WO2017208740A1 - 管理装置および電源システム - Google Patents

管理装置および電源システム Download PDF

Info

Publication number
WO2017208740A1
WO2017208740A1 PCT/JP2017/017448 JP2017017448W WO2017208740A1 WO 2017208740 A1 WO2017208740 A1 WO 2017208740A1 JP 2017017448 W JP2017017448 W JP 2017017448W WO 2017208740 A1 WO2017208740 A1 WO 2017208740A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage detection
voltage
cell
detection circuit
cells
Prior art date
Application number
PCT/JP2017/017448
Other languages
English (en)
French (fr)
Inventor
公彦 古川
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2018520745A priority Critical patent/JPWO2017208740A1/ja
Priority to CN201780034022.1A priority patent/CN109302852A/zh
Priority to US16/301,664 priority patent/US20190285669A1/en
Publication of WO2017208740A1 publication Critical patent/WO2017208740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a management device that manages the state of a power storage module, and a power supply system.
  • HV hybrid vehicles
  • PSV plug-in hybrid vehicles
  • EV electric vehicles
  • the voltage detection circuit Even if the terminal voltage of the voltage detection circuit to which the voltage detection line is connected drops due to the disconnection of the voltage detection line, the voltage detection circuit immediately determines whether the voltage detection line is disconnected or the corresponding cell voltage has dropped. Can not do it. Therefore, there is a method of making an equalization circuit connected between the voltage detection line and the next lower voltage detection line conductive to check whether the cell voltage has dropped or the cell voltage has dropped.
  • the corresponding cell voltage is substantially zero and the cell voltage one level higher than the cell is approximately twice the normal value, it can be determined that the voltage detection line is disconnected.
  • the corresponding cell voltage is substantially zero and the cell voltage one level higher is a normal value, it can be determined that the corresponding cell voltage has decreased.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a voltage detection circuit in which a voltage detection line connected to each node of a plurality of cells connected in series by a voltage detection line has a highest or lowest voltage detection line.
  • An object of the present invention is to provide a technique for easily discriminating whether a voltage detection line is broken or a cell voltage is lowered when a connected terminal voltage is lowered.
  • a management device is a cell voltage detector that is connected to each node of a plurality of cells connected in series by a voltage detection line and detects each voltage of the plurality of cells.
  • a circuit a total voltage detection circuit for detecting a voltage between the highest node and the lowest node of the plurality of cells, and when the highest or lowest cell voltage detected by the cell voltage detection circuit is abnormal, The total cell voltage obtained by adding the voltages of the plurality of cells detected by the cell voltage detection circuit is compared with the voltage detected by the total voltage detection circuit.
  • a control circuit that determines that the lower cell is abnormal and determines that the disconnection of the highest or lowest voltage detection line has occurred when the two do not correspond.
  • the present invention in a voltage detection circuit connected to each node of a plurality of cells connected in series by a voltage detection line, when the terminal voltage to which the highest or lowest voltage detection line is connected decreases, It is possible to easily determine whether the voltage detection line is disconnected or the cell voltage is reduced.
  • FIG. 1 is a diagram for explaining a power supply system according to Embodiment 1.
  • FIG. 6 is a flowchart illustrating a flow of a disconnection detection method for the highest / lowermost voltage detection lines by the management device according to the first embodiment. 6 is a diagram for explaining a power supply system according to Embodiment 2.
  • FIG. 6 is a flowchart illustrating a flow of a disconnection detection method for the highest / lowermost voltage detection lines by the management device according to the first embodiment. 6 is a diagram for explaining a power supply system according to Embodiment 2.
  • FIG. 1 is a diagram for explaining a power supply system 1 according to the first embodiment.
  • the power supply system 1 includes a power storage module 10 and a management device 30.
  • the power storage module 10 includes a plurality of cells connected in series.
  • As the cell a lithium ion battery cell, a nickel metal hydride battery cell, a lead battery cell, an electric double layer capacitor cell, a lithium ion capacitor cell, or the like can be used.
  • a lithium ion battery cell nominal voltage: 3.6-3.7 V
  • FIG. 1 illustrates an example in which an assembled battery including eight lithium ion battery cells (first cell S1 to eighth cell S8) connected in series is used.
  • the management device 30 includes an equalization circuit, an input filter, a cell voltage detection circuit 31, a total voltage detection circuit 33, and a control circuit 32, which are mounted on a printed wiring board.
  • the cell voltage detection circuit 31 is connected to each node of the plurality of cells S1 to S8 connected in series by a plurality of voltage detection lines L1 to L9, detects a voltage between adjacent voltage detection lines, and detects each cell S1 to S8. The voltage of is detected.
  • the cell voltage detection circuit 31 is configured by, for example, an ASIC (Application Specific Integrated Circuit) which is a dedicated custom IC.
  • the cell voltage detection circuit 31 transmits the detected voltages of the cells S1 to S8 to the control circuit 32.
  • a wire harness is connected to each node of the plurality of cells S1-S8 of the power storage module 10, and a connector at the tip of each wire harness is attached to each connector of the management device 30 mounted on the printed wiring board. That is, the power storage module 10 and the management device 30 are electrically connected via the harness connector 20.
  • Resistors R1-R9 are respectively inserted into the plurality of voltage detection lines L1-L9, and capacitors C1-C8 are respectively connected between two adjacent voltage detection lines. Resistors R1-R9 and capacitors C1-C8 constitute an input filter (low-pass filter), and have a function of stabilizing the voltage input to the cell voltage detection circuit 31.
  • Protective diodes D1-D8 are connected in reverse parallel to the plurality of cells S1-S8, respectively, between two adjacent voltage detection lines.
  • Zener diodes can be used as the diodes D1-D8. If the withstand voltage between adjacent input terminals of the cell voltage detection circuit 31 is designed to be higher than the voltage of two cells, the diodes D1 to D8 can be omitted.
  • the connectors of the management device 30 and the input terminals of the cell voltage detection circuit 31 are connected by a plurality of voltage detection lines L1-L9.
  • An equalization circuit is connected in parallel with the plurality of cells S1 to S8, respectively, between two adjacent voltage detection lines.
  • the equalizing circuit is constituted by a series circuit of discharge resistors R11-R18 and discharge switches Q1-Q8.
  • the discharge switches Q1-Q8 are constituted by transistors, for example.
  • the control circuit 32 executes equalization control based on the voltages of the plurality of cells S1 to S8 received from the cell voltage detection circuit 31. Specifically, the voltage of the other cell is adjusted to the voltage of the cell having the lowest voltage among the plurality of cells S1-S8. The control circuit 32 turns on the discharge switch of the equalization circuit connected in parallel with the other cell to discharge the other cell. When the voltage of the other cell drops to the voltage of the lowest voltage, the discharge switch of the equalization circuit connected in parallel with the other cell is turned off.
