WO2017200093A1 - かご形誘導電動機 - Google Patents
かご形誘導電動機 Download PDFInfo
- Publication number
- WO2017200093A1 WO2017200093A1 PCT/JP2017/018862 JP2017018862W WO2017200093A1 WO 2017200093 A1 WO2017200093 A1 WO 2017200093A1 JP 2017018862 W JP2017018862 W JP 2017018862W WO 2017200093 A1 WO2017200093 A1 WO 2017200093A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spoke
- spokes
- yoke
- induction motor
- gap
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K17/00—Asynchronous induction motors; Asynchronous induction generators
- H02K17/02—Asynchronous induction motors
- H02K17/16—Asynchronous induction motors having rotors with internally short-circuited windings, e.g. cage rotors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/20—Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/32—Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
Definitions
- Embodiments of the present invention relate to a squirrel-cage induction motor.
- a squirrel-cage induction motor includes a stator and a rotor disposed inside the stator and having a conductor, and is used in a wide variety of applications such as industrial use and railway use. Incidentally, the squirrel-cage induction motor is expected to be further reduced in weight.
- the problem to be solved by the present invention is to provide a squirrel-cage induction motor that can be reduced in weight.
- the squirrel-cage induction motor of the embodiment has a rotor core that can rotate around a central axis and a shaft on which the rotor core is fixed.
- the rotor core has an annular yoke and a plurality of spokes.
- the yoke supports at least one conductor.
- the plurality of spokes are spaced apart from each other in the circumferential direction of the yoke, and are provided between the yoke and the shaft to support the yoke.
- Sectional drawing which shows the electric motor of 1st Embodiment Sectional drawing which follows the F2-F2 line of the electric motor shown in FIG. Sectional drawing which shows an example of the magnetic flux line of the electric motor of 1st Embodiment. Sectional drawing which shows the electric motor of the 1st modification of 1st Embodiment. Sectional drawing which shows the electric motor of the 2nd modification of 1st Embodiment. Sectional drawing which shows the electric motor of 2nd Embodiment. Sectional drawing which shows the electric motor of 3rd Embodiment. Sectional drawing which shows the electric motor of the 1st modification of 3rd Embodiment. Sectional drawing which shows the electric motor of the 2nd modification of 3rd Embodiment.
- the perspective view which shows the rotor of 5th Embodiment partially disassembled.
- FIG. 1 is a cross-sectional view showing a squirrel-cage induction motor 1 of the present embodiment.
- a squirrel-cage induction motor 1 (hereinafter simply referred to as “motor 1”) of the present embodiment is an electric motor that is attached to, for example, a bogie of a railway vehicle and drives wheels.
- the electric motor 1 of this embodiment is, for example, a three-phase six-pole electric motor.
- the number of poles of the electric motor 1 may be four poles, may be eight poles, or may be other pole numbers.
- a direction along the rotation center axis (hereinafter referred to as the center axis O) of the electric motor 1 is referred to as an axial direction Z
- a direction orthogonal to the center axis O is referred to as a radial direction R
- the direction of circulation is called the circumferential direction ⁇ .
- the axial direction Z, the radial direction R, and the circumferential direction ⁇ may be referred to as an axial direction, a radial direction, and a circumferential direction of the yoke 25 described later, or the axial direction, the radial direction, and the rotor core 21 It may be referred to as a circumferential direction.
- the electric motor 1 includes a housing 5, a stator 10, a rotor 20, bearings 50 ⁇ / b> A and 50 ⁇ / b> B, and a blower 60.
- the housing 5 accommodates the stator 10 and the rotor 20, and has a first ventilation port 5a and a second ventilation port 5b.
- the first vent hole 5a and the second vent hole 5b are opened to the outside of the housing 5, respectively.
- the first ventilation port 5 a is an intake port that is provided at one end in the axial direction Z of the housing 5 and to which cooling air is supplied from the blower 60.
- the second ventilation port 5 b is an exhaust port that is provided at the other end portion of the housing 5 in the axial direction Z and through which the cooling air flowing inside the housing 5 is exhausted to the outside of the housing 5.
