WO2019044995A1 - Apparatus and method for treating organic matter including harmful microorganisms - Google Patents

Apparatus and method for treating organic matter including harmful microorganisms Download PDF

Info

Publication number
WO2019044995A1
WO2019044995A1 PCT/JP2018/032174 JP2018032174W WO2019044995A1 WO 2019044995 A1 WO2019044995 A1 WO 2019044995A1 JP 2018032174 W JP2018032174 W JP 2018032174W WO 2019044995 A1 WO2019044995 A1 WO 2019044995A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic matter
pressure
harmful microorganisms
microorganisms
organic substance
Prior art date
Application number
PCT/JP2018/032174
Other languages
French (fr)
Japanese (ja)
Inventor
眞一 下瀬
Original Assignee
株式会社下瀬微生物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社下瀬微生物研究所 filed Critical 株式会社下瀬微生物研究所
Priority to CN201880052013.XA priority Critical patent/CN111465457B/en
Publication of WO2019044995A1 publication Critical patent/WO2019044995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless

Definitions

  • the present invention relates to the treatment of organic matter containing harmful microorganisms, and in particular when the organic matter contains harmful microorganisms, and organic matter containing harmful microorganisms discarded in an airport or hospital is within the area. It is suitable if it has to be processed.
  • waste general waste
  • waste general waste
  • it is used as fuel after drying it, or fermentation using microorganisms is carried out
  • the object of such treatment contains various organic substances such as garbage, paper waste, human waste, domestic wastewater, animal and plant residues, sludge, etc. It is necessary.
  • the inventor of the present application promotes the fermentation of the organic matter by storing the organic matter such as food waste in a closed container and adding and stirring a predetermined microorganism while heating to a predetermined temperature range under reduced pressure.
  • Patent application has already been filed for an apparatus (fermentation drying apparatus) capable of efficiently removing water and drying it.
  • wastes generally contain various microorganisms, and even if it is intended to promote the fermentation of organic matter by adding a predetermined microorganism as in the prior art (Patent Document 1), it is suitable for the function.
  • Patent Document 1 the action of microorganisms other than those added, that is, the microorganisms contained in the waste, is often activated. If this happens, the action of the added microorganism is inhibited, and it becomes impossible to promote the fermentation of the organic matter as intended.
  • harmful microorganisms such as viruses that can infect humans as well as livestock, for example, avian influenza
  • livestock for example, avian influenza
  • harmful microorganisms refer to viruses, bacteria, yeasts, molds, protozoa, parasites and the like which harm humans, animals and plants, and the environment.
  • the object of the present invention is to add the microorganism which is added after killing the microorganism contained in the object when the object is fermented and dried using a known fermentation and drying apparatus.
  • the treatment method of the present invention is to sterilize the organic matter by storing the organic matter containing the harmful microorganism in a closed container, heating it to a predetermined temperature or higher and maintaining it for a predetermined time.
  • harmful organisms such as bacteria and viruses can be killed by first storing the organic matter in a sealed container and heating it to a predetermined temperature or higher in the sterilization step and maintaining it for a predetermined time. Thereafter, predetermined microorganisms can be added, and at that time, an optimum activity environment can be realized to process organic substances such as carcasses contaminated with harmful microorganisms in the fermentation and drying step.
  • the inside of the sealed container is maintained at, for example, 130 ° C. or more for about 10 minutes (at least 120 ° C. or more, in this case, about 20 minutes)
  • a predetermined microorganism for fermentative drying is also killed. Therefore, after the sterilizing step, the temperature in the closed container is set to the temperature before starting the fermentative drying step. Once reduced, it is preferred to add the predetermined microorganism under atmospheric pressure.
  • the vacuum pump when a vacuum pump for decompressing the inside is connected to the sealed container via the communication passage, after the sterilization step, the vacuum pump is operated before the addition step to seal the sealed container.
  • the pressure in the container may be reduced. By so doing, the temperature can be reduced quickly by depressurizing the inside of the closed container.
  • the outside air flowing into the communication passage from the open air release valve flows through the condensation unit and is sucked into the closed container, and a predetermined microorganism from the condensation unit flows into the closed container by the flow. Be taken. Therefore, a predetermined microorganism can be added to the organic matter after sterilization processing is performed inside the closed container without opening the organic material input port and the like provided in the sealed container.
  • an open / close valve capable of opening and closing between the condensing unit and the closed container is provided in the communication passage, and that the inside of the closed container is heated in a state where the open / close valve is closed in the sterilization step.
  • the temperature in the closed container can be efficiently raised by heating only the space on the closed container side of the on-off valve.
  • both the atmosphere release valve and the on-off valve may be opened.
  • the present invention is an apparatus for treating organic matter containing harmful microorganisms, wherein the organic matter is contained in a closed vessel, stirred while heating to a predetermined temperature range under reduced pressure, and using a predetermined microorganism
  • a fermentation / drying apparatus for fermenting and drying organic matter to obtain a reduced-volume dried product, a vacuum pump connected to the closed container via a communication passage to decompress the inside thereof, and the communication passage;
  • the processing method described above can be suitably realized by using the processing apparatus configured in this way.
  • an organic substance containing harmful microorganisms is contained in a closed container, the harmful microorganisms are killed by sterilization treatment under high temperature and high pressure conditions, and heating is performed under reduced pressure to use predetermined microorganisms.
  • drying can be promoted. Therefore, the organic matter such as the corpse of livestock contaminated with harmful microorganisms can be fermented and dried.
  • FIG. 1 is a schematic block diagram of a processing apparatus according to an embodiment of the present invention, which relates to, for example, incineration after subjecting an organic substance such as a pig killed in a pig farm to a fermentation and drying treatment.
  • the receiving hopper 1 into which organic substance is thrown in is provided, and the organic substance is supplied to the fermentation drying apparatus 3 by the conveyance conveyor 2 attached to the receiving hopper 1.
  • the fermentation / drying apparatus 3 is a known apparatus described in Patent Document 1 and the like, and as described below, the organic substance to be treated is stirred while heating to a predetermined temperature range under reduced pressure, and microorganisms Is used to ferment and dry the organic matter to obtain a reduced-volume dried product.
  • the fermentation / drying apparatus 3 is airtightly formed so as to hold the inside at or above atmospheric pressure as a closed container for containing the organic matter supplied by the transport conveyor 21.
  • a cylindrical pressure-resistant tank 30 is provided.
  • a heating jacket 31 is provided on a peripheral wall portion of the pressure-resistant tank 30, and high-temperature heating steam is supplied from the steam generation boiler 7 via a steam path 70 as described later.
  • a stirring shaft 32 extending in the longitudinal direction is provided inside the pressure-resistant tank 30 so as to be surrounded by the heating jacket 31 and rotated at a predetermined rotational speed by the electric motor 32a. It has become so.
  • the stirring shaft 32 is provided with a plurality of stirring plates 32b spaced apart in the axial direction, thereby allowing the organic matter to be stirred and fed in the longitudinal direction of the pressure-resistant tank 30 after completion of the fermentation and drying.
  • a hydraulic motor may be used instead of the electric motor 32a.
  • an inlet 30a for the organic substance supplied from the transfer conveyor 21 is provided at the top of one longitudinal direction side (left side in FIG. 2) of the pressure-resistant tank 30, an inlet 30a for the organic substance supplied from the transfer conveyor 21 is provided. While being heated by the rotation of the stirring shaft 32 as described above. Then, after being subjected to the fermentation and drying process for a predetermined time, it is discharged from the discharge part 30 b provided at the lower part of the pressure tank 30.
  • a passage for steam is also formed inside the stirring shaft 32 and the stirring plate 32b, and the steam for heating from the steam generation boiler 7 via the steam passage 70 is also formed here. Is to be supplied. Thereby, it can heat also from the inside, stirring the organic substance by the stirring shaft 32. Then, the drain water having the steam condensed therein is returned to the steam generation boiler 7 through the steam path 70.
  • a guide portion 30c for guiding the vapor generated from the heated organic matter to the condensing portion 33 is protruded. From here, the communication path 34 to the condensing portion 33 is opened and closed. A valve 34a is interposed.
  • the condenser 33 includes a plurality of cooling pipes 33b supported by a pair of heads 33a, and a cooling water passage 80 is provided between the cooling pipes 33b and a cooling tower 8 described below.
  • the cooling water which flows in the cooling pipe 33b in the condenser portion 33 and whose temperature is raised by heat exchange with the high temperature steam flows in the cooling water passage 80 as schematically shown by the arrows in FIG. It flows into the water receiving tank 81 of the cooling tower 8.
  • the cooling tower 8 is provided with a pumping pump 82 for pumping the cooling water from the water receiving tank 81, and a nozzle 83 for injecting the pumped cooling water, and the cooling water injected from the nozzle 83 is flowing downstream 84 While flowing down, the temperature is lowered due to the air blowing from the fan 85 and flows into the water receiving tank 81 again.
  • the cooling water thus cooled by the cooling tower 8 is supplied by the cooling water pump 86, sent to the condenser 33 by the cooling water passage 80, and circulated again through the plurality of cooling pipes 33b. Then, after the temperature rises due to the heat exchange with the high temperature steam as described above, it flows again through the cooling water passage 80 and flows into the water receiving tank 81 of the cooling tower 8. That is, the cooling water circulates through the cooling water path 80 between the condenser 33 and the cooling tower 8.
  • condensed water of steam generated from the organic matter heated in the condensing section 33 is also supplied to the cooling tower 8. That is, although not shown, a water collecting portion is provided below the condensing portion 33, and condensed water generated by heat exchange with high temperature steam as described above is collected. Further, a vacuum pump 36 is connected to the condensing section 33 via a communication passage 35 so that the pressure in the pressure resistant tank 30 is reduced.
  • the condensed water led to the water receiving tank 81 of the cooling tower 8 contains the same microorganisms as those added to the organic matter in the pressure tank 30, and the odorous components and the like contained in the condensed water are thereby decomposed The odor does not escape to the outside of the tank. Further, the condensed water mixes with the cooling water in the water receiving tank 81, and is pumped up by the pumping pump 82 as described above, and is injected from the nozzle 83 and then cooled while flowing down the downstream portion 84.