  • the control circuit 32 is constituted by a microprocessor, for example.
  • the operating power supply of the cell voltage detection circuit 31 is supplied from the power storage module 10 to be monitored in order to simplify the power supply circuit.
  • the cell voltage detection circuit 31 receives power supply from a power source other than the power storage module 10, an insulation process is required, so that the circuit becomes large and the cost increases.
  • the uppermost node of the plurality of cells S1 to S8 constituting the power storage module 10 and the cell voltage detection circuit 31 are connected by two lines, the first voltage detection line L1 and the positive power supply line L0. is doing.
  • the lowest voltage node of the plurality of cells S1-S8 and the cell voltage detection circuit 31 are connected by two lines, a ninth voltage detection line L9 and a negative power supply line L10.
  • the total voltage detection circuit 33 detects the voltage between the positive power supply line L0 and the negative power supply line L10, and detects the voltage across the cells S1-S8 (hereinafter referred to as the total voltage).
  • the total voltage detection circuit 33 outputs the detected total voltage to the control circuit 32.
  • the total voltage detection circuit 33 can be configured by, for example, a combination of a resistance voltage dividing circuit and an A / D converter. When an analog input terminal is mounted on the control circuit 32, the control circuit 32 can be configured with only a resistance voltage dividing circuit.
  • disconnection is not limited to physical wiring disconnection but includes electrical disconnection).
  • the cell voltage detection circuit 31 cannot correctly detect the cell voltage.
  • cell state monitoring and equalization control by the control circuit 32 cannot be performed correctly.
  • a method using an equalization circuit is often used. Specifically, when the voltage detection line connected to the disconnected harness connector 20 and the equalization circuit connected between the voltage detection lines one level lower than that are made conductive, the cell voltage to be detected becomes substantially zero. Is used.
  • the voltage of the seventh cell S7 detected by the cell voltage detection circuit 31 is approximately. It becomes zero, and the voltage of the sixth cell S6 is about 2 cells.
  • the voltage of the seventh cell S7 is lowered, when the discharge switch Q7 is turned on, the voltage of the seventh cell S7 detected by the cell voltage detection circuit 31 is maintained at the lowered voltage of the seventh cell S7.
  • the voltage of the sixth cell S6 is maintained at the voltage S6 for one cell.
  • the sum of the voltages of all the cells S1 to S8 detected by the cell voltage detection circuit 31 (hereinafter referred to as cell total voltage) is compared with the total voltage detected by the total voltage detection circuit 33. .
  • cell total voltage the sum of the voltages of all the cells S1 to S8 detected by the cell voltage detection circuit 31
  • the detection voltage of the highest / lowermost cell falls below a predetermined value, it is possible to identify whether it is due to disconnection of the harness connector 20 or due to a drop in cell voltage.
  • the total cell voltage is approximately equal to the total voltage, it is determined that no disconnection has occurred, that is, the highest / lowermost cell voltage has actually decreased.
  • the total cell voltage and the total voltage are not substantially equal, it is determined that the highest / lowermost voltage detection lines are disconnected.
  • FIG. 2 is a flowchart showing the flow of the disconnection detection method for the highest / lowermost voltage detection lines by the management apparatus 30 according to the first embodiment.
  • the cell voltage detection circuit 31 determines whether or not the detection voltage of the highest / highest cell is lower than the set voltage (S10).
  • the set voltage is set to a cell discharge end voltage, a cell overdischarge determination voltage, or a voltage obtained by adding a certain margin to the voltage.
  • the control circuit 32 When the detection voltage of the highest / highest cell is lower than the set voltage (Y in S10), the control circuit 32 adds up the voltages of all the cells S1-S8 detected by the cell voltage detection circuit 31. (S11).
  • the total voltage detection circuit 33 detects the voltage (total voltage) across all the cells S1-S8 and outputs it to the control circuit 32 (S12). In the state where the detection voltage of the highest / highest cell is higher than the set voltage, detection of the total voltage by the total voltage detection circuit 33 is not essential.
  • the control circuit 32 compares the total cell voltage and the total voltage detected by the total voltage detection circuit 33 (S13). When the total cell voltage and the total voltage substantially coincide with each other (Y in S13), the control circuit 32 determines that the uppermost / lowermost cell is abnormal (overdischarge) (S14). After the determination, the control circuit 32 stops the power supply system 1 immediately or after a predetermined short time (S17). In the case of in-vehicle use as in the present embodiment, the control circuit 32 notifies the upper ECU in the vehicle of a power supply stop signal, and the ECU displays a message indicating battery stop on the instrument panel. For example, the color of the lamp indicating the battery usage state is changed to an unusable color. The ECU may output a message indicating that the battery is stopped.
  • the ECU switches from the motor travel mode to the engine travel mode almost simultaneously with outputting the message.
  • the ECU notifies the driver of the message, and after the time necessary for the driver to move the vehicle to the road shoulder (for example, several tens of seconds) elapses,
  • the control circuit 32 stops the power supply system 1 and stops power supply to the motor.
  • step S13 if the total cell voltage and the total voltage do not substantially match (N in S13), the control circuit 32 determines that the uppermost / lowermost voltage detection line is disconnected (S15). After the determination, the control circuit 32 allows power supply from the power supply system 1 to the load including the motor until the predetermined time elapses or the predetermined amount of power is consumed (N in S16). When the elapsed time or a predetermined amount of power is consumed (Y in S16), the power supply system 1 is stopped (S17). After the determination, the control circuit 32 notifies a battery abnormality signal to the upper ECU in the vehicle, and the ECU displays a message indicating the battery abnormality on the instrument panel. For example, the color of the lamp indicating the battery usage state is changed to a color requiring repair. Further, the ECU may output a message indicating battery abnormality.
  • the ECU switches from the motor travel mode to the engine travel mode almost simultaneously with outputting the message.
  • the ECU informs the driver of the message and then travels to a place where the driver can repair the vehicle (for example, a gas station, a car dealer, a repair factory). Therefore, the power supply to the motor is allowed.
  • Grace period allowing this power supply can be managed by time and / or power consumption ( ⁇ mileage). For example, a grace period of several minutes to several tens of minutes can be set. Also, it is possible to set a grace period of several kilometers to several tens of kilometers. Moreover, you may use both together.
  • the control circuit 32 monitors the total voltage detected by the total voltage detection circuit 33 to monitor whether overcharge / overdischarge of the entire cell has occurred. For cells that are not affected by the disconnection of the voltage detection line, monitoring by the cell voltage detection circuit 31 is continued.
