WO2017203781A1 - Methane fermentation device - Google Patents

Methane fermentation device Download PDF

Info

Publication number
WO2017203781A1
WO2017203781A1 PCT/JP2017/008127 JP2017008127W WO2017203781A1 WO 2017203781 A1 WO2017203781 A1 WO 2017203781A1 JP 2017008127 W JP2017008127 W JP 2017008127W WO 2017203781 A1 WO2017203781 A1 WO 2017203781A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
methane fermentation
methane
gas
processed material
Prior art date
Application number
PCT/JP2017/008127
Other languages
French (fr)
Japanese (ja)
Inventor
赫哲 吉
康弘 石橋
隆広 中道
川上 茂樹
Original Assignee
日本プライスマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本プライスマネジメント株式会社 filed Critical 日本プライスマネジメント株式会社
Priority to KR1020187032435A priority Critical patent/KR20180128060A/en
Priority to CN201780025113.9A priority patent/CN109071292A/en
Publication of WO2017203781A1 publication Critical patent/WO2017203781A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a methane fermentation apparatus.
  • the present invention has been made in view of the above circumstances, and provides a methane fermentation apparatus capable of preventing the discharge of untreated materials and increasing the concentration of methane gas without requiring mechanical stirring.
  • the purpose is to do.
  • a methane fermentation apparatus comprises: A dry methane fermentation device, A methane fermentation tank that ferments the processed material to generate methane gas while the processed material that is divided into three or more processing tanks and is put into the uppermost tank is sequentially sent to the lower processing tank,
  • the methane fermenter is The processing object which collects the processing thing in the bottom face in a tank, and is equipped with the processing thing circulation part which blows off the processing substance in the tank from the 1st outflow port provided in the solid upper edge formed by the processing thing in a tank, The first outflow port faces the center of the solid.
  • the gas circulation part A cylindrical body that is erected on the bottom surface in the tank so as to surround the second outflow port, and whose lower side surface and upper surface are opened; It is good as well.
  • the second outlet and the cylindrical body are: In the flow of the processed material formed in the tank by the processed material flowing out from the first outlet, it is disposed at a place where the processed material stays. It is good as well.
  • the treated product circulation part is: A heat exchanger that transmits heat of a gas engine that generates power using methane gas generated in the methane fermentation tank to a processed product, It is good as well.
  • the methane fermentation apparatus A dry methane fermentation device, A methane fermentation tank that ferments the processed material to generate methane gas while the processed material that is divided into three or more processing tanks and is put into the uppermost tank is sequentially sent to the lower processing tank,
  • the methane fermenter is A gas circulation unit is provided that collects gas generated in the tank and blows out the gas from an outlet provided in the bottom of the tank.
  • the gas circulation unit A cylindrical body that is erected on the bottom surface in the methane fermentation tank so as to surround the outlet and has a lower side surface and an upper surface opened, It is good as well.
  • the methane fermentation tank is divided into three or more stages, and while the processed product is carried to the lower processing tank, there remains no unprocessed product that is not subjected to methane fermentation. It is possible to prevent the discharge of objects. Moreover, since the flow of the processed material can be created diagonally in the tank, the state of the processed material in the tank can be made uniform without requiring mechanical stirring. In addition, by passing the generated methane gas through the processed material, the processed material can absorb carbon dioxide, so that the concentration of methane gas can be increased.
  • the Z axis is the vertical direction
  • the XY plane is the horizontal plane.
  • the methane fermentation apparatus generates methane gas by methane fermentation of organic waste, and uses the generated methane gas as biomass energy.
  • the organic waste is a substance mainly composed of macromolecular organic compounds such as proteins, carbohydrates, fats and celluloses or compounds derived therefrom, and does not substantially contain solid inorganic compounds.
  • some solid inorganic compounds may be contained as long as they can be easily solubilized and do not adversely affect the growth of microorganisms.
  • organic waste examples include organic waste such as livestock sludge, sewage sludge, and garbage such as food waste. You may use these as a raw material which concentrated the solid concentration before the solubilization process. Moreover, you may add the organic substance of the metabolic pathway in the methane fermentation process which mixed saccharide
  • the methane fermentation apparatus 1 includes a crusher 10, a mixing tank 20, a solubilization tank 30, a methane fermentation tank 40, a cooling tower 50, a desulfurization tower 60, a gas holder 70, and a gas engine. 80.
  • the crusher 10 and the mixing tank 20 are connected by a pipe 11 that feeds a processed material (raw material), and a raw material pump 12 is inserted into the pipe 11.
  • the mixing tank 20 and the solubilization tank 30 are connected by a pipe 21 for sending a processed material (raw material), and an electromagnetic three-way valve 22 is inserted into the pipe 21.
  • the solubilization tank 30 and the methane fermentation tank 40 are connected by a pipe 31 for sending a processed material (raw material), and an electromagnetic three-way valve 32 is inserted into the pipe 31.
  • the electromagnetic three-way valve 22 and the electromagnetic three-way valve 32 are connected by a pipe 23 for sending a processed material (raw material), and a raw material pump 24 is inserted into the pipe 23.
  • the organic waste After the organic waste is put into the crusher 10, it is sent to the methane fermentation tank 40 through the pipe 11, the mixing tank 20, the pipe 21, the solubilization tank 30, and the pipe 31, and after methane fermentation, methane fermentation. It is discharged from the tank 40.
  • the discharged processed material is used as compost.
  • the methane fermentation tank 40 and the cooling tower 50 are connected by a pipe 51 for sending the generated methane gas.
  • the cooling tower 50 and the desulfurization tower 60 are connected by a pipe 52 that sends methane gas.
  • the desulfurization tower 60 and the gas holder 70 are connected by a pipe 61 that sends methane gas.
  • the gas holder 70 and the gas engine 80 are connected by a pipe 71 that sends methane gas.
  • Methane gas generated in the methane fermentation tank 40 is sent in the order of the pipe 51, the cooling tower 50, the pipe 52, the desulfurization tower 60, the pipe 61, the gas holder 70, the pipe 71, and the gas engine 80.
  • Organic waste is input to the crusher 10 from the outside.
  • the crusher 10 crushes the input organic waste into an appropriate size.
  • the pulverized processed product is sent to the mixing tank 20 through the pipe 11 by the raw material pump 12.
  • a stirrer is provided inside the mixing tank 20, and the thrown-in organic waste is stirred by the stirrer. Thereby, the organic waste accommodated in the mixing tank 20 is mixed and becomes a uniform state.
  • the mixing tank 20 is provided with an ultraviolet irradiation unit.
  • An ultraviolet irradiation part irradiates ultraviolet rays in the mixing tank 20 with a light emitting diode (LED), for example.
  • the ultraviolet irradiation unit irradiates the processed material put into the mixing tank 20 with ultraviolet light to sterilize the processed material.
  • the organic waste sterilized in the mixing tank 20 is sent to the solubilization tank 30 via the pipe 21.
  • the solubilization tank 30 performs a solubilization process on the charged processed material.
  • the solubilization tank 30 for example, high-temperature solubilization treatment using solubilizing bacteria such as protease-producing bacteria is performed.
  • a culture tank 33 is attached to the solubilization tank 30.
  • solubilized bacteria are cultured, and the solubilized bacteria are supplied from the culture tank 33 to the solubilization tank 30.
  • the culture tank 33 and the UV-LED (ultraviolet irradiation device) 34 are inserted into a water supply pipe 35.
  • the water sent from the water supply pipe 35 is sent to the culture tank 33 while being sterilized by the UV-LED 34.
  • the culture tank 33 sends water containing the solubilized bacteria to the solubilization tank 30 through the water supply pipe 35.
  • the solubilization tank 30 is provided with an inner container 30A for storing a processed product and an outer container 30B provided so as to surround the inner container 30A.
  • the processed product to be solubilized is accommodated in the inner container 30A.
  • a heat medium is accommodated between the outer container 30B and the inner container 30A. In the present embodiment, hot water is used as the heat medium.
  • the temperature in the tank of the solubilization tank 30 is maintained at a high temperature by this heat medium.
  • a stirrer and a motor for stirring the organic waste are attached in the tank of the solubilization tank 30, a stirrer and a motor for stirring the organic waste are attached. Further, the solubilization tank 30 is provided with an air insertion port for supplying air to the organic waste, and air pumps 36 and 37 are connected to the air insertion port. Air is sent to the solubilization tank 30 by the air pumps 36 and 37. In this way, in the solubilization tank 30, solubilization is promoted under high temperature aerobicity by performing stirring or aeration.
  • High-temperature aerobic means a state in which organic waste is solubilized in a standard state (in an air atmosphere) at a temperature of 50 ° C. to 100 ° C., preferably without applying pressure.
  • the solubilization treatment is a treatment for decomposing a normal polymer organic compound in a solid or water suspension into a low molecular state that can be dissolved in water.
  • ultrahigh temperature solubilization is performed using protease-producing bacteria.
  • protease-producing bacteria are bacteria that can produce and secrete proteolytic enzymes (proteases) outside the cells.
  • protease-producing bacteria examples include Bacillus species, and in particular, Bacillus sp. MU3 (Microbial Patent Deposit Center NITE AP-156).
  • Bacillus species and in particular, Bacillus sp. MU3 (Microbial Patent Deposit Center NITE AP-156).
  • This heat-resistant protease-producing bacterium has an ultra-high temperature aerobic property that can sufficiently act even at 80 ° C.
  • the enzyme produced by this bacterium has a molecular weight of about 57,000, excellent heat resistance, and high protein resolution in a wide pH range.
  • the ultra-high temperature is 50 ° C. to 100 ° C., preferably 60 ° C. to 90 ° C., particularly preferably 70 ° C. to 80 ° C.
  • Ultra-high temperature solubilization is carried out in an aqueous medium under an aerobic or anaerobic condition, preferably an aerobic condition, and the organic waste has an organic waste concentration of 50 wt% or less, preferably 5 to 40 wt%, particularly preferably. It is carried out in contact with a protease-producing bacterium in such an amount that it becomes 10 to 30 wt%.
  • the solids concentration (DS) of the raw material can be increased to an organic waste concentration of 10 to 30 wt%, preferably at a DS of 20% or more, pH 5 to 8, preferably around 6.
  • the solubilization tank atmosphere is optimally aerobic.
  • the time for digestion with protease-producing bacteria is 12 to 72 hours, preferably 24 to 48 hours.
  • it can be carried out under stirring and aeration conditions.
  • ammonia can be removed in situ, solubilization of the raw material and ammonia removal can be performed simultaneously, and methane fermentation can be promoted.
  • Bacillus sp. When MU3 is used as a protease-producing bacterium, since this bacterium is an aerobic thermostable bacterium, it can be solubilized with stirring while being aerated with air, and is optimal in terms of solubilization and ammonia removal.
  • microbial cells producing various degrading enzymes such as lipase-producing bacteria, glycosidase-producing bacteria and / or cellulase-producing bacteria may be added alone or in combination. Is possible. These can be used in the same reaction tank as long as the growth and proliferation conditions are similar, but if the conditions are different, a plurality of solubilization tanks 30 are provided, and each solubilization tank 30 is provided under different conditions. Can be used.