- the blower 60 when the blower 60 is driven, cooling air flows inside the housing 5, and the stator 10 and the rotor 20 are cooled.
- the cooling structure of the forced air cooling (forced air cooling) system of the electric motor 1 is implement
- the electric motor 1 is not limited to a forced air cooling type electric motor, and may be a self-venting type electric motor in which a fan is attached to a shaft 23 (described later) or a natural cooling type electric motor.
- the stator 10 includes a stator core 11 and a stator coil 13.
- the stator core 11 is formed in a cylindrical shape extending in the axial direction Z by, for example, laminating a plurality of annular magnetic steel plates in the axial direction Z.
- the stator core 11 is disposed outside the rotor 20.
- a plurality of stator slots 15 extending in the axial direction Z are provided on the inner peripheral portion of the stator core 11.
- the plurality of stator slots 15 are formed at equal intervals in the circumferential direction ⁇ .
- the stator coil 13 is inserted into the stator slot 15.
- the rotor 20 includes a rotor iron core 21, a shaft 23, and pressing plates 24A and 24B.
- the rotor core 21 is formed in a cylindrical shape extending in the axial direction Z by, for example, laminating a plurality of annular magnetic steel plates in the axial direction Z.
- the outer peripheral surface of the rotor core 21 is opposed to the inner peripheral surface of the stator core 11 with a gap g in the radial direction R.
- the shaft 23 is disposed coaxially with the central axis O of the electric motor 1 and is rotatably supported by bearings 50A and 50B.
- a rotor core 21 is fixed to the shaft 23.
- the rotor core 21 is disposed coaxially with the central axis O of the electric motor 1 and is provided to be rotatable around the central axis O.
- the holding plates 24A and 24B are fixed to the shaft 23.
- the holding plates 24 ⁇ / b> A and 24 ⁇ / b> B are formed, for example, in a plate shape along the end surface in the axial direction Z of the rotor core 21. In the axial direction Z, the holding plates 24A and 24B are located separately on both sides of the rotor core 21, and hold the rotor core 21 from both sides.
- FIG. 2 is a sectional view taken along line F2-F2 of the electric motor 1 shown in FIG.
- the rotor core 21 according to the present embodiment includes a yoke 25, a support portion 27, and a plurality of spokes 29.
- the yoke 25 is formed in an annular shape (cylindrical shape) when viewed from the axial direction Z, and supports a plurality of rotor bars 35 (conductors). More specifically, a plurality of rotor slots 33 extending in the axial direction Z are formed on the outer peripheral portion of the yoke 25. The plurality of rotor slots 33 are provided at the same position in the radial direction R and are arranged at equal intervals in the circumferential direction ⁇ . A rotor bar 35 is inserted into each rotor slot 33.
- the rotor slot is not limited to the fully closed slot as shown in the drawing, and may be a semi-closed slot.
- the rotor bar 35 is made of a metal material such as aluminum or copper.
- Both end portions in the axial direction Z of the rotor bar 35 protrude in the axial direction Z from both end surfaces in the axial direction Z of the rotor core 21.
- the ends of the plurality of rotor bars 35 protruding from the rotor core 21 are integrally connected by an annular end ring (not shown).
- the support portion 27 is disposed inside the yoke 25 in the radial direction R and supports the yoke 25. More specifically, the support portion 27 is formed in a cylindrical shape and is arranged coaxially with the central axis O.
- the shaft 23 described above is disposed inside the support portion 27. The shaft 23 is fixed to the support portion 27 by press fitting or shrink fitting.
- the plurality of spokes 29 are provided between the yoke 25 and the shaft 23 and support the yoke 25 with respect to the shaft 23.
- the term “provided between the yoke and the shaft” in the present application is not limited to the case where the spoke 29 is directly connected to the shaft 23, but another element (for example, the present embodiment) between the spoke 29 and the shaft 23.
- the form includes the case where the support 27) exists.
- the plurality of spokes 29 are provided between the yoke 25 and the support portion 27 and connect the yoke 25 and the support portion 27.
- the term “supporting the yoke with respect to the shaft” in the present application is not limited to the case where the spoke 29 is directly connected to the shaft 23 to support the yoke 25, but is another element attached to the shaft 23 (for example, the present embodiment).
- the embodiment includes a case where the yoke 25 is supported with respect to the shaft 23 by connecting the spoke 29 to the support portion 27).
- the “spoke” in the present application means a linear portion provided between the yoke 25 and the shaft 23, and extends along a radial direction (radial direction R of the yoke 25) centering on the central axis O. It may be an element extending along a direction intersecting with the radiation direction.
- the “linear portion” is not limited to an element extending in a straight line, but includes an element extending in a curved line, a bent element, an element whose width gradually changes, and the like.
- each spoke 29 extends linearly along the radial direction (the radial direction R of the yoke 25) with the central axis O as the center.
- Each spoke 29 is a spoke-like rib provided integrally with the yoke 25 and the support portion 27, for example.
- the plurality of spokes 29 are spaced apart from each other in the circumferential direction ⁇ .
- the spoke 29 extends with a certain width W along the radial direction R as viewed from the axial direction Z, and smoothly connects to the inner peripheral surface of the yoke 25 and the outer peripheral surface of the support portion 27 at both ends in the radial direction R. ing.
- a plurality of spokes 29 (six in this embodiment) are arranged at equal intervals in the circumferential direction ⁇ .
- the number of spokes 29 is set to an integer multiple of the number of poles of the electric motor 1, for example.
- the “integer multiple” includes 1 ⁇ .
- the number of spokes 29 is set to be the same as the number of poles of the electric motor 1.
- the number of the spokes 29 may be a number different from an integer multiple of the number of poles of the electric motor 1. A case where the number of the spokes 29 is different from an integer multiple of the number of poles of the electric motor 1 will be described later.
- gap (space part) 31 is each formed in the substantially identical shape, for example.
- the cross-sectional shape seen from the axial direction Z of the air gap 31 is formed in a substantially trapezoidal shape.
- the “substantially trapezoidal shape” referred to in the present application includes a trapezoidal shape with curved sides and a trapezoidal shape with rounded corners.
- the cross-sectional shape seen from the axial direction Z of the air gap 31 is formed by being surrounded by arcuate portions 31a and 31b, straight portions 31c and 31d, and corner round portions 31e, 31e, 31f, and 31f.
- the arc-shaped portion 31a is an inner peripheral edge of the yoke 25, and is formed in an arc shape centered on the central axis O, for example.
- the arc-shaped portion 31b is an outer peripheral edge of the support portion 27, and is formed in an arc shape centered on the central axis O, for example.
- the arc-shaped portion 31b is provided at the same position in the circumferential direction ⁇ on the inner side in the radial direction R than the arc-shaped portion 31a.
- the straight portions 31c and 31d extend linearly so as to connect the ends of the arc-shaped portions 31a and 31b.
- Each corner radius portion 31e is provided at a corner (corner portion) where the arc-shaped portion 31a and the straight portions 31c and 31d are connected.
- Each corner round part 31e is formed in an arc shape, for example, and smoothly connects the arc-shaped part 31a and the straight parts 31c and 31d.
- the corner rounded portion 31e may be referred to as an “arc portion”.
- each other corner round part 31f is provided at a corner where the arcuate part 31b and the straight parts 31c and 31d are connected.
- the corner rounded portion 31f is formed in, for example, an arc shape, and smoothly connects the arc-shaped portion 31b and the straight portions 31c and 31d. As a result, stress concentration in the corner is suppressed.
- FIG. 3 is a cross-sectional view showing an example of magnetic flux lines of the electric motor 1 of the present embodiment.
- the magnetic flux generated by energizing the stator coil 13 forms a closed loop around the stator coil 13. Specifically, the magnetic flux passes between the stator coils 13 adjacent in the circumferential direction ⁇ and between the rotor bars 35 adjacent in the circumferential direction ⁇ , and then passes between the gap 31 and the rotor bar 35 in the yoke 25. In other words, the magnetic flux passes outside of the spoke 29 in the radial direction R.