  • the organic substance contained in the pressure-resistant tank 30 is heated by the high temperature steam supplied to the heating jacket 31 (and the steam passage such as the stirring shaft 32). While being stirred, it is stirred as the stirring shaft 32 rotates.
  • the temperature of the steam supplied from the steam generation boiler 7 is preferably, for example, about 140.degree.
  • the heating from the outside by the heating jacket 31 surrounding the inside of the pressure-resistant tank 30 and the heating from the inside by the stirring shaft 32 and the like are performed, and the temperature is effectively raised and stirred by the stirring shaft 32.
  • the pressure is reduced by the operation of the vacuum pump 36, the boiling point is lowered in the pressure tank 30, the evaporation of water is accelerated, and the fermentative drying is promoted.
  • one process is 2 hours, for example in the fermentation drying process by the fermentation drying apparatus 3, and the organic matter will be fermented first over 30 minutes.
  • the pressure in the tank 30 is reduced to -0.06 to -0.07 MPa (gauge pressure, hereinafter, the gauge pressure is omitted)
  • the water temperature in the pressure tank 30 becomes 76 ° C to 69 ° C (saturated vapor temperature). Maintained.
  • the organic matter is mainly fermented and decomposed by the following microorganisms.
  • the organic matter in fermentation will be dried for 1.5 hours. Therefore, when the pressure in the pressure tank 30 is further reduced to -0.010 to -0.092 MPa, the water temperature in the tank is maintained at 42 to 46 ° C (saturated vapor temperature), and the drying of the organic matter is sufficiently promoted. .
  • SHIMOSE 1 is March 14, 2003 to FERM BP-7504 (Patent Microorganisms Depositary Center, Institute of Technology for Industrial Science and Technology, Institute of Industrial Technology, Research Institute for Biotechnological Research, Institute of Technology and Technology, Ibaraki Prefecture, Japan). (The one deposited internationally).
  • SHIMOSE 2 is a microorganism belonging to FERM BP-7505 (as deposited internationally as in SHIMOSE 1), Pichiafarinosa resistant to a salt
  • SHIMOSE 3 is a microorganism belonging to FERM BP-7506 (SHIFOSE 1 and Similarly, those deposited internationally) are microorganisms that belong to Staphylococcus (Staphylococcus).
  • step S2 the inside of the pressure-resistant tank 30 is maintained at high temperature and pressure for a predetermined time to kill and sterilize harmful bacteria such as normal bacteria and the virus. Therefore, the lid of the inlet 30a is closed, and the open / close valve 34a in the communication passage 34 from the guide portion 30c of the pressure tank 30 to the condensation portion 33 is closed.
  • the heating steam is supplied from the steam generation boiler 7 to the pressure tank 30 (such as the heating jacket 31).
  • the pressure tank 30 such as the heating jacket 31.
  • harmful microorganisms in the organic matter are killed by maintaining the temperature in the pressure tank 30, for example, at about 140 ° C. and the pressure, for example, at about 0.3 MPa for about 8 to 10 minutes. It can be made sterile.
  • the temperature may be set to about 120 ° C.
  • the pressure may be set to, for example, about 0.2 MPa and maintained for about 20 minutes.
  • the open / close valve 34a is opened to open the communication passage 34 from the guide portion 30c to the condensing portion 33, and the vacuum pump 36 is operated to discharge air from the condensing portion 33. And suck out the condensed water.
  • the pressure in the pressure tank 30 is reduced via the communication passage 34 and the guide portion 30 c, and the boiling point of water is lowered to promote evaporation, and the latent heat thereof reduces the temperature in the pressure tank 30.
  • the temperature in the pressure-resistant tank 30 can be reduced more quickly than in the case of natural heat dissipation, and the processing time can be shortened. Then, when the temperature in the pressure resistant tank 30 decreases to some extent, the process proceeds to step S3, and the operation of the vacuum pump 36 is stopped, and the air release valve 35a of the communication passage 35 between the vacuum pump 36 and the condenser 33 is stopped. open.
  • the outside air flows from the atmosphere release valve 35a into the communication passage 35, and the pressure in the condensation portion 33, the communication passage 34, the guide portion 30c, and the pressure-resistant tank 30 quickly becomes atmospheric pressure. Further, due to the flow of the gas at that time, a part of the microorganisms remaining in the condensation section 33 is brought into the pressure tank 30. Moreover, since the inside of the pressure-resistant tank 30 is atmospheric pressure, it is also conceivable to open the insertion port 30a and to input a predetermined microorganism.
  • step S 3 after a predetermined microorganism is added to the organic matter in the pressure tank 30, the air release valve 35 a is closed to seal the inside of the pressure tank 30. Then, as described above with reference to FIG. 2, the inside of the pressure-resistant tank 30 is heated under reduced pressure to promote fermentation and drying of the organic substance contained therein (fermentation drying step: step S4). That is, the heating steam is supplied from the steam generation boiler 7 to heat the inside of the pressure resistant tank 30.
  • the inside of the pressure tank 30 is heated by the heating steam, the stirring shaft 32 is rotated at a predetermined rotation speed (for example, about 8 rpm), and the pressure inside the pressure tank 30 is reduced by the operation of the vacuum pump 36.
  • a predetermined rotation speed for example, about 8 rpm
  • the temperature in the pressure tank 30 becomes the optimum activity environment of the microorganism, and the harmful microorganism is killed as described above, so that the fermentation and drying of the organic matter is suitably promoted.
  • step S5 it is determined in step S5 whether or not this fermentation / drying step has been repeated a preset number of times, and if a negative determination (NO), the process returns to step S1.
  • step S5 the process proceeds to step S6 to stop the operation of the vacuum pump 36 and the steam generation boiler 7 while reversing the stirring shaft 32 and opening the lid of the discharge unit 30b.
  • the dry matter is discharged from the tank 30 (discharge step). Thereafter, the dried matter is stored in the hopper 39 through the input hopper 37 and the conveying conveyor 38, and is appropriately burned in the combustion furnace 41 through the dried matter supply device 40.
  • Step S2 of the flow in FIG. 3 corresponds to a sterilization step in which an organic substance to be treated is contained in the pressure-resistant tank 30, heated to a predetermined temperature or higher, and maintained for a predetermined time to perform sterilization.
  • Step S4 corresponds to a fermentation and drying step of heating the organic matter under a reduced pressure while heating to a predetermined temperature range and fermenting and drying the organic matter using microorganisms to obtain a reduced-volume dried product.
  • the open / close valve 34a of the communication passage 34 is closed to heat the inside of the pressure tank 30, and then the vacuum pump 36 is operated before proceeding to the addition step of step S3.
  • the pressure in the pressure tank 30 is reduced.
  • the open / close valve 34a and the atmosphere release valve 35a are opened to introduce the outside air into the communication passage 35, and the microbes are taken into the pressure tank 30 from the condenser 33 by the flow of gas at that time.
  • the pressure inside the pressure tank 30 containing the organic substance is depressurized using the known fermentation / drying apparatus 3 to lower the boiling point of water.
  • the drying can be accelerated by efficiently evaporating the water at a very low temperature.
  • the predetermined microorganism to be added can be activated to promote the fermentation of the organic matter.
  • harmful microorganisms can be killed by heating and sterilizing the organic substance added to the pressure-resistant tank 30 as described above by heating the organic substance to a predetermined temperature or higher. . Therefore, while being able to carry out the fermentation drying process of the livestock etc. which were polluted with harmful microorganisms, while realizing the activity optimum environment of the predetermined microorganism added for that, fermentation of the organic matter is possible as much as possible by the function of this microorganism. Promote.
  • the vacuum pump 36 is operated after the above-mentioned sterilization step, and once the pressure in the pressure tank 30 is reduced, the air release valve 35a is opened, and the space between the vacuum pump 36 and the condenser 33 is opened. Outside air is introduced into the communication passage 35 of FIG. As a result, the outside air having flowed into the communication passage 35 is sucked into the pressure-resistant tank 30 from the condensing portion 33 through the communication passage 34 and the guide portion 30 c.
  • the predetermined microorganism can be added to the organic substance that has been subjected to sterilization processing inside the pressure port 30a while the lid of the inlet 30a of the pressure tank 30 is closed.
  • the pressure in the pressure tank 30 is reduced by the operation of the vacuum pump 36, although the reduction in temperature is promoted, the invention is not limited to this, and the temperature in the pressure tank 30 may be reduced by natural heat radiation, and the pressure in the pressure tank 30 is not necessarily reduced to the atmospheric pressure. There is no need to add microorganisms.
  • the atmosphere release valve 35a is opened to allow the outside air to flow into the communication passage 35 between the condenser 33 and the vacuum pump 36, and the gas flows at that time to the condenser 33.
  • the remaining microorganisms can be added to the organic substances in the pressure tank 30, but the invention is not limited thereto.
  • the lid of the inlet 30a is opened to add the microorganisms to the organic substances in the pressure tank 30. May be
  • the on-off valve 34 a may not necessarily be closed in the sterilization step (S 2), and the on-off valve 34 a may not be provided in the communication passage 34 from the guide portion 30 c of the pressure tank 30 to the condensation portion 33.
  • high temperature steam is supplied from the steam generation boiler 7 in order to heat the inside of the pressure resistant tank 30, but the heating medium is not limited to steam, and may be oil.
  • the dried product may be crushed or metal may be removed after the treatment by the fermentation / drying apparatus 3.
  • the present invention can treat even organic substances contaminated by harmful microorganisms when fermenting using microorganisms while heating organic substances under reduced pressure using a fermentation / drying apparatus, and the industrial applicability is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

[Problem] To achieve an optimum environment for microorganism activity by restraining activity of bacteria and the like, and enable the treatment of organic matter contaminated by microorganisms, when waste such as organic matter (object to be treated) is fermented and dried using added microorganisms while being heated under reduced pressure using a fermentation-drying device 3. [Solution] The present invention has: a step (step S2) for holding organic matter including harmful microorganisms, in a pressure resistant tank 30 (a sealed container), heating the pressure resistant tank 30 to a predetermined temperature or higher and maintaining the pressure resistant tank 30 for a predetermined time period to perform a sterilization treatment; then, a step (step S3) for adding predetermined microorganisms to the organic matter; and a step (step S4) for heating and stirring within a predetermined temperature range while reducing the pressure inside the pressure resistant tank 30 , and fermenting and drying the organic matter using predetermined microorganisms, thereby obtaining a volume-reduced dried substance.