  • solubilize in a high-temperature solubilization tank using a protease-producing bacterium it is preferable to solubilize in a high-temperature solubilization tank using a protease-producing bacterium.
  • An ammonia adsorption tank 38 is connected to the solubilization tank 30.
  • the ammonia adsorption tank 38 is provided for adsorbing and removing ammonia generated in the solubilization process in the solubilization tank 30.
  • the processed product solubilized in the solubilization tank 30 is sent to the methane fermentation tank 40 via the pipe 31.
  • the methane fermentation tank 40 performs a methane fermentation process on the stored processed product.
  • Methane fermentation treatment uses methane bacteria that normally operate in an anaerobic atmosphere and uses its digestive action.
  • the active temperature range of methane bacteria is usually from 0 to 70 ° C., and in higher temperature ranges there are some species that survive to about 90 ° C., but almost die. In the low temperature region, the limit is 3 ° C to 4 ° C.
  • the methane gas production rate is greatly influenced by this activation temperature.
  • the gas generation rate proceeds faster as the fermenter temperature is higher, and the amount of gas generated increases.
  • the following three temperature regions where methane bacteria are actually liable to live have been confirmed.
  • the temperature of the methane fermentation of the present invention can be any of low temperature, medium temperature and high temperature methane fermentation, but it is preferable to perform high temperature methane fermentation at 40 ° C to 70 ° C, and further methane fermentation at 50 ° C to 55 ° C. Is preferred.
  • the solubilization treatment can be performed under high-temperature aerobic conditions and the methane fermentation treatment can be performed under anaerobic conditions
  • methane fermentation can be performed using the high temperature of the solubilization treatment.
  • the temperature of the soda can be increased, and the bacteria growth condition has the advantage that the bacteria in the solubilization treatment (aerobic condition) are inactivated in the methane fermentation process (anaerobic condition), so that the methane fermentation is not disturbed. .
  • the high-temperature aerobic property means a state in which organic waste is solubilized in a standard state (in an air atmosphere) at a temperature of 50 to 100 ° C., preferably without applying pressure.
  • the methane fermentation tank 40 is divided into a first tank 40A, a second tank 40B, and a third tank 40C.
  • the processed material input from the outside is first input to the first tank 40A, where methane fermentation proceeds.
  • the methane fermentation of about 95% of the processed product is completed.
  • the specific gravity of the processed product becomes lighter, so it goes up and is sent to the second tank 40B over the side wall.
  • the methane fermentation is also performed in the second tank 40B, and the processed product is sent to the third tank 40C to the extent that the remaining 1.2 to 2% of the untreated product remains, that is, the methane fermentation is almost completed.
  • Methane fermentation is also performed in the third tank 40C. Methane fermentation is complete.
  • the processed product for which methane fermentation has been completed is discharged from the third tank 40C to the outside.
  • the methane fermentation tank 40 is provided with a gas circulation unit 40D that circulates gas by collecting gas (methane gas and carbon dioxide) generated by methane fermentation, taking it out and returning it to the inside.
  • the gas circulation unit 40D is provided with a pipe 41 and a blower 42 for sending gas. The methane gas generated in the methane fermentation tank 40 by the blower 42 is sent to the pipe 41 and returned to the methane fermentation tank 40.
  • a cylindrical body 4 is erected on the bottom surface of the methane fermentation tank 40.
  • a plurality of openings 4 ⁇ / b> A are provided on the lower side surface of the cylindrical body 4, and an opening 4 ⁇ / b> B is provided on the upper end of the cylindrical body 4.
  • the tip 41A of the pipe 41 extends to the center of the bottom surface in the cylindrical body 4, and the gas is discharged from the opening (first outlet) of the tip 41A.
  • the gas discharged from the tip 41A of the pipe 41 rises in the cylindrical body 4. Due to the rising flow of the gas, the processed product 6 in the cylindrical body 4 also starts to rise. Then, the processed material 6 can flow from the outside to the inside of the cylindrical body 4 at the opening 4A, and the processed material can flow from the inside to the outside of the cylindrical body 4 at the opening 4B. Thereby, the flow of the upper and lower circulation of a processed material is formed inside the methane fermentation tank 40, and the processed material 6 is stirred.
  • the gas discharged from the tip 41A of the pipe 41 is a mixed gas of methane gas and carbon dioxide.
  • this gas is discharged into the treated product 6, carbon dioxide is absorbed by the treated product 6, so that the ratio of methane gas can be improved.
  • the ratio of methane gas increases, the power generation efficiency in the gas engine 80 can be increased.
  • ammonia gas can be suppressed by supplying carbon dioxide to the treated product 6. Since ammonia gas inhibits methane fermentation, methane fermentation can be promoted by supplying carbon dioxide to the treated product 6.
  • the methane fermentation tank 40 is provided with a processed product circulation section 40E that circulates the processed product 6 by collecting the processed product 6 and returning it to the inside.
  • the treated product circulation unit 40E includes a pipe 43, a raw material pump 44, and electromagnetic three-way valves 45 and 46.
  • the raw material pump 44 is inserted into the pipe 43.
  • the processed product 6 discharged from the methane fermentation tank 40 by the raw material pump 44 is returned to the methane fermentation tank 40 via the pipe 43.
  • the electromagnetic three-way valve 45 branches the pipe 43.
  • the electromagnetic three-way valve 46 connects the crusher 10 and the pipe 43 via the pipe 13.
  • a heat exchanger 47 is inserted into the pipe 43.
  • the outflow port 5 (2nd outflow port) which flows out the processed material 6 sent in the piping 43 is an upper surface of the processed material in the methane fermentation tank 40, Comprising: Methane fermentation It is attached to the upper corner of a solid (cuboid) formed by the processed product 6 in the tank 40. Furthermore, the outflow port 5 faces the direction of the diagonal line of the solid (cuboid) formed by the processed object 6, that is, the direction of the center point of the solid.
  • the processed product 6 in the methane fermentation tank 40 forms a flow as shown in FIGS. 3A and 3B, so that the entire processed product 6 is stirred. become.
  • the stirring by the gas was stirring in the vertical direction, but the stirring by the flow of the processed product 6 includes a horizontal flow.
  • the treated product 6 is generally stirred by the flow of FIGS. 3A and 3B, but a place where the treated product 6 stays appears in a part of the tank. Therefore, in the present embodiment, as shown in FIG. 4, if a mechanism for blowing out the gas composed of the cylindrical body 4 shown in FIGS. Uneven processing due to retention of 6 can be prevented.
  • the gas generated in the methane fermentation tank 40 is sent to the cooling tower 50 to be cooled and output to the desulfurization tower 60.
  • the desulfurization tower 60 performs a desulfurization process on the input gas, and outputs the extracted methane gas to the gas holder 70.
  • the gas holder 70 stores methane gas.
  • the gas engine 80 generates electricity by turning a gas turbine with methane gas sent from the gas holder 70.
  • the electric power generated by the gas engine 80 is sent to a cubicle (power receiving facility) via the power line 81.
  • the gas engine 80 generates heat by power generation. For this reason, a pipe 82 for flowing hot water and a cold / hot water pump 83 are provided between the gas engine 80 and the heat exchanger 84 so that the heat of the gas engine 80 is sent to the heat exchanger 84. It has become.
  • the heat exchanger 84 is connected to the throwing heater 90 and the pipe 85. Thereby, the heat of the gas engine 80 is transmitted to the throwing heater 90 via the heat exchanger 84.
  • a piping path for the heat medium is constructed between the throwing heater 90, the solubilization tank 30, and the heat exchanger 47.
  • the heat medium heated by the throwing heater 90 is sent from the solubilization tank 30 to the heat exchanger 47 while returning to a throwing heater 90 from the heat exchanger 47 while keeping the temperature in the solubilization tank 30 constant.
  • This heat medium circulation path is defined as a heat medium circulation section.
  • the heat exchanger 47 performs heat exchange between the heat medium circulating in the heat medium circulation unit and the processed material circulating in the processed material circulation unit 40E.
  • the processed product 6 heated by the heat exchanger 47 returns to the methane fermentation tank 40, and further methane fermentation is performed at a temperature with high fermentation efficiency.
  • the temperature of the processed material fermented in the methane fermentation tank 40 is kept uniform, and is maintained so that the methane fermentation efficiency by the fermenting bacteria does not decrease.
  • the processed product is pulverized by the crusher 10, stirred and sterilized in the mixing tank 20, solubilized in the solubilizing tank 30, and then subjected to methane fermentation in the methane fermentation tank 40.
  • the methane fermentation tank 40 is divided into a first tank 40A, a second tank 40B, and a third tank 40C, and unprocessed products disappear while being sent to the lower processing tank.
  • the processed product is stirred and the carbon dioxide is adsorbed by the gas circulating unit 40D and the processed product circulating unit 40E, methane fermentation is performed, and methane gas is generated. Methane gas is accumulated in the gas holder 70 and used for power generation in the gas engine 80.
  • the heat generated in the gas engine 80 is used to keep the solubilization tank 30 through the heat exchanger 84 ⁇ the throwing heater 90, and is further used to keep the processed material 6 through the heat exchanger 47.
  • the processed product that has been processed in the methane fermentation tank 40 is discharged from the methane fermentation tank 40.
  • the discharged processed material can be used as compost. Since all processed products are processed, they do not smell rotten.
  • the methane fermentation tank 40 is divided into three or more stages, and the methane fermentation is performed while the processed products are being conveyed to the lower processing tanks 40B and 40C. Since there is no unprocessed unprocessed material left, discharge of unprocessed material can be prevented. Moreover, since the flow of a processed material can be created on the diagonal in the methane fermentation tank 40, the processed material 6 in a tank can be equalize
  • processing tank of the methane fermentation tank 40 was made into 3 steps
  • each processing tank 40A, 40B, 40C of the methane fermentation tank 40 was made into the rectangular parallelepiped, this invention is not limited to this, For example, a cylindrical shape may be sufficient. In this case, what is necessary is just to make the outflow port 5 face the center of the processed material 6.
  • FIG. 1 is a diagrammatic representation of the methane fermentation tank 40.
  • the outlet 5 does not have to face the center of the processed product 6.
  • the outlet 5 ′ is directed to the circumferential direction of the inner wall of the cylindrical methane fermentation tank (first tank) 40A ′. May be.
  • the opening of the tip 41A of the pipe 41 and the cylindrical body 4 may be arranged at the center of the bottom surface of the methane fermentation tank (first tank) 40A '.
  • the cylindrical body 4 is installed in the first tank 40A, but the cylindrical body 4 may be installed in the second tank 40B and the third tank 40C.
  • the gas circulation unit 40D and the processed product circulation unit 40E are illustrated as circulating gas or processed material from the third tank 40C to the first tank 40A, but the first tank 40A, Gas and processed material may be circulated in the second tank 40B and the third tank 40C, respectively.
  • the present invention can be applied to a methane fermentation apparatus that performs methane fermentation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