- the magnetic flux passing between the gap 31 and the rotor bar 35 passes between the rotor bars 35 adjacent in the circumferential direction ⁇ and between the stator coils 13 adjacent in the circumferential direction ⁇ , and then in the stator core 11. It flows outside the coil 13 in the radial direction R. In this way, a closed loop of magnetic flux is formed. Then, by rotating the magnetic flux around the stator coil 13 in the circumferential direction ⁇ , the rotor 20 is rotated and rotated.
- the weight can be reduced. That is, the rotor core 21 of this embodiment has a plurality of spokes 29 that are provided between the annular yoke 25 and the shaft 23 and support the yoke 25. According to such a configuration, a relatively large gap 31 can be provided between adjacent spokes 29. Thereby, weight reduction of the electric motor 1 can be achieved. Further, when the magnetic flux passes outside of the spoke 29 in the radial direction R, even when the spoke 29 is provided, it is possible to suppress a decrease in the magnetic characteristics of the electric motor 1.
- the spokes 29 are formed in a straight line. According to such a configuration, it is easy to increase the gap 31 between the spokes 29 while ensuring the mechanical strength of the electric motor 1. For this reason, it becomes easy to achieve further weight reduction of the electric motor 1.
- the path through which the magnetic flux flows in the rotor 20 changes in the relative position in the rotor 20 at the slip frequency. Therefore, if the number of the spokes 29 is not divisible by the number of poles of the electric motor 1, a portion where the magnetic flux flows through the spokes 29 to the vicinity of the shaft 23 depending on the presence or absence of the spokes 29, and the radial direction R more than the spokes 29. There may be a portion where the magnetic flux flow path is formed only on the outside. For this reason, the magnetic flux flowing between the rotor 20 and the stator 10 is biased, and torque pulsation of the rotor 20 with respect to the stator 10 may occur.
- spokes 29 are formed in the same number as the number of poles of the electric motor 1. Thereby, regardless of the position of the spoke 29, the force acting on the rotor 20 from the stator 10 can be made uniform. Thereby, it may be possible to suppress the occurrence of torque pulsation or the like in the rotor 20. This is the same when the number of the spokes 29 is an integral multiple of the number of poles of the electric motor 1.
- a part of the cooling air supplied from the blower 60 into the housing 5 may flow into the gap 31.
- the electric motor 1 excellent also in terms of cooling efficiency can be provided.
- gap 31 is a hole aiming at weight reduction, for example, and a cooling wind does not need to flow.
- FIG. 4 is a cross-sectional view showing the electric motor 1 of the first modification.
- each spoke 29 is formed in a wave shape having at least one (for example, a plurality of) bent portions 71.
- Each spoke 29 is curved in the circumferential direction ⁇ at the bent portion 71.
- FIG. 5 is a cross-sectional view showing the electric motor 1 of the second modification.
- the cross-sectional shape of the air gap 31 viewed from the axial direction Z is formed in a substantially triangular shape. That is, in this modification, at least some of the spokes 29 included in the plurality of spokes 29 are arranged such that the gaps 31 between the adjacent spokes 29 are substantially triangular.
- the “substantially triangular shape” referred to in the present application includes a triangular shape with curved sides and a triangular shape with rounded corners.
- the plurality of spokes 29 of the present modification extend along a direction intersecting the radial direction (the radial direction R of the yoke 25) centered on the central axis O.
- the plurality of spokes 29 of the present modification include a first inclined spoke 29A inclined to the first side in the circumferential direction ⁇ with respect to the radial direction centered on the central axis O, and the first side in the circumferential direction ⁇ .
- a second inclined spoke 29B inclined to the second side which is the opposite side.
- the first inclined spokes 29A and the second inclined spokes 29B are alternately arranged in the circumferential direction ⁇ .
- the mechanical strength of the electric motor 1 may be increased. For this reason, for example, the motor 1 that is excellent in terms of vibration (noise) and life of the motor 1 can be provided.
