晶表示装置 |
WO2016021360A1 (ja) * | 2014-08-04 | 2016-02-11 | シャープ株式会社 | 画像表示装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020152960A1 (ja) * | 2019-01-25 | 2020-07-30 | 株式会社ジャパンディスプレイ | 液晶表示装置及び撮像機能を有する電子機器 |
JP2020118879A (ja) * | 2019-01-25 | 2020-08-06 | 株式会社ジャパンディスプレイ | 液晶表示装置及び撮像機能を有する電子機器 |
JP7315329B2 (ja) | 2019-01-25 | 2023-07-26 | 株式会社ジャパンディスプレイ | 液晶表示装置及び撮像機能を有する電子機器 |
Also Published As
Publication number | Publication date |
---|---|
US20190171045A1 (en) | 2019-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017208896A1 (ja) | 表示装置 | |
US9971190B2 (en) | Display device and electronic apparatus | |
JP4536489B2 (ja) | 光学素子及びそれを用いた表示装置 | |
KR101005466B1 (ko) | 투명한 시-스루 디스플레이 장치 | |
US7643107B2 (en) | Liquid crystal display apparatus | |
US20060221631A1 (en) | Planar light source device, display device, terminal device, and method for driving planar light source device | |
JP6025999B2 (ja) | 画像表示装置 | |
JP2007127724A (ja) | 液晶表示装置 | |
WO2015190588A1 (ja) | 液晶表示装置 | |
US10824005B2 (en) | Display device with display presenting image based on externally provided image data and doubling as see-through display | |
US20190302523A1 (en) | Display device | |
US10192493B2 (en) | Display device | |
JP2022071763A (ja) | 表示システム | |
CN111090191A (zh) | 光源模块及双屏幕显示装置 | |
KR20140113463A (ko) | 액정 표시 장치 및 전자 기기 | |
JP7122314B2 (ja) | 光学装置、表示装置および電子機器 | |
US20070242198A1 (en) | Transflective LC Display Having Backlight With Temporal Color Separation | |
WO2017208897A1 (ja) | 表示装置 | |
JP5975928B2 (ja) | 車両用表示装置 | |
CN115407543A (zh) | 发光模组及显示装置 | |
JP5235939B2 (ja) | 光学素子及びそれを用いた表示装置 | |
JP2008261944A (ja) | 液晶表示装置 | |
CN113066418A (zh) | 源驱动芯片及显示装置 | |
JP2009080321A (ja) | 表示装置、偏光制御方法 | |
KR101292582B1 (ko) | 백라이트어셈블리 및 이를 이용한 액정표시장치모듈 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17806453 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17806453 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |