WO2017206141A1 - Oled驱动电路及其制备方法和显示装置 - Google Patents

Oled驱动电路及其制备方法和显示装置 Download PDF

Info

Publication number
WO2017206141A1
WO2017206141A1 PCT/CN2016/084505 CN2016084505W WO2017206141A1 WO 2017206141 A1 WO2017206141 A1 WO 2017206141A1 CN 2016084505 W CN2016084505 W CN 2016084505W WO 2017206141 A1 WO2017206141 A1 WO 2017206141A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
transistor
vapor deposition
magnetron sputtering
oled
Prior art date
Application number
PCT/CN2016/084505
Other languages
English (en)
French (fr)
Inventor
郭晓东
Original Assignee
长春富乐玻显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长春富乐玻显示技术有限公司 filed Critical 长春富乐玻显示技术有限公司
Priority to EP16903526.8A priority Critical patent/EP3467812A4/en
Priority to US16/322,893 priority patent/US11341907B2/en
Priority to CN201680087835.2A priority patent/CN109643521A/zh
Priority to PCT/CN2016/084505 priority patent/WO2017206141A1/zh
Publication of WO2017206141A1 publication Critical patent/WO2017206141A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]

Definitions

  • the present invention relates to an organic light emitting diode (OLED) driving circuit, particularly an active matrix driving organic light emitting diode (AMOLED) driving circuit, a method of fabricating the same, and a display device using the same.
  • OLED organic light emitting diode
  • AMOLED active matrix driving organic light emitting diode
  • the organic light emitting diode has the advantages of low driving voltage, high luminous brightness and luminous efficiency, fast response speed, wide operating temperature range, relatively simple molding processing, large-scale large-area processing, and good compatibility with a flexible substrate, and thus has become an A core device in a new generation of display devices.
  • the driving method of OLED can be divided into passive matrix driving and active matrix driving. Among them, the active matrix driving OLED has the advantages of wide viewing angle, high brightness and fast response speed. Active matrix-driven organic light-emitting diode-based displays have been used in high-end mobile phones and televisions.
  • the AMOLED display panel is composed of a plurality of regions capable of independently emitting light, and each of the smallest regions capable of independently emitting light is referred to as a unit pixel.
  • each unit pixel of the AMOLED includes at least one switching transistor T 1 , one driving transistor T 2 , one storage capacitor C and one OLED , and the circuit structure formed by interconnecting them is called a 2T1C structure.
  • the 2T1C circuit has the advantages of simple structure, simple processing technology and high yield, and is widely used in the research and development stage.
  • OLEDs are current-type devices. To achieve uniformity of brightness of AMOLED display screens, the current flowing through each pixel must be as uniform and stable as possible.
  • the 2T1C circuit is a voltage-controlled circuit, so it is necessary to convert the input voltage signal into an output current signal to drive and control the OLED. In order to achieve the stability and uniformity of the output current signal, the conversion process puts more stringent requirements on the performance of the transistor device in the AMOLED display.
  • Chinese Patent CN1870113A and Chinese Patent CN1411322A respectively disclose a 2T1C driving circuit for AMOLED, which respectively employs a silicon semiconductor transistor and an organic semiconductor transistor.
  • the above patent does not solve the technical problem existing in the existing 2T1C circuit, that is, the technical problem of converting the voltage signal into the current signal stability and uniformity in each unit pixel in the AMOLED is not solved.
  • more complicated compensation circuits are mainly used to provide a constant uniform current for the OLED.
  • the Chinese patent CN1412854A provides a 3T1C driving circuit; the Chinese patent CN103218970A even provides a more complicated 6T1C driving circuit and the like.
  • these complicated circuits lead to complicated production processes, reduced yield, poor batch reliability, and high product costs.
  • the inventors have unexpectedly discovered that the new 2T1C driving circuit provided by the present invention is adopted. It can avoid many shortcomings such as complicated production process caused by complex drive circuit, and overcome the technical problems existing in the prior art 2T1C drive circuit, and can ideally meet the needs of AMOLED drive.
  • a first aspect of the present invention provides an active matrix driving organic light emitting diode driving circuit including a switching transistor T 1 , a driving transistor T 2 , a storage capacitor C, and an organic light emitting diode OLED; wherein the semiconductor layer of the switching transistor T 1 It is an inorganic semiconductor material, and the semiconductor layer in the driving transistor T 2 is an organic semiconductor material.
  • the inorganic semiconductor material includes, but is not limited to, any one of polysilicon, microcrystalline silicon, amorphous silicon, or a compound semiconductor.
  • the organic semiconductor material may be an organic small molecule semiconductor and a polymer semiconductor.
  • the semiconductor layer in the driving transistor T 2 is prepared by a weak epitaxial growth method.
  • different types of carriers are respectively transmitted in the switching transistor T 1 and the driving transistor T 2 .
  • the switching transistor T 1 and the driving transistor T 2 respectively have three electrodes, specifically including a gate, a first electrode and a second electrode;
  • the storage capacitor C has two electrodes, respectively It is a first electrode and a second electrode;
  • the OLED has two electrodes, which are a first electrode and a second electrode, respectively.
  • the active matrix driven organic light emitting diode drive circuit of the first aspect employs a first or second type of connection as described below.
  • the first connection may be as follows: the gate of the switching transistor T 1 is connected to the scanning line, a first electrode of the switching transistor T 1 is connected to the signal line, the gate of the driving transistor while the switching transistor T 2 T 1 of the second electrode
  • the first electrodes of the driving capacitors T 2 are respectively connected to the second electrodes of the storage capacitors C and the power lines, and the second electrodes of the driving transistors T 2 are connected to the first electrodes of the OLEDs.
  • the second connection may be as follows: the gate of the switching transistor T 1 is connected to the scanning line, a first electrode of the switching transistor T 1 is connected to the signal line, the gate of the driving transistor while the switching transistor T 2 T 1 of the second electrode and a first electrode of the storage capacitor C is connected; a second electrode connected to a first electrode of the driving transistor T and the storage capacitor C 2, a first electrode of the driving transistor T connected to the second electrode of the OLED 2; a second electrode of the OLED Connect the power cord.
  • a second aspect of the present invention provides a method of fabricating a driving circuit using the above connection method.
  • An organic light emitting diode driving circuit for preparing the first connection method can include:
  • the inorganic semiconductor layer is prepared by magnetron sputtering or chemical vapor deposition or solution processing, and is processed into a desired pattern by using a mask lithography technique as a semiconductor layer of the switching transistor T 1 ;
  • the organic semiconductor layer is prepared by a weak epitaxial growth method, and is processed into a desired pattern by using a mask lithography technique as a semiconductor layer of the driving transistor T 2 ;
  • a layer of conductive metal or metal alloy is prepared by techniques such as physical vapor deposition or magnetron sputtering, and a conductive metal or a metal alloy is processed into a desired pattern by using a mask lithography technique as a first electrode of the driving transistor T 2 and a second electrode, a second electrode of the storage capacitor C;