A methane fermentation device (1) is a dry methane fermentation device. A methane fermentation tank (40) is segmented into 3 or more treatment tanks (40A, 40B, 40C), and a processing object is fermented to generate methane gas while the processing object charged into a tank at the uppermost stage is sequentially transferred to tanks at lower stages. The methane fermentation tank (40) includes a circulation unit (40E) that recovers a processing object on the bottom surface of the tank, and blows the processing object into the tank from an outlet that is disposed at the upper edge portion of a solid formed by the processing object in the tank. This outlet faces the center of the solid.

Description

メタン発酵装置Methane fermentation equipment
 本発明は、メタン発酵装置に関する。 The present invention relates to a methane fermentation apparatus.
 従来より、有機性廃棄物が可溶化された処理物に対してメタン発酵処理を行い、メタンガスを発生させるメタン発酵装置が用いられている(例えば、特許文献1参照)。 Conventionally, a methane fermentation apparatus that performs methane fermentation treatment on a treated product in which organic waste is solubilized to generate methane gas has been used (for example, see Patent Document 1).
特開2015-21732号公報JP 2015-21732 A
 メタン発酵装置では、メタン発酵槽が1つしかない場合、メタン発酵処理されていない未処理物が、排出されてしまうおそれがあった。 In the methane fermentation apparatus, when there is only one methane fermenter, there is a possibility that untreated material that has not been subjected to methane fermentation treatment may be discharged.
 また、メタン発酵槽において、メタンガスの濃度を高くするには、処理物を攪拌する必要があった。しかしながら、従来は、攪拌棒により処理物を攪拌するのが一般的である。したがって、槽内に攪拌棒等の設備が必要となり、設備のメンテナンスも必要となる。 Also, in the methane fermentation tank, it was necessary to stir the treated product in order to increase the concentration of methane gas. However, conventionally, it is common to stir the processed material with a stirring rod. Therefore, equipment such as a stirring bar is required in the tank, and equipment maintenance is also required.
 本発明は、上記実情に鑑みてなされたものであり、未処理物の排出を防止するとともに、機械的な攪拌を必要とすることなく、メタンガスの濃度を高くすることができるメタン発酵装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a methane fermentation apparatus capable of preventing the discharge of untreated materials and increasing the concentration of methane gas without requiring mechanical stirring. The purpose is to do.
 上記目的を達成するために、本発明の第1の観点に係るメタン発酵装置は、
 乾式のメタン発酵装置であって、
 3つ以上の処理槽に分割され、最上槽に投入された処理物が、より下段の処理槽に順次送られる間に、前記処理物を発酵させてメタンガスを発生させるメタン発酵槽を備え、
 前記メタン発酵槽は、
 槽内底面にある処理物を回収し、槽内の処理物によって形づくられる立体の上側縁部に設けられた第1の流出口から槽内に処理物を吹き出す処理物循環部を備え、
 前記第1の流出口が、前記立体の中心を向いている。
In order to achieve the above object, a methane fermentation apparatus according to the first aspect of the present invention comprises:
A dry methane fermentation device,
A methane fermentation tank that ferments the processed material to generate methane gas while the processed material that is divided into three or more processing tanks and is put into the uppermost tank is sequentially sent to the lower processing tank,
The methane fermenter is
The processing object which collects the processing thing in the bottom face in a tank, and is equipped with the processing thing circulation part which blows off the processing substance in the tank from the 1st outflow port provided in the solid upper edge formed by the processing thing in a tank,
The first outflow port faces the center of the solid.
 この場合、前記メタン発酵槽において、
 槽内で発生したガスを回収し、槽内底部に設けられた第2の流出口から槽内に吹き出すガス循環部を備える、
 こととしてもよい。
In this case, in the methane fermentation tank,
A gas circulation part that recovers the gas generated in the tank and blows out into the tank from the second outlet provided in the bottom of the tank,
It is good as well.
 前記ガス循環部は、
 前記第2の流出口を囲むように槽内底面に立設され、下部側面及び上面が開放された円筒体を備える、
 こととしてもよい。
The gas circulation part
A cylindrical body that is erected on the bottom surface in the tank so as to surround the second outflow port, and whose lower side surface and upper surface are opened;
It is good as well.
 前記第2の流出口及び前記円筒体は、
 前記第1の流出口から流出する処理物により槽内に形成される処理物の流れにおいて、前記処理物が滞留する場所に配置されている、
 こととしてもよい。
The second outlet and the cylindrical body are:
In the flow of the processed material formed in the tank by the processed material flowing out from the first outlet, it is disposed at a place where the processed material stays.
It is good as well.
 前記処理物循環部は、
 前記メタン発酵槽で発生したメタンガスを用いて発電を行うガスエンジンの熱を処理物に伝える熱交換器を備える、
 こととしてもよい。
The treated product circulation part is:
A heat exchanger that transmits heat of a gas engine that generates power using methane gas generated in the methane fermentation tank to a processed product,
It is good as well.
 本発明の第2の観点に係るメタン発酵装置は、
 乾式のメタン発酵装置であって、
 3つ以上の処理槽に分割され、最上槽に投入された処理物が、より下段の処理槽に順次送られる間に、前記処理物を発酵させてメタンガスを発生させるメタン発酵槽を備え、
 前記メタン発酵槽は、
 槽内で発生したガスを回収し、槽内底部に設けられた流出口から槽内に吹き出すガス循環部を備える。
The methane fermentation apparatus according to the second aspect of the present invention,
A dry methane fermentation device,
A methane fermentation tank that ferments the processed material to generate methane gas while the processed material that is divided into three or more processing tanks and is put into the uppermost tank is sequentially sent to the lower processing tank,
The methane fermenter is
A gas circulation unit is provided that collects gas generated in the tank and blows out the gas from an outlet provided in the bottom of the tank.
 この場合、前記ガス循環部は、
 前記流出口を囲むように前記メタン発酵槽内の底面に立設され、下部側面及び上面が開放された円筒体を備える、
 こととしてもよい。
In this case, the gas circulation unit
A cylindrical body that is erected on the bottom surface in the methane fermentation tank so as to surround the outlet and has a lower side surface and an upper surface opened,
It is good as well.
 本発明によれば、メタン発酵槽が3段以上に分かれており、下段の処理槽に処理物が運ばれていくうちに、メタン発酵が行われていない未処理物が残らなくなるので、未処理物の排出を防止することができる。また、槽内において対角線上に処理物の流れを作り出すことができるので、機械的な攪拌を必要とせずに、槽内の処理物の状態を均一化することができる。また、発生したメタンガスを処理物内に通すことにより、処理物に二酸化炭素を吸収させることができるので、メタンガスの濃度を高くすることができる。 According to the present invention, the methane fermentation tank is divided into three or more stages, and while the processed product is carried to the lower processing tank, there remains no unprocessed product that is not subjected to methane fermentation. It is possible to prevent the discharge of objects. Moreover, since the flow of the processed material can be created diagonally in the tank, the state of the processed material in the tank can be made uniform without requiring mechanical stirring. In addition, by passing the generated methane gas through the processed material, the processed material can absorb carbon dioxide, so that the concentration of methane gas can be increased.
本発明の実施の形態に係るメタン発酵装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the methane fermentation apparatus which concerns on embodiment of this invention. ガス循環部の一部の上面図である。It is a top view of a part of a gas circulation part. ガス循環部の一部の側面断面図である。It is side surface sectional drawing of a part of gas circulation part. 処理物循環部による処理物の循環を示す側面図である。It is a side view which shows the circulation of the processed material by a processed material circulation part. 処理物循環部による処理物の循環を示す上面図である。It is a top view which shows the circulation of the processed material by a processed material circulation part. ガス循環部が設置される位置の一例を示す図である。It is a figure which shows an example of the position where a gas circulation part is installed. メタン発酵槽の変形例を示す図である。It is a figure which shows the modification of a methane fermenter.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。本実施の形態では、Z軸を上下方向とし、XY面を水平面とする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, the Z axis is the vertical direction, and the XY plane is the horizontal plane.
 本実施の形態に係るメタン発酵装置は、有機廃棄物をメタン発酵することにより、メタンガスを生成し、生成されたメタンガスをバイオマスエネルギーとして利用する。ここで、有機性廃棄物とは、タンパク質、炭水化物、脂肪、セルロースなどの高分子有機化合物又はそれ由来の化合物から主としてなる物質であり、実質的に固体状無機化合物は含有しない。ただし、簡単に可溶化できて、微生物の増殖に悪影響を及ぼさない固体状無機化合物であれば、多少は含有されていてもよい。 The methane fermentation apparatus according to the present embodiment generates methane gas by methane fermentation of organic waste, and uses the generated methane gas as biomass energy. Here, the organic waste is a substance mainly composed of macromolecular organic compounds such as proteins, carbohydrates, fats and celluloses or compounds derived therefrom, and does not substantially contain solid inorganic compounds. However, some solid inorganic compounds may be contained as long as they can be easily solubilized and do not adversely affect the growth of microorganisms.
 かかる有機性廃棄物としては、例えば畜産汚泥、下水汚泥、生ごみなどの厨芥類などの有機性廃棄物を挙げることができる。これらは可溶化処理前に固形物濃度を濃縮処理した原料として使用してもよい。また、糖や有機酸やそれらの混合した、メタン発酵処理における代謝経路の有機物を添加してもよい。 Examples of such organic waste include organic waste such as livestock sludge, sewage sludge, and garbage such as food waste. You may use these as a raw material which concentrated the solid concentration before the solubilization process. Moreover, you may add the organic substance of the metabolic pathway in the methane fermentation process which mixed saccharide | sugar, organic acid, and those.
 図1に示すようにメタン発酵装置1は、破砕機10と、混合槽20と、可溶化槽30と、メタン発酵槽40と、冷却塔50と、脱硫塔60と、ガスホルダ70と、ガスエンジン80と、を備える。 As shown in FIG. 1, the methane fermentation apparatus 1 includes a crusher 10, a mixing tank 20, a solubilization tank 30, a methane fermentation tank 40, a cooling tower 50, a desulfurization tower 60, a gas holder 70, and a gas engine. 80.
 破砕機10と混合槽20との間は、処理物(原料)を送る配管11で接続され、配管11には原料系ポンプ12が挿入されている。混合槽20と可溶化槽30との間は処理物(原料)を送る配管21で接続され、配管21には電磁三方弁22が挿入されている。また、可溶化槽30とメタン発酵槽40との間は処理物(原料)を送る配管31で接続され、配管31には電磁三方弁32が挿入されている。電磁三方弁22と電磁三方弁32との間は処理物(原料)を送る配管23で接続され、配管23には原料系ポンプ24が挿入されている。 The crusher 10 and the mixing tank 20 are connected by a pipe 11 that feeds a processed material (raw material), and a raw material pump 12 is inserted into the pipe 11. The mixing tank 20 and the solubilization tank 30 are connected by a pipe 21 for sending a processed material (raw material), and an electromagnetic three-way valve 22 is inserted into the pipe 21. Further, the solubilization tank 30 and the methane fermentation tank 40 are connected by a pipe 31 for sending a processed material (raw material), and an electromagnetic three-way valve 32 is inserted into the pipe 31. The electromagnetic three-way valve 22 and the electromagnetic three-way valve 32 are connected by a pipe 23 for sending a processed material (raw material), and a raw material pump 24 is inserted into the pipe 23.
 有機性廃棄物は、破砕機10に投入された後、配管11→混合槽20→配管21→可溶化槽30→配管31を通って、メタン発酵槽40へ送られ、メタン発酵後、メタン発酵槽40から排出される。排出された処理物は、堆肥として利用される。 After the organic waste is put into the crusher 10, it is sent to the methane fermentation tank 40 through the pipe 11, the mixing tank 20, the pipe 21, the solubilization tank 30, and the pipe 31, and after methane fermentation, methane fermentation. It is discharged from the tank 40. The discharged processed material is used as compost.
 メタン発酵槽40と冷却塔50の間は、発生したメタンガスを送る配管51で接続されている。また、冷却塔50と脱硫塔60との間は、メタンガスを送る配管52で接続されている。また、脱硫塔60とガスホルダ70との間は、メタンガスを送る配管61で接続されている。ガスホルダ70とガスエンジン80との間は、メタンガスを送る配管71で接続されている。メタン発酵槽40で発生したメタンガスは、配管51、冷却塔50、配管52、脱硫塔60、配管61、ガスホルダ70、配管71、ガスエンジン80の順に送られる。 The methane fermentation tank 40 and the cooling tower 50 are connected by a pipe 51 for sending the generated methane gas. The cooling tower 50 and the desulfurization tower 60 are connected by a pipe 52 that sends methane gas. The desulfurization tower 60 and the gas holder 70 are connected by a pipe 61 that sends methane gas. The gas holder 70 and the gas engine 80 are connected by a pipe 71 that sends methane gas. Methane gas generated in the methane fermentation tank 40 is sent in the order of the pipe 51, the cooling tower 50, the pipe 52, the desulfurization tower 60, the pipe 61, the gas holder 70, the pipe 71, and the gas engine 80.
 破砕機10には、外部から有機性廃棄物が投入される。破砕機10は、投入された有機性廃棄物を、適当な大きさに粉砕する。粉砕された処理物は、原料系ポンプ12により、配管11を介して混合槽20に送られる。 Organic waste is input to the crusher 10 from the outside. The crusher 10 crushes the input organic waste into an appropriate size. The pulverized processed product is sent to the mixing tank 20 through the pipe 11 by the raw material pump 12.
 混合槽20の内部には攪拌機が設けられており、投入された有機性廃棄物が攪拌機で攪拌される。これにより、混合槽20に収容された有機性廃棄物は、混合し均一な状態となる。また、混合槽20には、紫外線照射部が取り付けられている。紫外線照射部は、例えば、発光ダイオード(LED)により紫外線を混合槽20内に照射する。紫外線照射部は、混合槽20に投入された処理物に紫外線を照射し、処理物の殺菌を行う。混合槽20で殺菌された有機性廃棄物は、配管21を介して、可溶化槽30に送られる。 A stirrer is provided inside the mixing tank 20, and the thrown-in organic waste is stirred by the stirrer. Thereby, the organic waste accommodated in the mixing tank 20 is mixed and becomes a uniform state. The mixing tank 20 is provided with an ultraviolet irradiation unit. An ultraviolet irradiation part irradiates ultraviolet rays in the mixing tank 20 with a light emitting diode (LED), for example. The ultraviolet irradiation unit irradiates the processed material put into the mixing tank 20 with ultraviolet light to sterilize the processed material. The organic waste sterilized in the mixing tank 20 is sent to the solubilization tank 30 via the pipe 21.
 可溶化槽30は、投入された処理物に対して可溶化処理を行う。可溶化槽30では、例えば、プロテアーゼ生成菌等の可溶化菌を用いた高温可溶化処理が行われる。可溶化槽30には、培養槽33が取り付けられている。培養槽33では、可溶化菌が培養されており、培養槽33から可溶化槽30に可溶化菌が供給される。培養槽33及びUV-LED(紫外線照射装置)34は、給水管35に挿入されている。給水管35から送られた水は、UV-LED34で殺菌された状態で培養槽33に送られる。培養槽33は、可溶化菌を含む水を、給水管35を介して可溶化槽30に送る。 The solubilization tank 30 performs a solubilization process on the charged processed material. In the solubilization tank 30, for example, high-temperature solubilization treatment using solubilizing bacteria such as protease-producing bacteria is performed. A culture tank 33 is attached to the solubilization tank 30. In the culture tank 33, solubilized bacteria are cultured, and the solubilized bacteria are supplied from the culture tank 33 to the solubilization tank 30. The culture tank 33 and the UV-LED (ultraviolet irradiation device) 34 are inserted into a water supply pipe 35. The water sent from the water supply pipe 35 is sent to the culture tank 33 while being sterilized by the UV-LED 34. The culture tank 33 sends water containing the solubilized bacteria to the solubilization tank 30 through the water supply pipe 35.
 可溶化槽30には、処理物を収容する内容器30Aと、内容器30Aを囲むように設けられた外容器30Bとが設けられている。可溶化処理が行われる処理物は、内容器30A内に収容される。外容器30Bと内容器30Aとの間には、熱媒体が収容されている。本実施の形態では、熱媒体として湯水が用いられる。この熱媒体により、可溶化槽30の槽内の温度は、高温に保たれている。 The solubilization tank 30 is provided with an inner container 30A for storing a processed product and an outer container 30B provided so as to surround the inner container 30A. The processed product to be solubilized is accommodated in the inner container 30A. A heat medium is accommodated between the outer container 30B and the inner container 30A. In the present embodiment, hot water is used as the heat medium. The temperature in the tank of the solubilization tank 30 is maintained at a high temperature by this heat medium.
 可溶化槽30の槽内には、有機性廃棄物を攪拌するための攪拌機とモータとが取り付けられている。さらに、可溶化槽30には、有機性廃棄物に空気を供給するための空気挿入口が設けられており、空気挿入口には、エアポンプ36、37が接続されている。このエアポンプ36、37により、空気が可溶化槽30に送られる。このようにして、可溶化槽30では、撹拌又は瀑気(ばっき)を行うことで高温好気性の下で可溶化を促進させる。高温好気性とは、温度を50℃~100℃として、好ましくは圧力をかけることなく標準状態(空気雰囲気下)で有機性廃棄物を可溶化する状態を意味する。 In the tank of the solubilization tank 30, a stirrer and a motor for stirring the organic waste are attached. Further, the solubilization tank 30 is provided with an air insertion port for supplying air to the organic waste, and air pumps 36 and 37 are connected to the air insertion port. Air is sent to the solubilization tank 30 by the air pumps 36 and 37. In this way, in the solubilization tank 30, solubilization is promoted under high temperature aerobicity by performing stirring or aeration. High-temperature aerobic means a state in which organic waste is solubilized in a standard state (in an air atmosphere) at a temperature of 50 ° C. to 100 ° C., preferably without applying pressure.
 可溶化処理とは、固体状又は水懸濁状の通常高分子状の有機化合物を、水に溶解可能な低分子状態にまで分解する処理である。本実施の形態では、プロテアーゼ生成菌を用いて超高温可溶化が実施される。プロテアーゼ生成菌とは、タンパク質分解酵素(プロテアーゼ)を菌体外に生成分泌することができる菌である。 The solubilization treatment is a treatment for decomposing a normal polymer organic compound in a solid or water suspension into a low molecular state that can be dissolved in water. In this embodiment, ultrahigh temperature solubilization is performed using protease-producing bacteria. Protease-producing bacteria are bacteria that can produce and secrete proteolytic enzymes (proteases) outside the cells.
 プロテアーゼ生成菌としては、例えばBacillus種が挙げられ、特にBacillus sp.MU3(微生物特許寄託センター第NITE AP-156号)が挙げられる。この耐熱性のプロテアーゼ生成菌は、80℃でも十分に活動できる超高温好気性を有する。この菌の産生する酵素は、分子量約57,000で、優れた熱耐性を示し、広いpH範囲で、高いタンパク質分解能を有する。 Examples of protease-producing bacteria include Bacillus species, and in particular, Bacillus sp. MU3 (Microbial Patent Deposit Center NITE AP-156). This heat-resistant protease-producing bacterium has an ultra-high temperature aerobic property that can sufficiently act even at 80 ° C. The enzyme produced by this bacterium has a molecular weight of about 57,000, excellent heat resistance, and high protein resolution in a wide pH range.
 超高温とは、50℃~100℃、好ましくは60℃~90℃、特に好ましくは70℃~80℃である。超高温可溶化は、水溶液媒体中、好気性又は嫌気性条件下、好ましくは好気性条件下、有機性廃棄物を有機性廃棄物濃度が50wt%以下、好ましくは5~40wt%、特に好ましくは10~30wt%になるような量で、プロテアーゼ生成菌と接触させて行われる。この実施の形態において、特に好ましい条件では有機性廃棄物濃度10~30wt%まで原料の固形物濃度(DS)を高めることができ、望ましくはDS20%以上で、pH5~8、望ましくは6付近、可溶化槽雰囲気は好気性が最適条件となる。 The ultra-high temperature is 50 ° C. to 100 ° C., preferably 60 ° C. to 90 ° C., particularly preferably 70 ° C. to 80 ° C. Ultra-high temperature solubilization is carried out in an aqueous medium under an aerobic or anaerobic condition, preferably an aerobic condition, and the organic waste has an organic waste concentration of 50 wt% or less, preferably 5 to 40 wt%, particularly preferably. It is carried out in contact with a protease-producing bacterium in such an amount that it becomes 10 to 30 wt%. In this embodiment, under particularly preferable conditions, the solids concentration (DS) of the raw material can be increased to an organic waste concentration of 10 to 30 wt%, preferably at a DS of 20% or more, pH 5 to 8, preferably around 6. The solubilization tank atmosphere is optimally aerobic.
 プロテアーゼ生成菌により消化させるための時間は12~72時間、好ましくは24~48時間である。好気性又は嫌気性条件下で実施する場合、攪拌、瀑気(ばっき)条件下で実施することができる。かかる条件下で実施すると、後述するように、アンモニアをその場で除去することが可能となり、原料の可溶化とアンモニア除去を同時に行うことができ、メタン発酵の促進が可能となる。Bacillus sp.MU3をプロテアーゼ生成菌として用いる場合、この菌は好気性耐熱性菌であるので、空気で瀑気しながら攪拌下で可溶化でき、可溶化、アンモニア除去の両面から最適である。 The time for digestion with protease-producing bacteria is 12 to 72 hours, preferably 24 to 48 hours. When implemented under aerobic or anaerobic conditions, it can be carried out under stirring and aeration conditions. When implemented under such conditions, as described later, ammonia can be removed in situ, solubilization of the raw material and ammonia removal can be performed simultaneously, and methane fermentation can be promoted. Bacillus sp. When MU3 is used as a protease-producing bacterium, since this bacterium is an aerobic thermostable bacterium, it can be solubilized with stirring while being aerated with air, and is optimal in terms of solubilization and ammonia removal.
 この実施の形態に係る可溶化工程は、プロテアーゼ生成菌の他に、リパーゼ生産菌、グリコシターゼ生成菌及び/又はセルラーゼ生成菌など、各種分解酵素を生成する菌体を単独または組み合わせて添加することが可能である。これらは生育、増殖条件が似たようなものであれば、同一の反応槽で使用することができるが、条件が異なる場合は複数の可溶化槽30を設け、各可溶化槽30を異なる条件で使用すればよい。この場合、リパーゼ生産菌、グリコシターゼ生成菌及び/又はセルラーゼ生成菌を用いる可溶化槽で可溶化を行った後、プロテアーゼ生成菌による高温可溶化槽で可溶化をすることが好ましい。 In the solubilization step according to this embodiment, in addition to protease-producing bacteria, microbial cells producing various degrading enzymes such as lipase-producing bacteria, glycosidase-producing bacteria and / or cellulase-producing bacteria may be added alone or in combination. Is possible. These can be used in the same reaction tank as long as the growth and proliferation conditions are similar, but if the conditions are different, a plurality of solubilization tanks 30 are provided, and each solubilization tank 30 is provided under different conditions. Can be used. In this case, after solubilization in a solubilization tank using a lipase-producing bacterium, glycosidase-producing bacterium and / or cellulase-producing bacterium, it is preferable to solubilize in a high-temperature solubilization tank using a protease-producing bacterium.
 可溶化槽30にはアンモニア吸着槽38が接続されている。アンモニア吸着槽38は、可溶化槽30における可溶化処理で発生するアンモニアを吸着して除去するために設けられている。 An ammonia adsorption tank 38 is connected to the solubilization tank 30. The ammonia adsorption tank 38 is provided for adsorbing and removing ammonia generated in the solubilization process in the solubilization tank 30.