- FIG. 6 is a cross-sectional view showing the electric motor 1 of the second embodiment.
- the number of spokes 29 is set to a number different from an integer multiple of the number of poles of the electric motor 1. That is, the number of spokes 29 is set to a number that cannot be divided by the number of poles of the electric motor 1.
- the electric motor 1 has 6 poles, and the number of the spokes 29 is 7.
- the configuration of the embodiment is not limited to the above example.
- the number of the spokes 29 is a number divisible by the number of poles of the electric motor 1, the magnitude of the magnetic flux flowing between the rotor 20 and the stator 10 changes with time, which causes torque pulsation.
- the number of spokes 29 is set to a number that cannot be divided by the number of poles of the electric motor 1. According to such a configuration, the torque pulsation generated by the electric motor 1 may be suppressed.
- FIG. 7 is a cross-sectional view showing the electric motor 1 of the third embodiment.
- the rotor core 21 of the present embodiment does not have the support portion 27, and the spokes 29 are directly fixed to the shaft 23.
- the shaft 23 is provided with a plurality of fixing portions 80 for fixing the spokes 29 to the shaft 23.
- each fixing portion 80 has a pair of protrusions 82A and 82B (key structure) provided on the shaft 23.
- the pair of projecting portions 82 ⁇ / b> A and 82 ⁇ / b> B are provided integrally with the shaft 23 and project outward from the shaft 23 in the radial direction R.
- Each of the pair of projecting portions 82 ⁇ / b> A and 82 ⁇ / b> B extends along the axial direction Z.
- Each spoke 29 is inserted between the pair of projecting portions 82A and 82B and sandwiched between the pair of projecting portions 82A and 82B from both sides. Thereby, the spoke 29 is fixed to the shaft 23.
- “fixed” in the present application means a connection relationship in which the shaft 23 rotates as the rotor core 21 rotates, and includes a case where there is a slight play between the spoke 29 and the fixed portion 80.
- Each of the pair of protrusions 82A and 82B has a support surface 84 that supports the spoke 29 in the circumferential direction ⁇ .
- the support surface 84 receives a force in the rotation direction (circumferential direction ⁇ ) of the rotor core 21 by, for example, contact of the spokes 29.
- the shaft 23 rotates with the rotation of the rotor core 21.
- the thickness of the support portion 27 in the radial direction R may be reduced. If the thickness of the support portion 27 in the radial direction R is reduced, the rotor core 21 may be loosely fixed to the shaft 23 even if the support portion 27 is attached to the shaft 23 by press fitting or shrink fitting. If the fixing of the rotor core 21 to the shaft 23 is loosened, a slip may occur between the shaft 23 and the rotor core 21 and the efficiency of the electric motor 1 may be reduced.
- each fixing portion 80 has a support surface 84 that supports the spokes 29 in the circumferential direction ⁇ , whereby the rotor core 21.
- the shaft 23 With the rotation of the shaft 23, the shaft 23 is reliably rotated. For this reason, the space
- FIG. 8 is a cross-sectional view showing the electric motor 1 of the first modification.
- the fixed portion 80 of this modification includes grooves (key grooves) 86A and 86B provided in the shaft 23, and engagement members (keys) 88A and 88B inserted in the grooves 86A and 86B.
- the engaging members 88A and 88B form a pair of projecting portions 82A and 82B projecting outward from the surface of the shaft 23 in the radial direction R in a state of being inserted into the grooves 86A and 86B.
- Each of the grooves 86A and 86B and the engaging members 88A and 88B extends in the axial direction Z.
- Each spoke 29 is inserted between the pair of projecting portions 82A and 82B and sandwiched between the pair of projecting portions 82A and 82B from both sides. Thereby, the spoke 29 is fixed to the shaft 23.
- FIG. 9 is a cross-sectional view showing the electric motor 1 of the second modification.
- the fixing portion 80 of this modification is a groove 86 provided in the shaft 23.
- the groove 86 is recessed inward in the radial direction R with respect to the surface of the shaft 23.