  • the voltage detection line is determined by comparing the total cell voltage with the total voltage. It is possible to easily determine whether the disconnection has occurred or the cell voltage has decreased. In the case of disconnection of the voltage detection line, the failure level is minor because it is not an abnormality of the cell itself. In the case of a pure EV, if power supply from the power supply system 1 to the motor is stopped, self-running cannot be performed. In that case, traction by another vehicle or movement by a tow truck is required. Therefore, in the present embodiment, when the voltage detection line is disconnected, use of the power supply system 1 for a predetermined time and / or a predetermined traveling distance is permitted. Thereby, both safety and convenience can be achieved.
  • the cell voltage detection result corresponding to the disconnected cell of the cell voltage detection circuit 31 is greatly destroyed, or the operation of the cell voltage detection circuit 31 is caused by stopping the power supply. Stop.
  • the detection output of the total voltage detection circuit 33 is greatly reduced, so that the disconnection can be determined in the same manner based on the two circuit outputs.
  • FIG. 3 is a diagram for explaining the power supply system 1 according to the second embodiment.
  • the total voltage detection circuit 33 is omitted as compared with the power supply system 1 according to the first embodiment.
  • the control circuit 32 acquires the input voltage of the load 2 from the input voltage detection circuit 2a installed on the load side. The control circuit 32 uses the acquired input voltage of the load 2 as an alternative to the total voltage according to the first embodiment.
  • the input voltage detection circuit 2a When the load 2 is an AC load and the input voltage detection circuit 2a measures the inverter output, an inverter (not shown) is provided between the power supply system 1 and the load 2.
  • the detection voltage of the input voltage detection circuit 2a is an AC voltage.
  • the control circuit 32 converts the AC voltage value acquired from the input voltage detection circuit 2a into a DC voltage value. At that time, it is preferable to convert the AC voltage value to the DC voltage value so as to compensate for the conversion loss due to the inverter and the wiring impedance between the power storage module 10 and the load 2.
  • the control circuit 32 of the power supply system 1 and the input voltage detection circuit 2a may be connected by a communication line (for example, RS-485 or TCP / IP), or may be directly connected by a voltage line. Further, the voltage value detected by the input voltage detection circuit 2a may be superimposed on the power line connecting the power storage module 10 and the load 2 and transmitted.
  • a communication line for example, RS-485 or TCP / IP
  • the total voltage detection circuit 33 can be omitted, and the configuration of the management device 30 is further simplified, and the same as in the first embodiment.
  • the input voltage detection circuit 2a is installed on the load side, the input voltage detection circuit 2a and the control circuit 32 are connected, the power storage module 10 is not connected in series with another power storage module 10, These conditions are required.
  • Embodiment 1 can be applied without being limited to these conditions.
  • the positive power supply line L0 and the voltage detection line L1 may be combined into one, and the voltage detection line L1 may be configured to use both the voltage detection line and the power supply line.
  • the voltage detection line L9 and the negative power supply line L10 may be combined into one, and the voltage detection line L9 may be configured to use both the voltage detection line and the power supply line.
  • the example which uses the power supply system 1 for a vehicle power supply device was assumed in the above-mentioned embodiment, it is not limited to a vehicle-mounted application, but for other uses such as an aircraft power supply device, a ship power supply device, a stationary power storage system, etc. Is also available.
  • a cell voltage detection circuit (31) is connected to each node of the plurality of cells (S1-S8) connected in series by a voltage detection line (L1-L9) and detects the voltage of each of the plurality of cells (S1-S8). )When, A total voltage detection circuit (33) for detecting a voltage between the highest node and the lowest node of the plurality of cells (S1-S8); When the highest or lowest cell voltage detected by the cell voltage detection circuit (31) is abnormal, it is obtained by adding the voltages of the plurality of cells detected by the cell voltage detection circuit (31).
  • the total cell voltage is compared with the voltage detected by the total voltage detection circuit (33), and when both correspond, it is determined that the most significant cell or the least significant cell (S1 / S8) is abnormal.
  • the operating voltage of the cell voltage detection circuit (31) is supplied from both ends of the plurality of cells (S1-S8), The uppermost node of the plurality of cells (S1-S8) and the cell voltage detection circuit (31) are connected by the voltage detection line (L1) and the positive power supply line (L0). The lowest node of the plurality of cells and the cell voltage detection circuit (31) are connected by the voltage detection line (L9) and the negative power supply line (L10), The total voltage detection circuit (33) detects a voltage between the positive power supply line (L0) and the negative power supply line (L10).
  • the management apparatus (30) according to item 1, characterized in that: According to this, it is possible to measure the entire voltage of the plurality of cells (S1-S8) without being affected by the presence or absence of disconnection of the voltage detection line.
  • a cell voltage detection circuit (31) is connected to each node of the plurality of cells (S1-S8) connected in series by a voltage detection line (L1-L9) and detects the voltage of each of the plurality of cells (S1-S8). )When, When the highest or lowest cell voltage detected by the cell voltage detection circuit (31) is abnormal, each voltage of the plurality of cells (S1-S8) detected by the cell voltage detection circuit (31) is obtained.
  • the load obtained from the sum of cell voltages obtained by summing and the input voltage detection circuit (2a) connected between the input terminals of the load (2) connected to both ends of the plurality of cells (S1-S8).
  • the input voltages of (2) are compared, and when both correspond, it is determined that the most significant cell or the least significant cell (S1 / S8) is abnormal, and when both do not correspond, the most significant or least significant voltage detection line (L1 / L
  • the management apparatus (30) characterized by comprising. According to this, it is easily determined whether the highest or lowest voltage detection line (L1 / L9) is disconnected or whether the highest or lowest cell (S1 / S8) is in an abnormal state. be able to.
  • the management device (30) according to any one of items 1 to 4 for managing the power storage module (10);
  • a power supply system (1) comprising: According to this, it is easily determined whether the highest or lowest voltage detection line (L1 / L9) is disconnected or whether the highest or lowest cell (S1 / S8) is in an abnormal state. be able to.
  • 1 power system 2 loads, 2a input voltage detection circuit, 10 power storage module, S1-S8 cell, L0 positive power supply line, L1-L9 voltage detection line, L10 negative power supply line, 20 harness connector, 30 management device, R1-R9 resistor, C1-C8 capacitor, R11-R18 discharge resistor, Q1-Q8 discharge switch, D1-D8 diode, 31 cell voltage detection circuit, 32 control circuit, 33 total voltage detection circuit.

