WO2017202284A1 - 道面自主检测智能装置、机器人系统及检测方法 - Google Patents

道面自主检测智能装置、机器人系统及检测方法 Download PDF

Info

Publication number
WO2017202284A1
WO2017202284A1 PCT/CN2017/085444 CN2017085444W WO2017202284A1 WO 2017202284 A1 WO2017202284 A1 WO 2017202284A1 CN 2017085444 W CN2017085444 W CN 2017085444W WO 2017202284 A1 WO2017202284 A1 WO 2017202284A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
road surface
vehicle body
pavement
autonomous
Prior art date
Application number
PCT/CN2017/085444
Other languages
English (en)
French (fr)
Inventor
桂仲成
Original Assignee
桂仲成
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610347314.8A external-priority patent/CN105887634A/zh
Priority claimed from CN201610345810.XA external-priority patent/CN105926419A/zh
Priority claimed from CN201610343901.XA external-priority patent/CN105937199B/zh
Priority claimed from CN201620472680.1U external-priority patent/CN205934677U/zh
Priority claimed from CN201610347312.9A external-priority patent/CN105891454A/zh
Priority claimed from CN201610347302.5A external-priority patent/CN106049243B/zh
Priority claimed from CN201610347309.7A external-priority patent/CN105951569B/zh
Application filed by 桂仲成 filed Critical 桂仲成
Priority to DE212017000120.8U priority Critical patent/DE212017000120U1/de
Publication of WO2017202284A1 publication Critical patent/WO2017202284A1/zh
Priority to AU2018101830A priority patent/AU2018101830A4/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs

Definitions

  • the invention relates to a road surface detecting device and a detecting method, in particular to a road surface autonomous detecting intelligent device, a robot system and a detecting method.
  • Highway maintenance includes roadbed maintenance, road maintenance, bridge maintenance, tunnel maintenance, tunnel maintenance, signage maintenance, house maintenance, mechanical and electrical facilities maintenance, etc.
  • Pavement maintenance is an important part of highway maintenance.
  • the premise of pavement maintenance is the detection and evaluation of road conditions.
  • the road surface condition assessment and evaluation mainly relies on manual visual inspection, which is mainly based on experience and poor detection accuracy.
  • manual instrumentation detection which is better than the accuracy of visual data, but there are also the following problems:
  • manual data collection is susceptible to manual operation errors, data accuracy is not guaranteed, and personal safety
  • the second is that the rate of manual detection is low, it requires a lot of manpower, the labor intensity is high and the efficiency is low, the detection time is long, and the traffic efficiency is affected.
  • the third is that the manual test can only be a single instrument, and only one defect can be detected at a time. The road surface condition cannot be fully evaluated.
  • the object of the present invention is to provide a road surface self-detecting intelligent device, a robot system and a detecting method.
  • the invention adopts an automatic design concept, and collects road surface condition information through an intelligent device, which can greatly improve the detection efficiency and has the same detection standard.
  • the data is highly accurate.
  • the invention also provides a pavement detecting method through a control system Real-time control of the car body can improve the detection efficiency and the accuracy of the test results.
  • a self-detecting intelligent device for a road surface comprising a vehicle body, a control system, a non-destructive testing system and an operating mechanism are arranged on the vehicle body, the operating mechanism is mounted on the vehicle body, the non-destructive testing system is connected with the operating mechanism, and the control system and the operating mechanism are electrically
  • the connection, the control system and the non-destructive testing system are electrically connected;
  • the non-destructive testing system comprises a resistivity meter, the operating mechanism comprises a telescopic mechanism, and the resistivity meter is connected to the telescopic mechanism.
  • the resistivity meter is used to detect the corrosion condition of the concrete and steel bars on the road surface, and the telescopic mechanism is used to control the shape of the resistivity meter.
  • the telescopic mechanism In the non-use state, the telescopic mechanism is in a contracted state, on the one hand, the overall occupied space can be reduced, and on the other hand, the resistivity meter can be prevented from being damaged due to collision; in the use state, the telescopic mechanism can displace the resistivity meter to a specified state. Position and position it at a specified angle to improve the accuracy of the resistivity data.
  • the non-destructive testing system further includes an impact echometer and a sonicator, and the ultrasonic device is connected to the telescopic mechanism.
  • the impact echometer is used to detect the transverse crack inside the pavement; the ultrasonic wave generated by the ultrasonic instrument has strong penetrating ability, can detect the geological conditions below the pavement, and provides reference for comprehensive analysis.
  • the non-destructive testing system also includes a ground penetrating radar, and the ground penetrating radar is connected to the telescopic mechanism. Among them, the ground penetrating radar is used to detect the deterioration of the internal road surface.
  • the non-destructive testing system also includes a first laser measuring instrument, the first laser measuring instrument being coupled to the telescopic mechanism. Among them, the first laser measuring instrument is used for detecting road surface flatness and macro texture.
  • the non-destructive testing system also includes a second laser measuring instrument, and the second laser measuring instrument is coupled to the telescopic mechanism. Among them, the second laser measuring instrument is used to detect the depth of the road rut.
  • the NDT system also includes a high-definition camera and a panoramic camera, and both the HD camera and the panoramic camera are connected to the telescopic mechanism.
  • the detecting device of the invention integrates a plurality of non-destructive detecting sensors into one body, and can comprehensively evaluate the condition of the road surface (including internal) at one time, and provides various reference data for evaluating the road surface condition, and the detection efficiency is greatly improved, and the road is also reduced.
  • the impact of accessibility is a plurality of non-destructive detecting sensors into one body, and can comprehensively evaluate the condition of the road surface (including internal) at one time, and provides various reference data for evaluating the road surface condition, and the detection efficiency is greatly improved, and the road is also reduced.
  • the components of the non-destructive testing system are located in the vehicle body to prevent wear, collision and damage of the components, thereby improving the service life of the device.
  • a wheel, a speed reduction mechanism, a drive motor and a power supply device are mounted on the vehicle body, the drive motor is connected to the wheel through a speed reduction mechanism, the power supply device and the drive motor are electrically connected, and the drive motor and the control system are electrically connected.
  • the wheel is an independently driven omnidirectional wheel, preferably a Mecanum wheel. With all-round wheels, it can realize all-round movements such as straight, 45-degree oblique, horizontal, and in-situ steering, and the system flexibility is greatly improved.
  • the vehicle body is a crawler type vehicle body.
  • a crawler belt, a speed reduction mechanism, a drive motor and a power supply device are mounted on the crawler type vehicle body, and the drive motor is connected to the crawler belt through a speed reduction mechanism, the power source device and the drive motor are electrically connected, and the drive motor and the control system are electrically connected.
  • the bottom of the vehicle body is provided with an independent drive steering device.
  • Independent drive steering package The driving motor mounted on the vehicle body, the driving motor and the control system are electrically connected, and further comprises a worm gear mechanism, a mounting frame and a tire, the driving motor is meshed by the gear and the worm gear mechanism, and the worm gear mechanism is arranged at the mounting frame Upper, the tire is mounted on the mounting frame.
  • the driving motor is controlled by the control system. When the vehicle body needs to be turned, the driving motor runs according to the control signal of the control system, and the mounting frame is rotated by the gear and the worm mechanism.
  • the tire includes a hub, and a hub motor assembly is disposed in the hub.
  • the hub motor assembly is electrically connected to the control system, and the mounting frame is provided with a shock absorber.
  • Each tire is provided with a hub motor assembly, and a shock absorber is arranged on the outer frame to reduce the vibration amplitude of the vehicle body and improve the service life of the precision instrument on the vehicle body.
  • the control system includes a navigation sensing system and a vehicle body control box, and the navigation sensing system includes a global positioning system, a gyroscope, an encoder, and an obstacle avoidance laser radar.
  • the navigation scheme based on global positioning system, gyroscope, encoder and obstacle avoidance laser radar multi-sensor data fusion realizes the high-precision navigation of the centimeter-scale outdoor and the position calibration of the detection data, which can greatly improve the detection accuracy.
  • the telescopic mechanism is a linear cylinder and/or a multi-stage telescopic mechanism.
  • the telescopic mechanism can also adopt another form of structure, that is, a linear cylinder and a connecting rod.
  • the linear cylinder is mounted on the vehicle body, and the connecting rod is hinged with the linear cylinder. .
  • the road surface autonomous detection robot system including the aforementioned road surface autonomous detection intelligent device further includes a remote monitoring assistance system, and the vehicle body and the remote monitoring assistant system transmit information through wireless communication.
  • the remote monitoring assistant system has the function of remote control, which can send the collected test data to the external display device; it is used for the monitoring of the running state of the car body and the manual intervention of the car body action when necessary (the start and stop of the mobile platform and the operating mechanism) Etc), as well as the storage and processing of non-destructive testing data.
  • the remote monitoring assistance system includes a control cabinet, a console, and a monitoring screen, and the console and the monitoring screen are electrically connected to the control cabinet.
  • the method for detecting a surface of a smart device or a robot system using the method of the present invention includes the following steps:
  • S2 manually determining (using a prior art means, such as a differential GPS system, etc.) key point coordinates of the area to be detected, and setting a detection area of the road surface;
  • S3 The vehicle body independently plans the road surface detection path according to the shape size of the area to be detected;
  • S4 controlling the vehicle body to move along the detection path of the road surface, stopping every 0.5-10 m to perform road surface and internal condition detection, and collecting road condition information;
  • S5 Perform real-time monitoring analysis or post-delay analysis based on the collected road condition information.
  • the detection path in step S3 is planned by the following method: measuring the length and width of the detection area of the road surface (rectangular road surface) Or the key point coordinates further fit the shape and size of the area to be detected (non-rectangular road surface), and control the vehicle body to move along the S-shaped path to comprehensively detect the road surface detection area.
  • the comprehensive detection of the detection area of the road surface means that the vehicle body moves line by line along the length or width direction of the detection area of the measurement road surface, and each time the detection width of the vehicle body is moved forward, thereby comprehensively detecting the road surface. (See Figure 15 for the illustration).
  • the road condition information includes corrosion conditions of pavement concrete and steel bars, and/or thickness of each layer of the road surface, and/or internal cracks of the road surface, and/or water seepage conditions below the road surface, and/or The void condition below the road surface, and/or the load carrying capacity of the road surface, and/or the road surface flatness and macrotexture, and/or the road rut depth, and/or the surface image of the road surface, and/or the road surface panorama around the vehicle body.
  • the intelligent self-detection intelligent device and the robot system of the invention adopts a high-precision outdoor navigation system, an integrated non-destructive detection system and a multi-data fusion system, which can realize independent and efficient detection of the road surface and its internal conditions, and the detection efficiency, economy and The safety is greatly improved, and the overall performance of the system is good;
  • the invention adopts the control mode of “macro remote control, micro-autonomous, remote monitoring”, can independently plan the detection path, implement the detection operation, and has the function of detecting parameter setting and online adjustment; using the panoramic camera to realize the working environment and state monitoring of the robot, complete The necessary manual intervention for the macro-operation and detection process before the detection; with macroscopic micro-detection monitoring and autonomous operation functions, intelligent detection is realized; at the same time, the safety of detection is improved because no manual driving is required;