 可溶化槽30で可溶化された処理物は、配管31を介して、メタン発酵槽40に送られる。メタン発酵槽40は、収容された処理物に対してメタン発酵処理を行う。 The processed product solubilized in the solubilization tank 30 is sent to the methane fermentation tank 40 via the pipe 31. The methane fermentation tank 40 performs a methane fermentation process on the stored processed product.
 メタン発酵処理は、通常嫌気性雰囲気で活動するメタン菌が用いられ、その消化作用を利用するものである。メタン菌の活性温度領域は0~70℃が普通であり、これ以上の高温領域では90℃程度まで生き延びる菌種も存在するが、ほとんど死滅する。低温領域では3℃から4℃までが限界とされている。メタンガス生成速度は、この活性温度に非常に大きな影響を受ける。 Methane fermentation treatment uses methane bacteria that normally operate in an anaerobic atmosphere and uses its digestive action. The active temperature range of methane bacteria is usually from 0 to 70 ° C., and in higher temperature ranges there are some species that survive to about 90 ° C., but almost die. In the low temperature region, the limit is 3 ° C to 4 ° C. The methane gas production rate is greatly influenced by this activation temperature.
 ガス生成速度は発酵槽温度が高ければ高いほど早く進みガス発生量が増大する。実際にメタン菌が住みやすいとされている温度領域は次の3つが確認されている。(1)20℃以下の低温領域、(2)25~35℃の中温領域、(3)45℃以上の高温領域がある。本発明のメタン発酵の温度については低温、中温、高温のメタン発酵がいずれでも適用できるが、40℃~70℃で高温メタン発酵を行うのが好ましく、更には50℃~55℃でメタン発酵するのが好ましい。 The gas generation rate proceeds faster as the fermenter temperature is higher, and the amount of gas generated increases. The following three temperature regions where methane bacteria are actually liable to live have been confirmed. (1) A low temperature region of 20 ° C. or lower, (2) a medium temperature region of 25 to 35 ° C., and (3) a high temperature region of 45 ° C. or higher. The temperature of the methane fermentation of the present invention can be any of low temperature, medium temperature and high temperature methane fermentation, but it is preferable to perform high temperature methane fermentation at 40 ° C to 70 ° C, and further methane fermentation at 50 ° C to 55 ° C. Is preferred.
 高温可溶化された有機性廃棄物をメタン発酵処理する場合、乾式(投入固形物濃度を10%以上とする乾式)の処理方式を採用することによって効率良くメタン発酵処理することができ、本実施形態でも、乾式の処理方式を適用することができる。 When organic waste that has been solubilized at high temperature is subjected to methane fermentation, it can be efficiently treated by adopting a dry process (dry process with a solid concentration of 10% or more). Even in the form, a dry processing method can be applied.
 本実施の形態では、可溶化処理を高温好気性条件下で実施し、メタン発酵処理を嫌気性条件下で実施することが出来るので、温度においては可溶化処理の高い温度を利用してメタン発酵の温度を高くすることができ、また菌増殖条件としては可溶化処理(好気性条件)の菌がメタン発酵工程(嫌気性条件)で不活性化されるためメタン発酵を邪魔しないという利点がある。 In the present embodiment, since the solubilization treatment can be performed under high-temperature aerobic conditions and the methane fermentation treatment can be performed under anaerobic conditions, methane fermentation can be performed using the high temperature of the solubilization treatment. The temperature of the soda can be increased, and the bacteria growth condition has the advantage that the bacteria in the solubilization treatment (aerobic condition) are inactivated in the methane fermentation process (anaerobic condition), so that the methane fermentation is not disturbed. .
 本実施の形態では、上記高温好気性とは温度を50~100℃として、好ましくは圧力をかけることなく標準状態(空気雰囲気下)で有機性廃棄物を可溶化する状態を意味する。 In the present embodiment, the high-temperature aerobic property means a state in which organic waste is solubilized in a standard state (in an air atmosphere) at a temperature of 50 to 100 ° C., preferably without applying pressure.
 メタン発酵槽40は、第1槽40A、第2槽40B及び第3槽40Cに分かれている。外部から投入された処理物は、まず、第1槽40Aに投入され、そこでメタン発酵が進行する。この第1槽40Aで、95%程度の処理物のメタン発酵が完了する。メタン発酵が進めば進むほど処理物の比重は軽くなるため、上に行き、側壁を越えて第2槽40Bに送られる。 The methane fermentation tank 40 is divided into a first tank 40A, a second tank 40B, and a third tank 40C. The processed material input from the outside is first input to the first tank 40A, where methane fermentation proceeds. In this first tank 40A, the methane fermentation of about 95% of the processed product is completed. As the methane fermentation progresses, the specific gravity of the processed product becomes lighter, so it goes up and is sent to the second tank 40B over the side wall.
 第2槽40Bでもメタン発酵が行われ、残り1.2~2%ぐらい未処理物が残る程度に、すなわちメタン発酵がほぼ完了した状態で処理物が第3槽40Cに送られる。第3槽40Cでもメタン発酵が行われる。メタン発酵が完了する。メタン発酵が完了した処理物は、第3槽40Cから外部へ排出される。 The methane fermentation is also performed in the second tank 40B, and the processed product is sent to the third tank 40C to the extent that the remaining 1.2 to 2% of the untreated product remains, that is, the methane fermentation is almost completed. Methane fermentation is also performed in the third tank 40C. Methane fermentation is complete. The processed product for which methane fermentation has been completed is discharged from the third tank 40C to the outside.
 メタン発酵槽40には、メタン発酵により発生したガス(メタンガス及び二酸化炭素)を回収し、外部に取り出して、内部に戻すことにより、ガスを循環させるガス循環部40Dが設けられている。ガス循環部40Dには、配管41と、ガスを送るブロワ42とが設けられている。ブロワ42により、メタン発酵槽40内で発生したメタンガスは、配管41に送られ、メタン発酵槽40に戻される。 The methane fermentation tank 40 is provided with a gas circulation unit 40D that circulates gas by collecting gas (methane gas and carbon dioxide) generated by methane fermentation, taking it out and returning it to the inside. The gas circulation unit 40D is provided with a pipe 41 and a blower 42 for sending gas. The methane gas generated in the methane fermentation tank 40 by the blower 42 is sent to the pipe 41 and returned to the methane fermentation tank 40.
 図2A及び図2Bに示すように、メタン発酵槽40の底面には、円筒体4が立設されている。円筒体4の下部側面には、複数の開口4Aが設けられており、円筒体4の上端には開口4Bが設けられている。また、配管41の先端41Aは、円筒体4内の底面中央まで延びており、その先端41Aの開口(第1の流出口)からガスが排出されるようになっている。 As shown in FIGS. 2A and 2B, a cylindrical body 4 is erected on the bottom surface of the methane fermentation tank 40. A plurality of openings 4 </ b> A are provided on the lower side surface of the cylindrical body 4, and an opening 4 </ b> B is provided on the upper end of the cylindrical body 4. The tip 41A of the pipe 41 extends to the center of the bottom surface in the cylindrical body 4, and the gas is discharged from the opening (first outlet) of the tip 41A.
 配管41の先端41Aから排出されたガスは、円筒体4内を上昇する。ガスの上昇の流れにより、円筒体4内の処理物6も上昇を始める。すると、開口4Aにおいて円筒体4の外部から内部への処理物6の流れができ、開口4Bにおいて円筒体4の内部から外部への処理物の流れができる。これにより、メタン発酵槽40の内部で、処理物の上下の循環の流れが形成され、処理物6の攪拌が行われる。 The gas discharged from the tip 41A of the pipe 41 rises in the cylindrical body 4. Due to the rising flow of the gas, the processed product 6 in the cylindrical body 4 also starts to rise. Then, the processed material 6 can flow from the outside to the inside of the cylindrical body 4 at the opening 4A, and the processed material can flow from the inside to the outside of the cylindrical body 4 at the opening 4B. Thereby, the flow of the upper and lower circulation of a processed material is formed inside the methane fermentation tank 40, and the processed material 6 is stirred.
 なお、配管41の先端41Aから排出するガスは、メタンガスと二酸化炭素との混合ガスである。このガスが処理物6内に排出されると、二酸化炭素が処理物6に吸収されるようになるため、メタンガスの比率を向上することができる。メタンガスの比率が高まると、ガスエンジン80における発電効率を高めることができる。 It should be noted that the gas discharged from the tip 41A of the pipe 41 is a mixed gas of methane gas and carbon dioxide. When this gas is discharged into the treated product 6, carbon dioxide is absorbed by the treated product 6, so that the ratio of methane gas can be improved. When the ratio of methane gas increases, the power generation efficiency in the gas engine 80 can be increased.
 また、処理物6に二酸化炭素を供給することにより、アンモニアガスの発生を抑制することができる。アンモニアガスはメタン発酵を阻害するため、二酸化炭素を処理物6に供給することにより、メタン発酵を促進することができる。 Moreover, generation of ammonia gas can be suppressed by supplying carbon dioxide to the treated product 6. Since ammonia gas inhibits methane fermentation, methane fermentation can be promoted by supplying carbon dioxide to the treated product 6.
 図1に戻り、メタン発酵槽40には、処理物6を回収して内部に戻すことにより、処理物6を循環させる処理物循環部40Eが設けられている。処理物循環部40Eは、配管43と、原料系ポンプ44と、電磁三方弁45,46と、を備える。原料系ポンプ44は、配管43に挿入されている。原料系ポンプ44により、メタン発酵槽40から排出された処理物6は、配管43を介して、メタン発酵槽40に戻される。電磁三方弁45は、配管43を分岐させる。電磁三方弁46は、配管13を介して破砕機10と配管43とを接続する。また、配管43には熱交換器47が挿入されている。 Returning to FIG. 1, the methane fermentation tank 40 is provided with a processed product circulation section 40E that circulates the processed product 6 by collecting the processed product 6 and returning it to the inside. The treated product circulation unit 40E includes a pipe 43, a raw material pump 44, and electromagnetic three- way valves 45 and 46. The raw material pump 44 is inserted into the pipe 43. The processed product 6 discharged from the methane fermentation tank 40 by the raw material pump 44 is returned to the methane fermentation tank 40 via the pipe 43. The electromagnetic three-way valve 45 branches the pipe 43. The electromagnetic three-way valve 46 connects the crusher 10 and the pipe 43 via the pipe 13. A heat exchanger 47 is inserted into the pipe 43.
 図3A及び図3Bに示すように、配管43内を送られた処理物6を流出する流出口5(第2の流出口)は、メタン発酵槽40における処理物の上面であって、メタン発酵槽40の処理物6によって形づくられる立体(直方体)の上側角部に取り付けられている。さらに、流出口5は、処理物6によって形づくられる立体(直方体)の対角線の方向、すなわち立体の中心点の方向を向いている。 As shown to FIG. 3A and 3B, the outflow port 5 (2nd outflow port) which flows out the processed material 6 sent in the piping 43 is an upper surface of the processed material in the methane fermentation tank 40, Comprising: Methane fermentation It is attached to the upper corner of a solid (cuboid) formed by the processed product 6 in the tank 40. Furthermore, the outflow port 5 faces the direction of the diagonal line of the solid (cuboid) formed by the processed object 6, that is, the direction of the center point of the solid.
 流出口5から処理物6が吐出されると、メタン発酵槽40内の処理物6は、図3A及び図3Bに示すような流れを形成し、これにより、処理物6全体が攪拌されるようになる。ガスによる攪拌は、上下方向の攪拌であったが、処理物6の流れによる攪拌は、横方向の流れを含んでいる。 When the processed product 6 is discharged from the outlet 5, the processed product 6 in the methane fermentation tank 40 forms a flow as shown in FIGS. 3A and 3B, so that the entire processed product 6 is stirred. become. The stirring by the gas was stirring in the vertical direction, but the stirring by the flow of the processed product 6 includes a horizontal flow.