- the groove 86 extends along the axial direction Z.
- the groove 86 is provided at a position corresponding to the spoke 29 in the circumferential direction ⁇ .
- the end of the spoke 29 is inserted into the groove 86. Thereby, the spoke 29 is fixed to the shaft 23.
- Each groove 86 has a support surface 84 that supports the spoke 29 in the circumferential direction ⁇ .
- the support surface 84 receives a force in the rotation direction (circumferential direction ⁇ ) of the rotor core 21, for example, when the spokes 29 come into contact with each other. Thereby, the shaft 23 rotates with the rotation of the rotor core 21.
- the shaft 23 can be reliably rotated with the rotation of the rotor core 21 as in the third embodiment. For this reason, the space
- FIG. 10 is a partially exploded perspective view showing the rotor core 21 of the fourth embodiment.
- the rotor core 21 of the present embodiment includes a plurality of members 90 that are overlapped with each other in the axial direction Z and each form part of the yoke 25.
- Each member 90 is a magnetic steel plate laminated in the axial direction Z so as to form the rotor core 21, for example.
- the plurality of members 90 include a plurality of first members 91 and a plurality of second members 92.
- the first member 91 and the second member 92 are substantially the same as each other except that, for example, the arrangement positions of the spokes 29 in the circumferential direction ⁇ are different.
- a set of first members 91 is formed by stacking a plurality of first members 91 continuously in the axial direction Z.
- a plurality of second members 92 are continuously stacked in the axial direction Z to form a set of second members 92.
- the set of first members 91 and the set of second members 92 are alternately stacked in the axial direction Z.
- the set of the first member 91 and the set of the second member 92 are connected to each other by caulking or welding.
- the first member 91 and the second member 92 may be alternately arranged one by one.
- the plurality of spokes 29 include a plurality of first spokes 95 formed by the first member 91 and a plurality of second spokes 96 formed by the second member 92. At least a part of each first spoke 95 and at least a part of each second spoke 96 are arranged at different positions in the circumferential direction ⁇ .
- FIG. 11 is a cross-sectional view showing the electric motor 1 of the present embodiment.
- each first spoke 95 is disposed at a position corresponding to a position between the adjacent second spokes 96 as a position in the circumferential direction ⁇ .
- the first spoke 95 is disposed at a position overlapping the gap 31 between the adjacent second spokes 96 when viewed from the axial direction Z.
- each of the second spokes 96 is disposed at a position corresponding to a position between the adjacent first spokes 95 as a position in the circumferential direction ⁇ .
- the second spoke 96 is disposed at a position overlapping the gap 31 between the adjacent first spokes 95 when viewed from the axial direction Z.
- the periphery of the gap 31 between the first spokes 95 is reinforced by the second spokes 96.
- the periphery of the space 31 between the second spokes 96 is reinforced by the first spokes 95.
- the mechanical strength of the electric motor 1 can be increased.
- the mechanical strength of the electric motor 1 can be increased by the first spoke 95 and the second spoke 96 that are arranged at least partially different from each other in the circumferential direction ⁇ , the first spoke 95 and the width W of the second spoke 96 can be reduced.
- the further weight reduction of the electric motor 1 can be achieved.
- the plurality of spokes 29 of the rotor core 21 may include three or more types of spokes 29 that are arranged at least partially different from each other in the circumferential direction ⁇ .
- FIG. 12 is a cross-sectional view showing the electric motor 1 of the first modification.
- each of the first spoke 95 and the second spoke 96 is along a direction intersecting with a radial direction centering on the central axis O (radial direction R of the yoke 25). It extends.
- the first spoke 95 is the first inclined spoke 29 ⁇ / b> A inclined to the first side in the circumferential direction ⁇ with respect to the radial direction centered on the central axis O.
- the second spoke 96 is a second inclined spoke 29B that is inclined in the circumferential direction ⁇ toward the second side opposite to the first side.
- the first spoke 95 and the second spoke 96 are arranged so as to intersect each other when viewed from the axial direction Z. According to such a configuration, the rigidity in a plurality of directions is improved by the first spoke 95 and the second spoke 96, and the mechanical strength of the electric motor 1 as a whole can be further increased.