Description

有害微生物を含む有機物の処理方法および処理装置Method and apparatus for treating organic matter containing harmful microorganisms
 本発明は、有害微生物を含む有機物の処理に関するもので、特にその有機物に有害な微生物が含まれている場合、また空港や病院内で廃棄された有害な微生物を含む有機物は、そのエリア内で処理されなければならない場合に好適なものである。 The present invention relates to the treatment of organic matter containing harmful microorganisms, and in particular when the organic matter contains harmful microorganisms, and organic matter containing harmful microorganisms discarded in an airport or hospital is within the area. It is suitable if it has to be processed.
 従来より、例えば一般家庭から排出されるごみ(一般廃棄物)や各種事業所などからの産業廃棄物の処理方法としては、これを乾燥させた後に燃料として利用したり、微生物を利用して発酵させた後に堆肥や飼料として利用したりすることが知られている。但し、そのような処理の対象物には生ごみ、紙屑、し尿、生活雑排水、動植物性残渣、汚泥など種々の有機物が含まれており、含水率が高いことから十分に乾燥させて処理することが必要である。 Conventionally, for example, as a method for treating waste (general waste) discharged from general households and industrial waste from various establishments etc., it is used as fuel after drying it, or fermentation using microorganisms is carried out It is known to use it as compost or feed after it is allowed to However, the object of such treatment contains various organic substances such as garbage, paper waste, human waste, domestic wastewater, animal and plant residues, sludge, etc. It is necessary.
 この点について本願の発明者は、生ごみのような有機物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら所定の微生物を添加して撹拌することによって、有機物の発酵を促進し、効率的に水分を除去し乾燥させることができる装置(発酵乾燥装置)について既に特許出願をしている。 In this regard, the inventor of the present application promotes the fermentation of the organic matter by storing the organic matter such as food waste in a closed container and adding and stirring a predetermined microorganism while heating to a predetermined temperature range under reduced pressure. Patent application has already been filed for an apparatus (fermentation drying apparatus) capable of efficiently removing water and drying it.
 例えば特許文献1に記載の発酵乾燥装置では、密閉容器内を減圧することによって水の沸点が低下することから、温度上昇による微生物の死滅を阻止することができる。また、その内部の有機物などに含まれる水分の蒸発が促進され、乾燥時間の短縮が図られる。 For example, in the case of the fermentation / drying apparatus described in Patent Document 1, since the boiling point of water is lowered by depressurizing the inside of the closed container, it is possible to prevent the kill of the microorganism due to the temperature rise. In addition, evaporation of water contained in the organic matter and the like in the inside is promoted, and the drying time can be shortened.
特開2007-319738号公報JP 2007-319738 A
 しかしながら、一般的に廃棄物には種々の微生物が含まれており、前記従来例(特許文献1)のように所定の微生物を添加して、有機物の発酵を促進しようとしても、その働きに適した環境下では添加した以外の微生物、即ち廃棄物に含まれている微生物の働きも活発化することが多い。こうなると、添加した微生物の働きが阻害されてしまい、狙い通り有機物の発酵を促進することができなくなる。 However, wastes generally contain various microorganisms, and even if it is intended to promote the fermentation of organic matter by adding a predetermined microorganism as in the prior art (Patent Document 1), it is suitable for the function. Under the environment, the action of microorganisms other than those added, that is, the microorganisms contained in the waste, is often activated. If this happens, the action of the added microorganism is inhibited, and it becomes impossible to promote the fermentation of the organic matter as intended.
 また、近年では例えば鳥インフルエンザのように、家畜だけでなく人間にも感染し得るウイルスなどの有害微生物が知られており、このような有害微生物に汚染された家畜の死骸は、感染の拡大を防ぐために厳重な管理下において地中に埋めなくてはならないという実状がある。さらに、空港内や病院内で廃棄された有機物は、有害微生物で汚染されている恐れがあることから、そのエリア内で廃棄処理されなければならない事情もある。ここで、有害微生物とは、人や動植物、環境などに危害を及ぼすウイルス、細菌、酵母、カビ、原虫、寄生虫などをいう。 Also, in recent years, harmful microorganisms such as viruses that can infect humans as well as livestock, for example, avian influenza, are known, and the morbidity of livestock contaminated with such harmful microorganisms causes the spread of infection. There is a fact that it must be buried in the ground under strict control to prevent it. Furthermore, there is a possibility that the organic matter discarded in the airport or in the hospital must be disposed of in the area, because it may be contaminated with harmful microorganisms. Here, harmful microorganisms refer to viruses, bacteria, yeasts, molds, protozoa, parasites and the like which harm humans, animals and plants, and the environment.
 このような実状に鑑みて本発明の目的は、公知の発酵乾燥装置を用いて対象物の発酵乾燥処理を行う場合に、その中に含まれている微生物を死滅させた後、添加した微生物の活動至適環境を実現することにより、大気圧下で、有害微生物に汚染された有機物やその恐れのある有機物までも処理が可能とすることにある。 In view of such a situation, the object of the present invention is to add the microorganism which is added after killing the microorganism contained in the object when the object is fermented and dried using a known fermentation and drying apparatus. By achieving an optimal activity environment, it is possible to treat even organic substances contaminated with harmful microorganisms and organic substances that are likely to be harmful, under atmospheric pressure.
 前記の課題を解決するために本発明の処理方法は、有害微生物を含む有機物を密閉容器に収容し、所定温度以上に加熱して所定時間、維持することにより、前記有機物に滅菌処理を施す滅菌工程と、この滅菌工程の後に前記密閉容器内の有機物に所定の微生物を添加する添加工程と、その後、前記密閉容器内の有機物を、減圧下において所定の温度範囲に加熱しながら攪拌するとともに、前記所定の微生物を利用して有機物を発酵乾燥させ、減容した乾燥物を得る発酵乾燥工程と、を有するものである。 In order to solve the above-mentioned problems, the treatment method of the present invention is to sterilize the organic matter by storing the organic matter containing the harmful microorganism in a closed container, heating it to a predetermined temperature or higher and maintaining it for a predetermined time. A step of adding a predetermined microorganism to the organic substance in the closed container after the sterilization step, and thereafter stirring the organic substance in the closed container while heating to a predetermined temperature range under reduced pressure; And the step of fermenting and drying the organic matter using the predetermined microorganism to obtain a reduced-volume dried product.
 この方法により、まず、有機物を密閉容器に収容し、滅菌工程において所定温度以上に加熱して所定時間、維持することにより、細菌やウイルスなどの有害微生物を死滅させることができる。その後、所定の微生物を添加し、その際に活動至適環境を実現して有害微生物に汚染された死骸などの有機物も発酵乾燥工程において処理することができる。 According to this method, harmful organisms such as bacteria and viruses can be killed by first storing the organic matter in a sealed container and heating it to a predetermined temperature or higher in the sterilization step and maintaining it for a predetermined time. Thereafter, predetermined microorganisms can be added, and at that time, an optimum activity environment can be realized to process organic substances such as carcasses contaminated with harmful microorganisms in the fermentation and drying step.
 そのように有機物に含まれる細菌やウイルスなどの有害微生物を死滅させるためには、密閉容器内を例えば130℃以上で10分間程度(少なくとも120℃以上とし、この場合は20分程度)に維持すればよいが、このように温度の高い状態では、発酵乾燥のための所定の微生物も死滅してしまうため、前記滅菌工程の後、前記発酵乾燥工程を開始する前に前記密閉容器内の温度を低下させた上で、所定の微生物を大気圧下で添加することが好ましい。 As such, in order to kill harmful microorganisms such as bacteria and viruses contained in organic matter, the inside of the sealed container is maintained at, for example, 130 ° C. or more for about 10 minutes (at least 120 ° C. or more, in this case, about 20 minutes) In such a high temperature state, a predetermined microorganism for fermentative drying is also killed. Therefore, after the sterilizing step, the temperature in the closed container is set to the temperature before starting the fermentative drying step. Once reduced, it is preferred to add the predetermined microorganism under atmospheric pressure.
 そこで、前記の密閉容器にその内部を減圧するための真空ポンプが連通路を介して接続されている場合、前記滅菌工程の後、前記添加工程の前に前記真空ポンプを作動させて、前記密閉容器内を減圧すればよい。こうすれば、密閉容器内を減圧することによって、その温度を速やかに低下させることができる。 Therefore, when a vacuum pump for decompressing the inside is connected to the sealed container via the communication passage, after the sterilization step, the vacuum pump is operated before the addition step to seal the sealed container. The pressure in the container may be reduced. By so doing, the temperature can be reduced quickly by depressurizing the inside of the closed container.
 その場合に前記連通路には、発酵乾燥工程で密閉容器内の有機物から発生した蒸気を液化(凝縮)させるための凝縮部が介設されている場合があり、この凝縮部には前記所定の微生物が残存している。そこで、好ましいのは、前記の凝縮部と真空ポンプとの間を大気開放可能な大気開放バルブを設けて、前記添加工程においては前記大気開放バルブを開いて連通路に外気を導入することである。 In that case, there may be a case where a condensing unit for liquefying (condensing) the vapor generated from the organic substance in the sealed container in the fermentation and drying step may be interposed in the communication passage, Microorganisms remain. Therefore, it is preferable to provide an atmosphere open valve capable of opening the atmosphere between the condensation section and the vacuum pump, and in the addition step, open the atmosphere open valve to introduce outside air into the communication passage. .
 こうすると、開かれた大気開放バルブから連通路に流入した外気は、凝縮部を流通して密閉容器内に吸い込まれるようになり、その流れによって前記凝縮部から所定の微生物が、密閉容器内に取り入れられる。よって、密閉容器に設けられている有機物の投入口などを開放することなく、その内部で滅菌処理された後、有機物に所定の微生物を添加することができる。 In this case, the outside air flowing into the communication passage from the open air release valve flows through the condensation unit and is sucked into the closed container, and a predetermined microorganism from the condensation unit flows into the closed container by the flow. Be taken. Therefore, a predetermined microorganism can be added to the organic matter after sterilization processing is performed inside the closed container without opening the organic material input port and the like provided in the sealed container.
 さらに、前記連通路には、前記凝縮部および前記密閉容器の間を開閉可能な開閉バルブを介設し、前記滅菌工程では前記開閉バルブを閉じた状態で前記密閉容器内を加熱することが好ましい。こうすれば、開閉バルブよりも密閉容器側の空間のみを加熱することで、その密閉容器内の温度を効率良く上昇させることができる。一方、前記添加工程では大気開放バルブおよび開閉バルブの両方を開くようにすればよい。 Furthermore, it is preferable that an open / close valve capable of opening and closing between the condensing unit and the closed container is provided in the communication passage, and that the inside of the closed container is heated in a state where the open / close valve is closed in the sterilization step. . In this case, the temperature in the closed container can be efficiently raised by heating only the space on the closed container side of the on-off valve. On the other hand, in the addition step, both the atmosphere release valve and the on-off valve may be opened.