  • the dielectric layer is prepared by magnetron sputtering or chemical vapor deposition or physical vapor deposition or solution processing, and the dielectric layer is processed into a via hole by mask photolithography to drive the second electrode of the transistor T 2 and the first electrode of the OLED. connection;
  • the AMOLED display is integrally packaged.
  • the method for preparing an organic light emitting diode driving circuit using the second connection method may include:
  • the inorganic semiconductor layer is prepared by magnetron sputtering or chemical vapor deposition or solution processing, and is processed into a desired pattern by using a mask lithography technique as a semiconductor layer of the switching transistor T 1 ;
  • a layer of conductive metal or metal alloy is prepared by techniques such as physical vapor deposition or magnetron sputtering, and a conductive metal or a metal alloy is processed into a desired pattern by using a mask lithography technique as a first electrode of the driving transistor T 2 and a second electrode, a second electrode of the storage capacitor C;
  • the dielectric layer is prepared by magnetron sputtering or chemical vapor deposition or physical vapor deposition or solution processing, and the dielectric layer is processed into a via hole by mask photolithography to drive the second electrode of the transistor T 2 and the first electrode of the OLED. connection;
  • the AMOLED display is integrally packaged.
  • a third aspect of the present invention also provides a display device including an AMOLED, wherein the AMOLED unit pixel employs the above-described active matrix driving organic light emitting diode driving circuit.
  • the 2T1C circuit structure provided by the invention can effectively convert the input voltage signal into a stable and uniform current signal in a large-sized (for example, 370 mm ⁇ 470 mm) AMOLED display screen, so that the brightness of each unit pixel on the display screen is uniform. Consistent; and the use of the 2T1C structure provided by the present invention can also simplify the production process, improve product yield and batch reliability, and reduce costs.
  • 1 is a schematic diagram showing the composition and connection of a first 2T1C driving circuit provided by the present invention.
  • FIG. 2 is a schematic diagram showing the composition and connection of a second 2T1C driving circuit provided by the present invention.
  • a first aspect of the present invention provides an active matrix driving organic light emitting diode driving circuit including a switching transistor T 1 , a driving transistor T 2 , a storage capacitor C, and an organic light emitting diode OLED; wherein the semiconductor layer of the switching transistor T 1 is An inorganic semiconductor material, and the semiconductor layer of the driving transistor T 2 is an organic semiconductor material.
  • the switching transistor T 1 and the driving transistor T 2 respectively have three electrodes, specifically including a gate, a first electrode and a second electrode; the storage capacitor C has two electrodes, respectively It is a first electrode and a second electrode, and the OLED has two electrodes, which are a first electrode and a second electrode, respectively.
  • the inorganic semiconductor material constituting the switching transistor T 1 is not particularly limited in the present invention.
  • examples of the inorganic semiconductor material usable as the semiconductor layer of the switching transistor T 1 of the present invention include, but are not limited to, any one of polycrystalline silicon, microcrystalline silicon, amorphous silicon, and compound semiconductor.
  • the term "compound semiconductor” in the present invention means that the semiconductor is an inorganic compound composed of two or more chemical elements including, but not limited to, zinc oxide (ZnO), indium gallium zinc oxide (InGaZnO).
  • the organic semiconductor material constituting the driving transistor T 2 is not particularly limited in the present invention.
  • the organic semiconductor material usable as the driving transistor T 2 of the present invention may be an organic small molecule semiconductor and a polymer semiconductor.
  • examples of the organic semiconductor material usable as the driving transistor T 2 of the present invention include, but are not limited to, rubrene, phthalocyanine dichlorotin, polythiophene (P3HT), and the like.
  • the semiconductor layer constituting the driving transistor T 2 of the present invention is prepared by a weak epitaxial growth method. While not being bound by any theory, it is believed that organic semiconductor transistors fabricated using weak epitaxial growth methods have good device uniformity and process repeatability.
  • the "weak epitaxial growth method" in the present invention generally employs a vacuum evaporation technique in which an inducing layer is first deposited on a substrate, and then an organic semiconductor material is deposited on the inducing layer such that the ⁇ - ⁇ conjugate direction of the organic semiconductor molecules is parallel to the substrate surface.
  • a high-performance organic semiconductor layer is obtained by utilizing an epitaxial relationship or an orientation relationship existing between the induced layer lattice and the organic semiconductor crystal lattice.
  • a stable and uniform current signal is obtained by the driving circuit of the first aspect of the present application. While not being bound by any theory, it is believed that this is due to the 2T1C circuit voltage signal into a current signal during the switching action of transistor T 1 and 2 two different transistor driving transistor list T, required for the performance of the transistor is different of. Transistors made of the same material cannot simultaneously meet the different needs of T 1 and T 2 .
  • the switching transistor T 1 and the driving transistor T 2 are made of two different materials, that is, the semiconductor layer of the switching transistor T 1 is an inorganic semiconductor material, and the semiconductor layer of the driving transistor T 2 is an organic semiconductor material. Therefore, the new 2T1C circuit of the present application can convert the input voltage signal into a stable and uniform current signal, so that the brightness of each unit pixel on the display screen is uniform.
  • the new 2T1C circuit of the present invention can make the brightness of each unit pixel uniform on a large-sized (e.g., 370 mm x 470 mm) AMOLED display.
  • different types of carriers can be respectively transmitted in the switching transistor T 1 and the driving transistor T 2 .
  • the present invention also provides a connection mode of the organic light emitting diode driving circuit of the first aspect. See Figures 1 and 2 for details.
  • T 1 denotes a switching transistor
  • T 2 denotes a driving transistor
  • C denotes a storage capacitor
  • OLED denotes an organic light emitting diode.
  • a first reference connection shown in Figure 1 the switching gate of transistor T 1 is connected to the scan line, a first electrode of the switching transistor T 1 is connected to the signal line, a second switching transistor T 1 The electrode is simultaneously connected to the gate of the driving transistor T 2 and the first electrode of the storage capacitor C; the first electrode of the driving transistor T 2 is simultaneously connected to the second electrode of the storage capacitor C and the power line, respectively, and the driving transistor T 2 The two electrodes are connected to the first electrode of the OLED.
  • the second reference connection shown in Figure 2 the gate of the switching transistor T 1 is connected to the scanning line, a first electrode of the switching transistor T 1 is connected to the signal line, a first switching transistor T 1 two electrodes are simultaneously connected to the gate electrode of the first storage capacitor C and the driving transistor T 2; T a second electrode connected to a first electrode of the driving transistor and the storage capacitor C 2, a second electrode of the driving transistor T 2 and the OLED The first electrode is connected, and the second electrode of the OLED is connected to the power line.