 処理物6は、全体的には図3A及び図3Bの流れで攪拌されるが、槽内の一部には、処理物6が滞留する場所が出現する。そこで、本実施の形態では、図4に示すように、処理物6が滞留する場所に図2A及び図2Bに示す円筒体4等から成るガスを吹き出す仕組みを配置すれば、一部の処理物6の滞留による処理むらを防ぐことができる。 The treated product 6 is generally stirred by the flow of FIGS. 3A and 3B, but a place where the treated product 6 stays appears in a part of the tank. Therefore, in the present embodiment, as shown in FIG. 4, if a mechanism for blowing out the gas composed of the cylindrical body 4 shown in FIGS. Uneven processing due to retention of 6 can be prevented.
 メタン発酵槽40で生成されたガスは、冷却塔50に送られて冷却され、脱硫塔60に出力される。脱硫塔60は、入力したガスに対して脱硫処理を行い、取り出したメタンガスを、ガスホルダ70に出力する。ガスホルダ70は、メタンガスを貯留する。ガスエンジン80は、ガスホルダ70から送られるメタンガスでガスタービンを回して発電を行う。ガスエンジン80で発電された電力は、電力線81を介してキュービクル(受電設備)へ送られる。 The gas generated in the methane fermentation tank 40 is sent to the cooling tower 50 to be cooled and output to the desulfurization tower 60. The desulfurization tower 60 performs a desulfurization process on the input gas, and outputs the extracted methane gas to the gas holder 70. The gas holder 70 stores methane gas. The gas engine 80 generates electricity by turning a gas turbine with methane gas sent from the gas holder 70. The electric power generated by the gas engine 80 is sent to a cubicle (power receiving facility) via the power line 81.
 ガスエンジン80は、発電により発熱する。このため、ガスエンジン80と、熱交換器84の間には、温水を流す配管82と、冷温水ポンプ83とが設けられており、ガスエンジン80の熱が、熱交換器84に送られるようになっている。熱交換器84は、投げ込みヒータ90と配管85で接続されている。これにより、ガスエンジン80の熱は、熱交換器84を介して、投げ込みヒータ90へ伝えられる。 The gas engine 80 generates heat by power generation. For this reason, a pipe 82 for flowing hot water and a cold / hot water pump 83 are provided between the gas engine 80 and the heat exchanger 84 so that the heat of the gas engine 80 is sent to the heat exchanger 84. It has become. The heat exchanger 84 is connected to the throwing heater 90 and the pipe 85. Thereby, the heat of the gas engine 80 is transmitted to the throwing heater 90 via the heat exchanger 84.
 投げ込みヒータ90と、可溶化槽30と、熱交換器47との間には、熱媒体の配管経路が構築されている。投げ込みヒータ90で熱せられた熱媒体は、可溶化槽30の槽内の温度を一定に保ちつつ、可溶化槽30から熱交換器47に送られ、熱交換器47から投げ込みヒータ90に戻る。この熱媒体の循環経路を熱媒体循環部とする。 A piping path for the heat medium is constructed between the throwing heater 90, the solubilization tank 30, and the heat exchanger 47. The heat medium heated by the throwing heater 90 is sent from the solubilization tank 30 to the heat exchanger 47 while returning to a throwing heater 90 from the heat exchanger 47 while keeping the temperature in the solubilization tank 30 constant. This heat medium circulation path is defined as a heat medium circulation section.
 熱交換器47は、熱媒体循環部で循環する熱媒体と、処理物循環部40Eを循環する処理物との間で熱交換を行う。熱交換器47で熱せられた処理物6は、メタン発酵槽40に戻り、発酵効率の高い温度でさらにメタン発酵が行われる。このような熱交換器47により、メタン発酵槽40で発酵する処理物の温度が、均一に保たれており、発酵菌によるメタン発酵効率が低下しないように維持されている。 The heat exchanger 47 performs heat exchange between the heat medium circulating in the heat medium circulation unit and the processed material circulating in the processed material circulation unit 40E. The processed product 6 heated by the heat exchanger 47 returns to the methane fermentation tank 40, and further methane fermentation is performed at a temperature with high fermentation efficiency. By such a heat exchanger 47, the temperature of the processed material fermented in the methane fermentation tank 40 is kept uniform, and is maintained so that the methane fermentation efficiency by the fermenting bacteria does not decrease.
 次に、メタン発酵装置1の動作について説明する。 Next, the operation of the methane fermentation apparatus 1 will be described.
 処理物は、破砕機10で粉砕された後、混合槽20で攪拌・殺菌され、可溶化槽30で可溶化処理が行われた後、メタン発酵槽40でメタン発酵が行われる。メタン発酵槽40は第1槽40A,第2槽40B,第3槽40Cに分かれており、下段の処理槽に送られるうちに、未処理の処理物がなくなっていく。メタン発酵槽40内では、ガス循環部40D及び処理物循環部40Eによる処理物の攪拌、二酸化炭素の吸着が行われ、メタン発酵が行われ、メタンガスを発生させる。メタンガスは、ガスホルダ70に蓄積され、ガスエンジン80における発電に用いられる。 The processed product is pulverized by the crusher 10, stirred and sterilized in the mixing tank 20, solubilized in the solubilizing tank 30, and then subjected to methane fermentation in the methane fermentation tank 40. The methane fermentation tank 40 is divided into a first tank 40A, a second tank 40B, and a third tank 40C, and unprocessed products disappear while being sent to the lower processing tank. In the methane fermentation tank 40, the processed product is stirred and the carbon dioxide is adsorbed by the gas circulating unit 40D and the processed product circulating unit 40E, methane fermentation is performed, and methane gas is generated. Methane gas is accumulated in the gas holder 70 and used for power generation in the gas engine 80.
 ガスエンジン80で発生した熱は、熱交換器84→投げ込みヒータ90を経て可溶化槽30の保温に用いられ、さらに熱交換器47を介した処理物6の保温に用いられる。 The heat generated in the gas engine 80 is used to keep the solubilization tank 30 through the heat exchanger 84 → the throwing heater 90, and is further used to keep the processed material 6 through the heat exchanger 47.
 メタン発酵槽40で処理済となった処理物は、メタン発酵槽40から排出される。排出された処理物は、堆肥として用いることができる。処理物は、すべて処理済みとなるので、腐ったにおいがしないようになっている。 The processed product that has been processed in the methane fermentation tank 40 is discharged from the methane fermentation tank 40. The discharged processed material can be used as compost. Since all processed products are processed, they do not smell rotten.
 以上詳細に説明したように、本実施の形態によれば、メタン発酵槽40が3段以上に分かれており、下段の処理槽40B、40Cに処理物が運ばれていくうちに、メタン発酵が行われていない未処理物が残らなくなるので、未処理物の排出を防止することができる。また、メタン発酵槽40内において対角線上に処理物の流れを作り出すことができるので、機械的な攪拌を必要せずに、槽内の処理物6を均一化することができる。また、発生したメタンガスを処理物6内に通すことにより、処理物に二酸化炭素を吸収させることができるので、メタンガスの濃度を高くすることができる。 As described above in detail, according to the present embodiment, the methane fermentation tank 40 is divided into three or more stages, and the methane fermentation is performed while the processed products are being conveyed to the lower processing tanks 40B and 40C. Since there is no unprocessed unprocessed material left, discharge of unprocessed material can be prevented. Moreover, since the flow of a processed material can be created on the diagonal in the methane fermentation tank 40, the processed material 6 in a tank can be equalize | homogenized, without requiring mechanical stirring. Further, by passing the generated methane gas through the treated product 6, carbon dioxide can be absorbed by the treated product, so that the concentration of methane gas can be increased.
 なお、本実施の形態では、メタン発酵槽40の処理槽を3段としたが、4段以上であってもよい。 In addition, in this Embodiment, although the processing tank of the methane fermentation tank 40 was made into 3 steps | paragraphs, 4 steps | paragraphs or more may be sufficient.
 また、本実施の形態では、メタン発酵槽40の各処理槽40A,40B,40Cを直方体としたが、本発明はこれには限られず、例えば円筒形であってもよい。この場合には、流出口5は、処理物6の中心を向くようにすればよい。 Moreover, in this Embodiment, although each processing tank 40A, 40B, 40C of the methane fermentation tank 40 was made into the rectangular parallelepiped, this invention is not limited to this, For example, a cylindrical shape may be sufficient. In this case, what is necessary is just to make the outflow port 5 face the center of the processed material 6. FIG.
 また、流出口5は、処理物6の中心を向かなくてもよい。処理槽の形状が円筒形である場合には、図5に示すように、流出口5’が、円筒状のメタン発酵槽(第1槽)40A’の内側壁の円周方向を向くようにしてもよい。この場合、メタン発酵槽(第1槽)40A’の底面の中心に配管41の先端41Aの開口及び円筒体4を配置するとよい。 Further, the outlet 5 does not have to face the center of the processed product 6. When the shape of the treatment tank is cylindrical, as shown in FIG. 5, the outlet 5 ′ is directed to the circumferential direction of the inner wall of the cylindrical methane fermentation tank (first tank) 40A ′. May be. In this case, the opening of the tip 41A of the pipe 41 and the cylindrical body 4 may be arranged at the center of the bottom surface of the methane fermentation tank (first tank) 40A '.
 本実施の形態では、第1槽40Aに、円筒体4を設置したが、第2槽40B,第3槽40Cに円筒体4を設置するようにしてもよい。 In the present embodiment, the cylindrical body 4 is installed in the first tank 40A, but the cylindrical body 4 may be installed in the second tank 40B and the third tank 40C.
 なお、図1では、ガス循環部40D、処理物循環部40Eは、第3槽40Cから第1槽40Aへガス又は処理物を循環させているように図示しているが、第1槽40A、第2槽40B、第3槽40Cでそれぞれガス、処理物を循環させるようにしてもよい。 In FIG. 1, the gas circulation unit 40D and the processed product circulation unit 40E are illustrated as circulating gas or processed material from the third tank 40C to the first tank 40A, but the first tank 40A, Gas and processed material may be circulated in the second tank 40B and the third tank 40C, respectively.
 この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2016年5月24日に出願された、日本国特許出願2016-103446に基づく。本明細書中に日本国特許出願2016-103446号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2016-103446 filed on May 24, 2016. The specification, claims, and entire drawings of Japanese Patent Application No. 2016-103446 are incorporated herein by reference.
 本発明は、メタン発酵を行うメタン発酵装置に適用することができる。 The present invention can be applied to a methane fermentation apparatus that performs methane fermentation.
 1 メタン発酵装置、4 円筒体、4A,4B 開口、5 流出口、6 処理物、10 破砕機、11 配管、12 原料系ポンプ、13 配管、20 混合槽、21 配管、22 電磁三方弁、23 配管、24 原料系ポンプ、30 可溶化槽、30A 内容器、30B 外容器、31 配管、32 電磁三方弁、33 培養槽、34 UV-LED(紫外線照射装置)、35 給水管、36,37 エアポンプ、38 アンモニア吸着槽、40 メタン発酵槽、40A 第1槽、40B 第2槽、40C 第3槽、40D ガス循環部、40E 処理物循環部、41 配管、41A 先端、42 ブロワ、43 配管、44 原料系ポンプ、45,46 電磁三方弁、47 熱交換器、50 冷却塔、51,52 配管、60 脱硫塔、61 配管、70 ガスホルダ、71 配管、80 ガスエンジン、81 電力線、82 配管、83 冷温水ポンプ、84 熱交換器、85 配管、90 投げ込みヒータ、91,92,93 配管、94 冷温水ポンプ DESCRIPTION OF SYMBOLS 1 Methane fermentation apparatus, 4 cylinder, 4A, 4B opening, 5 outlet, 6 processed material, 10 crusher, 11 piping, 12 raw material system pump, 13 piping, 20 mixing tank, 21 piping, 22 electromagnetic three-way valve, 23 Piping, 24 raw material pump, 30 solubilization tank, 30A inner container, 30B outer container, 31 piping, 32 electromagnetic three-way valve, 33 culture tank, 34 UV-LED (ultraviolet irradiation device), 35 water supply pipe, 36, 37 air pump , 38 ammonia adsorption tank, 40 methane fermentation tank, 40A first tank, 40B second tank, 40C third tank, 40D gas circulation section, 40E processed product circulation section, 41 piping, 41A tip, 42 blower, 43 piping, 44 Raw material pump, 45, 46 electromagnetic three-way valve, 47 heat exchanger, 50 cooling tower, 51, 52 piping, 60 desulfurization , 61 pipe, 70 gas holder, 71 pipe, 80 gas engine, 81 power line, 82 pipe, 83 cold water pump, 84 heat exchanger, 85 a pipe, 90 an immersion heater, 91, 92, and 93 pipe, 94 hot and cold water pump