 見方を変えれば本発明は有害微生物を含む有機物の処理装置であって、その有機物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、所定の微生物を利用して有機物を発酵乾燥させ、減容した乾燥物を得る発酵乾燥装置と、前記密閉容器にその内部を減圧するために連通路を介して接続された真空ポンプと、前記連通路に介設され、前記密閉容器内で発生した蒸気を液化させるための凝縮部と、この凝縮部および真空ポンプの間に大気開放可能な大気開放バルブと、前記凝縮部および密閉容器の間に開閉可能な開閉バルブと、を備えたものである。このように構成された処理装置を用いれば、上述した処理方法を好適に実現できる。 From another point of view, the present invention is an apparatus for treating organic matter containing harmful microorganisms, wherein the organic matter is contained in a closed vessel, stirred while heating to a predetermined temperature range under reduced pressure, and using a predetermined microorganism A fermentation / drying apparatus for fermenting and drying organic matter to obtain a reduced-volume dried product, a vacuum pump connected to the closed container via a communication passage to decompress the inside thereof, and the communication passage; A condenser for liquefying the vapor generated in the closed vessel, an atmosphere open valve capable of opening to the atmosphere between the condenser and the vacuum pump, an open / close valve capable of opening and closing between the condenser and the closed vessel; Is provided. The processing method described above can be suitably realized by using the processing apparatus configured in this way.
 本発明に係る処理方法および処理装置によると、有害微生物を含む有機物を密閉容器内に収容し、高温高圧状態での滅菌処理により有害微生物を死滅させ、減圧下で加熱して所定の微生物を利用して有機物の発酵を促進するとともに、乾燥を促進させることができる。よって、有害微生物に汚染された家畜の死骸などの有機物も発酵乾燥処理することができる。 According to the treatment method and treatment apparatus according to the present invention, an organic substance containing harmful microorganisms is contained in a closed container, the harmful microorganisms are killed by sterilization treatment under high temperature and high pressure conditions, and heating is performed under reduced pressure to use predetermined microorganisms. As well as promoting the fermentation of the organic matter, drying can be promoted. Therefore, the organic matter such as the corpse of livestock contaminated with harmful microorganisms can be fermented and dried.
実施形態に係る処理装置全体の概略構成図である。It is a schematic block diagram of the processing apparatus which concerns on embodiment. 発酵乾燥装置の概略構成図である。It is a schematic block diagram of a fermentation drying apparatus. 有機物の処理システムのフローチャート図である。It is a flowchart figure of the processing system of organic matter.
 以下、本発明の実施形態について図面を参照しながら説明する。図1は、本発明の実施形態に係る処理装置の概略構成図であり、この装置は、例えば養豚場で死滅した豚などの有機物を発酵乾燥処理した後、焼却することに関するものである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic block diagram of a processing apparatus according to an embodiment of the present invention, which relates to, for example, incineration after subjecting an organic substance such as a pig killed in a pig farm to a fermentation and drying treatment.
 そして、本実施形態の処理装置では、有機物が投入される受入ホッパー1を備え、この受入ホッパー1に付随する搬送コンベヤ2によって、発酵乾燥装置3に有機物が供給されるようになっている。 And in the processing apparatus of this embodiment, the receiving hopper 1 into which organic substance is thrown in is provided, and the organic substance is supplied to the fermentation drying apparatus 3 by the conveyance conveyor 2 attached to the receiving hopper 1.
 -発酵乾燥装置-
 前記発酵乾燥装置3は、特許文献1などに記載されている公知のものであり、以下に説明するように、処理対象の有機物を減圧下において所定の温度範囲に加熱しながら撹拌するとともに、微生物を利用して有機物を発酵乾燥させ、減容した乾燥物を得るものである。
-Fermentation dryer-
The fermentation / drying apparatus 3 is a known apparatus described in Patent Document 1 and the like, and as described below, the organic substance to be treated is stirred while heating to a predetermined temperature range under reduced pressure, and microorganisms Is used to ferment and dry the organic matter to obtain a reduced-volume dried product.
 図2において模式的に示すように、発酵乾燥装置3は、上述したように搬送コンベヤ21によって供給される有機物を収容する密閉容器として、内部を大気圧以上または以下に保持するように気密に形成された筒状の耐圧タンク30を備えている。この耐圧タンク30の周壁部には、加熱ジャケット31が設けられ、後述するように蒸気経路70を介して蒸気発生ボイラー7から高温の加熱用蒸気が供給されるようになっている。 As schematically shown in FIG. 2, as described above, the fermentation / drying apparatus 3 is airtightly formed so as to hold the inside at or above atmospheric pressure as a closed container for containing the organic matter supplied by the transport conveyor 21. A cylindrical pressure-resistant tank 30 is provided. A heating jacket 31 is provided on a peripheral wall portion of the pressure-resistant tank 30, and high-temperature heating steam is supplied from the steam generation boiler 7 via a steam path 70 as described later.
 また、その加熱ジャケット31に取り囲まれるようにして、耐圧タンク30の内部にはその長手方向(図3の左右方向)に延びる撹拌シャフト32が設けられ、電動モーター32aによって所定の回転速度で回転されるようになっている。この撹拌シャフト32にはその軸方向に離間して複数の撹拌板32bが設けられており、これにより、有機物を撹拌するとともに、発酵乾燥終了後には耐圧タンク30の長手方向に送ることができる。なお、電動モーター32aの代わりに、油圧モーターを使用する場合もある。 A stirring shaft 32 extending in the longitudinal direction (left and right direction in FIG. 3) is provided inside the pressure-resistant tank 30 so as to be surrounded by the heating jacket 31 and rotated at a predetermined rotational speed by the electric motor 32a. It has become so. The stirring shaft 32 is provided with a plurality of stirring plates 32b spaced apart in the axial direction, thereby allowing the organic matter to be stirred and fed in the longitudinal direction of the pressure-resistant tank 30 after completion of the fermentation and drying. A hydraulic motor may be used instead of the electric motor 32a.
 すなわち、耐圧タンク30の長手方向一側(図2の左側)の上部には、搬送コンベヤ21から供給される有機物の投入口30aが設けられており、ここから投入された有機物が、加熱ジャケット31によって加熱されながら、前記のように撹拌シャフト32の回転によって撹拌される。そして、所定時間発酵乾燥処理された後、耐圧タンク30の下部に設けられた排出部30bから排出される。 That is, at the top of one longitudinal direction side (left side in FIG. 2) of the pressure-resistant tank 30, an inlet 30a for the organic substance supplied from the transfer conveyor 21 is provided. While being heated by the rotation of the stirring shaft 32 as described above. Then, after being subjected to the fermentation and drying process for a predetermined time, it is discharged from the discharge part 30 b provided at the lower part of the pressure tank 30.
 なお、詳細は図示しないが、本実施形態では前記撹拌シャフト32や撹拌板32bの内部にも蒸気の通路が形成されており、ここにも蒸気経路70を介して蒸気発生ボイラー7から加熱用蒸気が供給されるようになっている。これにより、撹拌シャフト32によって有機物を撹拌しながら、その内側からも加熱することができる。そして、蒸気が復水したドレン水は蒸気経路70を介して、蒸気発生ボイラー7に戻される。 Although details are not illustrated, in the present embodiment, a passage for steam is also formed inside the stirring shaft 32 and the stirring plate 32b, and the steam for heating from the steam generation boiler 7 via the steam passage 70 is also formed here. Is to be supplied. Thereby, it can heat also from the inside, stirring the organic substance by the stirring shaft 32. Then, the drain water having the steam condensed therein is returned to the steam generation boiler 7 through the steam path 70.
 有機物を加熱する耐圧タンク30の上部には、加熱された有機物から発生する蒸気を凝縮部33へ案内する案内部30cが突設されており、ここから凝縮部33への連通路34には開閉バルブ34aが介設されている。凝縮部33は、一対のヘッド33aによって支持された複数の冷却管33bを備えており、この冷却管33bと、以下に述べるクーリングタワー8との間に冷却水経路80が設けられている。 In the upper part of the pressure-resistant tank 30, which heats the organic matter, a guide portion 30c for guiding the vapor generated from the heated organic matter to the condensing portion 33 is protruded. From here, the communication path 34 to the condensing portion 33 is opened and closed. A valve 34a is interposed. The condenser 33 includes a plurality of cooling pipes 33b supported by a pair of heads 33a, and a cooling water passage 80 is provided between the cooling pipes 33b and a cooling tower 8 described below.
 すなわち、凝縮部33において冷却管33b内を流通し、高温の蒸気との熱交換によって温度が上昇した冷却水は、図2には模式的に矢印で示すように冷却水経路80を流通してクーリングタワー8の受水槽81に流入する。クーリングタワー8には、その受水槽81から冷却水を汲み上げる汲み上げポンプ82と、汲み上げた冷却水を噴射するノズル83と、が設けられており、このノズル83から噴射された冷却水は、流下部84を流下する間にファン85からの送風を受けて温度が低下し、再び受水槽81に流入する。 That is, the cooling water which flows in the cooling pipe 33b in the condenser portion 33 and whose temperature is raised by heat exchange with the high temperature steam flows in the cooling water passage 80 as schematically shown by the arrows in FIG. It flows into the water receiving tank 81 of the cooling tower 8. The cooling tower 8 is provided with a pumping pump 82 for pumping the cooling water from the water receiving tank 81, and a nozzle 83 for injecting the pumped cooling water, and the cooling water injected from the nozzle 83 is flowing downstream 84 While flowing down, the temperature is lowered due to the air blowing from the fan 85 and flows into the water receiving tank 81 again.
 このようにしてクーリングタワー8で冷却された冷却水は、冷却水ポンプ86によって送水され、冷却水経路80によって凝縮部33に送られて、再び複数の冷却管33b内を流通する。そして、前記のように高温の蒸気との熱交換によって温度が上昇した後に、再び冷却水経路80を流通して、クーリングタワー8の受水槽81に流入する。つまり、冷却水は凝縮部33とクーリングタワー8との間の冷却水経路80を循環する。 The cooling water thus cooled by the cooling tower 8 is supplied by the cooling water pump 86, sent to the condenser 33 by the cooling water passage 80, and circulated again through the plurality of cooling pipes 33b. Then, after the temperature rises due to the heat exchange with the high temperature steam as described above, it flows again through the cooling water passage 80 and flows into the water receiving tank 81 of the cooling tower 8. That is, the cooling water circulates through the cooling water path 80 between the condenser 33 and the cooling tower 8.
 さらに、そうして循環する冷却水の他に、クーリングタワー8では凝縮部33において加熱された有機物から発生する蒸気の凝縮水も注水される。すなわち、図示はしないが凝縮部33の下方に集水部が設けられており、前記のように高温の蒸気と熱交換することによって生成した凝縮水が集められるようになっている。また、凝縮部33には連通路35を介して真空ポンプ36が接続され、耐圧タンク30内を減圧するようになっている。 Furthermore, in addition to the cooling water thus circulated, condensed water of steam generated from the organic matter heated in the condensing section 33 is also supplied to the cooling tower 8. That is, although not shown, a water collecting portion is provided below the condensing portion 33, and condensed water generated by heat exchange with high temperature steam as described above is collected. Further, a vacuum pump 36 is connected to the condensing section 33 via a communication passage 35 so that the pressure in the pressure resistant tank 30 is reduced.
 すなわち、真空ポンプ36の作動によって、前記の連通路35を介して凝縮部33から空気および凝縮水が吸い出され、さらに前記の連通路34および案内部30cを介して耐圧タンク30内の空気および凝縮水が吸い出される。こうして、凝縮部33からは凝縮水が真空ポンプ36に吸い出され、この真空ポンプ36から導水管によって、クーリングタワー8の受水槽81に導かれるのである。 That is, by the operation of the vacuum pump 36, air and condensed water are sucked out of the condensation section 33 through the communication passage 35, and further, the air in the pressure resistant tank 30 and the communication passage 34 and the guide portion 30c. Condensed water is drawn out. Thus, the condensed water is sucked from the condensation section 33 to the vacuum pump 36 and is led from the vacuum pump 36 to the water receiving tank 81 of the cooling tower 8 by the water conduit.
 こうしてクーリングタワー8の受水槽81に導かれた凝縮水には、耐圧タンク30内の有機物に添加されたものと同じ微生物が含まれており、これにより凝縮水に含まれている臭気成分等は分解されているので、臭気はタンク外部へ発散しない。また、この凝縮水は、受水槽81において冷却水と混ざり合い、前記のように汲み上げポンプ82に汲み上げられて、ノズル83から噴射された後に、流下部84を流下しながら冷却される。 Thus, the condensed water led to the water receiving tank 81 of the cooling tower 8 contains the same microorganisms as those added to the organic matter in the pressure tank 30, and the odorous components and the like contained in the condensed water are thereby decomposed The odor does not escape to the outside of the tank. Further, the condensed water mixes with the cooling water in the water receiving tank 81, and is pumped up by the pumping pump 82 as described above, and is injected from the nozzle 83 and then cooled while flowing down the downstream portion 84.