  • the invention adopts a navigation scheme based on GPS, gyroscope, encoder and lidar multi-sensor data fusion to realize the position calibration of the outdoor centimeter-level high-precision navigation and detection data, which greatly improves the accuracy of the detection data. ;
  • the invention integrates a plurality of non-destructive testing sensors into one body, and can comprehensively evaluate the condition of the road surface (including internal) at one time, and the detection efficiency is greatly improved, and the influence on road traffic is also reduced;
  • the invention realizes the automatic analysis and fusion of the detection data, the detection result is visually visible, the detection efficiency is greatly improved, and the long-term dynamic detection of the road state can be realized, and on this basis, more predictive maintenance can be realized;
  • the operating mechanism of the invention is customized according to the detection process, which can ensure the detection effect and improve the detection accuracy
  • the mobile platform of the present invention can adopt the following three forms: (1) an omnidirectional wheeled moving mechanism using a Mecanum wheel as an example, which can realize all-round movements such as straight, oblique driving, lateral driving, and in-situ steering. It can more flexibly set the walking route of the car body, and then complete the self-checking operation more efficiently; (2) It adopts the double crawler structure, can be turned in place, has good adaptability to the road surface condition, and can adapt to various road surfaces.
  • the utility model expands the applicable range of the intelligent device and the robot system of the invention; (3) adopts the hub-type independent driving steering device, and can realize the omnidirectional movement such as straight, oblique driving, lateral driving, and in-situ steering by adjusting the direction of each wheel. It is more flexible to set the walking path of the car body.
  • the pavement self-detecting robot system of the present invention can also adopt a multi-robot cooperative working mode, which can further Increase detection efficiency.
  • FIG. 1 is a schematic structural view of an operating state of a road surface autonomous detecting intelligent device (using a wheeled moving mechanism) according to the present invention
  • FIG. 2 is a schematic structural view of the non-operating state of the autonomous detection intelligent device of the road surface shown in FIG. 1;
  • FIG. 3 is a schematic structural view showing an operating state of the intelligent self-detecting device (using a crawler type moving mechanism) of the present invention
  • FIG. 4 is a schematic structural view of the non-operating state of the self-detecting intelligent device of the road surface described in FIG. 3;
  • FIG. 5 is a schematic structural view showing an operating state of the intelligent self-detecting device (using a hub-type moving mechanism) of the present invention
  • Figure 6 is a schematic structural view of an embodiment of an independently driven steering device
  • Figure 7 is a partial enlarged view of the hub motor assembly of Figure 6;
  • Figure 8 is a schematic diagram of the basic control principle of the present invention.
  • Figure 9 is a schematic view showing an arrangement of an embodiment of the non-destructive testing system.
  • Figure 10 is a schematic structural view of an embodiment of a telescopic mechanism
  • Figure 11 is a schematic structural view of another embodiment of a telescopic mechanism
  • Figure 12 is a schematic structural view of still another embodiment of the telescopic mechanism
  • Figure 13 is a schematic overall view of a robot system including a remote monitoring assistance system structure diagram
  • Figure 14 is a control architecture diagram of an embodiment of the present invention.
  • Figure 15 is a schematic view showing the operation mode of the intelligent device for detecting a road surface in the present invention.
  • Embodiment 1 of the present invention includes a vehicle body 1 on which a control system 20, a non-destructive detection system 19, and Operating mechanism 3, operating mechanism 3 mounted on vehicle body 1
  • the non-destructive testing system 19 is connected to the operating mechanism 3, the control system 20 and the operating mechanism 3 are electrically connected, the control system 20 and the non-destructive testing system 19 are electrically connected;
  • the non-destructive testing system 19 includes a resistivity meter 9, and the operating mechanism 3 includes a telescopic mechanism 2
  • the resistivity meter 9 is connected to the telescopic mechanism 2.
  • the telescopic mechanism 2 is used to control the free transition between the entire operating state and the non-operating state.
  • the units of the non-destructive testing system 19 are placed to a position that facilitates the function of each unit.
  • the telescopic mechanism 2 to which the resistivity meter 9 is attached is attached to the front side of the vehicle body 1, and the telescopic mechanism 2 of the structure shown in Fig. 10 is used.
  • the non-destructive testing system 19 further includes an impact echometer and a sonicator 6, which is connected to the telescopic mechanism 2.
  • the telescopic mechanism 2 that connects the impact echometer and the ultrasonic device 6 is mounted on the front side of the vehicle body 1, and the telescopic mechanism 2 of the structure shown in FIG. 10 is used.
  • the telescopic mechanism 2 includes a linear cylinder 12 and a connecting rod 13, A linear cylinder 12 is mounted on the vehicle body 1, and a connecting rod 13 is hinged to the linear cylinder 12.
  • the non-destructive testing system 19 further includes a ground penetrating radar 10 connected to the telescopic mechanism 2, and the telescopic mechanism 2 connected to the ground penetrating radar 10 is mounted on the rear side of the vehicle body 1, and the telescopic mechanism 2 of the structure shown in Fig. 10 is used.
  • the non-destructive testing system 19 further comprises a first laser measuring device 7, which is connected to the telescopic mechanism 2.
  • the non-destructive testing system 19 also includes a second laser measuring instrument 8 that is coupled to the telescoping mechanism 2.
  • the telescopic mechanism 2 that connects the first laser measuring instrument 7 and the second laser measuring instrument 8 is mounted on the middle of the front side of the vehicle body 1, both of which employ the telescopic mechanism 2 as shown in FIG.
  • the non-destructive testing system 19 also includes a high definition camera 11 and a panoramic camera 4, both of which are coupled to the telescopic mechanism 2.
  • the telescopic mechanism 2 that connects the panoramic camera 4 is mounted on the top of the vehicle body 1 and employs a telescopic mechanism 2 as shown in FIG. 12; the telescopic mechanism 2 that connects the high-definition camera 11 is mounted on the upper portion of the vehicle body 1, and is stretched as shown in FIG. Agency 2.
  • the vehicle body 1 is mounted with a wheel 501, a speed reduction mechanism, a drive motor and a power supply device.
  • the drive motor is connected to the wheel 501 via a speed reduction mechanism.
  • the power supply unit and the drive motor are electrically connected, and the drive motor and the control system 20 are electrically connected.
  • the power supply device supplies power to the driving motor, and the driving motor is controlled by the control system 20, and the driving motor drives the wheel 501 to rotate, thereby controlling the movement of the vehicle body.
  • the wheels 501 are all independently driven omnidirectional wheels.
  • the speed of the omnidirectional wheels is used to realize the straight line of the vehicle body 1, the 45 degree oblique line, the horizontal line and the in-situ steering. motion.
  • the control system 20 includes a navigation sensing system and a vehicle body control box including a global positioning system, a gyroscope, an encoder, and an obstacle avoidance laser radar.
  • Embodiment 2 A road surface autonomous detection intelligent device (see FIG. 3, FIG. 4, FIG. 8 and FIG. 9), which is the same as the first embodiment, except that the moving mechanism, that is, the vehicle body 1 is a crawler type vehicle body.
  • the crawler type vehicle body is provided with a crawler belt 502, a speed reduction mechanism, a drive motor and a power supply device.
  • the drive motor is connected to the crawler belt 502 through a speed reduction mechanism, and the power supply device and the drive motor are electrically connected, and the drive motor and the control system 20 are electrically connected.
  • the power supply device supplies power to the drive motor, and the drive motor is controlled by the control system 20, and the drive motor drives the crawler belt 502 to move, thereby controlling the movement of the vehicle body.
  • Embodiment 3 A road surface autonomous detection intelligent device (see FIG. 5, FIG. 8 and FIG. 9), which is different from the embodiment 1 except that the moving mechanism, that is, the bottom of the vehicle body 1 is provided with an independent driving steering device. 503.
  • the independent drive steering device 503 includes a drive motor 22 mounted on the vehicle body 1, the drive motor 22 and the control system 20 are electrically connected, and further includes a worm gear mechanism 24, a mounting frame 25 and a tire. 26, the drive motor 22 is meshed by the gear 23 and the worm gear mechanism 24, the worm gear mechanism 24 is disposed on the mounting frame 25, and the tire 26 is mounted on the mounting frame 25.
  • the tire 26 includes a hub 29 in which an in-wheel motor assembly 28 is disposed.
  • the hub motor assembly 28 is electrically coupled to the control system 20, and the mounting frame 25 is provided with a shock absorber 27.
  • the vehicle body 1 is moved by the independent drive steering device 503 and is turned in place.
  • the hub motor assembly 28 is disposed on the mounting frame 25 via the spindle 33 and is secured to the hub 29 by fastening screws 30; the hub motor assembly 28 includes externally disposed on the spindle 33 via bearings 34.
  • the rotor 32 and the stator winding 31, the sun gear 37, the carrier 36 and the planet gear 35 are sleeved on the main shaft 33.
  • a road surface autonomous detection intelligent device (see FIG. 1, FIG. 2, FIG. 8 and FIG. 9) includes a vehicle body 1 on which a control system 20, a non-destructive detection system 19 and an operating mechanism 3 are provided.
  • the operating mechanism 3 is mounted on the vehicle body 1, the non-destructive testing system 19 is connected to the operating mechanism 3, the control system 20 and the operating mechanism 3 are electrically connected, the control system 20 and the non-destructive testing system 19 are electrically connected; the non-destructive testing system 19 includes a resistivity meter 9.
  • the operating mechanism 3 includes a telescopic mechanism 2 to which the resistivity meter 9 is coupled.
  • the vehicle body 1 is mounted with a wheel 501, a speed reduction mechanism, a drive motor and a power supply device.
  • the drive motor is connected to the wheel 501 via a speed reduction mechanism, the power supply device and the drive motor are electrically connected, and the drive motor and the control system 20 are electrically connected; 501 is the Mecanum wheel.
  • the control system 20 includes a navigation sensing system and a vehicle body control box including a global positioning system, a gyroscope, an encoder, and an obstacle avoidance laser radar.
  • the telescopic mechanism 2 is a linear cylinder 12 and/or a multi-stage telescopic mechanism.
  • Embodiment 5 A road surface autonomous detection intelligent device (see FIG. 3, FIG. 4, FIG. 8 and FIG. 9), which is the same as that of Embodiment 4, except that the moving mechanism is that the vehicle body 1 is a crawler type vehicle body.
  • the crawler type vehicle body is provided with a crawler belt 502, a speed reduction mechanism, a drive motor and a power supply device.
  • the drive motor is connected to the crawler belt 502 through a speed reduction mechanism, and the power supply device and the drive motor are electrically connected, and the drive motor and the control system 20 are electrically connected.
  • Embodiment 6 A road surface autonomous detection intelligent device (see FIG. 5, FIG. 8 and FIG. 9), which is different from the embodiment 4, except that the moving mechanism, that is, the bottom of the vehicle body 1 is provided with an independent driving steering device. 503.
  • the independent drive steering device 503 includes a drive motor 22 mounted on the vehicle body 1, the drive motor 22 and the control system 20 are electrically connected, and further includes a worm gear mechanism 24, a mounting frame 25 and a tire. 26, the drive motor 22 is meshed by the gear 23 and the worm gear mechanism 24, the worm gear mechanism 24 is disposed on the mounting frame 25, and the tire 26 is mounted on the mounting frame 25.