Abstract

セル電圧検出において、最上位または最下位の電圧検出線が接続された端子電圧が低下した場合に、電圧検出線が断線したのかセル電圧が低下したのかを簡単に判別するために、セル電圧検出回路(31)は、直列接続された複数のセル(S1-S8)の各ノードに電圧検出線(L1-L9)で接続され、当該複数のセル(S1-S8)のそれぞれの電圧を検出する。総電圧検出回路(33)は、複数のセル(S1-S8)の最上位ノードと最下位ノード間の電圧を検出する。制御回路(32)は、セル電圧検出回路(31)により検出された最上位または最下位のセル電圧が異常なとき、セル電圧検出回路(31)により検出された複数のセル(S1-S8)の各電圧を合算して得られたセル電圧合計と、総電圧検出回路(33)により検出された電圧を比較し、両者が対応するとき最上位または最下位のセルの異常と判定し、両者が対応しないとき最上位または最下位の電圧検出線の断線が発生していると判定する。

Description

管理装置および電源システム
 本発明は、蓄電モジュールの状態を管理する管理装置、及び電源システムに関する。
 近年、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)、電気自動車(EV)が普及してきている。これらの車にはキーデバイスとして二次電池が搭載される。車載用二次電池としては主に、ニッケル水素電池およびリチウムイオン電池が普及している。今後、エネルギー密度が高いリチウムイオン電池の普及が加速すると予想される。
 リチウムイオン電池は常用領域と使用禁止領域が近接しているため、他の種類の電池より厳格な電圧管理が必要である。複数のリチウムイオン電池セルが直列に接続された組電池を使用する場合、各セルの電圧を検出するための電圧検出回路が設けられる。複数のセルの各ノードと電圧検出回路は、複数の電圧検出線で接続される(例えば、特許文献1参照)。検出されたセル電圧は、SOC(State Of Charge)管理、均等化制御などに使用される。
 電圧検出線の断線により当該電圧検出線が接続された電圧検出回路の端子電圧が低下した場合でも、電圧検出回路は当該電圧検出線が断線したのか、該当するセル電圧が低下したのか直ぐには判定することができない。そこで、当該電圧検出線と1つ下位の電圧検出線との間に接続された均等化回路を導通させて、断線したのかセル電圧が低下したのか確認する方法がある。該当するセル電圧が略ゼロで、当該セルの1つ上位のセル電圧が通常値の略2倍の値であるとき当該電圧検出線の断線と判定できる。一方、該当するセル電圧が略ゼロで、1つ上位のセル電圧が通常値のとき、該当するセル電圧の低下と判定できる。
特開2013-172544号公報
 しかしながら上述の方法では、最上位の電圧検出線または最下位の電圧検出線の端子電圧が低下した場合、電圧検出線が断線したのか、セル電圧が低下したのかを判定することが難しい。
 本発明はこうした状況に鑑みなされたものであり、その目的は、直列接続された複数のセルの各ノードに電圧検出線で接続された電圧検出回路において、最上位または最下位の電圧検出線が接続された端子電圧が低下した場合に、電圧検出線が断線したのかセル電圧が低下したのかを簡単に判別する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の管理装置は、直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出するセル電圧検出回路と、前記複数のセルの最上位ノードと最下位ノード間の電圧を検出する総電圧検出回路と、前記セル電圧検出回路により検出された最上位または最下位のセル電圧が異常なとき、前記セル電圧検出回路により検出された前記複数のセルの各電圧を合算して得られたセル電圧合計と、前記総電圧検出回路により検出された電圧を比較し、両者が対応するとき最上位または最下位のセルの異常と判定し、両者が対応しないとき最上位または最下位の電圧検出線の断線が発生していると判定する制御回路と、を備える。
 なお、以上の構成要素の任意の組み合わせ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、直列接続された複数のセルの各ノードに電圧検出線で接続された電圧検出回路において、最上位または最下位の電圧検出線が接続された端子電圧が低下した場合に、電圧検出線が断線したのかセル電圧が低下したのかを簡単に判別することができる。
実施の形態1に係る電源システムを説明するための図である。 実施の形態1に係る管理装置による最上位/最下位の電圧検出線の断線検出方法の流れを示すフローチャートである。 実施の形態2に係る電源システムを説明するための図である。
(実施の形態1)
 図1は、実施の形態1に係る電源システム1を説明するための図である。電源システム1は、蓄電モジュール10及び管理装置30を備える。蓄電モジュール10は、直列接続された複数のセルを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。図1では、8個のリチウムイオン電池セル(第1セルS1-第8セルS8)が直列に接続されて構成された組電池を使用する例を描いている。
 管理装置30は、均等化回路、入力フィルタ、セル電圧検出回路31、総電圧検出回路33及び制御回路32を含み、それらはプリント配線基板上に実装される。セル電圧検出回路31は、直列接続された複数のセルS1-S8の各ノードと複数の電圧検出線L1-L9で接続され、隣接する電圧検出線間の電圧を検出して各セルS1-S8の電圧を検出する。セル電圧検出回路31は例えば、専用のカスタムICであるASIC(Application Specific Integrated Circuit)により構成される。セル電圧検出回路31は、検出した各セルS1-S8の電圧を制御回路32に送信する。
 蓄電モジュール10の複数のセルS1-S8の各ノードにはワイヤーハーネスが接続され、各ワイヤーハーネスの先端のコネクタが、プリント配線基板に実装された管理装置30の各コネクタに装着される。即ち、蓄電モジュール10と管理装置30間は、ハーネス・コネクタ20を介して電気的に接続される。
 複数の電圧検出線L1-L9にそれぞれ抵抗R1-R9が挿入され、隣接する2本の電圧検出線間にそれぞれコンデンサC1-C8が接続される。抵抗R1-R9及びコンデンサC1-C8は入力フィルタ(ローパスフィルタ)を構成し、セル電圧検出回路31に入力される電圧を安定化させる作用を有する。
 隣接する2本の電圧検出線間にそれぞれ保護用のダイオードD1-D8が、複数のセルS1-S8と逆並列に接続される。ダイオードD1-D8には例えば、ツェナーダイオードを使用することができる。なお、セル電圧検出回路31の隣接する入力端子間の耐圧が、セル2つ分の電圧より高く設計されている場合、ダイオードD1-D8を省略することも可能である。
 管理装置30の各コネクタと、セル電圧検出回路31の各入力端子間は、複数の電圧検出線L1-L9で接続される。隣接する2本の電圧検出線間にそれぞれ、複数のセルS1-S8と並列に均等化回路が接続される。図1に示す例では、均等化回路は放電抵抗R11-R18と放電スイッチQ1-Q8の直列回路で構成されている。放電スイッチQ1-Q8は例えば、トランジスタで構成される。
 制御回路32は、セル電圧検出回路31から受信した複数のセルS1-S8の電圧をもとに均等化制御を実行する。具体的には複数のセルS1-S8の内、最も電圧が低いセルの電圧に他のセルの電圧を合わせる。制御回路32は、当該他のセルと並列に接続されている均等化回路の放電スイッチをターンオンして、当該他のセルを放電させる。当該他のセルの電圧が、最も電圧が低いセルの電圧まで低下したら、当該他のセルと並列に接続されている均等化回路の放電スイッチをターンオフする。制御回路32は例えば、マイクロプロセッサにより構成される。