 本実施形態では、そうして冷却水や凝縮水が流下する流下部84の充填材を前記所定の微生物の担体として利用しており、ここにおいて冷却されて受水槽81に流入する凝縮水にも微生物が含まれるようになる。 In the present embodiment, the filler of the lower flow portion 84 where the cooling water and the condensed water flow is used as a carrier of the predetermined microorganism, and the condensed water which is cooled here and flows into the water receiving tank 81 is used. It will contain microorganisms.
 -発酵乾燥装置の作動-
 前記のように構成された発酵乾燥装置3の作動について説明すると、耐圧タンク30内に収容された有機物は、加熱ジャケット31(および撹拌シャフト32などの蒸気通路)に供給される高温の蒸気によって加熱されながら、撹拌シャフト32の回転に伴い撹拌される。なお、蒸気発生ボイラー7から供給される蒸気の温度は例えば140℃程度が好ましい。
-Operation of Fermentation Drying Equipment-
The organic substance contained in the pressure-resistant tank 30 is heated by the high temperature steam supplied to the heating jacket 31 (and the steam passage such as the stirring shaft 32). While being stirred, it is stirred as the stirring shaft 32 rotates. The temperature of the steam supplied from the steam generation boiler 7 is preferably, for example, about 140.degree.
 そうして耐圧タンク30内を取り囲む加熱ジャケット31による外側からの加熱と、撹拌シャフト32などによる内側からの加熱とを受けて、効果的に昇温されるとともに、撹拌シャフト32によって撹拌される。加えて、真空ポンプ36の作動によって減圧されているため、耐圧タンク30内では沸点が低下し、水分の蒸発が早まり、発酵乾燥が促進される。 Thus, the heating from the outside by the heating jacket 31 surrounding the inside of the pressure-resistant tank 30 and the heating from the inside by the stirring shaft 32 and the like are performed, and the temperature is effectively raised and stirred by the stirring shaft 32. In addition, since the pressure is reduced by the operation of the vacuum pump 36, the boiling point is lowered in the pressure tank 30, the evaporation of water is accelerated, and the fermentative drying is promoted.
 なお、発酵乾燥装置3による発酵乾燥工程では一工程が例えば2時間であることが好ましく、まず30分かけて有機物を発酵させることとなる。前記タンク30内を-0.06~-0.07MPa(ゲージ圧、以下、ゲージ圧は省略する。)に減圧すると、耐圧タンク30内の水分温度は76℃~69℃(飽和蒸気温度)に維持される。その結果、有機物は下記微生物で主に発酵、分解が促進される。 In addition, it is preferable that one process is 2 hours, for example in the fermentation drying process by the fermentation drying apparatus 3, and the organic matter will be fermented first over 30 minutes. When the pressure in the tank 30 is reduced to -0.06 to -0.07 MPa (gauge pressure, hereinafter, the gauge pressure is omitted), the water temperature in the pressure tank 30 becomes 76 ° C to 69 ° C (saturated vapor temperature). Maintained. As a result, the organic matter is mainly fermented and decomposed by the following microorganisms.
 次に、1.5時間かけて発酵中の有機物を乾燥させることになる。そのために、耐圧タンク30内を-0.010~-0.092MPaにさらに減圧すると、タンク内の水分温度は42~46℃(飽和蒸気温度)に維持され、有機物の乾燥は十分に促進される。 Next, the organic matter in fermentation will be dried for 1.5 hours. Therefore, when the pressure in the pressure tank 30 is further reduced to -0.010 to -0.092 MPa, the water temperature in the tank is maintained at 42 to 46 ° C (saturated vapor temperature), and the drying of the organic matter is sufficiently promoted. .
 なお、SHIMOSE 1は、FERM BP-7504(経済産業省産業技術総合研究所生命工学工業技術研究所特許微生物寄託センター(日本国茨城県つくば市東1丁目1-3)に、2003年3月14日に国際寄託されたもの)である。また、SHIMOSE 2は、FERM BP-7505(SHIMOSE 1と同様に国際寄託されたもの)、塩に耐性を有するピチアファリノサ(Pichiafarinosa)に属する微生物であり、SHIMOSE 3は、FERM BP-7506(SHIMOSE 1と同様に国際寄託されたもの)、スタフィロコッカス(Staphylococcus)に属する微生物である。 In addition, SHIMOSE 1 is March 14, 2003 to FERM BP-7504 (Patent Microorganisms Depositary Center, Institute of Technology for Industrial Science and Technology, Institute of Industrial Technology, Research Institute for Biotechnological Research, Institute of Technology and Technology, Ibaraki Prefecture, Japan). (The one deposited internationally). In addition, SHIMOSE 2 is a microorganism belonging to FERM BP-7505 (as deposited internationally as in SHIMOSE 1), Pichiafarinosa resistant to a salt, and SHIMOSE 3 is a microorganism belonging to FERM BP-7506 (SHIFOSE 1 and Similarly, those deposited internationally) are microorganisms that belong to Staphylococcus (Staphylococcus).
 次に、本実施形態による有害微生物を含む有機物の処理の手順について説明すると、一例を図3のフローチャートに示すように、まず、ステップS1では、有害微生物に汚染され、死滅した家畜などの有機物を受入ホッパー1に投入する。その後、発酵乾燥装置3の耐圧タンク30の投入口30aの蓋を開いて、前記受入ホッパー1内の有機物を搬送コンベヤ2によって搬送し、投入口30aから有機物を投入する。そして、投入口30aの蓋を閉じるとともに、耐圧タンク30の案内部30cから凝縮部33への連通路34における開閉バルブ34aも閉じて、耐圧タンク30内を大気圧状態で密閉する。 Next, the procedure of the treatment of the organic matter containing harmful microorganisms according to the present embodiment will be described. First, as shown in the flowchart of FIG. Load into the receiving hopper 1 Thereafter, the lid of the input port 30a of the pressure tank 30 of the fermentation and drying apparatus 3 is opened, the organic substance in the receiving hopper 1 is transported by the transport conveyor 2, and the organic substance is input from the input port 30a. Then, the lid of the inlet 30a is closed, and the on-off valve 34a in the communication passage 34 from the guide portion 30c of the pressure tank 30 to the condensation portion 33 is also closed to seal the inside of the pressure tank 30 under atmospheric pressure.
 次に、滅菌工程(ステップS2)では、耐圧タンク30の内部を所定時間、高温高圧に維持して、通常の細菌や前記ウイルスなどの有害微生物を死滅させ、滅菌させる。そのために投入口30aの蓋を閉じるとともに、耐圧タンク30の案内部30cから凝縮部33への連通路34における開閉バルブ34aを閉状態とする。 Next, in the sterilization step (step S2), the inside of the pressure-resistant tank 30 is maintained at high temperature and pressure for a predetermined time to kill and sterilize harmful bacteria such as normal bacteria and the virus. Therefore, the lid of the inlet 30a is closed, and the open / close valve 34a in the communication passage 34 from the guide portion 30c of the pressure tank 30 to the condensation portion 33 is closed.
 そして、蒸気発生ボイラー7から加熱用蒸気を耐圧タンク30(加熱ジャケット31など)に供給する。このように連通路34の開閉バルブ34aを閉じることで、凝縮部33や真空ポンプ36などと遮断され、耐圧タンク30が密閉状態となり、内部が高温高圧となる。 Then, the heating steam is supplied from the steam generation boiler 7 to the pressure tank 30 (such as the heating jacket 31). By closing the on-off valve 34a of the communication passage 34 in this manner, the condenser unit 33, the vacuum pump 36, etc. are shut off, the pressure resistant tank 30 is sealed, and the inside becomes high temperature and high pressure.
 具体的に前記の滅菌工程では、例えば耐圧タンク30内の温度を140℃程度に、また、圧力を例えば0.3MPa程度にして8~10分程度維持することにより、有機物中の有害微生物を死滅させて、無菌状態を作り出すことができる。なお、例えば温度を120℃程度とし、また、圧力を例えば0.2MPa程度にして20分程度維持するようにしてもよい。 Specifically, in the above-mentioned sterilization step, harmful microorganisms in the organic matter are killed by maintaining the temperature in the pressure tank 30, for example, at about 140 ° C. and the pressure, for example, at about 0.3 MPa for about 8 to 10 minutes. It can be made sterile. For example, the temperature may be set to about 120 ° C., and the pressure may be set to, for example, about 0.2 MPa and maintained for about 20 minutes.
 そうして耐圧タンク30内を滅菌した後に、前記の開閉バルブ34aを開いて案内部30cから凝縮部33への連通路34を開放するとともに、真空ポンプ36を作動させて、凝縮部33から空気および凝縮水を吸い出す。これにより連通路34、案内部30cを介して耐圧タンク30内が減圧され、水の沸点が降下することにより、蒸発が促進され、その潜熱によって耐圧タンク30内の温度が低下する。 After sterilizing the inside of the pressure tank 30, the open / close valve 34a is opened to open the communication passage 34 from the guide portion 30c to the condensing portion 33, and the vacuum pump 36 is operated to discharge air from the condensing portion 33. And suck out the condensed water. As a result, the pressure in the pressure tank 30 is reduced via the communication passage 34 and the guide portion 30 c, and the boiling point of water is lowered to promote evaporation, and the latent heat thereof reduces the temperature in the pressure tank 30.
 このことで、自然放熱に比べて耐圧タンク30内の温度を早く低下させることができ、処理時間の短縮が図られる。そうして耐圧タンク30内の温度がある程度低下すると、ステップS3に進んで、真空ポンプ36の作動を停止するとともに、この真空ポンプ36と凝縮部33との間の連通路35の大気開放バルブ35aを開く。 As a result, the temperature in the pressure-resistant tank 30 can be reduced more quickly than in the case of natural heat dissipation, and the processing time can be shortened. Then, when the temperature in the pressure resistant tank 30 decreases to some extent, the process proceeds to step S3, and the operation of the vacuum pump 36 is stopped, and the air release valve 35a of the communication passage 35 between the vacuum pump 36 and the condenser 33 is stopped. open.
 こうすると、大気開放バルブ35aから連通路35に外気が流入し、凝縮部33、連通路34、案内部30cおよび耐圧タンク30内が速やかに大気圧になる。また、その時の気体の流れによって、凝縮部33に残存している微生物の一部が耐圧タンク30内に持ち込まれることになる。また、耐圧タンク30内が大気圧になっているため、投入口30aを開いて所定の微生物を投入することも考えられる。 Then, the outside air flows from the atmosphere release valve 35a into the communication passage 35, and the pressure in the condensation portion 33, the communication passage 34, the guide portion 30c, and the pressure-resistant tank 30 quickly becomes atmospheric pressure. Further, due to the flow of the gas at that time, a part of the microorganisms remaining in the condensation section 33 is brought into the pressure tank 30. Moreover, since the inside of the pressure-resistant tank 30 is atmospheric pressure, it is also conceivable to open the insertion port 30a and to input a predetermined microorganism.
 このようにしてステップS3において、耐圧タンク30内の有機物に所定の微生物を添加した後に、大気開放バルブ35aを閉じて耐圧タンク30内を密閉する。そして、図2を参照して上述したように耐圧タンク30内を減圧下で加熱して、その内部に収容した有機物の発酵、乾燥を促進する(発酵乾燥工程:ステップS4)。すなわち、蒸気発生ボイラー7から加熱用蒸気を供給し、耐圧タンク30内を加熱する。 Thus, in step S 3, after a predetermined microorganism is added to the organic matter in the pressure tank 30, the air release valve 35 a is closed to seal the inside of the pressure tank 30. Then, as described above with reference to FIG. 2, the inside of the pressure-resistant tank 30 is heated under reduced pressure to promote fermentation and drying of the organic substance contained therein (fermentation drying step: step S4). That is, the heating steam is supplied from the steam generation boiler 7 to heat the inside of the pressure resistant tank 30.
 そうして加熱用蒸気によって耐圧タンク30内を加熱するとともに、撹拌シャフト32を所定の回転速度(例えば、8rpm程度)で回転させ、さらに、真空ポンプ36の作動によって耐圧タンク30内を減圧し、これにより耐圧タンク30内の温度が微生物の活動至適環境となり、しかも、前記のように有害微生物が死滅しているので、有機物の発酵乾燥が好適に促進される。 Then, the inside of the pressure tank 30 is heated by the heating steam, the stirring shaft 32 is rotated at a predetermined rotation speed (for example, about 8 rpm), and the pressure inside the pressure tank 30 is reduced by the operation of the vacuum pump 36. As a result, the temperature in the pressure tank 30 becomes the optimum activity environment of the microorganism, and the harmful microorganism is killed as described above, so that the fermentation and drying of the organic matter is suitably promoted.