  • a second aspect of the invention also provides a method of fabricating the above-described organic light emitting diode driving circuit.
  • the AMOLED display is integrally packaged.
  • the AMOLED display is integrally packaged.
  • the method of fabricating the organic light emitting diode driving circuit is not limited to the method described above, and any method known in the art that can be used to fabricate the organic light emitting diode driving circuit can be employed.
  • the present invention also provides a display device including an AMOLED, wherein the AMOLED unit pixel employs the above-described active matrix driving organic light emitting diode driving circuit.
  • unit pixel as used herein means that the AMOLED display panel is composed of a plurality of regions capable of independently emitting light, and each of the smallest regions capable of independently emitting light is referred to as a unit pixel.
  • the display device provided by the present invention is a large size display device.
  • the "large size” display device means, for example, a size larger than 370 mm x 470 mm, such as, but not limited to, a computer monitor, a television, and the like.
  • “Large size” in this document means that the substrate size is not less than 370mm ⁇ 470mm, and a substrate can be used as a display screen (for example, for computers and TVs), or divided into several or even dozens of small ones as needed. Display (such as the display for mobile phones and tablets).
  • the materials and test equipment used in the present invention are as follows:
  • the metal and inorganic semiconductors used are provided by Truly Semiconductor;
  • the organic semiconductors used were purchased from the company.
  • Two-dimensional color brightness meter CA2000, Minolta.
  • the sample is connected to the peripheral test circuit to make the sample display a single color.
  • the sample is sampled by the CA2000 luminance meter, and the collected data is analyzed by the brightness meter's own software to obtain the brightness of the sample at different positions.
  • Magnetron sputtering is used on the glass substrate to deposit molybdenum-aluminum-molybdenum; molybdenum-aluminum-molybdenum is processed into a desired pattern by mask lithography, respectively as a scan line, and the gate of the switching transistor T1 is used.
  • a pole wherein the degree of vacuum is 10 -2 Pa, the flow rate of argon gas is 200 sccm, the sputtering rate is 300 nm/min, and the thickness of the metal layer is 50 nm, 150 nm and 50 nm, respectively;
  • Amorphous silicon semiconductor layer was prepared by plasma chemical vapor deposition, wherein the radio frequency was 13.56 MHz, the vacuum degree was 60-120 Pa, the substrate temperature was 250 ° C, the silane flow rate was 160 sccm, the film formation rate was 20 nm/min, and the film thickness was 200 nm.
  • Mask lithography processes it into a desired pattern as a semiconductor layer of a switching transistor T 1 in which amorphous silicon can transport electrons;
  • a weak epitaxial growth method using hexaphenyl as an inducing layer, preparing a rubrene organic semiconductor layer, wherein the degree of vacuum is 8 ⁇ 10 -4 Pa, the substrate temperature is 180 ° C, the deposition rate is 1 nm/min, and hexabenzene a thickness of 5 nm and a thickness of 20 nm of rubrene, which is processed into a desired pattern by a mask lithography technique, as a semiconductor layer of a driving transistor T 2 in which rubrene can transport holes;
  • a layer of metal gold is prepared, wherein the degree of vacuum is 8 ⁇ 10 -4 Pa, the deposition rate is 50 nm/min, the thickness is 100 nm, and the metal gold is processed into a desired pattern by mask lithography.
  • the degree of vacuum is 8 ⁇ 10 -4 Pa
  • the deposition rate is 50 nm/min
  • the thickness is 100 nm
  • the metal gold is processed into a desired pattern by mask lithography.
  • a silicon nitride dielectric layer by chemical vapor deposition method wherein the vacuum degree is 266 Pa, the silane flow rate is 250 sccm, the ammonia flow rate is 1550 sccm, the nitrogen flow rate is 1550 sccm, the hydrogen flow rate is 250 sccm, the power supply power is 1800 W, and the film formation speed is 380 nm/min.
  • the thickness of 200nm lithography technique using a mask of silicon nitride dielectric layer is processed to form a via hole, so that the driving transistor T 2 and a second electrode connected to a first electrode of the OLED;
  • ITO indium tin oxide
  • NPB N,N'-diphenyl-N,N'-(1-naphthyl) 1,1'biphenyl-4,4'-diamine
  • Alq3 Quinoline aluminum
  • the AMOLED display is integrally packaged.
  • test results show that the batch stability, process reliability and stability and uniformity of display brightness of the AMOLED display products based on the 2T1C circuit provided by the present invention satisfy the requirements of the existing commercial products.
  • Magnetron sputtering is used on the glass substrate to deposit a layer of metal molybdenum, wherein the degree of vacuum is 10 -2 Pa, the flow rate of argon gas is 200 sccm, the sputtering rate is 300 nm/min, and the thickness is 300 nm.
  • the metal molybdenum is processed into a desired pattern as a scan line, respectively, a gate of the switching transistor T1;
  • Amorphous silicon semiconductor layer was prepared by plasma chemical vapor deposition, wherein the radio frequency was 13.56 MHz, the vacuum degree was 60-120 Pa, the substrate temperature was 250 ° C, the silane flow rate was 160 sccm, the film formation rate was 20 nm/min, and the film thickness was 120 nm.
  • the laser scanning annealing method converts amorphous silicon into polycrystalline silicon, wherein the substrate temperature is 435 ° C, and is processed into a desired pattern by using a mask lithography technique as a semiconductor layer of the switching transistor T 1 , wherein the polycrystalline silicon can transport holes;
  • the desired pattern respectively, as a signal line, a power line, a first electrode of the switching transistor T 1, a second electrode, a first electrode of the storage capacitor C and the gate of the driving transistor T 2;
  • a weak epitaxial growth method using hexaphenyl as an inducing layer, preparing a dichlorotin phthalocyanine organic semiconductor layer, wherein the degree of vacuum is 8 ⁇ 10 -4 Pa, the substrate temperature is 180 ° C, and the deposition rate is 1 nm/min, Benzene 5nm, phthalocyanine dichlorotin 30nm, processed into a desired pattern by mask lithography, as a driving transistor T 2 semiconductor layer, wherein phthalocyanine dichloride can transport electrons;
  • a silicon nitride dielectric layer by chemical vapor deposition method wherein the vacuum degree is 266 Pa, the silane flow rate is 250 sccm, the ammonia flow rate is 1550 sccm, the nitrogen flow rate is 1550 sccm, the hydrogen flow rate is 250 sccm, the power supply power is 1800 W, and the film formation speed is 380 nm/min. a thickness of 200 nm, using a mask lithography technique to form a silicon nitride dielectric layer to form a via hole, so that the second electrode of the driving transistor T 2 is connected to the first electrode of the OLED;
  • NPB N,N,-diphenyl-N,N'-(1-naphthyl) 1,1'-biphenyl-4,4'-diamine
  • Alq3 hydroxyquinoline aluminum
  • a layer of metal aluminum doped zinc oxide is prepared as the second electrode of the OLED, wherein the degree of vacuum is 10 -2 Pa, the flow rate of argon gas is 200 sccm, the sputtering rate is 150 nm/min, and the thickness is 80 nm. ;
  • the AMOLED display is integrally packaged.
  • test results show that the batch stability, process reliability and stability and uniformity of display brightness of the AMOLED display products based on the 2T1C circuit provided by the present invention satisfy the requirements of the existing commercial products.