 セル電圧検出回路31の動作電源は、電源回路の簡素化のため、監視対象の蓄電モジュール10から供給を受ける。蓄電モジュール10以外の電源からセル電圧検出回路31が電力供給を受ける場合、絶縁処理が必要となるため回路が大型化し、コストが増大する。
 セル電圧検出回路31の回路動作電流として通常、数mA~数十mA発生する。電源供給線と電圧検出線を兼用する場合、当該回路動作電流による電圧降下が検出電圧に影響を与える。特に、高精度な管理が必要となるリチウムイオン電池を用いた電源システム1では無視できないものとなる。そのため、電源供給線と電圧検出線を兼用させず、個別配線とすることが考えられる。
 図1に示す例では、蓄電モジュール10を構成する複数のセルS1-S8の最上位のノードとセル電圧検出回路31間を、第1電圧検出線L1と正電源供給線L0の2本で接続している。同様に複数のセルS1-S8の最下位のノードとセル電圧検出回路31間を、第9電圧検出線L9と負電源供給線L10の2本で接続している。
 総電圧検出回路33は、正電源供給線L0と負電源供給線L10間の電圧を検出して、複数のセルS1-S8の両端電圧(以下、総電圧という)を検出する。総電圧検出回路33は検出した総電圧を制御回路32に出力する。総電圧検出回路33は例えば、抵抗分圧回路とA/D変換器の組み合わせで構成することができる。なお制御回路32にアナログ入力端子が搭載されている場合、抵抗分圧回路だけで構成することもできる。
 ハーネス・コネクタ20で接続不良または断線(以下、本明細書では両者を包括して断線という。即ち、断線は物理的な配線の切断に限定されず、電気的な切断を含むものとする。)が発生した場合、セル電圧検出回路31によりセル電圧を正しく検出することができなくなる。その場合、制御回路32によるセルの状態監視や均等化制御が正しく行われなくなる。
 ハーネス・コネクタ20の断線を検出するために、均等化回路を利用する方法が良く用いられる。具体的には、断線したハーネス・コネクタ20に繋がる電圧検出線と、その1つ下位の電圧検出線間に接続された均等化回路を導通させると、検出対象のセル電圧が略ゼロとなることを利用する。
 例えば、図1の第7電圧検出線L7のハーネス・コネクタ20に断線が発生している場合において、放電スイッチQ7をターンオンすると、セル電圧検出回路31により検出される第7セルS7の電圧は略ゼロとなり、第6セルS6の電圧は略2セル分の電圧となる。一方、第7セルS7の電圧が低下している場合において、放電スイッチQ7をターンオンすると、セル電圧検出回路31により検出される第7セルS7の電圧は低下した第7セルS7の電圧が維持され、第6セルS6の電圧は1セル分の電圧S6が維持される。
 このように第7電圧検出線L7と第8電圧検出線L8間に接続された均等化回路を導通させることにより、第7電圧検出線L7が断線したのか、第7セルS7の電圧が低下したのかを明確に判別することができる。また導通させた均等化回路の位置により、故障が発生している箇所を特定することができる。
 以上の処理によっても、最上位の電圧検出線L1の断線と、最上位のセルS1の電圧低下を判別することは難しい。正電源供給線L0と電圧検出線L1間にセルが存在しないためである。同様に最下位の電圧検出線L9の断線と、最下位のセルS9の電圧低下を判別することも難しい。
 そこで本実施の形態では、セル電圧検出回路31により検出された全てのセルS1-S8の電圧の合計(以下、セル合計電圧という)と、総電圧検出回路33により検出された総電圧を比較する。これにより、最上位/最下位のセルの検出電圧が所定値より低下した場合、ハーネス・コネクタ20の断線によるものか、セル電圧の低下によるものかを識別することができる。具体的には、セル電圧合計と総電圧が略等しい場合、断線が発生していない、即ち実際に最上位/最下位のセル電圧が低下していると判定する。一方、セル電圧合計と総電圧が略等しくない場合、最上位/最下位の電圧検出線が断線していると判定する。
 図2は、実施の形態1に係る管理装置30による最上位/最下位の電圧検出線の断線検出方法の流れを示すフローチャートである。セル電圧検出回路31は、最上位/最上位のセルの検出電圧が設定電圧より低くなっているか否かを判定する(S10)。設定電圧は例えば、セルの放電終止電圧、セルの過放電判定用電圧、又は当該電圧に一定のマージンを加えた電圧に設定される。
 最上位/最上位のセルの検出電圧が設定電圧より低くなっている場合(S10のY)、制御回路32は、セル電圧検出回路31により検出された全てのセルS1-S8の電圧を合算する(S11)。総電圧検出回路33は、全てのセルS1-S8の両端電圧(総電圧)を検出して制御回路32に出力する(S12)。なお最上位/最上位のセルの検出電圧が設定電圧より高い状態では、総電圧検出回路33による総電圧の検出は必須ではない。
 制御回路32は合算したセル電圧合計と、総電圧検出回路33により検出された総電圧を比較する(S13)。セル電圧合計と総電圧が略一致する場合(S13のY)、制御回路32は最上位/最下位のセルの異常(過放電)と判定する(S14)。制御回路32は当該判定後、即時または所定の短時間経過後に電源システム1を停止させる(S17)。本実施の形態のように車載用途の場合、制御回路32は車両内の上位のECUに給電停止信号を通知し、当該ECUはインストルメントパネルに、バッテリ停止を示すメッセージを表示させる。例えば、バッテリの使用状態を示すランプの色を使用不可の色に変更する。また当該ECUは、バッテリ停止を示すメッセージを音声出力させてもよい。
 車両がハイブリッドカーの場合、当該ECUは当該メッセージを出力させると略同時に、モータ走行モードからエンジン走行モードに切り替える。車両が純粋なEVの場合、当該ECUが当該メッセージを運転者に向けて報知させてから、運転者が車両を路肩に移動させるに必要な時間(例えば数十秒)経過後、電源システム1の制御回路32は電源システム1を停止させ、モータへの給電を停止させる。
 上記ステップS13において、セル電圧合計と総電圧が略一致しない場合(S13のN)、制御回路32は最上位/最下位の電圧検出線の断線と判定する(S15)。制御回路32は当該判定後、所定時間が経過するか、又は所定量の電力量が消費されるまで(S16のN)、電源システム1からモータを含む負荷への給電を許容し、所定時間が経過した、又は所定量の電力量が消費されると(S16のY)、電源システム1を停止させる(S17)。制御回路32は当該判定後、車両内の上位のECUにバッテリ異常信号を通知し、当該ECUはインストルメントパネルに、バッテリ異常を示すメッセージを表示させる。例えば、バッテリの使用状態を示すランプの色を要修理の色に変更する。また当該ECUは、バッテリ異常を示すメッセージを音声出力させてもよい。
 車両がハイブリッドカーの場合、当該ECUは当該メッセージを出力させると略同時に、モータ走行モードからエンジン走行モードに切り替える。車両が純粋なEVの場合、当該ECUが当該メッセージを運転者に向けて報知させてから、運転者が車両の修理が可能な場所(例えば、ガソリンスタンド、カーディーラー、修理工場)まで自走するための、モータへの電力供給を許容する。
 この電力供給を許容する猶予は、時間および/または消費電力量(≒走行距離)で管理することができる。例えば、数分~数十分の猶予期間を設定することができる。また数km~数十kmの猶予走行を設定することができる。また両者を併用してもよい。猶予中は、制御回路32は総電圧検出回路33により検出された総電圧を監視して、セル全体の過充電/過放電が発生していないか監視する。なお電圧検出線の断線の影響を受けないセルについては、セル電圧検出回路31による監視を継続する。