  • the tire 26 includes a hub 29 within which an in-wheel motor assembly 28, an in-wheel motor assembly 28 and the control system 20 are disposed Electrically connected, the mounting frame 25 is provided with a shock absorber 27.
  • the vehicle body 1 is moved by the independent drive steering device 503 and is turned in place.
  • the hub motor assembly 28 is disposed on the mounting frame 25 via the spindle 33 and is secured to the hub 29 by fastening screws 30; the hub motor assembly 28 includes externally disposed on the spindle 33 via bearings 34.
  • the rotor 32 and the stator winding 31, the sun gear 37, the carrier 36 and the planet gear 35 are sleeved on the main shaft 33.
  • Embodiment 7 A road surface self-detecting intelligent device (see FIG. 1, FIG. 2, FIG. 8, and FIG. 9) includes a vehicle body 1 on which a control system 20, a non-destructive detecting system 19, and an operating mechanism 3 are provided.
  • the operating mechanism 3 is mounted on the vehicle body 1, the non-destructive testing system 19 is connected to the operating mechanism 3, the control system 20 and the operating mechanism 3 are electrically connected, the control system 20 and the non-destructive testing system 19 are electrically connected; the non-destructive testing system 19 includes a resistivity meter 9.
  • the operating mechanism 3 includes a telescopic mechanism 2 to which the resistivity meter 9 is coupled.
  • the non-destructive testing system 19 also includes an impact echometer and a sonicator 6, which is coupled to the telescoping mechanism 2.
  • the non-destructive testing system 19 also includes a ground penetrating radar 10 that is coupled to the telescoping mechanism 2.
  • the non-destructive testing system 19 further comprises a first laser measuring device 7, which is connected to the telescopic mechanism 2.
  • the non-destructive testing system 19 also includes a second laser measuring instrument 8 that is coupled to the telescoping mechanism 2.
  • the vehicle body 1 is mounted with a wheel 501, a speed reduction mechanism, a drive motor and a power supply device.
  • the drive motor is connected to the wheel 501 via a speed reduction mechanism, the power supply device and the drive motor are electrically connected, and the drive motor and the control system 20 are electrically connected; 501 is the Mecanum wheel.
  • the control system 20 includes a navigation sensing system and a vehicle body control box including a global positioning system, a gyroscope, an encoder, and an obstacle avoidance laser radar.
  • the telescopic mechanism 2 (shown in FIG. 10) includes a linear cylinder 12 and a connecting rod 13 on which a linear cylinder 12 is mounted, and a connecting rod 13 is hinged to the linear cylinder 12.
  • Embodiment 8 A road surface autonomous detection intelligent device (see FIG. 3, FIG. 4, FIG. 8 and FIG. 9), which is the same as the embodiment 7, except that the moving mechanism, that is, the vehicle body 1 is a crawler type vehicle body.
  • the crawler type vehicle body is provided with a crawler belt 502, a speed reduction mechanism, a drive motor and a power supply device.
  • the drive motor is connected to the crawler belt 502 through a speed reduction mechanism, and the power supply device and the drive motor are electrically connected, and the drive motor and the control system 20 are electrically connected.
  • Embodiment 9 A road surface autonomous detection intelligent device (see FIG. 5, FIG. 8 and FIG. 9), which is the same as the embodiment 7, except that the moving mechanism, that is, the bottom of the vehicle body 1 is provided with an independent driving steering device. 503.
  • the independent drive steering device 503 includes a drive motor 22 mounted on the vehicle body 1, the drive motor 22 and the control system 20 are electrically connected, and further includes a worm gear mechanism 24, a mounting frame 25 and a tire. 26, the drive motor 22 is meshed by the gear 23 and the worm gear mechanism 24, the worm gear mechanism 24 is disposed on the mounting frame 25, and the tire 26 is mounted on the mounting frame 25.
  • the tire 26 includes a hub 29 in which an in-wheel motor assembly 28 is disposed.
  • the hub motor assembly 28 is electrically coupled to the control system 20, and the mounting frame 25 is provided with a shock absorber 27.
  • the vehicle body 1 is moved by the independent drive steering device 503 and is turned in place.
  • Embodiment 10 A road surface autonomous detection intelligent device (see FIG. 1, FIG. 2, FIG. 8 and FIG. 9), including a vehicle body 1,
  • the vehicle body 1 is provided with a control system 20, a non-destructive testing system 19 and an operating mechanism 3.
  • the operating mechanism 3 is mounted on the vehicle body 1, and the non-destructive testing system 19 is connected to the operating mechanism 3.
  • the control system 20 and the operating mechanism 3 are electrically connected and controlled.
  • the system 20 is electrically coupled to the non-destructive testing system 19; the non-destructive testing system 19 includes a resistivity meter 9, and the operating mechanism 3 includes a telescoping mechanism 2 to which the resistivity meter 9 is coupled.
  • the non-destructive testing system 19 further includes a ground penetrating radar 10, a first laser measuring instrument 7, a high-definition camera 11 and a panoramic camera 4, a ground penetrating radar 10, a first laser measuring instrument 7, a high-definition camera 11 and a panoramic camera 4, and a telescopic mechanism 2 Connected.
  • Embodiment 11 A road surface autonomous detection robot system (see FIG. 13), comprising the vehicle body 1 and the remote monitoring assistance system 21 according to any one of Embodiments 1-10, the vehicle body 1 and the remote monitoring assistant
  • the system 21 transmits information by wireless communication.
  • the remote monitoring assistance system 21 includes a control cabinet 18, a console 14 and a monitoring screen 15, and both the console 14 and the monitoring screen 15 are electrically connected to the control cabinet 18.
  • the vehicle body 1 of the present invention is used for collecting geological information on the road surface and below the road surface, and then transmitting the collected information to the remote monitoring assistance system 21, which may be in the form of the modified vehicle 16 (as shown in FIG. 9).
  • the power conversion device 17, the control cabinet 18, the operation console 14 and the monitoring screen 15 are provided in the modified vehicle.
  • the monitoring screen 15 is a multi-screen display system, and the power supply device 17 supplies power to the remote monitoring assistant system 21, and the detected geological information is first. It is sent to the control cabinet 18 by wireless means (WIFI, etc.), and then displayed through the monitoring screen 15, the collected geological information can be processed through the console 14, and the remote monitoring assistant system 21 can also be used to control the working state of the vehicle body. It can also be used as a remote transportation and storage device for the car body.
  • WIFI wireless means
  • Embodiment 12 A method for detecting a surface of a smart device or a robot system using the method of the present invention, comprising the following steps:
  • S2 manually determining (via a differential GPS system) key point coordinates of the area to be detected, and setting a detection area of the road surface;
  • S3 The vehicle body independently plans the road surface detection path according to the shape size of the area to be detected;
  • S4 controlling the vehicle body to move along the detection path of the road surface, stopping every 0.5-10 m to perform road surface and internal condition detection, and collecting road condition information;
  • S5 Perform real-time monitoring analysis or post-delay analysis based on the collected road condition information.
  • the detection path in step S3 is planned by the following method: when the detection area is rectangular, the length and width of the detection area of the road surface are measured; when the detection area is non-rectangular, the coordinates of the key points of the detection detection area are further fitted to be detected. The shape and size of the area; then controlling the body to move along the S-shaped path to fully detect the surface inspection area.
  • the road condition information includes corrosion conditions of pavement concrete and steel bars, and/or thickness of each layer of the road surface, and/or internal cracks of the road surface, and/or water seepage conditions below the road surface, and/or void conditions below the road surface. And/or pavement Load carrying capacity, and/or road surface flatness and macrotexture, and/or road rut depth, and/or surface image of the road surface, and/or road surface panorama around the vehicle body.
  • the intelligent device for detecting the autonomous surface of the road surface is first manually controlled to the position of the starting point of the detection work, and then the detection path is independently planned and detected according to the manually set detection width and length of the road surface, and the data transmission is monitored.
  • the remote monitoring assistant system 21 realizes post-processing and visualization of data fusion;
  • the control system 20 of the road surface autonomous detection intelligent device adopts an industrial PC as a main control system, and each function block is modularized, including the vehicle body 1 and the operating mechanism 3
  • the remote monitoring assistant system 21 is provided with the detection parameter setting and the online adjustment function, and has the functions of data visualization, data fusion processing and comprehensive evaluation, and has the function of remotely controlling the vehicle body operation.
  • the vehicle body equipped with the non-destructive testing system is first transported to the job site by the remote monitoring assistant system 21, and then moved to the detection starting point, and the road surface to be detected is manually set. Plan the detection path autonomously. After the detection operation is started, the vehicle body moves according to the requirements of the detection process (moving speed, movement start and stop, etc.), and simultaneously controls the operation of the operating mechanism (stretching, unfolding, etc.) to perform the detecting operation.
  • the vehicle body transmits the detection data to the remote monitoring assistant system 21 through wireless communication (WIFI, 4G, etc.), and the detected data can be manually analyzed and analyzed by post or delayed analysis, or can be automatically analyzed by the instrument in real time.
  • the manual can monitor the working state of the vehicle body in real time, and if necessary, control the operation through the remote monitoring assistant system 21.
  • the overall control system is mainly composed of an on-board controller 1 and an on-board controller 2 and a remote monitoring platform (ie, a remote monitoring assistant system 21) disposed on the vehicle body.
  • the on-board controller uses a real-time operating system to collect and fuse data from laser radar, GPS, inertial sensor, and encoder.
  • the WIFI and the handheld controller communicate, and the on-board controller is also responsible for the movement of the vehicle. Control and path planning and control of the operating mechanism.
  • the on-board controller 2 adopts the Windows system, and is mainly responsible for collecting the data of the non-destructive sensing sensor instruments of each road surface, and communicating with the remote monitoring assistant system 21 through WIFI.
  • the remote monitoring assistant system 21 is mainly responsible for monitoring the running state of the vehicle body and displaying and processing the non-destructive testing data.
  • FIG. 15 it is a schematic diagram of the working mode of the smart device for detecting the autonomous device.
  • the vehicle body After the detection start point and the end point are set, the vehicle body independently plans its motion path according to the area of the road surface to be detected and the single detectable area of the vehicle body.
  • the main principle is to ensure the full coverage of the road surface to be inspected and the motion path of the vehicle body. The shortest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种道面自主检测智能装置,包括车体(1),车体(1)上设有控制系统(20)、无损检测系统(19)和操作机构(3),操作机构(3)安装在车体(1)上,无损检测系统(19)和操作机构(3)相连,控制系统(20)和操作机构(3)电连接,控制系统(20)和无损检测系统(19)电连接;无损检测系统(19)包括电阻率仪(9),操作机构(3)包括伸缩机构(2),电阻率仪(9)和伸缩机构(2)相连;一种道面自主检测机器人系统,包括车体(1)和远程监控辅助系统(21),两者之间通过无线通讯方式传输信息;同时公开了一种道面检测方法。采用智能装置或机器人系统能够实现智能化检测,无需人工驾驶,提高了检测安全性和检测数据的准确性;集成多种无损检测传感器于一体,可一次性实现路面及其内部状况的全面评估,检测效率大幅提升,也减少了对道路通行性的影响。