Abstract

一种有机发光二极管驱动电路,其包括开关晶体管(T1)、驱动晶体管(T2)、存储电容(C)和有机发光二极管(OLED)。其中,开关晶体管(T1)使用无机半导体晶体管,驱动晶体管(T2)使用有机半导体晶体管。采用该驱动电路作为单元像素的显示屏,具有亮度均匀的特点。此外,还提供了该驱动电路的制备方法及采用该驱动电路的显示装置。

Description

OLED驱动电路及其制备方法和显示装置 技术领域
本发明涉及一种有机发光二极管(OLED)驱动电路、尤其是有源矩阵驱动有机发光二极管(AMOLED)驱动电路以及其制备方法和采用该驱动电路的显示装置。
背景技术
有机发光二极管具有驱动电压低、发光亮度与发光效率高、响应速度快、工作温度范围宽、成型加工比较简单、适于大规模大面积加工以及与柔性衬底兼容性好等优点,因此已经成为新一代显示装置中的核心器件。OLED的驱动方式可分为无源矩阵驱动和有源矩阵驱动。其中,有源矩阵驱动OLED具有视角广、高亮度以及响应速度快等优点。基于有源矩阵驱动有机发光二极管的显示屏,已经用于高端手机和电视中。
AMOLED显示屏是由若干个能够独立发光的区域组成,每个最小的能够独立发光的区域称之为单元像素。在早期实验室研发阶段,AMOLED的每个单元像素中至少包括一个开关晶体管T1、一个驱动晶体管T2、一个存储电容C和一个OLED,其相互连接形成的电路结构称为2T1C结构。2T1C电路具有结构简单、加工工艺简单且成品率高的优点,因而在研发阶段被广泛使用。
但是,OLED属于电流型器件,为实现AMOLED显示屏显示亮度的均匀性,流过每个像素的电流大小必须尽可能相同和稳定。而2T1C电路属于电压控制型电路,因此需要将输入电压信号转化成输出电流信号驱动和控制OLED。为了实现输出电流信号的稳定性和均匀性,该转换过程对AMOLED显示屏中晶体管器件的性能提出了更为严格的要求。
中国专利CN1870113A和中国专利CN1411322A分别公开了一种用于AMOLED的2T1C驱动电路,其分别采用硅半导体晶体管和有机半导体晶体管。但是上述专利并没有解决现有2T1C电路存在的技术问题,即没有解决在AMOLED中,每个单元像素中电压信号转化成电流信号的稳定性和均匀性的技术问题。
而且,在AMOLED商品化进程中,使用现有2T1C电路结构表现出更为明显的缺陷,例如特别是无法使用在大尺寸显示屏(例如电脑显示器和电视)中。因此,现有AMOLED商业化产品中,实际上已经放弃了使用2T1C结构。
为克服现有2T1C电路中存在的技术问题,目前主要使用更为复杂的补偿电路(例如多T1C电路)来为OLED提供恒定均匀的电流。例如,中国专利CN1412854A提供了一种3T1C驱动电路;中国专利CN103218970A甚至提供了一种更为复杂的6T1C驱动电路等。但是,这些复杂的电路导致生产工艺复杂、成品率降低、批次可靠性差、且产品成本居高不下。
因此,仍然需要开发一种不具有上述现有2T1C电路所存在的技术问题,特别是使大尺寸显示屏显示亮度均匀,且生产工艺简单的新的OLED驱动电路。
发明内容
针对现有技术中存在的AMOLED驱动电路复杂(例如多T1C)、2T1C驱动电路又无法满足AMOLED驱动需要的技术问题,本发明人出人预料地发现,采用本发明提供的新的2T1C驱动电路,既可以避免复杂驱动电路带来的生产工艺复杂等诸多缺点,又能克服现有技术中2T1C驱动电路所存在的技术问题,能理想地满足AMOLED驱动的需要。
本发明的第一个方面提供了一种有源矩阵驱动有机发光二极管驱动电路,其包括开关晶体管T1、驱动晶体管T2、存储电容C和有机发光二极管OLED;其中开关晶体管T1中半导体层为无机半导体 材料,且驱动晶体管T2中半导体层为有机半导体材料。
优选地,所述无机半导体材料包括但不限于多晶硅、微晶硅、非晶硅或化合物半导体中任意一种。
优选地,所述有机半导体材料可以是有机小分子半导体和聚合物半导体。
优选地,所述驱动晶体管T2中半导体层采用弱外延生长方法制备。
优选地,开关晶体管T1和驱动晶体管T2中,分别传输不同类型的载流子(电子或空穴)。
所述有源矩阵驱动有机发光二极管驱动电路中,开关晶体管T1和驱动晶体管T2分别具有三个电极,具体包括栅极、第一电极和第二电极;存储电容C具有两个电极,分别是第一电极和第二电极;OLED具有两个电极,分别是第一电极和第二电极。
根据某些实施方案,第一个方面的有源矩阵驱动有机发光二极管驱动电路采用如下所述的第一种或第二种连接方式。
第一种连接方式可以如下:开关晶体管T1的栅极与扫描线连接,开关晶体管T1的第一电极与信号线连接,开关晶体管T1的第二电极同时与驱动晶体管T2的栅极和存储电容C的第一电极分别连接;驱动晶体管T2的第一电极同时分别与存储电容C的第二电极、电源线连接,驱动晶体管T2的第二电极与OLED的第一电极连接。
第二种连接方式可以如下:开关晶体管T1的栅极与扫描线连接,开关晶体管T1的第一电极与信号线连接,开关晶体管T1的第二电极同时与驱动晶体管T2的栅极和存储电容C的第一电极分别连接;驱动晶体管T2的第一电极与存储电容C的第二电极连接,驱动晶体管T2的第二电极与OLED的第一电极连接;OLED的第二电极连接电源线。
本发明的第二个方面提供了采用上述连接方式的驱动电路的制备方法。
用于制备采用所述第一种连接方式的有机发光二极管驱动电路 的方法可以包括:
在玻璃基板上采用磁控溅射技术,沉积一层或多层导电金属或者金属合金;采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
利用磁控溅射或者化学气相沉积方法加工一层绝缘层,采用掩模光刻技术加工形成过孔;
利用磁控溅射或化学气相沉积或溶液加工等方法,制备无机半导体层,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层;
利用磁控溅射技术,沉积一层导电金属,采用掩模光刻技术将导电金属加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
利用磁控溅射或者化学气相沉积方法加工一层绝缘层,利用掩模光刻技术加工形成过孔;
利用弱外延生长方法制备有机半导体层,采用掩模光刻技术将其加工成所需要的图形,作为驱动晶体管T2半导体层;
利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
利用磁控溅射或化学气相沉积或物理气相沉积或溶液加工等方法制备介质层,采用掩模光刻技术将介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
利用磁控溅射或溶液加工等技术沉积一层透明导电金属或者半导体,采用掩模光刻技术将透明导电金属或者半导体加工成所需要图形作为OLED的第一电极;
利用物理气相沉积或溶液加工或喷墨打印等方法加工形成OLED的半导体层;
利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金作为OLED的第二电极;
将AMOLED显示屏整体封装。
用于制备采用所述第二种连接方式的有机发光二极管驱动电路的方法可以包括:
在玻璃基板上采用磁控溅射技术,沉积一层或多层导电金属或者金属合金;采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
利用磁控溅射或者化学气相沉积方法加工一层绝缘层,采用掩模光刻技术加工形成过孔;
利用磁控溅射或化学气相沉积或溶液加工等方法,制备无机半导体层,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层;
利用磁控溅射技术,沉积一层导电金属,采用掩模光刻技术将导电金属加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
利用磁控溅射或者化学气相沉积方法加工一层绝缘层,利用掩模光刻技术加工形成过孔;
利用弱外延生长方法制备有机半导体层,采用掩模光刻技术将其加工成所需要的图形作为驱动晶体管T2半导体层;
利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
利用磁控溅射或化学气相沉积或物理气相沉积或溶液加工等方法制备介质层,采用掩模光刻技术将介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或 者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要图形作为OLED的第一电极;
利用物理气相沉积或溶液加工或喷墨打印等方法加工形成OLED的半导体层;
利用磁控溅射或物理气相沉积等技术沉积一层透明导电金属或者半导体,作为OLED的第二电极;
将AMOLED显示屏整体封装。
本发明的第三个方面还提供了一种包括AMOLED的显示装置,其中AMOLED单元像素采用上述有源矩阵驱动有机发光二极管驱动电路。