 以上説明したように実施の形態1によれば、最上位または最下位の電圧検出線が接続された端子電圧が低下した場合に、セル電圧合計と総電圧を比較することにより、電圧検出線が断線したのか、セル電圧が低下したのかを簡単に判別することができる。電圧検出線の断線の場合、セル自体の異常ではないため故障のレベルは軽微である。純粋なEVの場合、電源システム1からモータへの給電を停止させると自走できなくなる。その場合、他車による牽引またはレッカー車による移動が必要となる。そこで本実施の形態では電圧検出線の断線の場合、所定時間および/または所定の走行距離分の電源システム1の使用を許容する。これにより、安全性と利便性を両立させることができる。
 なお正電源供給線L0もしくは負電源供給線L10が断線した場合は、セル電圧検出回路31の断線セルに該当するセル電圧検出結果が大きく崩れるか、電源供給停止によりセル電圧検出回路31の動作が停止する。これと合わせて総電圧検出回路33の検出出力も大きく低下するため、2つの回路出力をもとに同様に断線判定が可能である。
(実施の形態2)
 図3は、実施の形態2に係る電源システム1を説明するための図である。実施の形態2に係る電源システム1では、実施の形態1に係る電源システム1と比較して総電圧検出回路33が省略される。その代替として実施の形態2では、負荷側に設置された入力電圧検出回路2aから、制御回路32が負荷2の入力電圧を取得する。制御回路32は、取得した負荷2の入力電圧を、実施の形態1に係る総電圧の代替として使用する。
 なお負荷2が交流負荷でかつ入力電圧検出回路2aがインバータ出力を測定している場合、電源システム1と負荷2の間にインバータ(不図示)が設けられる。その場合、入力電圧検出回路2aの検出電圧は交流電圧となる。制御回路32は、入力電圧検出回路2aから取得した交流電圧値を直流電圧値に換算する。その際、インバータによる変換ロス、蓄電モジュール10と負荷2間の配線インピーダンスを補償するように、交流電圧値を直流電圧値に変換することが好ましい。
 電源システム1の制御回路32と入力電圧検出回路2a間は通信線(例えば、RS-485やTCP/IP)で接続してもよいし、電圧線で直接接続してもよい。また蓄電モジュール10と負荷2間を接続する電力線に、入力電圧検出回路2aにより検出された電圧値を重畳させて伝達してもよい。
 以上説明したように実施の形態2によれば実施の形態1と比較して、総電圧検出回路33を省略することができ、管理装置30の構成をより簡素化しつつ、実施の形態1と同様の効果を奏する。ただし、負荷側に入力電圧検出回路2aが設置されていること、入力電圧検出回路2aと制御回路32が接続されていること、蓄電モジュール10が別の蓄電モジュール10と直列接続されていないこと、の条件が必要となる。一方、実施の形態1では、これらの条件に制限されることなく適用することができる。
 以上、本発明を実施の形態をもとに説明した。これら実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 例えば、実施の形態2では正電源供給線L0と電圧検出線L1は1本にまとめられ、電圧検出線L1が電圧検出線と電源供給線を兼用した構成でもよい。同様に電圧検出線L9と負電源供給線L10は1本にまとめられ、電圧検出線L9が電圧検出線と電源供給線を兼用した構成でもよい。
 また上述の実施の形態では電源システム1を車両用電源装置に利用する例を想定したが、車載用途に限らず、航空用電源装置、船舶用電源装置、定置型蓄電システム等、他の用途にも利用可能である。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 直列接続された複数のセル(S1-S8)の各ノードに電圧検出線(L1-L9)で接続され、当該複数のセル(S1-S8)のそれぞれの電圧を検出するセル電圧検出回路(31)と、
 前記複数のセル(S1-S8)の最上位ノードと最下位ノード間の電圧を検出する総電圧検出回路(33)と、
 前記セル電圧検出回路(31)により検出された最上位または最下位のセル電圧が異常なとき、前記セル電圧検出回路(31)により検出された前記複数のセルの各電圧を合算して得られたセル電圧合計と、前記総電圧検出回路(33)により検出された電圧を比較し、両者が対応するとき最上位または最下位のセル(S1/S8)の異常と判定し、両者が対応しないとき最上位または最下位の電圧検出線(L1/L9)の断線が発生していると判定する制御回路(32)と、
 を備えることを特徴とする管理装置(30)。
 これによれば、最上位または最下位の電圧検出線(L1/L9)が断線しているのか、最上位または最下位のセル(S1/S8)が異常な状態にあるかを簡単に判別することができる。
[項目2]
 前記セル電圧検出回路(31)の動作電源は、前記複数のセル(S1-S8)の両端からそれぞれ供給され、
 前記複数のセル(S1-S8)の最上位のノードと前記セル電圧検出回路(31)の間は、前記電圧検出線(L1)と正電源供給線(L0)の2本で接続され、
 前記複数のセルの最下位のノードと前記セル電圧検出回路(31)の間は、前記電圧検出線(L9)と負電源供給線(L10)の2本で接続され、
 前記総電圧検出回路(33)は、前記正電源供給線(L0)と前記負電源供給線(L10)間の電圧を検出する、
 ことを特徴とする項目1に記載の管理装置(30)。
 これによれば、電圧検出線の断線の有無に影響を受けずに、複数のセル(S1-S8)の全体の電圧を計測することができる。
[項目3]
 直列接続された複数のセル(S1-S8)の各ノードに電圧検出線(L1-L9)で接続され、当該複数のセル(S1-S8)のそれぞれの電圧を検出するセル電圧検出回路(31)と、
 前記セル電圧検出回路(31)により検出された最上位または最下位のセル電圧が異常なとき、前記セル電圧検出回路(31)により検出された前記複数のセル(S1-S8)の各電圧を合算して得られたセル電圧合計と、前記複数のセル(S1-S8)の両端に接続された負荷(2)の入力端子間に接続された入力電圧検出回路(2a)から取得した前記負荷(2)の入力電圧を比較し、両者が対応するとき最上位または最下位のセル(S1/S8)の異常と判定し、両者が対応しないとき最上位または最下位の電圧検出線(L1/L9)の断線が発生していると判定する制御回路(32)と、
 を備えることを特徴とする管理装置(30)。
 これによれば、最上位または最下位の電圧検出線(L1/L9)が断線しているのか、最上位または最下位のセル(S1/S8)が異常な状態にあるかを簡単に判別することができる。
[項目4]
 前記制御回路(32)は、最上位または最下位の電圧検出線(L1/L9)の断線が発生していると判定したときから、所定時間または所定電力量分の、前記複数のセル(S1-S8)から負荷への給電を許可する、
 ことを特徴とする項目1から3のいずれかに記載の管理装置(30)。
 これによれば、安全性と利便性を両立させることができる。
[項目5]
 複数のセル(S1-S8)が直列接続された蓄電モジュール(10)と、
 前記蓄電モジュール(10)を管理する項目1から4のいずれかに記載の管理装置(30)と、
 を備えることを特徴とする電源システム(1)。
 これによれば、最上位または最下位の電圧検出線(L1/L9)が断線しているのか、最上位または最下位のセル(S1/S8)が異常な状態にあるかを簡単に判別することができる。
 1 電源システム、 2 負荷、 2a 入力電圧検出回路、 10 蓄電モジュール、 S1-S8 セル、 L0 正電源供給線、 L1-L9 電圧検出線、 L10 負電源供給線、 20 ハーネス・コネクタ、 30 管理装置、 R1-R9 抵抗、 C1-C8 コンデンサ、 R11-R18 放電抵抗、 Q1-Q8 放電スイッチ、 D1-D8 ダイオード、 31 セル電圧検出回路、 32 制御回路、 33 総電圧検出回路。