 このようにして耐圧タンク30内の温度および圧力を維持しつつ、所定の時間(例えば2時間くらい)が経過すれば、真空ポンプ36を一旦停止させる。このとき、乾燥物は減容されている。そして、この発酵乾燥工程を予め設定した回数、繰り返したか否か、ステップS5で判定し、否定判定(NO)であれば前記のステップS1に戻る。 Thus, the vacuum pump 36 is temporarily stopped when a predetermined time (for example, about 2 hours) elapses while maintaining the temperature and pressure in the pressure-resistant tank 30. At this time, the dry matter is reduced in volume. Then, it is determined in step S5 whether or not this fermentation / drying step has been repeated a preset number of times, and if a negative determination (NO), the process returns to step S1.
 こうして耐圧タンク30へ有機物を投入し、発酵乾燥工程を設定回数、繰り返すことで、多量の有機物を十分に発酵乾燥させることができる。そして、ステップS5で肯定判定(YES)すれば、ステップS6に進んで真空ポンプ36および蒸気発生ボイラー7の運転を停止する一方、撹拌シャフト32を逆転し、排出部30bの蓋を開いて、耐圧タンク30から乾燥物を排出する(排出工程)。その後、これら乾燥物は、投入ホッパー37、搬送コンベヤ38を経てホッパー39に貯留され、適宜乾燥物の供給装置40を介して燃焼炉41で燃焼させる。 In this way, the organic substance is charged into the pressure tank 30, and by repeating the fermentation / drying step a set number of times, a large amount of organic substance can be sufficiently fermented and dried. Then, if an affirmative determination (YES) is made in step S5, the process proceeds to step S6 to stop the operation of the vacuum pump 36 and the steam generation boiler 7 while reversing the stirring shaft 32 and opening the lid of the discharge unit 30b. The dry matter is discharged from the tank 30 (discharge step). Thereafter, the dried matter is stored in the hopper 39 through the input hopper 37 and the conveying conveyor 38, and is appropriately burned in the combustion furnace 41 through the dried matter supply device 40.
 前記図3のフローのステップS2が、処理対象物である有機物を耐圧タンク30に収容し、所定温度以上に加熱して所定時間、維持することにより滅菌処理を施す滅菌工程に相当し、ステップS3が、滅菌工程の後に耐圧タンク30内の有機物に所定の微生物を添加する添加工程に相当する。また、ステップS4は、有機物を減圧下において所定の温度範囲に加熱しながら攪拌するとともに、微生物を利用して有機物を発酵乾燥させ、減容した乾燥物を得る発酵乾燥工程に相当する。 Step S2 of the flow in FIG. 3 corresponds to a sterilization step in which an organic substance to be treated is contained in the pressure-resistant tank 30, heated to a predetermined temperature or higher, and maintained for a predetermined time to perform sterilization. Corresponds to an addition step of adding a predetermined microorganism to the organic matter in the pressure tank 30 after the sterilization step. Step S4 corresponds to a fermentation and drying step of heating the organic matter under a reduced pressure while heating to a predetermined temperature range and fermenting and drying the organic matter using microorganisms to obtain a reduced-volume dried product.
 本実施形態では、ステップS2の滅菌工程では、連通路34の開閉バルブ34aを閉じて耐圧タンク30内を加熱するようにしており、その後、ステップS3の添加工程に移る前に真空ポンプ36を作動させて、耐圧タンク30内を減圧するようにしている。そして、その後の添加工程では開閉バルブ34aと大気開放バルブ35aを開いて連通路35に外気を導入し、その時の気体の流れによって、凝縮部33から微生物を耐圧タンク30内に取り入れるようにしている。 In the present embodiment, in the sterilization step of step S2, the open / close valve 34a of the communication passage 34 is closed to heat the inside of the pressure tank 30, and then the vacuum pump 36 is operated before proceeding to the addition step of step S3. The pressure in the pressure tank 30 is reduced. Then, in the subsequent addition step, the open / close valve 34a and the atmosphere release valve 35a are opened to introduce the outside air into the communication passage 35, and the microbes are taken into the pressure tank 30 from the condenser 33 by the flow of gas at that time. .
 したがって、本実施形態に係る有害微生物を含む有機物の処理方法によると、公知の発酵乾燥装置3を用いて、有機物を収容した耐圧タンク30内を減圧し、水の沸点を降下させることにより、比較的低い温度で効率良く水分を蒸発させて、乾燥を促進することができる。こうして温度を低くすることにより、添加する所定の微生物を活性化して、有機物の発酵を促進することができる。 Therefore, according to the method for treating an organic substance containing harmful microorganisms according to the present embodiment, the pressure inside the pressure tank 30 containing the organic substance is depressurized using the known fermentation / drying apparatus 3 to lower the boiling point of water. The drying can be accelerated by efficiently evaporating the water at a very low temperature. By lowering the temperature in this manner, the predetermined microorganism to be added can be activated to promote the fermentation of the organic matter.
 さらに、本実施形態では、前記のように耐圧タンク30内に投入した有機物の発酵乾燥を促進する前に、これを所定温度以上に加熱して滅菌することにより、有害微生物を死滅させることができる。よって、有害微生物に汚染された家畜の死骸なども発酵乾燥処理することができるとともに、そのために添加する所定の微生物の活動至適環境を実現し、この微生物の働きによって有機物の発酵を可及的に促進できる。 Furthermore, in the present embodiment, harmful microorganisms can be killed by heating and sterilizing the organic substance added to the pressure-resistant tank 30 as described above by heating the organic substance to a predetermined temperature or higher. . Therefore, while being able to carry out the fermentation drying process of the livestock etc. which were polluted with harmful microorganisms, while realizing the activity optimum environment of the predetermined microorganism added for that, fermentation of the organic matter is possible as much as possible by the function of this microorganism. Promote.
 加えて本実施形態では、前記の滅菌工程の後で真空ポンプ36を作動させ、一旦、耐圧タンク30内を減圧した後に、大気開放バルブ35aを開いて、真空ポンプ36と凝縮部33との間の連通路35に外気を導入するようにしている。これにより、連通路35に流入した外気が凝縮部33から連通路34および案内部30cを介して耐圧タンク30内に吸い込まれるようになる。 In addition, in the present embodiment, the vacuum pump 36 is operated after the above-mentioned sterilization step, and once the pressure in the pressure tank 30 is reduced, the air release valve 35a is opened, and the space between the vacuum pump 36 and the condenser 33 is opened. Outside air is introduced into the communication passage 35 of FIG. As a result, the outside air having flowed into the communication passage 35 is sucked into the pressure-resistant tank 30 from the condensing portion 33 through the communication passage 34 and the guide portion 30 c.
 そして、その外気の流れによって、凝縮部33に残存している微生物の一部を耐圧タンク30内の有機物に添加することができる。つまり、耐圧タンク30の投入口30aの蓋を閉じたまま、その内部で滅菌処理された後の有機物に前記所定の微生物を添加することができる。 Then, due to the flow of the outside air, a part of the microorganisms remaining in the condensation section 33 can be added to the organic matter in the pressure tank 30. That is, the predetermined microorganism can be added to the organic substance that has been subjected to sterilization processing inside the pressure port 30a while the lid of the inlet 30a of the pressure tank 30 is closed.
 今回、開示した実施形態は全ての点で例示であって、限定的な解釈の根拠となるものではない。本発明の技術的範囲は、前記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれる。 The presently disclosed embodiments are illustrative in all respects and not restrictive of interpretation. The technical scope of the present invention is not interpreted only by the embodiments described above, but is defined based on the description of the claims. Further, the technical scope of the present invention includes all modifications within the meaning and scope equivalent to the claims.
 さらに、図3を参照して上述したように前記実施形態では、耐圧タンク30内の有機物に滅菌処理を施す滅菌工程(S2)の後、真空ポンプ36の作動によって耐圧タンク30内を減圧し、温度の低下を促すようにしているが、これにも限定されず、耐圧タンク30内の温度を自然な放熱によって低下させるようにしてもよいし、必ずしも耐圧タンク30内が大気圧になってから微生物を添加する必要もない。 Furthermore, as described above with reference to FIG. 3, in the above embodiment, after the sterilization step (S2) of subjecting the organic matter in the pressure tank 30 to sterilization, the pressure in the pressure tank 30 is reduced by the operation of the vacuum pump 36, Although the reduction in temperature is promoted, the invention is not limited to this, and the temperature in the pressure tank 30 may be reduced by natural heat radiation, and the pressure in the pressure tank 30 is not necessarily reduced to the atmospheric pressure. There is no need to add microorganisms.
 また、微生物を添加する工程(S3)においては、大気開放バルブ35aを開いて、凝縮部33および真空ポンプ36の間の連通路35に外気を流入させ、その時の気体の流れによって凝縮部33に残存している微生物を耐圧タンク30内の有機物に添加することができるが、これにも限定されず、例えば投入口30aの蓋を開いて、耐圧タンク30内の有機物に微生物を添加するようにしてもよい。 Further, in the step of adding microorganisms (S3), the atmosphere release valve 35a is opened to allow the outside air to flow into the communication passage 35 between the condenser 33 and the vacuum pump 36, and the gas flows at that time to the condenser 33. The remaining microorganisms can be added to the organic substances in the pressure tank 30, but the invention is not limited thereto. For example, the lid of the inlet 30a is opened to add the microorganisms to the organic substances in the pressure tank 30. May be
 さらにまた、前記の滅菌工程(S2)において必ずしも開閉バルブ34aを閉じなくてもよく、この開閉バルブ34aを耐圧タンク30の案内部30cから凝縮部33への連通路34に設けなくてもよい。同様に大気圧工程(S3)において開く大気開放バルブ35aを凝縮部33と真空ポンプ36との間の連通路35に付設する必要もなく、例えば連通路34に付設してもよい。 Furthermore, the on-off valve 34 a may not necessarily be closed in the sterilization step (S 2), and the on-off valve 34 a may not be provided in the communication passage 34 from the guide portion 30 c of the pressure tank 30 to the condensation portion 33. Similarly, it is not necessary to attach the air release valve 35a opened in the atmospheric pressure step (S3) to the communication passage 35 between the condenser 33 and the vacuum pump 36, and may be attached to the communication passage 34, for example.
 また、前記の実施形態では耐圧タンク30内を加熱するために、蒸気発生ボイラー7から高温の蒸気を供給するようにしているが、加熱媒体は蒸気に限らず、オイルであってもよい。また、発酵乾燥装置3による処理の後に乾燥物を破砕したり、金属を除去したりしてもよい。 Further, in the above embodiment, high temperature steam is supplied from the steam generation boiler 7 in order to heat the inside of the pressure resistant tank 30, but the heating medium is not limited to steam, and may be oil. In addition, the dried product may be crushed or metal may be removed after the treatment by the fermentation / drying apparatus 3.
 この出願は、2017年8月31日に日本で出願された特願2017-167129号に基づく優先権を請求する。これに言及することにより、その全ての内容は本出願に組み込まれるものである。 This application claims priority based on Japanese Patent Application No. 2017-167129 filed in Japan on August 31, 2017. By reference to this, the entire content of which is incorporated into the present application.
 本発明は、発酵乾燥装置を用いて有機物を減圧下で加熱しながら、微生物を利用して発酵させる場合に、有害微生物によって汚染された有機物でも処理することができ、産業上の利用可能性は高い。 The present invention can treat even organic substances contaminated by harmful microorganisms when fermenting using microorganisms while heating organic substances under reduced pressure using a fermentation / drying apparatus, and the industrial applicability is high.
 3  発酵乾燥装置
 30  耐圧タンク(密閉容器)
 33  凝縮部
 34,35  耐圧タンクおよび真空ポンプの連通路
 34a  開閉バルブ
 35a  大気開放バルブ
 36  真空ポンプ
3 Fermentation dryer 30 Pressure-resistant tank (sealed container)
33 Condensing part 34, 35 Communication path for pressure tank and vacuum pump 34a On-off valve 35a Atmospheric release valve 36 Vacuum pump