Claims (7)

  1.  乾式のメタン発酵装置であって、
     3つ以上の処理槽に分割され、最上槽に投入された処理物が、より下段の処理槽に順次送られる間に、前記処理物を発酵させてメタンガスを発生させるメタン発酵槽を備え、
     前記メタン発酵槽は、
     槽内底面にある処理物を回収し、槽内の処理物によって形づくられる立体の上側縁部に設けられた第1の流出口から槽内に処理物を吹き出す処理物循環部を備え、
     前記第1の流出口が、前記立体の中心を向いている、
     メタン発酵装置。
    A dry methane fermentation device,
    A methane fermentation tank that ferments the processed material to generate methane gas while the processed material that is divided into three or more processing tanks and is put into the uppermost tank is sequentially sent to the lower processing tank,
    The methane fermenter is
    The processing object which collects the processing thing in the bottom face in a tank, and is equipped with the processing thing circulation part which blows off the processing substance in the tank from the 1st outflow port provided in the solid upper edge formed by the processing thing in a tank,
    The first outlet faces the center of the solid;
    Methane fermentation equipment.
  2.  前記メタン発酵槽は、
     槽内で発生したガスを回収し、槽内底部に設けられた第2の流出口から槽内に吹き出すガス循環部を備える、
     請求項1に記載のメタン発酵装置。
    The methane fermenter is
    A gas circulation part that recovers the gas generated in the tank and blows out into the tank from the second outlet provided in the bottom of the tank,
    The methane fermentation apparatus according to claim 1.
  3.  前記ガス循環部は、
     前記第2の流出口を囲むように槽内底面に立設され、下部側面及び上面が開放された円筒体を備える、
     請求項2に記載のメタン発酵装置。
    The gas circulation part
    A cylindrical body that is erected on the bottom surface in the tank so as to surround the second outflow port, and whose lower side surface and upper surface are opened;
    The methane fermentation apparatus according to claim 2.
  4.  前記第2の流出口及び前記円筒体は、
     前記第1の流出口から流出する処理物により槽内に形成される処理物の流れにおいて、前記処理物が滞留する場所に配置されている、
     請求項3に記載のメタン発酵装置。
    The second outlet and the cylindrical body are:
    In the flow of the processed material formed in the tank by the processed material flowing out from the first outlet, it is disposed at a place where the processed material stays.
    The methane fermentation apparatus according to claim 3.
  5.  前記処理物循環部は、
     前記メタン発酵槽で発生したメタンガスを用いて発電を行うガスエンジンの熱を処理物に伝える熱交換器を備える、
     請求項1から4のいずれか一項に記載のメタン発酵装置。
    The treated product circulation part is:
    A heat exchanger that transmits heat of a gas engine that generates power using methane gas generated in the methane fermentation tank to a processed product,
    The methane fermentation apparatus as described in any one of Claim 1 to 4.
  6.  乾式のメタン発酵装置であって、
     3つ以上の処理槽に分割され、最上槽に投入された処理物が、より下段の処理槽に順次送られる間に、前記処理物を発酵させてメタンガスを発生させるメタン発酵槽を備え、
     前記メタン発酵槽は、
     槽内で発生したガスを回収し、槽内底部に設けられた流出口から槽内に吹き出すガス循環部を備える、
     メタン発酵装置。
    A dry methane fermentation device,
    A methane fermentation tank that ferments the processed material to generate methane gas while the processed material that is divided into three or more processing tanks and is put into the uppermost tank is sequentially sent to the lower processing tank,
    The methane fermenter is
    The gas generated in the tank is collected, and a gas circulation part that blows out into the tank from the outlet provided in the bottom of the tank is provided.
    Methane fermentation equipment.
  7.  前記ガス循環部は、
     前記流出口を囲むように前記メタン発酵槽内の底面に立設され、下部側面及び上面が開放された円筒体を備える、
     請求項6に記載のメタン発酵装置。
    The gas circulation part
    A cylindrical body that is erected on the bottom surface in the methane fermentation tank so as to surround the outlet and has a lower side surface and an upper surface opened,
    The methane fermentation apparatus according to claim 6.
PCT/JP2017/008127 2016-05-24 2017-03-01 Methane fermentation device WO2017203781A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187032435A KR20180128060A (en) 2016-05-24 2017-03-01 Methane fermentation device
CN201780025113.9A CN109071292A (en) 2016-05-24 2017-03-01 Methane fermentation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-103446 2016-05-24
JP2016103446A JP2017209614A (en) 2016-05-24 2016-05-24 Methane fermentation apparatus