Claims (5)

  1.  直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出するセル電圧検出回路と、
     前記複数のセルの最上位ノードと最下位ノード間の電圧を検出する総電圧検出回路と、
     前記セル電圧検出回路により検出された最上位または最下位のセル電圧が異常なとき、前記セル電圧検出回路により検出された前記複数のセルの各電圧を合算して得られたセル電圧合計と、前記総電圧検出回路により検出された電圧を比較し、両者が対応するとき最上位または最下位のセルの異常と判定し、両者が対応しないとき最上位または最下位の電圧検出線の断線が発生していると判定する制御回路と、
     を備えることを特徴とする管理装置。
  2.  前記セル電圧検出回路の動作電源は、前記複数のセルの両端からそれぞれ供給され、
     前記複数のセルの最上位のノードと前記セル電圧検出回路の間は、前記電圧検出線と正電源供給線の2本で接続され、
     前記複数のセルの最下位のノードと前記セル電圧検出回路の間は、前記電圧検出線と負電源供給線の2本で接続され、
     前記総電圧検出回路は、前記正電源供給線と前記負電源供給線間の電圧を検出する、
     ことを特徴とする請求項1に記載の管理装置。
  3.  直列接続された複数のセルの各ノードに電圧検出線で接続され、当該複数のセルのそれぞれの電圧を検出するセル電圧検出回路と、
     前記セル電圧検出回路により検出された最上位または最下位のセル電圧が異常なとき、前記セル電圧検出回路により検出された前記複数のセルの各電圧を合算して得られたセル電圧合計と、前記複数のセルの両端に接続された負荷の入力端子間に接続された入力電圧検出回路から取得した前記負荷の入力電圧を比較し、両者が対応するとき最上位または最下位のセルの異常と判定し、両者が対応しないとき最上位または最下位の電圧検出線の断線が発生していると判定する制御回路と、
     を備えることを特徴とする管理装置。
  4.  前記制御回路は、最上位または最下位の電圧検出線の断線が発生していると判定したときから、所定時間または所定電力量分の、前記複数のセルから負荷への給電を許可する、
     ことを特徴とする請求項1から3のいずれかに記載の管理装置。
  5.  複数のセルが直列接続された蓄電モジュールと、
     前記蓄電モジュールを管理する請求項1から4のいずれかに記載の管理装置と、
     を備えることを特徴とする電源システム。
PCT/JP2017/017448 2016-05-31 2017-05-09 管理装置および電源システム WO2017208740A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018520745A JPWO2017208740A1 (ja) 2016-05-31 2017-05-09 管理装置および電源システム
CN201780034022.1A CN109302852A (zh) 2016-05-31 2017-05-09 管理装置和电源系统
US16/301,664 US20190285669A1 (en) 2016-05-31 2017-05-09 Management device and power supply system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109387 2016-05-31
JP2016-109387 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208740A1 true WO2017208740A1 (ja) 2017-12-07

Family

ID=60478358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017448 WO2017208740A1 (ja) 2016-05-31 2017-05-09 管理装置および電源システム

Country Status (4)