Description

道面自主检测智能装置、机器人系统及检测方法 技术领域
本发明涉及道面检测装置和检测方法,特别是涉及一种道面自主检测智能装置、机器人系统及检测方法。
背景技术
高速公路建成以后,为了保证通行安全性和效率,需要定期检修养护。随着中国高速公路通车里程的快速增长、道路服务年限的增加,高速公路已进入建设与养护并重的时期,2000年以前建成的1万多公里高速公路已全面进入大修期,2008年底以前建成的5万多公里高速公路也普遍进入缺陷责任期后的正常维修养护期,养护行业整体人员规模增长迅速。随着交通部“十二五公路养护管理发展纲要”将大中修比例由13%提升到17%,比例提升接近30%,2015年需要接受大中修养护的高速公路就接近1.3万公里。
高速公路养护包括路基养护、路面养护、桥涵养护、通道养护、隧道养护、标志标线养护、房屋养护、机电设施养护等等,其中路面养护是高速公路养护的重要内容。路面养护的前提是对路面状况的检测与评估。目前,路面状况检测评估主要靠人工目测,这主要靠经验,检测准确性差。替代方式是使用人工持仪器检测,这比目测数据准确性要好,但也存在以下几方面的问题:一是手工采集数据易受人工操作错误的影响,数据准确性得不到保障,且人身安全得不到保障;二是人工检测的速率低,需要大量的人力,劳动强度大且效率低下,检测时间长,影响通行效率;三是人工检测只能是单一仪器,一次只能检测一种缺陷,不能对路面状况进行全面评估。
因此,结合现代科学技术的发展,提供一种能对路面状况进行综合检测与评估的自动化系统显得尤为必要。目前已经有可以对道路表面状况进行检测的多功能检测车,可以用于高速公路和一般公路上信息资料的即时收集(实时位置、路面平整度、纹理、路面车辙状况、道路几何数据、全球定位系统、道路景观和路面破损状况的图象等),并进行计算机即时和延后处理。但是该类型检测车的缺点是仍然需要人工操控和人工判断,不能满足某些检测工艺对运动控制的要求(如每隔一定距离就停下来),不能自主检测和对数据进行融合进而自动评估,且只能检测道路表面的状况,不能检测道路表面以下的状况。
发明内容
本发明的目的在于,提供一种道面自主检测智能装置、机器人系统及检测方法;本发明采用自动化式的设计理念,通过智能装置采集路面状况信息,能够大大地提高检测效率,并且检测标准相同,数据准确性较高。本发明同时还提供了一种道面检测方法,通过控制系统 对车体进行实时控制,能够提高检测效率和检测结果准确度。
为解决上述技术问题,本发明采用如下的技术方案:
一种道面自主检测智能装置,包括车体,车体上设有控制系统、无损检测系统和操作机构,操作机构安装在车体上,无损检测系统和操作机构相连,控制系统和操作机构电连接,控制系统和无损检测系统电连接;无损检测系统包括电阻率仪,操作机构包括伸缩机构,电阻率仪和所述伸缩机构相连。其中,电阻率仪用于检测路面混凝土和钢筋的腐蚀状况,伸缩机构用于控制电阻率仪的形态。非使用状态下,伸缩机构处于收缩状态,一方面可以减小整体的占用空间,另一方面也可以防止电阻率仪由于碰撞发生损伤;使用状态下,伸缩机构可以将电阻率仪位移至指定的位置,并摆放成指定的角度,以便于提高电阻率仪的检测数据精确度。
为了提高本装置的检测效率,无损检测系统还包括冲击回波仪和超声波仪,超声波仪和伸缩机构相连。其中,冲击回波仪用于检测路面内部横向裂纹;超声波仪产生的超声波具有较强的穿透能力,能够检测路面以下的地质情况,为综合分析提供参考。无损检测系统还包括探地雷达,探地雷达和伸缩机构相连。其中,探地雷达用于检测路面内部恶化状况。无损检测系统还包括第一激光测量仪,第一激光测量仪和伸缩机构相连。其中,第一激光测量仪用于检测路面平整度和宏观纹理。无损检测系统还包括第二激光测量仪,第二激光测量仪和伸缩机构相连。其中,第二激光测量仪用于检测路面车辙深度。无损检测系统还包括高清相机和全景相机,高清相机和全景相机均和伸缩机构相连。本发明的检测设备集成多种无损检测传感器于一体,可一次性实现路面(包括内部)状况的全面评估,为评估路面状况提供多种可参考数据,并且检测效率大幅提升,也减少了对道路通行性的影响。
通过采用伸缩机构,在车体非运行时,无损检测系统的各元件都位于车体内,防止各元件发生磨损、碰撞、损坏,从而提高设备的使用寿命。
作为其中一种可实施方式,车体上安装有车轮、减速机构、驱动电机和电源装置,驱动电机通过减速机构和车轮相连,电源装置和驱动电机电连接,驱动电机和所述控制系统电连接,所述车轮是独立驱动的全方位轮,优选为麦克纳姆轮。采用全方位轮,可实现直行、45度斜行、横行、原地转向等全方位运动,系统灵活性大幅提升。
作为另一种可实施方式,车体为履带式车体。所述履带式车体上安装有履带、减速机构、驱动电机和电源装置,驱动电机通过减速机构和履带相连,电源装置和驱动电机电连接,驱动电机和所述控制系统电连接。
作为再一种可实施方式,车体的底部设有独立驱动转向装置。所述独立驱动转向装置包 括安装在车体上的驱动电机,驱动电机和所述控制系统电连接,还包括涡轮蜗杆机构、安装外框和轮胎,驱动电机通过齿轮和涡轮蜗杆机构啮合,涡轮蜗杆机构设置在安装外框上,轮胎安装在安装外框上。驱动电机受控制系统控制,当车体需要转向时,驱动电机根据控制系统的控制信号运行,通过齿轮和涡轮蜗杆机构带动安装外框转动。所以,车体转向时首先调整独立驱动转向装置的角度,然后直行即可,其移动路线不会产生弧度,这样可以更加准确的设定车体的行走路线。所述轮胎包括轮毂,轮毂内设有轮毂电机总成,轮毂电机总成和所述控制系统电连接,所述安装外框上设有减震器。每个轮胎内均设有轮毂电机总成,并且安装外框上设有减震器,可以减小车体振动幅度,提高车体上精密仪器的使用寿命。
所述控制系统包括导航传感系统和车体控制箱,导航传感系统包括全球定位系统、陀螺仪、编码器和避障激光雷达。采用基于全球定位系统、陀螺仪、编码器以及避障激光雷达多传感数据融合的导航方案,实现了室外厘米级的高精度导航和检测数据的位置标定,可以极大地提高检测的准确性。
其中,所述伸缩机构是直线气缸和/或多级伸缩机构。为了使本检测装置结构更加紧凑,所述伸缩机构还可以采用另一种形式的结构,即由直线气缸和连杆构成,直线气缸安装在所述车体上,连杆与所述直线气缸铰接。
包含前述道面自主检测智能装置的道面自主检测机器人系统,还包括远程监控辅助系统,车体和远程监控辅助系统之间通过无线通讯方式传输信息。远程监控辅助系统具有远程控制的功能,能够将采集到的检测数据发送给外部显示装置;用于车体运行状态的监控和必要时对车体动作的人工干预(移动平台及操作机构的启停等),以及无损检测数据的存储和处理。
具体地说,远程监控辅助系统包括控制机柜、操作台和监控屏幕,操作台和监控屏幕均和控制机柜电连接。
采用本发明道面自主检测智能装置或者机器人系统的道面检测方法,包括下述步骤:
S1:控制车体移动至道面指定的位置;
S2:人工确定(采用现有技术手段,如差分GPS系统等)待检测区域的关键点坐标,并设定道面的检测区域;
S3:车体根据待检测区域形状尺寸自主规划道面检测路径;
S4:控制车体沿所述道面检测路径移动,每隔0.5-10m停下进行路面及内部状况检测,并采集道路状况信息;
S5:根据采集到的道路状况信息进行实时监控分析或延后分析。
步骤S3所述检测路径采用下述方法进行规划:测量道面检测区域的长和宽(矩形路面) 或关键点坐标进而拟合出待检测区域的形状和尺寸(非矩形路面),控制车体沿S形路线移动从而对道面检测区域进行全面检测。所述对道面检测区域进行全面检测是指,车体沿测量道面检测区域的长或宽的方向逐行移动,并且每次前移车体单次的检测宽度,从而对路面进行全面检测(图示请见图15)。
前述的道面检测方法中,所述道路状况信息包括路面混凝土和钢筋的腐蚀状况、和/或路面各层的厚度、和/或路面内部裂纹、和/或路面以下的渗水情况、和/或路面以下的空洞情况、和/或路面的承载能力、和/或路面平整度和宏观纹理、和/或路面车辙深度、和/或路面的地表图像、和/或车体周围的路面全景。
与现有技术相比,本发明的优点如下:
1、本发明的道面自主检测智能装置和机器人系统采用高精度室外导航系统、集成式无损检测系统及多数据融合系统,可实现路面及其内部状况的自主高效检测,检测效率、经济性和安全性大幅提升,系统综合性能好;
2、本发明采用“宏观遥控、微观自主、远程监控”的控制方式,可自主规划检测路径、实施检测作业,具备检测参数设置及在线调整功能;采用全景相机实现机器人工作环境和状态监控,完成检测前起始点宏观操作及检测过程的必要人工干预;具备宏观微观检测监控及自主运行功能,实现了智能化检测;同时由于无需人工驾驶,提高了检测安全性;
3、本发明采用基于GPS、陀螺仪、编码器以及激光雷达多传感数据融合的导航方案,实现了室外厘米级的高精度导航和检测数据的位置标定,极大地提高了检测数据的准确性;
4、本发明集成多种无损检测传感器于一体,可一次性实现路面(包括内部)状况的全面评估,检测效率大幅提升,也减少了对道路通行性的影响;
5、本发明实现了检测数据的自动分析和融合,检测结果直观可视,检测效率大幅提升,且可实现道路状态的长期动态检测,在此基础上可实现更有预见性的检修养护;
6、本发明操作机构根据检测工艺需要定制设计,可保证检测效果,提升了检测的准确性;
7、本发明移动平台可采用以下三种形式:(1)以麦克纳姆轮为例的全方位轮式移动机构,可实现直行、斜向行驶、横向行驶、原地转向等全方位运动,可以更加灵活的设定车体的行走路线,进而更高效地完成自主检测作业;(2)采用双履带结构,可原地转向,对路面状况的适应性好,可以适应各种不同的路面,扩展了本发明智能装置和机器人系统的适用范围;(3)采用轮毂式独立驱动转向装置,可以通过调节各轮的方向,实现直行、斜向行驶、横向行驶、原地转向等全方位运动,可以更加灵活的设定车体的行走路线。
8、本发明所述的道面自主检测机器人系统还可采用多机器人协同工作模式,可进一步提 升检测效率。
附图说明
图1是本发明道面自主检测智能装置(采用轮式移动机构)的一种运行状态结构示意图;
图2是图1所述道面自主检测智能装置非运行状态的结构示意图;
图3是本发明道面自主检测智能装置(采用履带式移动机构)的一种运行状态结构示意图;
图4是图3所述道面自主检测智能装置非运行状态的结构示意图;
图5是本发明道面自主检测智能装置(采用轮毂式移动机构)的一种运行状态结构示意图;
图6是独立驱动转向装置一种实施例的结构示意图;
图7是图6中轮毂电机总成的局部放大图;
图8是本发明的基本控制原理示意图;
图9是无损检测系统一种实施例的布置方式示意图;
图10是伸缩机构一种实施例的结构示意图;
图11是伸缩机构另一种实施例的结构示意图;
图12是伸缩机构再一种实施例的结构示意图;
图13是含远程监控辅助系统结构示图的机器人系统整体示意图;
图14是本发明的一种实施例的控制架构图;
图15是本发明道面自主检测智能装置工作模式示意图。
附图标记:1-车体,2-伸缩机构,3-操作机构,4-全景相机,501-车轮,502-履带,503-独立驱动转向装置,6-超声波仪,7-第一激光测量仪,8-第二激光测量仪,9-电阻率仪,10-探地雷达,11-高清相机,12-直线气缸,13-连杆,14-操作台,15-监控屏幕,16-改装车,17-电源装置,18-控制机柜,19-无损检测系统,20-控制系统,21-远程监控辅助系统,22-驱动电机,23-齿轮,24-涡轮蜗杆机构,25-安装外框,26-轮胎,27-减震器,28-轮毂电机总成,29-轮毂,30-紧固螺钉,31-定子绕组,32-外转子,33-主轴,34-轴承,35-行星轮,36-行星齿轮架,37-太阳轮。
下面结合附图和具体实施方式对本发明作进一步的说明。
具体实施方式
本发明的实施例1:一种道面自主检测智能装置(参见图1、图2、图8和图9),包括车体1,车体1上设有控制系统20、无损检测系统19和操作机构3,操作机构3安装在车体1 上,无损检测系统19和操作机构3相连,控制系统20和操作机构3电连接,控制系统20和无损检测系统19电连接;无损检测系统19包括电阻率仪9,操作机构3包括伸缩机构2,电阻率仪9和所述伸缩机构2相连。其中,伸缩机构2用于控制装置整体由运行状态至非运行状态之间的自由转换,运行状态下将无损检测系统19的各单元摆放至有利于发挥各单元作用的位置。本实施例中,连接电阻率仪9的伸缩机构2安装在车体1的前侧,采用图10所示结构的伸缩机构2。