本发明提供的2T1C电路结构,可以使得在大尺寸(例如370mm×470mm)AMOLED显示屏中,有效地将输入的电压信号转换成稳定均匀一致的电流信号,使得显示屏上每个单元像素亮度均匀一致;而且采用本发明提供的2T1C结构还可以简化生产工艺、提高产品的成品率和批次可靠性,并降低成本。
本公开的上述发明内容不旨在描述本公开的每个所公开的实施例或每种实施方式。以下描述更具体的示例性实施例。因此,应当理解,附图和以下描述仅用于例证的目的,且不应理解为以某种方式不当地限制本公开的范围。
附图说明
图1是本发明提供的第一种2T1C驱动电路的组成和连接示意图。
图2是本发明提供的第二种2T1C驱动电路的组成和连接示意图。
具体实施方式
本发明的第一个方面提供了一种有源矩阵驱动有机发光二极管驱动电路,其包括开关晶体管T1、驱动晶体管T2、存储电容C和有 机发光二极管OLED;其中开关晶体管T1半导体层为无机半导体材料,且驱动晶体管T2半导体层为有机半导体材料。
所述有源矩阵驱动有机发光二极管驱动电路中,开关晶体管T1和驱动晶体管T2分别具有三个电极,具体包括栅极,第一电极和第二电极;存储电容C具有两个电极,分别是第一电极和第二电极,OLED具有两个电极,分别是第一电极和第二电极。
本发明中对于组成开关晶体管T1的无机半导体材料没有特殊限制。优选地,可用作本发明的开关晶体管T1半导体层的无机半导体材料的实例包括但不限于多晶硅、微晶硅、非晶硅、化合物半导体中任意一种。
除非另外指出,本发明中的术语“化合物半导体”是指半导体属于无机化合物,由两种或者两种以上化学元素组成,包括但不限于氧化锌(ZnO),铟镓锌氧(InGaZnO)。
本发明中对于组成驱动晶体管T2的有机半导体材料没有特殊限制。优选地,可用作本发明的驱动晶体管T2的有机半导体材料可以是有机小分子半导体和聚合物半导体。优选地,可用作本发明的驱动晶体管T2的有机半导体材料的实例包括但不限于红荧烯、酞菁二氯锡、聚噻吩(P3HT)等。
优选地,组成本发明中驱动晶体管T2中半导体层采用弱外延生长方法制备。虽然不受任何理论约束,据信采用弱外延生长方法制备的有机半导体晶体管具有良好的器件均匀性和工艺可重复性。
本发明中的“弱外延生长方法”一般采用真空蒸镀技术,在基板上先沉积诱导层,然后在诱导层上沉积有机半导体材料,使得有机半导体分子间π-π共轭方向平行于基板表面,同时利用诱导层晶格和有机半导体晶格之间存在的外延关系或者取向关系,获得高性能的有机半导体层。
采用本申请的第一方面的驱动电路获得了稳定均匀一致的电流信号。虽然不受任何理论约束,据信这是由于在2T1C电路将电压信号转化成电流信号的过程中,开关晶体管T1和驱动晶体管T2两个晶 体管的作用不同,因此对晶体管性能的要求也是不同的。同一种材料制成的晶体管无法同时满足T1和T2的不同需求。而本申请中开关晶体管T1和驱动晶体管T2采用了两种不同的材料,即开关晶体管T1半导体层为无机半导体材料,而驱动晶体管T2中半导体层为有机半导体材料。因此本申请的新的2T1C电路可以将输入的电压信号转换成稳定均匀一致的电流信号,使得显示屏上每个单元像素亮度均匀一致。
本发明的新的2T1C电路可以使得在大尺寸(例如370mm×470mm)AMOLED显示屏上每个单元像素亮度均匀一致。
优选地,开关晶体管T1和驱动晶体管T2中可分别传输不同类型的载流子(电子或空穴)。
本发明还提供了第一个方面的有机发光二极管驱动电路的连接方式。具体参见附图1和2。在所述附图中,T1表示开关晶体管,T2表示驱动晶体管,C表示存储电容,OLED表示有机发光二极管。
根据一种实施方案,第一种连接方式参照附图1所示:开关晶体管T1的栅极与扫描线连接,开关晶体管T1的第一电极与信号线连接,开关晶体管T1的第二电极同时与驱动晶体管T2的栅极和存储电容C的第一电极分别连接;驱动晶体管T2的第一电极同时分别与存储电容C的第二电极和电源线连接,驱动晶体管T2的第二电极与OLED的第一电极连接。
根据另一种实施方案,第二种连接方式参照附图2所示:开关晶体管T1的栅极与扫描线连接,开关晶体管T1的第一电极与信号线连接,开关晶体管T1的第二电极同时与驱动晶体管T2的栅极和存储电容C的第一电极分别连接;驱动晶体管T2的第一电极与存储电容C的第二电极连接,驱动晶体管T2的第二电极与OLED的第一电极连接,OLED的第二电极连接电源线。
本发明的第二个方面还提供了制备上述有机发光二极管驱动电路的方法。
对于上述第一种连接方式,可采用如下的方法进行制备:
(1)在玻璃基板上采用磁控溅射技术,沉积一层或多层导电金属或者金属合金;采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
(2)利用磁控溅射或者化学气相沉积方法加工一层绝缘层,采用掩模光刻技术加工形成过孔;
(3)利用磁控溅射或化学气相沉积或溶液加工等方法,制备无机半导体层,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层;
(4)利用磁控溅射技术,沉积一层导电金属,采用掩模光刻技术将导电金属加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
(5)利用磁控溅射或者化学气相沉积方法加工一层绝缘层,利用掩模光刻技术加工形成过孔;
(6)利用弱外延生长方法制备有机半导体层,采用掩模光刻技术将其加工成所需要的图形,作为驱动晶体管T2半导体层;
(7)利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
(8)利用磁控溅射或化学气相沉积或物理气相沉积或溶液加工等方法制备介质层,采用掩模光刻技术将介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
(9)利用磁控溅射或溶液加工等技术沉积一层透明导电金属或者半导体,采用掩模光刻技术将透明导电金属或者半导体加工成所需要图形作为OLED的第一电极;
(10)利用物理气相沉积或溶液加工或喷墨打印等方法加工形成OLED的半导体层;
(11)利用物理气相沉积或者磁控溅射等技术,制备一层导电 金属或者金属合金作为OLED的第二电极;
(12)将AMOLED显示屏整体封装。
对于上述第二种连接方式,可采用如下的方法进行制备:
(1)在玻璃基板上采用磁控溅射技术,沉积一层或多层导电金属或者金属合金;采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
(2)利用磁控溅射或者化学气相沉积方法加工一层绝缘层,采用掩模光刻技术加工形成过孔;
(3)利用磁控溅射或化学气相沉积或溶液加工等方法,制备无机半导体层,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层;
(4)利用磁控溅射技术,沉积一层导电金属,采用掩模光刻技术将导电金属加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
(5)利用磁控溅射或者化学气相沉积方法加工一层绝缘层,利用掩模光刻技术加工形成过孔;
(6)利用弱外延生长方法制备有机半导体层,采用掩模光刻技术将其加工成所需要的图形作为驱动晶体管T2半导体层;
(7)利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
(8)利用磁控溅射或化学气相沉积或物理气相沉积或溶液加工等方法制备介质层,采用掩模光刻技术将介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
(9)利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要图形作为OLED的第一电极;
(10)利用物理气相沉积或溶液加工或喷墨打印等方法加工形成OLED的半导体层;
(11)利用磁控溅射或物理气相沉积等技术沉积一层透明导电金属或者半导体,作为OLED的第二电极;
(12)将AMOLED显示屏整体封装。
对于有机发光二极管驱动电路的制备方法,并不限于上面介绍的方法,可采用本领域中已知的可用于制备有机发光二极管驱动电路的任何方法。
本发明还提供了一种包括AMOLED的显示装置,其中所述AMOLED单元像素采用上述有源矩阵驱动有机发光二极管驱动电路。本文中的术语“单元像素”是指AMOLED显示屏是由若干个能够独立发光的区域组成,每个最小的能够独立发光的区域称之为单元像素。
在某些实施方案中,本发明提供的显示装置为大尺寸显示装置。在本发明中,所述“大尺寸”显示装置是指例如大于370mm×470mm等尺寸,例如包括但不限于电脑显示器和电视等。本文中的“大尺寸”是指基板尺寸不小于370mm×470mm,一个基板可以作为一个显示屏(例如用于电脑和电视的显示屏),也可以根据需要,分割成几个甚至几十个小的显示屏(例如用于手机和平板电脑的显示屏)。
实施例
为使本领域技术人员更好地理解本发明,下面结合附图和具体实施例对本发明做进一步详细阐述。除非特别说明,说明书中所有含量、比例、份数均是以重量计,所有单位均为国际标准单位。