Country Link
US (1) US20190285669A1 (ja)
JP (1) JPWO2017208740A1 (ja)
CN (1) CN109302852A (ja)
WO (1) WO2017208740A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270616A (zh) * 2017-12-29 2018-07-10 深圳市沃特玛电池有限公司 一种采集模块的通讯地址配置系统及配置方法
JP2019158539A (ja) * 2018-03-12 2019-09-19 株式会社デンソー 電池監視装置
WO2020241548A1 (ja) * 2019-05-31 2020-12-03 株式会社Gsユアサ 電圧計測回路、蓄電装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792092B (zh) * 2016-09-13 2022-03-18 三洋电机株式会社 管理装置和电源系统
WO2019176054A1 (ja) * 2018-03-15 2019-09-19 日立建機株式会社 建設機械
JPWO2021010388A1 (ja) * 2019-07-18 2021-01-21
WO2021186795A1 (ja) * 2020-03-18 2021-09-23 三洋電機株式会社 管理装置、及び電源システム
IL273496A (en) * 2020-03-22 2021-09-30 Irp Nexus Group Ltd A system and application for managing a battery array
CN111786426B (zh) * 2020-05-20 2022-05-03 宁波中车新能源科技有限公司 一种基于超级电容无源cms均衡电路与方法
KR20230126466A (ko) * 2022-02-23 2023-08-30 현대모비스 주식회사 배터리 셀 전압 측정 회로 및 그 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008303A (ja) * 1999-06-15 2001-01-12 Yamaha Motor Co Ltd 電動車両の走行制御装置
JP2004347423A (ja) * 2003-05-21 2004-12-09 Denso Corp 電気負荷の異常検出装置及び電子制御装置
JP2013172544A (ja) * 2012-02-21 2013-09-02 Omron Automotive Electronics Co Ltd 組電池監視装置
JP2014048281A (ja) * 2012-09-04 2014-03-17 Sanyo Electric Co Ltd 電源装置および故障検出回路
JP2015097461A (ja) * 2013-11-15 2015-05-21 オムロンオートモーティブエレクトロニクス株式会社 組電池電圧検出装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3696124B2 (ja) * 2001-05-17 2005-09-14 三洋電機株式会社 組電池の電圧検出回路
US7557585B2 (en) * 2004-06-21 2009-07-07 Panasonic Ev Energy Co., Ltd. Abnormal voltage detection apparatus for detecting voltage abnormality in assembled battery
EP1936777B1 (en) * 2006-12-18 2017-11-01 Nissan Motor Ltd. Abnormality Diagnostic Device
JP4864730B2 (ja) * 2007-01-05 2012-02-01 ルネサスエレクトロニクス株式会社 電池電圧監視装置
US7852047B2 (en) * 2007-09-20 2010-12-14 Denso Corporation Disconnection detection device of assembled battery system and disconnection detection method of same
JP5469813B2 (ja) * 2008-01-29 2014-04-16 株式会社日立製作所 車両用電池システム
JP4573884B2 (ja) * 2008-06-18 2010-11-04 三菱電機株式会社 車載電子制御装置の電源異常検出回路
JP5911673B2 (ja) * 2010-07-30 2016-04-27 三洋電機株式会社 電源装置
WO2012164761A1 (ja) * 2011-05-31 2012-12-06 日立ビークルエナジー株式会社 電池システム監視装置
US9746525B2 (en) * 2011-09-08 2017-08-29 Hitachi Automotive Systems, Ltd. Battery system monitoring device
JP5798887B2 (ja) * 2011-10-31 2015-10-21 株式会社日立製作所 蓄電システム
US9496749B2 (en) * 2012-03-23 2016-11-15 Hitachi Automotive Systems, Ltd. Storage battery control device and electrical storage device
JP5989620B2 (ja) * 2013-09-17 2016-09-07 株式会社東芝 組電池モジュール及び断線検出方法
JP5619253B1 (ja) * 2013-10-15 2014-11-05 三菱電機株式会社 誘導性負荷の給電制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001008303A (ja) * 1999-06-15 2001-01-12 Yamaha Motor Co Ltd 電動車両の走行制御装置
JP2004347423A (ja) * 2003-05-21 2004-12-09 Denso Corp 電気負荷の異常検出装置及び電子制御装置
JP2013172544A (ja) * 2012-02-21 2013-09-02 Omron Automotive Electronics Co Ltd 組電池監視装置
JP2014048281A (ja) * 2012-09-04 2014-03-17 Sanyo Electric Co Ltd 電源装置および故障検出回路
JP2015097461A (ja) * 2013-11-15 2015-05-21 オムロンオートモーティブエレクトロニクス株式会社 組電池電圧検出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270616A (zh) * 2017-12-29 2018-07-10 深圳市沃特玛电池有限公司 一种采集模块的通讯地址配置系统及配置方法
JP2019158539A (ja) * 2018-03-12 2019-09-19 株式会社デンソー 電池監視装置
JP7081225B2 (ja) 2018-03-12 2022-06-07 株式会社デンソー 電池監視装置
WO2020241548A1 (ja) * 2019-05-31 2020-12-03 株式会社Gsユアサ 電圧計測回路、蓄電装置

Also Published As

Publication number Publication date
US20190285669A1 (en) 2019-09-19
CN109302852A (zh) 2019-02-01
JPWO2017208740A1 (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
WO2017208740A1 (ja) 管理装置および電源システム
US10895603B2 (en) Voltage monitoring module and voltage monitoring system to detect a current leakage
KR101473397B1 (ko) 배터리 팩의 전류센서 이상 진단 장치 및 방법
JP5798887B2 (ja) 蓄電システム
US8970062B2 (en) Automotive power source apparatus and vehicle equipped with the power source apparatus
JP5992502B2 (ja) 車両適用のための高電圧バッテリシステム
WO2011148926A1 (ja) 電源装置
US9551750B2 (en) Monitoring system and vehicle
KR101622193B1 (ko) 절연저항 측정장치 및 이를 포함하는 차량용 고전압 전원 분배 장치
US9500680B2 (en) Method for determining the absence of voltage in an electrical high-voltage system, and electrical high-voltage system
US11201478B2 (en) Management device and power supply system for improved cell voltage detection accuracy
JP2014090635A (ja) 蓄電システム
US10286803B2 (en) Charging and discharging system for an electric vehicle
JP6869966B2 (ja) 管理装置および電源システム
US9941714B2 (en) Battery system and motor vehicle with battery system
CN110832334B (zh) 故障诊断装置
KR101584253B1 (ko) 배터리 셀을 이용한 절연 저항 측정 장치 및 방법
KR102030823B1 (ko) 배터리 관리 시스템 및 그것의 동작 방법
JP6602800B2 (ja) 組電池電圧測定装置及び電池制御装置
CN114720801A (zh) 一种车载检测系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520745

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806298

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806298

Country of ref document: EP

Kind code of ref document: A1