如图9所示:无损检测系统19还包括冲击回波仪和超声波仪6,超声波仪6和伸缩机构2相连。本实施例中连接冲击回波仪和超声波仪6的伸缩机构2安装在车体1的前侧,采用图10所示结构的伸缩机构2,本伸缩机构2包括直线气缸12和连杆13,直线气缸12安装在所述车体1上,连杆13与所述直线气缸12铰接。无损检测系统19还包括探地雷达10,探地雷达10和伸缩机构2相连,连接探地雷达10的伸缩机构2安装在车体1的后侧,采用图10所示结构的伸缩机构2。无损检测系统19还包括第一激光测量仪7,第一激光测量仪7和伸缩机构2相连。无损检测系统19还包括第二激光测量仪8,第二激光测量仪8和伸缩机构2相连。连接第一激光测量仪7和第二激光测量仪8的伸缩机构2安装在车体1的前侧中部,均采用如图11所示的伸缩机构2。无损检测系统19还包括高清相机11和全景相机4,高清相机11和全景相机4均和伸缩机构2相连。连接全景相机4的伸缩机构2安装在车体1的顶部,采用如图12所示的伸缩机构2;连接高清相机11的伸缩机构2安装在车体1上部,采用如图11所示的伸缩机构2。
车体1上安装有车轮501、减速机构、驱动电机和电源装置,驱动电机通过减速机构和车轮501相连,电源装置和驱动电机电连接,驱动电机和所述控制系统20电连接。所述电源装置为驱动电机供电,驱动电机受控制系统20控制,驱动电机带动车轮501转动,从而控制车体运动。车体1上安装有四个车轮501,车轮501均为独立驱动的全方位轮,依靠各全方位轮的速度差实现车体1的直行、45度斜行、横行以及原地转向等全方位运动。
所述控制系统20包括导航传感系统和车体控制箱,导航传感系统包括全球定位系统、陀螺仪、编码器和避障激光雷达。
实施例2:一种道面自主检测智能装置(参见图3、图4、图8和图9),同实施例1所述,区别仅在于移动机构,即:车体1为履带式车体;履带式车体上安装有履带502、减速机构、驱动电机和电源装置,驱动电机通过减速机构和履带502相连,电源装置和驱动电机电连接,驱动电机和所述控制系统20电连接。所述电源装置为驱动电机供电,驱动电机受控制系统20控制,驱动电机带动履带502运动,从而控制车体运动。
实施例3:一种道面自主检测智能装置(参见图5、图8和图9),同实施例1所述,区别仅在于移动机构,即:车体1的底部设有独立驱动转向装置503。如图6所示,所述独立驱动转向装置503包括安装在车体1上的驱动电机22,驱动电机22和所述控制系统20电连接,还包括涡轮蜗杆机构24、安装外框25和轮胎26,驱动电机22通过齿轮23和涡轮蜗杆机构24啮合,涡轮蜗杆机构24设置在安装外框25上,轮胎26安装在安装外框25上。所述轮胎26包括轮毂29,轮毂29内设有轮毂电机总成28,轮毂电机总成28和所述控制系统20电连接,所述安装外框25上设有减震器27。车体1通过独立驱动转向装置503移动,并实现原地转向。如图7所示,轮毂电机总成28通过主轴33设置在安装外框25上,并通过紧固螺钉30固定在轮毂29上;轮毂电机总成28包括通过轴承34设置在主轴33上的外转子32以及套设在主轴33上的定子绕组31、太阳轮37、行星齿轮架36和行星轮35。
实施例4:一种道面自主检测智能装置(参见图1、图2、图8和图9),包括车体1,车体1上设有控制系统20、无损检测系统19和操作机构3,操作机构3安装在车体1上,无损检测系统19和操作机构3相连,控制系统20和操作机构3电连接,控制系统20和无损检测系统19电连接;无损检测系统19包括电阻率仪9,操作机构3包括伸缩机构2,电阻率仪9和所述伸缩机构2相连。
车体1上安装有车轮501、减速机构、驱动电机和电源装置,驱动电机通过减速机构和车轮501相连,电源装置和驱动电机电连接,驱动电机和所述控制系统20电连接;所述车轮501是麦克纳姆轮。所述控制系统20包括导航传感系统和车体控制箱,导航传感系统包括全球定位系统、陀螺仪、编码器和避障激光雷达。所述伸缩机构2是直线气缸12和/或多级伸缩机构。
实施例5:一种道面自主检测智能装置(参见图3、图4、图8和图9),同实施例4所述,区别仅在于移动机构,即:车体1为履带式车体;履带式车体上安装有履带502、减速机构、驱动电机和电源装置,驱动电机通过减速机构和履带502相连,电源装置和驱动电机电连接,驱动电机和所述控制系统20电连接。
实施例6:一种道面自主检测智能装置(参见图5、图8和图9),同实施例4所述,区别仅在于移动机构,即:车体1的底部设有独立驱动转向装置503。如图6所示,所述独立驱动转向装置503包括安装在车体1上的驱动电机22,驱动电机22和所述控制系统20电连接,还包括涡轮蜗杆机构24、安装外框25和轮胎26,驱动电机22通过齿轮23和涡轮蜗杆机构24啮合,涡轮蜗杆机构24设置在安装外框25上,轮胎26安装在安装外框25上。所述轮胎26包括轮毂29,轮毂29内设有轮毂电机总成28,轮毂电机总成28和所述控制系统20 电连接,所述安装外框25上设有减震器27。车体1通过独立驱动转向装置503移动,并实现原地转向。如图7所示,轮毂电机总成28通过主轴33设置在安装外框25上,并通过紧固螺钉30固定在轮毂29上;轮毂电机总成28包括通过轴承34设置在主轴33上的外转子32以及套设在主轴33上的定子绕组31、太阳轮37、行星齿轮架36和行星轮35。
实施例7:一种道面自主检测智能装置(参见图1、图2、图8和图9),包括车体1,车体1上设有控制系统20、无损检测系统19和操作机构3,操作机构3安装在车体1上,无损检测系统19和操作机构3相连,控制系统20和操作机构3电连接,控制系统20和无损检测系统19电连接;无损检测系统19包括电阻率仪9,操作机构3包括伸缩机构2,电阻率仪9和所述伸缩机构2相连。无损检测系统19还包括冲击回波仪和超声波仪6,超声波仪6和伸缩机构2相连。无损检测系统19还包括探地雷达10,探地雷达10和伸缩机构2相连。无损检测系统19还包括第一激光测量仪7,第一激光测量仪7和伸缩机构2相连。无损检测系统19还包括第二激光测量仪8,第二激光测量仪8和伸缩机构2相连。
车体1上安装有车轮501、减速机构、驱动电机和电源装置,驱动电机通过减速机构和车轮501相连,电源装置和驱动电机电连接,驱动电机和所述控制系统20电连接;所述车轮501是麦克纳姆轮。所述控制系统20包括导航传感系统和车体控制箱,导航传感系统包括全球定位系统、陀螺仪、编码器和避障激光雷达。所述伸缩机构2(如图10所示)包括直线气缸12和连杆13,直线气缸12安装在所述车体1上,连杆13与所述直线气缸12铰接。
实施例8:一种道面自主检测智能装置(参见图3、图4、图8和图9),同实施例7所述,区别仅在于移动机构,即:车体1为履带式车体;履带式车体上安装有履带502、减速机构、驱动电机和电源装置,驱动电机通过减速机构和履带502相连,电源装置和驱动电机电连接,驱动电机和所述控制系统20电连接。
实施例9:一种道面自主检测智能装置(参见图5、图8和图9),同实施例7所述,区别仅在于移动机构,即:车体1的底部设有独立驱动转向装置503。如图6所示,所述独立驱动转向装置503包括安装在车体1上的驱动电机22,驱动电机22和所述控制系统20电连接,还包括涡轮蜗杆机构24、安装外框25和轮胎26,驱动电机22通过齿轮23和涡轮蜗杆机构24啮合,涡轮蜗杆机构24设置在安装外框25上,轮胎26安装在安装外框25上。所述轮胎26包括轮毂29,轮毂29内设有轮毂电机总成28,轮毂电机总成28和所述控制系统20电连接,所述安装外框25上设有减震器27。车体1通过独立驱动转向装置503移动,并实现原地转向。
实施例10:一种道面自主检测智能装置(参见图1、图2、图8和图9),包括车体1, 车体1上设有控制系统20、无损检测系统19和操作机构3,操作机构3安装在车体1上,无损检测系统19和操作机构3相连,控制系统20和操作机构3电连接,控制系统20和无损检测系统19电连接;无损检测系统19包括电阻率仪9,操作机构3包括伸缩机构2,电阻率仪9和所述伸缩机构2相连。
无损检测系统19还包括探地雷达10、第一激光测量仪7、高清相机11和全景相机4,探地雷达10、第一激光测量仪7、高清相机11和全景相机4均和伸缩机构2相连。
实施例11:一种道面自主检测机器人系统(参见图13),包括实施例1-10中任一项实施例所述的车体1和远程监控辅助系统21,车体1和远程监控辅助系统21之间通过无线通讯方式传输信息。具体地,所述远程监控辅助系统21包括控制机柜18、操作台14和监控屏幕15,操作台14和监控屏幕15均和控制机柜18电连接。
本发明的车体1用于采集道面以及路面以下的地质信息,然后将采集到的信息发送给远程监控辅助系统21,远程监控辅助系统21可以是改装车16的形式(如图9所示),在改装车内设有电源装置17、控制机柜18、操作台14和监控屏幕15,监控屏幕15为多屏显示系统,电源装置17为远程监控辅助系统21供电,检测到的地质信息首先通过无线方式(WIFI等)被发送到控制机柜18,然后通过监控屏幕15显示,可以通过操作台14处理采集到的地质信息;同时远程监控辅助系统21也可以用于控制车体的工作状态,还可以作为车体的远程运输及存放装置。
实施例12:采用本发明道面自主检测智能装置或者机器人系统的道面检测方法,包括下述步骤:
S1:控制车体移动至道面指定的位置;
S2:人工确定(通过差分GPS系统)待检测区域的关键点坐标,并设定道面的检测区域;
S3:车体根据待检测区域形状尺寸自主规划道面检测路径;
S4:控制车体沿所述道面检测路径移动,每隔0.5-10m停下进行路面及内部状况检测,并采集道路状况信息;
S5:根据采集到的道路状况信息进行实时监控分析或延后分析。
步骤S3所述检测路径采用下述方法进行规划:当检测区域为矩形时,测量道面检测区域的长和宽;当检测区域非矩形时,测量检测区域的关键点坐标进而拟合出待检测区域的形状和尺寸;然后控制车体沿S形路线移动从而对道面检测区域进行全面检测。
具体的,所述道路状况信息包括路面混凝土和钢筋的腐蚀状况、和/或路面各层的厚度、和/或路面内部裂纹、和/或路面以下的渗水情况、和/或路面以下的空洞情况、和/或路面的 承载能力、和/或路面平整度和宏观纹理、和/或路面车辙深度、和/或路面的地表图像、和/或车体周围的路面全景。
本发明的一种实施例的工作原理:道面自主检测智能装置首先由人工遥控至检测作业起始点位置,然后根据人工设定的检测路面宽度和长度自主规划检测路径并实施检测,检修数据传输至远程监控辅助系统21实现数据融合等后处理及可视化;道面自主检测智能装置的控制系统20采用工业PC作为主控系统,各功能板块为模块化设计,包括车体1和操作机构3的控制模块,以及负责无损检测数据采集传输的控制模块;远程监控辅助系统21具备检测参数设置及在线调整功能,具备数据可视化及数据融合处理及综合评价功能,具备远程控制车体作业的功能。
道面自主检测智能装置在工作时,首先由远程监控辅助系统21将搭载无损检测系统的车体运输至作业现场,然后运动到检测起始点,由人工设定好须检测的路面范围,车体自主规划好检测路径。在检测作业启动后,车体按照检测工艺的要求(运动速度、运动启停等)运动,同时协调控制操作机构的动作(伸缩、展开等)进行检测作业。在检测过程中,车体通过无线通讯(WIFI、4G等)方式将检测数据发送至远程监控辅助系统21,检测的数据可由人工实时监控分析或延后分析,也可由仪器进行实时的自动化分析或处理;同时,人工可实时监控车体的工作状态,必要时通过远程监控辅助系统21控制其运行。
如图14所示,为本发明的整体控制架构图。整体控制系统主要由设置在车体上的机上控制器一和机上控制器二以及远程监控平台(即远程监控辅助系统21)组成。机上控制器一采用实时操作系统,对源自激光雷达、GPS、惯导传感器、编码器的数据进行采集和融合处理,通过WIFI和手持式控制器通讯,机上控制器一也负责车体的运动控制和路径规划以及操作机构的控制。机上控制器二采用Windows系统,主要负责各路面无损检测传感仪器数据的采集,并通过WIFI和远程监控辅助系统21通讯。远程监控辅助系统21主要负责车体运行状态的监控、无损检测数据的显示和处理。
如图15所示,为道面自主检测智能装置工作模式示意图。在设置好检测起点和终点后,车体根据待检测道面的面积和车体单次可检测的面积自主规划出其运动路径,主要原则是保证待检测道面的全覆盖和车体运动路径最短。