Publications (1)

Publication Number Publication Date
WO2017203781A1 true WO2017203781A1 (en) 2017-11-30

Family

ID=60412311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008127 WO2017203781A1 (en) 2016-05-24 2017-03-01 Methane fermentation device

Country Status (5)

Country Link
JP (1) JP2017209614A (en)
KR (1) KR20180128060A (en)
CN (1) CN109071292A (en)
TW (1) TW201741449A (en)
WO (1) WO2017203781A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359595A (en) * 2018-04-20 2018-08-03 郑晓梅 A kind of biofermentation reaction unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM591523U (en) * 2019-07-10 2020-03-01 業興環境科技股份有限公司 Anaerobic fermentation system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108593A (en) * 1980-01-31 1981-08-28 Matsushita Electric Works Ltd Methane fermentation apparatus
JPS57127499A (en) * 1981-01-26 1982-08-07 Takuma Sogo Kenkyusho:Kk Anaerobic digestion tank device
JPS60150900A (en) * 1984-01-17 1985-08-08 Shinryo Air Conditioning Co Ltd Anaerobic digester
JPS60202798A (en) * 1984-03-27 1985-10-14 Agency Of Ind Science & Technol Methane fermentation apparatus utilizing composite local recirculation
JP2003088840A (en) * 2001-09-20 2003-03-25 Nobuhiko Kato Fermentation equipment for organic waste
JP2004017024A (en) * 2002-06-20 2004-01-22 Kurita Water Ind Ltd Dry type methane fermentation method and dry type methane fermentation apparatus
JP2011083761A (en) * 2009-10-19 2011-04-28 Nagasaki Institute Of Applied Science Methane fermentation treatment method of organic waste
JP2012510264A (en) * 2008-12-01 2012-05-10 ベーコン・エナジー・テクノロジーズ・ジーエムビーエイチ・アンド・シーオー.ケージー Method for reducing methane slack at the start and stop of a biogas fermenter, and biogas system for carrying out this method
JP2012236115A (en) * 2011-05-09 2012-12-06 Eco Power Corp Methane fermentation system
JP2015217322A (en) * 2014-05-14 2015-12-07 活水プラント株式会社 Methane fermentation apparatus and treatment method of water-containing organic waste

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007130510A (en) * 2002-03-12 2007-05-31 Toshiro Sekine Stirring method for methane fermentation tank and methane fermentation apparatus
EP1818315A1 (en) * 2006-02-07 2007-08-15 Reinhart Dr.-Ing. Von Nordenskjöld Dynamic micromixer
CN202440509U (en) * 2012-03-01 2012-09-19 许鉴峰 Gas stripping convective circulation anaerobic digestion reactor
KR101908723B1 (en) * 2014-03-27 2018-12-19 대한민국 cell type anerobic digestion system using dry and wet wast
CN104277968A (en) * 2014-10-22 2015-01-14 山东宝力生物质能源股份有限公司 Large-scale biogas hydraulic-circulating even mixing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108593A (en) * 1980-01-31 1981-08-28 Matsushita Electric Works Ltd Methane fermentation apparatus
JPS57127499A (en) * 1981-01-26 1982-08-07 Takuma Sogo Kenkyusho:Kk Anaerobic digestion tank device
JPS60150900A (en) * 1984-01-17 1985-08-08 Shinryo Air Conditioning Co Ltd Anaerobic digester
JPS60202798A (en) * 1984-03-27 1985-10-14 Agency Of Ind Science & Technol Methane fermentation apparatus utilizing composite local recirculation
JP2003088840A (en) * 2001-09-20 2003-03-25 Nobuhiko Kato Fermentation equipment for organic waste
JP2004017024A (en) * 2002-06-20 2004-01-22 Kurita Water Ind Ltd Dry type methane fermentation method and dry type methane fermentation apparatus
JP2012510264A (en) * 2008-12-01 2012-05-10 ベーコン・エナジー・テクノロジーズ・ジーエムビーエイチ・アンド・シーオー.ケージー Method for reducing methane slack at the start and stop of a biogas fermenter, and biogas system for carrying out this method
JP2011083761A (en) * 2009-10-19 2011-04-28 Nagasaki Institute Of Applied Science Methane fermentation treatment method of organic waste
JP2012236115A (en) * 2011-05-09 2012-12-06 Eco Power Corp Methane fermentation system
JP2015217322A (en) * 2014-05-14 2015-12-07 活水プラント株式会社 Methane fermentation apparatus and treatment method of water-containing organic waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359595A (en) * 2018-04-20 2018-08-03 郑晓梅 A kind of biofermentation reaction unit

Also Published As

Publication number Publication date
JP2017209614A (en) 2017-11-30
TW201741449A (en) 2017-12-01
KR20180128060A (en) 2018-11-30
CN109071292A (en) 2018-12-21

Similar Documents

Publication Publication Date Title
Ahring Perspectives for anaerobic digestion
KR100845614B1 (en) Concept for slurry separation and biogas production
JP2009254341A (en) Device of sterilizing mushroom culture medium, and production system for producing mushroom culture medium
JP4221617B2 (en) Animal and plant residue dry fermented feed, dry fertilizer, etc.
WO2019044995A1 (en) Apparatus and method for treating organic matter including harmful microorganisms
WO2017203781A1 (en) Methane fermentation device
WO2017163602A1 (en) Methane fermentation system
JP2012050917A (en) Ammonia removing device
JP5491046B2 (en) Methane fermentation system and fertilizer production equipment using the same
JP5030722B2 (en) Methane fermentation method
US9670106B2 (en) Pressurised recirculation of organic material
JP2016203153A (en) Method for manufacturing methane from organic waste
JP2008023450A (en) Apparatus and method for decomposing organic waste
CN112955410A (en) Livestock excrement treatment device and treatment method thereof
JP2011031217A (en) Organic waste treatment method, method for culturing compound microbe colony having organic matter decomposition activity, and culture medium containing compound microbe colony cultured therein
JP2011083761A (en) Methane fermentation treatment method of organic waste
Fubin et al. Performance of alkaline pretreatment on pathogens inactivation and sludge solubilization
JP7083160B2 (en) Digestive juice processing device and its processing method in methane fermentation of organic matter
CN107074600A (en) Solubilized device
KR102597101B1 (en) Treating organic waste apparatus being eco-friendly adn treating method thereof
JP4557541B2 (en) Organic waste accumulation-free treatment system and treatment method thereof
JP2004230250A (en) Treatment system for organic waste
JP5761922B2 (en) Methane fermentation system
JP5284324B2 (en) Ammonia removal equipment
JP2001321799A (en) Organic matter liquefying fermentation treatment apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187032435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802383

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/02/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17802383

Country of ref document: EP

Kind code of ref document: A1