Claims (5)

  1.  有害微生物を含む有機物を密閉容器に収容し、所定温度以上に加熱して所定時間、維持することにより、前記有機物に滅菌処理を施す滅菌工程と、
     前記滅菌工程の後に前記密閉容器内の有機物に所定の微生物を添加する添加工程と、
     前記密閉容器内の有機物を、減圧下において所定の温度範囲に加熱しながら攪拌するとともに、前記所定の微生物を利用して有機物を発酵させ、減容した乾燥物を得る発酵乾燥工程と、を有することを特徴とする有害微生物を含む有機物の処理方法。
    A sterilization step of sterilizing the organic matter by storing the organic matter containing harmful microorganisms in a sealed container and heating the organic matter to a predetermined temperature or higher for a predetermined time;
    An addition step of adding a predetermined microorganism to the organic substance in the closed container after the sterilization step;
    The organic substance in the closed container is stirred while heating to a predetermined temperature range under reduced pressure, and the organic substance is fermented using the predetermined microorganism to obtain a reduced-volume dried product. What is claimed is: 1. A method of treating organic matter containing harmful microorganisms characterized in that
  2.  請求項1に記載の処理方法において、
     前記密閉容器には、その内部を減圧するために連通路を介して真空ポンプが接続されており、
     前記滅菌工程の後、前記添加工程の前に前記真空ポンプを作動させて、前記密閉容器内を減圧することを特徴とする有害微生物を含む有機物の処理方法。
    In the processing method according to claim 1,
    A vacuum pump is connected to the sealed container via a communication passage to reduce the pressure inside the container.
    After the sterilization step, the vacuum pump is operated before the addition step to decompress the inside of the closed container, and a method of treating an organic substance containing harmful microorganisms.
  3.  請求項2に記載の有害微生物を含む有機物の処理方法において、
     前記連通路には、前記発酵乾燥工程において密閉容器内で発生した蒸気を液化させるための凝縮部と、この凝縮部および前記真空ポンプの間を大気開放可能な大気開放バルブとが介設され、
     前記添加工程では、前記大気開放バルブを開いて連通路に外気を導入し、この外気の流れによって、前記凝縮部から前記所定の微生物を前記密閉容器内に取り入れることを特徴とする有害微生物を含む有機物の処理方法。
    In the method for treating an organic substance containing harmful microorganisms according to claim 2,
    In the communication passage, a condensation unit for liquefying the vapor generated in the closed container in the fermentation and drying step, and an atmosphere opening valve capable of opening the atmosphere between the condensation unit and the vacuum pump are interposed.
    In the addition step, the atmosphere release valve is opened to introduce outside air into the communication passage, and the flow of the outside air causes harmful microorganisms to be introduced into the closed container from the condensing unit. How to treat organics.
  4.  請求項3に記載の有害微生物を含む有機物の処理方法において、
     前記連通路には、前記凝縮部および前記密閉容器の間に開閉可能な開閉バルブが介設され、
     前記滅菌工程では前記開閉バルブを閉じた状態で前記密閉容器内を加熱する一方、前記添加工程では前記大気開放バルブおよび前記開閉バルブの両方を開くことを特徴とする有害微生物を含む有機物の処理方法。
    In the method for treating an organic substance containing harmful microorganisms according to claim 3,
    In the communication passage, an open / close valve that can be opened and closed is interposed between the condensing unit and the sealed container,
    In the sterilization step, the inside of the closed container is heated in a state in which the on-off valve is closed, while in the addition step, both the air release valve and the on-off valve are opened. .
  5.  有害微生物を含む有機物を密閉容器に収容し、減圧下において所定の温度範囲に加熱しながら撹拌するとともに、所定の微生物を利用して有機物を発酵させ、減容した乾燥物を得る発酵乾燥装置と、
     前記密閉容器に、その内部を減圧するために連通路を介して接続された真空ポンプと、
     前記連通路に介設され、前記密閉容器内で発生した蒸気を液化させるための凝縮部と、
     前記凝縮部および真空ポンプの間に大気開放可能な大気開放バルブと、
     前記凝縮部および前記密閉容器の間に開閉可能な開閉バルブと、
     を備えることを特徴とする有害微生物を含む有機物の処理装置。
    An organic substance containing harmful microorganisms is contained in a closed container, and stirred while heating to a predetermined temperature range under reduced pressure, and the organic substance is fermented using the predetermined microorganism to obtain a reduced-volume dried product ,
    A vacuum pump connected to the sealed container via a communication passage to reduce the pressure inside the container;
    A condensing unit interposed in the communication passage for liquefying the vapor generated in the closed container;
    An air release valve capable of air release between the condenser and the vacuum pump;
    An open / close valve that can be opened and closed between the condensing unit and the closed container;
    An apparatus for treating organic matter containing harmful microorganisms, comprising:
PCT/JP2018/032174 2017-08-31 2018-08-30 Apparatus and method for treating organic matter including harmful microorganisms WO2019044995A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880052013.XA CN111465457B (en) 2017-08-31 2018-08-30 Method and apparatus for treating organic matter containing harmful microorganisms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017167129A JP6829468B2 (en) 2017-08-31 2017-08-31 Treatment method of organic matter containing harmful microorganisms
JP2017-167129 2017-08-31