Claims (19)

  1. 一种道面自主检测智能装置,其特征在于,包括车体(1),车体(1)上设有控制系统(20)、无损检测系统(19)和操作机构(3),操作机构(3)安装在车体(1)上,无损检测系统(19)和操作机构(3)相连,控制系统(20)和操作机构(3)电连接,控制系统(20)和无损检测系统(19)电连接;无损检测系统(19)包括电阻率仪(9),操作机构(3)包括伸缩机构(2),电阻率仪(9)和所述伸缩机构(2)相连。
  2. 根据权利要求1所述的道面自主检测智能装置,其特征在于,无损检测系统(19)还包括冲击回波仪和超声波仪(6),超声波仪(6)和伸缩机构(2)相连。
  3. 根据权利要求1所述的道面自主检测智能装置,其特征在于,无损检测系统(19)还包括探地雷达(10),探地雷达(10)和伸缩机构(2)相连。
  4. 根据权利要求1所述的道面自主检测智能装置,其特征在于,无损检测系统(19)还包括第一激光测量仪(7),第一激光测量仪(7)和伸缩机构(2)相连。
  5. 根据权利要求4所述的道面自主检测智能装置,其特征在于,无损检测系统(19)还包括第二激光测量仪(8),第二激光测量仪(8)和伸缩机构(2)相连。
  6. 根据权利要求1所述的道面自主检测智能装置,其特征在于,无损检测系统(19)还包括高清相机(11)和全景相机(4),高清相机(11)和全景相机(4)均和伸缩机构(2)相连。
  7. 根据权利要求1-6任一项所述的道面自主检测智能装置,其特征在于,车体(1)上安装有车轮(501)、减速机构、驱动电机和电源装置,驱动电机通过减速机构和车轮(501)相连,电源装置和驱动电机电连接,驱动电机和所述控制系统(20)电连接;所述车轮(501)是独立驱动的全方位轮,优选为麦克纳姆轮。
  8. 根据权利要求1-6任一项所述的道面自主检测智能装置,其特征在于,车体(1)为履带式车体。
  9. 根据权利要求8所述的道面自主检测智能装置,其特征在于,履带式车体上安装有履带(502)、减速机构、驱动电机和电源装置,驱动电机通过减速机构和履带(502)相连,电源装置和驱动电机电连接,驱动电机和所述控制系统(20)电连接。
  10. 根据权利要求1-6任一项所述的道面自主检测智能装置,其特征在于,车体(1)的底部设有独立驱动转向装置(503)。
  11. 根据权利要求10所述的道面自主检测智能装置,其特征在于,所述独立驱动转向装置(503)包括安装在车体(1)上的驱动电机(22),驱动电机(22)和所述控制系统(20)电连接,还包括涡轮蜗杆机构(24)、安装外框(25)和轮胎(26),驱动电机(22) 通过齿轮(23)和涡轮蜗杆机构(24)啮合,涡轮蜗杆机构(24)设置在安装外框(25)上,轮胎(26)安装在安装外框(25)上。
  12. 根据权利要求11所述的道面自主检测智能装置,其特征在于,所述轮胎(26)包括轮毂(29),轮毂(29)内设有轮毂电机总成(28),轮毂电机总成(28)和所述控制系统(20)电连接,所述安装外框(25)上设有减震器(27)。
  13. 根据权利要求1-6任一项所述的道面自主检测智能装置,其特征在于,所述控制系统(20)包括导航传感系统和车体控制箱,导航传感系统包括全球定位系统、陀螺仪、编码器和避障激光雷达。
  14. 根据权利要求13所述的道面自主检测智能装置,其特征在于,所述伸缩机构(2)是直线气缸(12)和/或多级伸缩机构;或者所述伸缩机构(2)由直线气缸(12)和连杆(13)构成,直线气缸(12)安装于所述车体(1)上,连杆(13)与直线气缸(12)铰接。
  15. 包含权利要求1-14任一项所述道面自主检测智能装置的道面自主检测机器人系统,其特征在于,还包括远程监控辅助系统(21),车体(1)和远程监控辅助系统(21)之间通过无线通讯方式传输信息。
  16. 根据权利要求15所述的道面自主检测机器人系统,其特征在于,远程监控辅助系统(21)包括控制机柜(18)、操作台(14)和监控屏幕(15),操作台(14)和监控屏幕(15)均和控制机柜(18)电连接。
  17. 采用权利要求1-14任一项所述智能装置或者权利要求15-16任一项所述机器人系统的道面检测方法,其特征在于,包括下述步骤:
    S1:控制车体移动至道面指定的位置;
    S2:人工确定待检测区域的关键点坐标,并设定道面的检测区域;
    S3:车体根据待检测区域形状尺寸自主规划道面检测路径;
    S4:控制车体沿所述道面检测路径移动,每隔0.5-10m停下进行路面及内部状况检测,并采集道路状况信息;
    S5:根据采集到的道路状况信息进行实时监控分析或延后分析。
  18. 根据权利要求17所述的道面检测方法,其特征在于,所述步骤S3具体为:测量道面检测区域的长和宽或关键点坐标进而拟合出待检测区域的形状和尺寸,控制车体沿S形路线移动从而对道面检测区域进行全面检测。
  19. 根据权利要求17或18所述的道面检测方法,其特征在于,所述道路状况信息包括 路面混凝土和钢筋的腐蚀状况、和/或路面各层的厚度、和/或路面内部裂纹、和/或路面以下的渗水情况、和/或路面以下的空洞情况、和/或路面的承载能力、和/或路面平整度和宏观纹理、和/或路面车辙深度、和/或路面的地表图像、和/或车体周围的路面全景。
PCT/CN2017/085444 2016-05-23 2017-05-23 道面自主检测智能装置、机器人系统及检测方法 WO2017202284A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212017000120.8U DE212017000120U1 (de) 2016-05-23 2017-05-23 Autonome intelligente Fahrbahnprüfvorrichtung und Robotersystem
AU2018101830A AU2018101830A4 (en) 2016-05-23 2018-11-27 Pavement autonomous detection intelligent apparatus, robot system and detection method

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
CN201620472680.1 2016-05-23
CN201610347302.5 2016-05-23
CN201610347314.8A CN105887634A (zh) 2016-05-23 2016-05-23 履带式道面自主检测智能装置
CN201610345810.XA CN105926419A (zh) 2016-05-23 2016-05-23 道面自主检测机器人系统及检测方法
CN201610343901.XA CN105937199B (zh) 2016-05-23 2016-05-23 轮毂式道面自主检测智能装置
CN201610347312.9 2016-05-23
CN201620472680.1U CN205934677U (zh) 2016-05-23 2016-05-23 一种履带式道面自主检测机器人
CN201610347312.9A CN105891454A (zh) 2016-05-23 2016-05-23 轮毂式道面自主检测机器人系统及检测方法
CN201610347309.7 2016-05-23
CN201610343901.X 2016-05-23
CN201620475501.X 2016-05-23
CN201610345810.X 2016-05-23
CN201610347302.5A CN106049243B (zh) 2016-05-23 2016-05-23 道面自主检测智能装置
CN201610347309.7A CN105951569B (zh) 2016-05-23 2016-05-23 履带式道面自主检测机器人系统及检测方法
CN201610347314.8 2016-05-23
CN201620477266.X 2016-05-23
CN201620475501 2016-05-23
CN201620477266 2016-05-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2018101830A Division AU2018101830A4 (en) 2016-05-23 2018-11-27 Pavement autonomous detection intelligent apparatus, robot system and detection method

Publications (1)

Publication Number Publication Date
WO2017202284A1 true WO2017202284A1 (zh) 2017-11-30

Family

ID=60412042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/085444 WO2017202284A1 (zh) 2016-05-23 2017-05-23 道面自主检测智能装置、机器人系统及检测方法

Country Status (2)

Country Link
DE (1) DE212017000120U1 (zh)
WO (1) WO2017202284A1 (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594832A (zh) * 2018-07-09 2018-09-28 厦门航天思尔特机器人系统股份公司 背负机器人式agv小车
CN109142441A (zh) * 2018-10-25 2019-01-04 枣庄学院 一种识别潜在道路翻浆的移动式探测装置及其探测方法
CN109709575A (zh) * 2018-07-20 2019-05-03 深圳市速腾聚创科技有限公司 激光雷达感知系统及激光雷达感知系统探测方法
CN109781833A (zh) * 2019-03-07 2019-05-21 宁波市劳动安全技术服务公司 一种手持式管道漏磁检测装置
CN109870682A (zh) * 2019-01-08 2019-06-11 中铁西南科学研究院有限公司 复杂工况自适应式隧道衬砌无损检测台车
CN110027099A (zh) * 2019-05-28 2019-07-19 中国水利水电第五工程局有限公司 混凝土智能养生系统
GB2571103A (en) * 2018-02-16 2019-08-21 Jaguar Land Rover Ltd An autonomous vehicle system
CN110161047A (zh) * 2019-06-14 2019-08-23 汕头大学 一种路桥裂缝检测与修复一体化机器人
CN110186935A (zh) * 2019-06-27 2019-08-30 湖州华科建设工程质量检测有限公司 一种道路桥梁混凝土检测装置
CN110231349A (zh) * 2019-07-17 2019-09-13 深圳市卫飞科技有限公司 一种机场道面多功能检测车
CN110531322A (zh) * 2019-09-25 2019-12-03 中国铁道科学研究院集团有限公司 一种车载路基检测系统
CN110640762A (zh) * 2019-10-17 2020-01-03 陕西中建建乐智能机器人有限公司 一种水利大坝安全巡检机器人
CN111778820A (zh) * 2020-08-07 2020-10-16 湖北中油科昊机械制造有限公司 一种城市道路病害智能诊断及多功能修复设备
CN111949019A (zh) * 2020-07-10 2020-11-17 丁武辉 一种智能机器人自主定位巡航用路面探测机构
CN112505142A (zh) * 2020-10-27 2021-03-16 北京建筑大学 检测道路结构损伤的方法、自主移动式设备及存储介质
CN113029827A (zh) * 2021-02-10 2021-06-25 郑州东辰科技有限公司 一种南水北调水下用落锤式弯沉测量装置
CN113219494A (zh) * 2021-05-06 2021-08-06 河南大学 一种具有激光雷达测距装置的四轮机器人及其操作方法
CN113390320A (zh) * 2021-05-28 2021-09-14 许昌腾飞公路工程有限公司 一种公路工程用的路面厚度检测装置
CN114061432A (zh) * 2022-01-17 2022-02-18 中大检测(湖南)股份有限公司 一种地质雷达检测系统及方法
CN114179053A (zh) * 2021-12-13 2022-03-15 贵州誉创机械有限公司 一种可远程操控的煤矿巷道智能掘进机器人
CN114279937A (zh) * 2021-12-29 2022-04-05 山东交通学院 一种混凝土结构抗渗透性能无损检测装置
CN114545397A (zh) * 2022-02-28 2022-05-27 南京工业大学 一种基于振动和雷达的道路病害检测装置
CN114592412A (zh) * 2022-05-10 2022-06-07 烟台卫正房地产估价有限公司 用于国土空间规划的地形平整度测量装置
CN114770534A (zh) * 2022-04-14 2022-07-22 江苏科技大学 一种新型多用途电磁感应爬壁机器人
CN115091429A (zh) * 2022-08-25 2022-09-23 中冶节能环保有限责任公司 一种袋式除尘器的检修机器人及其控制方法
CN115125805A (zh) * 2022-05-27 2022-09-30 郑天豪 一种高速公路工程质量自动检测系统
CN116623515A (zh) * 2023-07-24 2023-08-22 四川高速公路建设开发集团有限公司 一种高速路面平整度检测系统及方法
CN117364585A (zh) * 2023-12-08 2024-01-09 中路高科交通检测检验认证有限公司 一种道路工程用平整度检测装置
CN117552300A (zh) * 2024-01-11 2024-02-13 山西清泰恒环保科技有限公司 一种节能型工程检测设备
CN117775040A (zh) * 2023-12-29 2024-03-29 中国中铁股份有限公司 展翼式高铁轨道板病害检测车