本发明使用的材料和测试设备如下:
材料
所用金属和无机半导体由信利半导体公司提供;
所用有机半导体采购自奥莱德公司。
测试设备
二维色彩亮度计:CA2000,美能达公司。
亮度测试程序
将样片与外围测试电路连接,使样片显示单一颜色,利用CA2000亮度计对样片整体采样,通过亮度计自带软件对采集数据进行分析,即可获得样片不同位置的亮度。
实施例1:
对于附图1所示的2T1C电路,其具体的制备过程如下:
(1)在玻璃基板上采用磁控溅射,依次沉积钼-铝-钼;采用掩模光刻技术将钼-铝-钼加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极,其中,真空度10-2Pa,氩气流速200sccm,溅射速率300nm/min,金属层厚度分别为50nm,150nm和50nm,;
(2)采用化学气相沉积方法加工氮化硅绝缘层,其中,真空度266Pa,硅烷流速250sccm,氨气流速1550sccm,氮气流速1550sccm,氢气流速250sccm,电源功率1800W,成膜速度380nm/min,膜厚度350nm;采用掩模光刻技术在氮化硅绝缘层上加工形成过孔;
(3)利用等离子体化学气相沉积,制备非晶硅半导体层,其中射频频率13.56MHz,真空度60-120Pa,基板温度250℃,硅烷流速160sccm,成膜速率20nm/min,膜厚200nm,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层,其中非晶硅可以传输电子;
(4)利用磁控溅射技术,沉积一层金属钼,其中,真空度10-2Pa,氩气流速200sccm,溅射速率300nm/min,膜厚250nm,采用掩模光刻技术将金属钼加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
(5)采用化学气相沉积方法加工氮化硅绝缘层,其中,真空度266Pa,硅烷流速250sccm,氨气流速1550sccm,氮气流速1550sccm,氢气流速250sccm,电源功率1800W,成膜速度380nm/min,膜厚度200nm采用掩模光刻技术在氮化硅绝缘层上加工形成过孔;
(6)利用弱外延生长方法,以六联苯作为诱导层,制备红荧烯有机半导体层,其中,真空度8×10-4Pa,基板温度180℃,沉积速率1nm/min,六连苯厚度5nm,红荧烯厚度20nm,采用掩模光刻技术将其加工成所需要的图形,作为驱动晶体管T2半导体层,其中红荧烯可以传输空穴;
(7)利用真空气相沉积技术,制备一层金属金,其中,真空度8×10-4Pa,沉积速率50nm/min,厚度100nm,采用掩模光刻技术将金属金加工成所需要的图形,分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
(8)利用化学气相沉积方法制备氮化硅介质层,其中,真空度266Pa,硅烷流速250sccm,氨气流速1550sccm,氮气流速1550sccm,氢气流速250sccm,电源功率1800W,成膜速度380nm/min,膜厚度200nm采用掩模光刻技术将氮化硅介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
(9)利用磁控溅射技术沉积一层铟锡氧化物(ITO),其中,其中,真空度10-2Pa,载气流速200sccm,溅射速率150nm/min,厚度75nm,采用掩模光刻技术将ITO加工成所需要图形作为OLED的第一电极;
(10)利用物理气相沉积方法加工N,N’-二苯基-N,N’-(1-萘基)1,1’联苯-4,4’-二胺(NPB)和8-羟基喹啉铝(Alq3),形成OLED的半导体层,其中,真空度8×10-4Pa,沉积速率10nm/min,NPB厚度40nm,Alq3厚度50nm,;
(11)利用物理气相沉积技术,制备一层金属铝,作为OLED的第二电极,其中,真空度8×10-4Pa,沉积速率50nm/min,厚度100nm;
(12)将AMOLED显示屏整体封装。
在5个批次的产品中,每个批次随机抽取5个样片,每个样片大小370mm×470mm。峰值亮度400±23cd/m2,每片坏点数不多于3个。将样片按照3×3均匀9等分,分别测试每个区域的亮度,在平均亮度220cd/m2时,区域亮度误差小于7%。10000次反复开关后,亮度无变化。
测试结果表明,采用本发明提供的基于2T1C电路的AMOLED显示屏产品的批次稳定性,工艺可靠性和显示亮度的稳定性和均匀性均满足现有商业化产品的需求。
实施例2
对于附图2所示的2T1C电路,其具体的制备过程如下:
(1)在玻璃基板上采用磁控溅射,沉积一层金属钼,其中,真空度10-2Pa,氩气流速200sccm,溅射速率300nm/min,厚度300nm,采用掩模光刻技术将金属钼加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
(2)利用化学气相沉积方法加工氮化硅绝缘层,其中,真空度266Pa,硅烷流速250sccm,氨气流速1550sccm,氮气流速1550sccm,氢气流速250sccm,电源功率1800W,成膜速度380nm/min,膜厚度350nm;采用掩模光刻技术在氮化硅绝缘层上加工形成过孔;
(3)利用等离子体化学气相沉积,制备非晶硅半导体层,其中射频频率13.56MHz,真空度60-120Pa,基板温度250℃,硅烷流速160sccm,成膜速率20nm/min,膜厚120nm,利用激光扫描退火方法,将非晶硅转化成多晶硅,其中,基板温度435℃,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层,其中多晶硅可以传输空穴;
(4)利用磁控溅射技术,沉积一层金属钼,其中,真空度10-2Pa,氩气流速200sccm,溅射速率300nm/min,厚度250nm采用掩模光刻技术将金属钼加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动 晶体管T2的栅极;
(5)采用化学气相沉积方法加工氮化硅绝缘层,其中,真空度266Pa,硅烷流速250sccm,氨气流速1550sccm,氮气流速1550sccm,氢气流速250sccm,电源功率1800W,成膜速度380nm/min,膜厚度200nm,采用掩模光刻技术在氮化硅绝缘层上加工形成过孔;
(6)利用弱外延生长方法,以六联苯作为诱导层,制备酞菁二氯锡有机半导体层,其中,真空度8×10-4Pa,基板温度180℃,沉积速率1nm/min,六连苯5nm,酞菁二氯锡30nm,采用掩模光刻技术将其加工成所需要的图形,作为驱动晶体管T2半导体层,其中酞菁二氯锡可以传输电子;
(7)利用物理气相沉积技术,其中,真空度8×10-4Pa,沉积速率50nm/min,厚度100nm,制备一层金属银,采用掩模光刻技术将金属银加工成所需要的图形,分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
(8)利用化学气相沉积方法制备氮化硅介质层,其中,真空度266Pa,硅烷流速250sccm,氨气流速1550sccm,氮气流速1550sccm,氢气流速250sccm,电源功率1800W,成膜速度380nm/min,膜厚度200nm,采用掩模光刻技术将氮化硅介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
(9)利用磁控溅射技术沉积一层金属铝,其中,真空度10-2Pa,氩气流速200sccm,溅射速率300nm/min,厚度300nm,采用掩模光刻技术将金属铝加工成所需要图形作为OLED的第一电极;
(10)利用掩模物理气相沉积方法加工N,N,-二苯-N,N’-(1-萘基)1,1’-联苯-4,4’-二胺(NPB)和8-羟基喹啉铝(Alq3),形成OLED的半导体层,其中,真空度8×10-4Pa,沉积速率10nm/min,NPB厚度40nm,Alq3厚度50nm;
(11)利用磁控溅射技术,制备一层金属铝参杂氧化锌,作为OLED的第二电极,其中,真空度10-2Pa,氩气流速200sccm,溅射速率150nm/min,厚度80nm;
(12)将AMOLED显示屏整体封装。
在5个批次的产品中,每个批次随机抽取5个样片,每个样片大小370mm×470mm。峰值亮度400±18cd/m2,每片坏点数不多于3个。将样片按照3×3均匀9等分,分别测试每个区域的亮度,在平均亮度220cd/m2时,区域亮度误差小于6.7%。10000次反复开关后,亮度无变化。
测试结果表明,采用本发明提供的基于2T1C电路的AMOLED显示屏产品的批次稳定性,工艺可靠性和显示亮度的稳定性和均匀性均满足现有商业化产品的需求。
本发明的可预见的变型和更改对本领域技术人员来说将是显而易见的,并不脱离本发明的范围和精神。为了进行示意性的说明,本发明不应限于该专利申请中所列出的实施例。如果在本说明书与通过引用而并入本文的任何文件中的公开内容之间存在冲突或矛盾之处,以本说明书为准。