Publications (1)

Publication Number Publication Date
WO2019044995A1 true WO2019044995A1 (en) 2019-03-07

Family

ID=65527442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032174 WO2019044995A1 (en) 2017-08-31 2018-08-30 Apparatus and method for treating organic matter including harmful microorganisms

Country Status (3)

Country Link
JP (1) JP6829468B2 (en)
CN (1) CN111465457B (en)
WO (1) WO2019044995A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299297A (en) * 2019-12-05 2020-06-19 山东省农业机械科学研究院 Steam collecting and treating device and method of harmless treatment machine for livestock and poultry died of diseases
WO2024047979A1 (en) * 2022-08-30 2024-03-07 株式会社下瀬微生物研究所 Medical waste treatment equipment
WO2024095545A1 (en) * 2022-10-31 2024-05-10 株式会社下瀬微生物研究所 Organic waste treating apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246707B2 (en) * 2019-03-28 2023-03-28 株式会社下瀬微生物研究所 Combustion furnace fuel manufacturing device and manufacturing method
CN115121592B (en) * 2022-07-11 2023-08-25 北京恒诺信达生物技术有限公司 Dining table residual food micro-oxygen enzymolysis system and technology capable of recycling heat energy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313959A (en) * 1994-05-24 1995-12-05 Ito Seikan Kogyo Kk Method and apparatus for treating organic waste by fermentation
JP2003034588A (en) * 2001-07-24 2003-02-07 Nishi Nippon Ecology Kk Method and system for circulation-chain-type recycling of food refuse
WO2004076083A1 (en) * 2003-02-25 2004-09-10 Tass Environmental Technology Ltd Method for treating waste
JP2004261743A (en) * 2003-03-03 2004-09-24 Matsushita Electric Ind Co Ltd Organic waste treatment method
JP2007319738A (en) * 2006-05-30 2007-12-13 Kazuo Yamagishi System for reducing volume of organic waste and incinerating organic waste
JP2008064345A (en) * 2006-09-05 2008-03-21 Miike Iron Works Co Ltd Drying device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437001C (en) * 2005-05-13 2008-11-26 鸿富锦精密工业(深圳)有限公司 Vacuum liquid filling device and vacuum liquid filling method
CN101812316B (en) * 2010-04-23 2014-01-29 同济大学 Intermittent vacuum pyrolysis reactor with built-in heat conducting pipe
JP5897857B2 (en) * 2011-09-29 2016-04-06 株式会社御池鐵工所 Vacuum fermentation drying equipment
CN103091090B (en) * 2013-01-09 2015-03-25 昆山鸿志犀自动化机电设备有限公司 Keycap drawing force testing device with cleaning mechanism
KR20170052459A (en) * 2015-10-06 2017-05-12 최준호 Low Temperature Fermentation and Drying System of Food Waste
CN206173241U (en) * 2016-08-31 2017-05-17 辜再元 Waste treatment device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313959A (en) * 1994-05-24 1995-12-05 Ito Seikan Kogyo Kk Method and apparatus for treating organic waste by fermentation
JP2003034588A (en) * 2001-07-24 2003-02-07 Nishi Nippon Ecology Kk Method and system for circulation-chain-type recycling of food refuse
WO2004076083A1 (en) * 2003-02-25 2004-09-10 Tass Environmental Technology Ltd Method for treating waste
JP2004261743A (en) * 2003-03-03 2004-09-24 Matsushita Electric Ind Co Ltd Organic waste treatment method
JP2007319738A (en) * 2006-05-30 2007-12-13 Kazuo Yamagishi System for reducing volume of organic waste and incinerating organic waste
JP2008064345A (en) * 2006-09-05 2008-03-21 Miike Iron Works Co Ltd Drying device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111299297A (en) * 2019-12-05 2020-06-19 山东省农业机械科学研究院 Steam collecting and treating device and method of harmless treatment machine for livestock and poultry died of diseases
WO2024047979A1 (en) * 2022-08-30 2024-03-07 株式会社下瀬微生物研究所 Medical waste treatment equipment
WO2024095545A1 (en) * 2022-10-31 2024-05-10 株式会社下瀬微生物研究所 Organic waste treating apparatus

Also Published As

Publication number Publication date
CN111465457A (en) 2020-07-28
CN111465457B (en) 2022-08-09
JP6829468B2 (en) 2021-02-10
JP2019042655A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
WO2019044995A1 (en) Apparatus and method for treating organic matter including harmful microorganisms
US8365433B2 (en) Apparatus and method for treating organic waste and organic material obtained by the treatment method
JP2009254341A (en) Device of sterilizing mushroom culture medium, and production system for producing mushroom culture medium
CN204824639U (en) Animal innocent treatment system dies of illness
JP2007075807A (en) Continuous recycling device for organic matter and wastewater treatment apparatus
JP2017225938A (en) Treatment device of organic waste
KR20070073195A (en) The system and it's method for sterilizing and recycling of organic waste by using the saturated and overheated vapor
KR102085833B1 (en) Device for negotiation of the waste domeestic animal
CN103007331A (en) High-temperature dry heating treatment equipment and process for medical wastes and corresponding treatment process
KR20170052459A (en) Low Temperature Fermentation and Drying System of Food Waste
CN109848178A (en) A kind of animal carcass microwave sterilization innocent treatment equipment and technique
JP2007181759A (en) Method and device for thermally decomposing water-containing sludge
JP7178697B2 (en) Livestock excrement treatment device and treatment method
KR102237795B1 (en) The method for treating highly infectious animal carcasses
JP7311935B2 (en) Organic waste treatment equipment and organic waste treatment system
KR101429210B1 (en) Closed system for treating Organic waste
KR102237796B1 (en) The device for treating highly infectious animal carcasses
US20080083749A1 (en) Method and apparatus for the dehydration and/or sterilization of organic materials
KR20120103790A (en) Treating method of buried livestock to prevent soil pollution
WO2017203781A1 (en) Methane fermentation device
CN204400846U (en) A kind of equipment of harmless treatment epidemic-infected animal tissue
WO2008025134A1 (en) Method and apparatus for the dehydration and/or sterilization of organic materials
US7501550B2 (en) Method of destroying seeds
CN103169990A (en) Rotating drum type material sterilization device and application thereof
KR102348205B1 (en) livestock manure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18851056

Country of ref document: EP

Kind code of ref document: A1