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2658211Y (zh) * 2003-08-28 2004-11-24 武汉武大卓越科技有限责任公司 智能道路路面自动检测车
CN101487223A (zh) * 2009-02-27 2009-07-22 长安大学 激光道路综合检测车
WO2011049118A1 (ja) * 2009-10-20 2011-04-28 株式会社パスコ 路面画像撮影・編集装置及び路面画像撮影・編集プログラム
CN203270425U (zh) * 2013-04-16 2013-11-06 王文齿 一种防干扰型道路检测车
CN204212188U (zh) * 2014-10-31 2015-03-18 广东省建筑科学研究院集团股份有限公司 一种检测混凝土基桩桩身完整性及混凝土结构质量的装置
CN105887634A (zh) * 2016-05-23 2016-08-24 桂仲成 履带式道面自主检测智能装置
CN105891454A (zh) * 2016-05-23 2016-08-24 桂仲成 轮毂式道面自主检测机器人系统及检测方法
CN105926419A (zh) * 2016-05-23 2016-09-07 桂仲成 道面自主检测机器人系统及检测方法
CN105937199A (zh) * 2016-05-23 2016-09-14 桂仲成 轮毂式道面自主检测智能装置
CN105951569A (zh) * 2016-05-23 2016-09-21 桂仲成 履带式道面自主检测机器人系统及检测方法
CN106049243A (zh) * 2016-05-23 2016-10-26 桂仲成 道面自主检测智能装置
CN205934677U (zh) * 2016-05-23 2017-02-08 桂仲成 一种履带式道面自主检测机器人

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2658211Y (zh) * 2003-08-28 2004-11-24 武汉武大卓越科技有限责任公司 智能道路路面自动检测车
CN101487223A (zh) * 2009-02-27 2009-07-22 长安大学 激光道路综合检测车
WO2011049118A1 (ja) * 2009-10-20 2011-04-28 株式会社パスコ 路面画像撮影・編集装置及び路面画像撮影・編集プログラム
CN203270425U (zh) * 2013-04-16 2013-11-06 王文齿 一种防干扰型道路检测车
CN204212188U (zh) * 2014-10-31 2015-03-18 广东省建筑科学研究院集团股份有限公司 一种检测混凝土基桩桩身完整性及混凝土结构质量的装置
CN105887634A (zh) * 2016-05-23 2016-08-24 桂仲成 履带式道面自主检测智能装置
CN105891454A (zh) * 2016-05-23 2016-08-24 桂仲成 轮毂式道面自主检测机器人系统及检测方法
CN105926419A (zh) * 2016-05-23 2016-09-07 桂仲成 道面自主检测机器人系统及检测方法
CN105937199A (zh) * 2016-05-23 2016-09-14 桂仲成 轮毂式道面自主检测智能装置
CN105951569A (zh) * 2016-05-23 2016-09-21 桂仲成 履带式道面自主检测机器人系统及检测方法
CN106049243A (zh) * 2016-05-23 2016-10-26 桂仲成 道面自主检测智能装置
CN205934677U (zh) * 2016-05-23 2017-02-08 桂仲成 一种履带式道面自主检测机器人

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571103A (en) * 2018-02-16 2019-08-21 Jaguar Land Rover Ltd An autonomous vehicle system
GB2571103B (en) * 2018-02-16 2020-10-21 Jaguar Land Rover Ltd An autonomous vehicle system.
CN108594832A (zh) * 2018-07-09 2018-09-28 厦门航天思尔特机器人系统股份公司 背负机器人式agv小车
CN109709575A (zh) * 2018-07-20 2019-05-03 深圳市速腾聚创科技有限公司 激光雷达感知系统及激光雷达感知系统探测方法
CN109142441A (zh) * 2018-10-25 2019-01-04 枣庄学院 一种识别潜在道路翻浆的移动式探测装置及其探测方法
CN109870682B (zh) * 2019-01-08 2023-12-15 中铁西南科学研究院有限公司 复杂工况自适应式隧道衬砌无损检测台车
CN109870682A (zh) * 2019-01-08 2019-06-11 中铁西南科学研究院有限公司 复杂工况自适应式隧道衬砌无损检测台车
CN109781833A (zh) * 2019-03-07 2019-05-21 宁波市劳动安全技术服务公司 一种手持式管道漏磁检测装置
CN110027099A (zh) * 2019-05-28 2019-07-19 中国水利水电第五工程局有限公司 混凝土智能养生系统
CN110161047A (zh) * 2019-06-14 2019-08-23 汕头大学 一种路桥裂缝检测与修复一体化机器人
CN110186935A (zh) * 2019-06-27 2019-08-30 湖州华科建设工程质量检测有限公司 一种道路桥梁混凝土检测装置
CN110186935B (zh) * 2019-06-27 2021-12-14 贵州黔程弘景工程咨询有限责任公司 一种道路桥梁混凝土检测装置
CN110231349A (zh) * 2019-07-17 2019-09-13 深圳市卫飞科技有限公司 一种机场道面多功能检测车
CN110531322A (zh) * 2019-09-25 2019-12-03 中国铁道科学研究院集团有限公司 一种车载路基检测系统
CN110640762A (zh) * 2019-10-17 2020-01-03 陕西中建建乐智能机器人有限公司 一种水利大坝安全巡检机器人
CN111949019A (zh) * 2020-07-10 2020-11-17 丁武辉 一种智能机器人自主定位巡航用路面探测机构
CN111778820A (zh) * 2020-08-07 2020-10-16 湖北中油科昊机械制造有限公司 一种城市道路病害智能诊断及多功能修复设备
CN112505142A (zh) * 2020-10-27 2021-03-16 北京建筑大学 检测道路结构损伤的方法、自主移动式设备及存储介质
CN112505142B (zh) * 2020-10-27 2023-01-24 北京建筑大学 检测道路结构损伤的方法、自主移动式设备及存储介质
CN113029827A (zh) * 2021-02-10 2021-06-25 郑州东辰科技有限公司 一种南水北调水下用落锤式弯沉测量装置
CN113219494A (zh) * 2021-05-06 2021-08-06 河南大学 一种具有激光雷达测距装置的四轮机器人及其操作方法
CN113219494B (zh) * 2021-05-06 2023-12-22 河南大学 一种具有激光雷达测距装置的四轮机器人及其操作方法
CN113390320A (zh) * 2021-05-28 2021-09-14 许昌腾飞公路工程有限公司 一种公路工程用的路面厚度检测装置
CN114179053A (zh) * 2021-12-13 2022-03-15 贵州誉创机械有限公司 一种可远程操控的煤矿巷道智能掘进机器人
CN114179053B (zh) * 2021-12-13 2024-04-09 贵州誉创机械有限公司 一种可远程操控的煤矿巷道智能掘进机器人
CN114279937A (zh) * 2021-12-29 2022-04-05 山东交通学院 一种混凝土结构抗渗透性能无损检测装置
CN114061432A (zh) * 2022-01-17 2022-02-18 中大检测(湖南)股份有限公司 一种地质雷达检测系统及方法
CN114545397A (zh) * 2022-02-28 2022-05-27 南京工业大学 一种基于振动和雷达的道路病害检测装置
CN114770534B (zh) * 2022-04-14 2023-10-27 江苏科技大学 一种新型多用途电磁感应爬壁机器人
CN114770534A (zh) * 2022-04-14 2022-07-22 江苏科技大学 一种新型多用途电磁感应爬壁机器人
CN114592412A (zh) * 2022-05-10 2022-06-07 烟台卫正房地产估价有限公司 用于国土空间规划的地形平整度测量装置
CN115125805A (zh) * 2022-05-27 2022-09-30 郑天豪 一种高速公路工程质量自动检测系统
CN115091429A (zh) * 2022-08-25 2022-09-23 中冶节能环保有限责任公司 一种袋式除尘器的检修机器人及其控制方法
CN116623515B (zh) * 2023-07-24 2023-09-15 四川高速公路建设开发集团有限公司 一种高速路面平整度检测系统及方法
CN116623515A (zh) * 2023-07-24 2023-08-22 四川高速公路建设开发集团有限公司 一种高速路面平整度检测系统及方法
CN117364585A (zh) * 2023-12-08 2024-01-09 中路高科交通检测检验认证有限公司 一种道路工程用平整度检测装置
CN117364585B (zh) * 2023-12-08 2024-02-09 中路高科交通检测检验认证有限公司 一种道路工程用平整度检测装置
CN117775040A (zh) * 2023-12-29 2024-03-29 中国中铁股份有限公司 展翼式高铁轨道板病害检测车
CN117552300A (zh) * 2024-01-11 2024-02-13 山西清泰恒环保科技有限公司 一种节能型工程检测设备
CN117552300B (zh) * 2024-01-11 2024-03-26 山西清泰恒环保科技有限公司 一种节能型工程检测设备

Also Published As

Publication number Publication date
DE212017000120U1 (de) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2017202284A1 (zh) 道面自主检测智能装置、机器人系统及检测方法
CN105937199B (zh) 轮毂式道面自主检测智能装置
AU2018101830A4 (en) Pavement autonomous detection intelligent apparatus, robot system and detection method
CN106049243B (zh) 道面自主检测智能装置
CN105951569B (zh) 履带式道面自主检测机器人系统及检测方法
CN105926419A (zh) 道面自主检测机器人系统及检测方法
La et al. Mechatronic systems design for an autonomous robotic system for high-efficiency bridge deck inspection and evaluation
Sutter et al. A semi-autonomous mobile robot for bridge inspection
CN105891454A (zh) 轮毂式道面自主检测机器人系统及检测方法
KR102239660B1 (ko) 모듈형 모바일 검사 차량
CN106498834A (zh) 一种履带轮道面修复机器人系统和道面修复方法
US20100030417A1 (en) Environmental survey robot
KR101194413B1 (ko) 무인 점검기를 이용한 교량 점검장치
CN107053259A (zh) 一种道路损伤检测机器人系统
CN105887634A (zh) 履带式道面自主检测智能装置
CN107817319A (zh) 一种用于城市道路与管线工程地下缺陷的无损检测机器人系统
CN106514607A (zh) 一种四轮驱动道面修复机器人系统和道面修复方法
CN203066007U (zh) 一种带监控装置的清扫车
CN106758719A (zh) 一种双轮驱动道面修复机器人系统和道面修复方法
CN205665418U (zh) 车载式移动交通气象监测系统
CN205934677U (zh) 一种履带式道面自主检测机器人
CN107843486A (zh) 一种基于弯沉仪的检测机器人系统
CN109591907A (zh) 一种桥墩检测用行走机构和行走方法
CN111722217A (zh) 道路地下病害的检测车及检测方法
CN113562008B (zh) 一种钢轨扣件螺栓应力检测机器人

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17802130

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17802130

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/05/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17802130

Country of ref document: EP

Kind code of ref document: A1