Claims (11)

  1. 一种有机发光二极管驱动电路,其包括:开关晶体管、驱动晶体管、存储电容和有机发光二极管;其特征在于,所述开关晶体管的半导体层使用无机半导体材料,所述驱动晶体管的半导体层使用有机半导体材料。
  2. 根据权利要求1所述的有机发光二极管驱动电路,所述无机半导体材料选自多晶硅、微晶硅、非晶硅或化合物半导体中任意一种。
  3. 根据权利要求2所述的有机发光二极管驱动电路,所述化合物半导体包括氧化锌和铟镓锌氧。
  4. 根据权利要求1所述的有机发光二极管驱动电路,所述有机半导体材料包括有机小分子半导体和聚合物半导体。
  5. 根据权利要求1所述的有机发光二极管驱动电路,所述驱动晶体管半导体层采用弱外延生长方法制备。
  6. 根据权利要求1所述的有机发光二极管驱动电路,所述开关晶体管和所述驱动晶体管可以分别传输不同类型的载流子。
  7. 根据权利要求1-6任一项所述的有机发光二极管驱动电路,其采用如下连接方式:所述开关晶体管的栅极与扫描线连接,所述开关晶体管的第一电极与信号线连接,所述开关晶体管的第二电极同时与所述驱动晶体管的栅极和所述存储电容的第一电极分别连接;所述驱动晶体管的第一电极同时分别与所述存储电容的第二电极和电源线连接,所述驱动晶体管的第二电极与所述有机发光二极 管的第一电极连接。
  8. 根据权利要求1-6任一项所述的有机发光二极管驱动电路,其采用如下连接方式:所述开关晶体管的栅极与扫描线连接,所述开关晶体管的第一电极与信号线连接,所述开关晶体管的第二电极同时与所述驱动晶体管的栅极和所述存储电容的第一电极分别连接;所述驱动晶体管的第一电极与所述存储电容的第二电极连接,所述驱动晶体管的第二电极与所述有机发光二极管的第一电极连接,所述有机发光二极管的第二电极连接电源线。
  9. 用于制备权利要求7所述的有机发光二极管驱动电路的方法,所述方法包括:
    在玻璃基板上采用磁控溅射技术,沉积一层或多层导电金属或者金属合金;采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
    利用磁控溅射或者化学气相沉积方法加工一层绝缘层,采用掩模光刻技术加工形成过孔;
    利用磁控溅射或化学气相沉积或溶液加工等方法,制备无机半导体层,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层;
    利用磁控溅射技术,沉积一层导电金属,采用掩模光刻技术将导电金属加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
    利用磁控溅射或者化学气相沉积方法加工一层绝缘层,利用掩模光刻技术加工形成过孔;
    利用弱外延生长方法制备有机半导体层,采用掩模光刻技术将其加工成所需要的图形,作为驱动晶体管T2半导体层;
    利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或 者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
    利用磁控溅射或化学气相沉积或物理气相沉积或溶液加工等方法制备介质层,采用掩模光刻技术将介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
    利用磁控溅射或溶液加工等技术沉积一层透明导电金属或者半导体,采用掩模光刻技术将透明导电金属或者半导体加工成所需要图形作为OLED的第一电极;
    利用物理气相沉积或溶液加工或喷墨打印等方法加工形成OLED的半导体层;
    利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金作为OLED的第二电极;
    将AMOLED显示屏整体封装。
  10. 用于制备权利要求8所述的有机发光二极管驱动电路的方法,所述方法包括:
    在玻璃基板上采用磁控溅射技术,沉积一层或多层导电金属或者金属合金;采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形,分别作为扫描线,开关晶体管T1的栅极;
    利用磁控溅射或者化学气相沉积方法加工一层绝缘层,采用掩模光刻技术加工形成过孔;
    利用磁控溅射或化学气相沉积或溶液加工等方法,制备无机半导体层,采用掩模光刻技术将其加工成所需要的图形作为开关晶体管T1半导体层;
    利用磁控溅射技术,沉积一层导电金属,采用掩模光刻技术将导电金属加工成所需要的图形,分别作为信号线,电源线,开关晶体管T1的第一电极和第二电极,存储电容C的第一电极,驱动晶体管T2的栅极;
    利用磁控溅射或者化学气相沉积方法加工一层绝缘层,利用掩模光刻技术加工形成过孔;
    利用弱外延生长方法制备有机半导体层,采用掩模光刻技术将其加工成所需要的图形作为驱动晶体管T2半导体层;
    利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要的图形分别作为驱动晶体管T2的第一电极和第二电极,存储电容C的第二电极;
    利用磁控溅射或化学气相沉积或物理气相沉积或溶液加工等方法制备介质层,采用掩模光刻技术将介质层加工形成过孔,以便于驱动晶体管T2第二电极与OLED第一电极连接;
    利用物理气相沉积或者磁控溅射等技术,制备一层导电金属或者金属合金,采用掩模光刻技术将导电金属或者金属合金加工成所需要图形作为OLED的第一电极;
    利用物理气相沉积或溶液加工或喷墨打印等方法加工形成OLED的半导体层;
    利用磁控溅射或物理气相沉积等技术沉积一层透明导电金属或者半导体,作为OLED的第二电极;
    将AMOLED显示屏整体封装。
  11. 一种显示装置,其包括权利要求1-8任一项所述的有机发光二极管驱动电路作为单元像素。
PCT/CN2016/084505 2016-06-02 2016-06-02 Oled驱动电路及其制备方法和显示装置 WO2017206141A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16903526.8A EP3467812A4 (en) 2016-06-02 2016-06-02 OLED CONTROL CIRCUIT AND MANUFACTURING METHOD THEREFOR AND DISPLAY DEVICE
US16/322,893 US11341907B2 (en) 2016-06-02 2016-06-02 OLED drive circuit and manufacturing method thereof, and display device
CN201680087835.2A CN109643521A (zh) 2016-06-02 2016-06-02 Oled驱动电路及其制备方法和显示装置
PCT/CN2016/084505 WO2017206141A1 (zh) 2016-06-02 2016-06-02 Oled驱动电路及其制备方法和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/084505 WO2017206141A1 (zh) 2016-06-02 2016-06-02 Oled驱动电路及其制备方法和显示装置

Publications (1)

Publication Number Publication Date
WO2017206141A1 true WO2017206141A1 (zh) 2017-12-07

Family

ID=60479546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/084505 WO2017206141A1 (zh) 2016-06-02 2016-06-02 Oled驱动电路及其制备方法和显示装置

Country Status (4)

Country Link
US (1) US11341907B2 (zh)
EP (1) EP3467812A4 (zh)
CN (1) CN109643521A (zh)
WO (1) WO2017206141A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117733B (zh) * 2018-07-17 2020-06-30 武汉华星光电半导体显示技术有限公司 一种指纹识别oled显示面板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411322A (zh) * 2002-11-22 2003-04-16 中国科学院长春应用化学研究所 有机晶体管有源矩阵有机发光显示装置及制造方法
US20090267075A1 (en) * 2008-04-23 2009-10-29 Industrial Technology Research Institute Oganic thin film transistor and pixel structure and method for manufacturing the same and display panel
US20100001284A1 (en) * 2008-07-01 2010-01-07 Samsung Electronics Co., Ltd. Method of manufacturing transistor and method of manufacturing organic electroluminescence display using the same
CN102017209A (zh) * 2008-04-03 2011-04-13 剑桥显示技术有限公司 有机薄膜晶体管
CN102867481A (zh) * 2012-09-06 2013-01-09 福州华映视讯有限公司 有机发光元件的驱动电路及其操作方法
CN104332485A (zh) * 2014-09-24 2015-02-04 苹果公司 硅和半导体氧化物薄膜晶体管显示器
CN104409047A (zh) * 2014-12-18 2015-03-11 合肥鑫晟光电科技有限公司 像素驱动电路、像素驱动方法和显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597468B2 (ja) * 1998-06-19 2004-12-08 シン フイルム エレクトロニクス エイエスエイ 集積無機/有機相補型薄膜トランジスタ回路およびその製造方法
JP3899886B2 (ja) 2001-10-10 2007-03-28 株式会社日立製作所 画像表示装置
JP2004152958A (ja) * 2002-10-30 2004-05-27 Pioneer Electronic Corp 有機半導体装置
KR100696479B1 (ko) 2004-11-18 2007-03-19 삼성에스디아이 주식회사 평판표시장치 및 그의 제조방법
CN1870113A (zh) 2006-06-27 2006-11-29 广辉电子股份有限公司 显示器像素电路的结构及其驱动方法
JP2008147418A (ja) 2006-12-11 2008-06-26 Hitachi Ltd 薄膜トランジスタ装置、画像表示装置およびその製造方法
US9012900B2 (en) * 2012-12-26 2015-04-21 Lg Display Co., Ltd. Organic light emitting diode display device and method of fabricating the same
CN103218970B (zh) 2013-03-25 2015-03-25 京东方科技集团股份有限公司 Amoled像素单元及其驱动方法、显示装置
US9166181B2 (en) * 2014-02-19 2015-10-20 International Business Machines Corporation Hybrid junction field-effect transistor and active matrix structure
KR102235597B1 (ko) 2014-02-19 2021-04-05 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 이의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1411322A (zh) * 2002-11-22 2003-04-16 中国科学院长春应用化学研究所 有机晶体管有源矩阵有机发光显示装置及制造方法
CN102017209A (zh) * 2008-04-03 2011-04-13 剑桥显示技术有限公司 有机薄膜晶体管
US20090267075A1 (en) * 2008-04-23 2009-10-29 Industrial Technology Research Institute Oganic thin film transistor and pixel structure and method for manufacturing the same and display panel
US20100001284A1 (en) * 2008-07-01 2010-01-07 Samsung Electronics Co., Ltd. Method of manufacturing transistor and method of manufacturing organic electroluminescence display using the same
CN102867481A (zh) * 2012-09-06 2013-01-09 福州华映视讯有限公司 有机发光元件的驱动电路及其操作方法
CN104332485A (zh) * 2014-09-24 2015-02-04 苹果公司 硅和半导体氧化物薄膜晶体管显示器
CN104409047A (zh) * 2014-12-18 2015-03-11 合肥鑫晟光电科技有限公司 像素驱动电路、像素驱动方法和显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467812A4 *

Also Published As

Publication number Publication date
US20190213954A1 (en) 2019-07-11
US11341907B2 (en) 2022-05-24
CN109643521A (zh) 2019-04-16
EP3467812A1 (en) 2019-04-10
EP3467812A4 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
US11785831B2 (en) Method for patterning a coating on a surface and device including a patterned coating
WO2018227750A1 (zh) 柔性tft基板的制作方法
US9508933B2 (en) Organic light-emitting diode (OLED) device, manufacturing method thereof and display device
US8558225B2 (en) Oxide thin film transistor having source and drain electrodes being formed between a primary and a secondary active layers
CN102280467B (zh) 有机发光显示器及其制造方法
US9450028B2 (en) Organic light-emitting device and image display system employing the same
CN104393017B (zh) 阵列基板的制作方法、阵列基板及显示装置
US7326966B2 (en) Electroluminescence display device and method of manufacturing the same
WO2018233287A1 (zh) 显示装置、oled显示面板及其制造方法
CN103579532A (zh) 有机发光二极管显示装置及其制造方法
US10784321B2 (en) Method for manufacturing OLED device, OLED device and display panel
US20160276617A1 (en) Opposed substrate of an oled array substrate and method for preparing the same, and display device
WO2019080252A1 (zh) Oled背板的制作方法
WO2020172930A1 (zh) 一种可交联空穴传输层材料及其制备方法
TW201027480A (en) Connected display pixel drive chiplets
US10446630B2 (en) Thin film transistor (TFT) substrate, manufacturing method thereof, and organic light-emitting diode (OLED) substrate
CN108269856A (zh) 一种氧化物半导体薄膜晶体管及其制备方法、阵列基板
US10964755B2 (en) Organic light emitting diode panel including light emitting units and color filter layer, method for manufacturing the same, and display device
WO2017206141A1 (zh) Oled驱动电路及其制备方法和显示装置
US8354667B2 (en) Organic electroluminescence manufacturing method and image display system having the same
US20180090721A1 (en) Laminated substrate for oled, method for producing oled display device using the same, and oled display device
US20120298985A1 (en) Thin film transistor and method of fabricating the same
US20210005757A1 (en) Method of manufacturing a thin film transistor substrate and thin film transistor substrate
WO2019100488A1 (zh) 背沟道蚀刻型tft基板及其制作方法
WO2020118903A1 (zh) 柔性tft基板的制作方法及柔性oled面板的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16903526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016903526

Country of ref document: EP

Effective date: 20190102