- FIG. 13 is a cross-sectional view showing the electric motor 1 of the second modification.
- each of the first spoke 95 and the second spoke 96 is along a direction intersecting the radial direction centering on the central axis O (the radial direction R of the yoke 25). It extends.
- each of the first member 91 and the second member 92 includes a plurality of first inclined spokes 29A and a plurality of second inclined spokes 29B. That is, in the first member 91, the first inclined spokes 29A and the second inclined spokes 29B are alternately arranged in the circumferential direction ⁇ .
- the first inclined spokes 29A and the second inclined spokes 29B are alternately arranged in the circumferential direction ⁇ . According to such a configuration, the mechanical strength of the electric motor 1 as a whole can be increased as in the first modification.
- FIG. 14 is a cross-sectional view showing the electric motor 1 of the present embodiment.
- the first presser plate 24 ⁇ / b> A is located upstream of the rotor core 21 in the direction of wind flow in the housing 5 (the direction from the first ventilation port 5 a toward the second ventilation port 5 b).
- the second pressing plate 24 ⁇ / b> B is located downstream of the rotor core 21 in the wind flow direction in the housing 5.
- FIG. 15 is a partially exploded perspective view showing the rotor 20 of the present embodiment.
- illustration of the rotor bar 35 and the end ring is omitted in FIG.
- the wind control structure 100 of the present embodiment includes a cover 102 that covers at least a part of the gap 31 of the rotor core 21 from the axial direction Z, and a plurality of through holes 104 provided in the cover 102. The plurality of through holes 104 communicate with the gap 31 of the rotor core 21.
- Each through-hole 104 is smaller than the gap 31 of the rotor core 21 when viewed from the axial direction Z.
- the total opening area of the plurality of through holes 104 is smaller than the total opening area of the plurality of gaps 31 of the rotor core 21.
- a plurality of gaps 31 are provided in the second pressing plate 24B.
- the gap 31 of the second pressing plate 24B is formed in substantially the same shape as the gap 31 of the rotor core 21, for example.
- the flow direction of the cooling air flowing in the housing 5 is changed so as to increase.
- the cooling air that has flowed into the gap 31 of the rotor core 21 flows inside the rotor core 21, thereby cooling the rotor core 21.
- the cooling air that has flowed inside the rotor core 21 passes through the gap 31 of the second pressing plate 24B, and is exhausted from the second ventilation port 5b to the outside of the housing 5.
- the cooling air that has flowed into the gap g between the stator core 11 and the rotor core 21 flows through the gap g between the stator core 11 and the rotor core 21, so that the stator core 11 and Both the rotor core 21 and cool down. Then, the cooling air flowing through the gap g between the stator core 11 and the rotor core 21 is exhausted to the outside of the housing 5 from the second ventilation port 5b.
- the temperature is particularly high in the vicinity of the stator coil 13 of the stator 10 and the rotor bar 35 of the rotor 20. For this reason, it is desirable to supply as much cooling air as possible to the gap g between the stator core 11 and the rotor core 21.
- a relatively large gap 31 is provided between adjacent spokes 29 of the rotor core 21 for the purpose of weight reduction, most of the cooling air flowing in the housing 5 is in the gap 31 between the spokes 29. There is a possibility that the cooling air will not be supplied to the gap g between the stator core 11 and the rotor core 21.
- the wind control structure 100 directs at least a part of the cooling air flow toward the gap 31 between the adjacent spokes 29 toward the gap g between the rotor core 21 and the stator core 11. Change. Thereby, even if it is a case where the comparatively big space
- FIG. 16 is a cross-sectional view showing the electric motor 1 of the first modification.
- the wind control structure 100 is provided on a magnetic steel plate (laminated steel plate) 106 that forms a part of the rotor core 21. More specifically, the wind control structure 100 of the present modification is provided on one or a plurality of magnetic steel plates 106 positioned at the upstream end of the rotor core 21 in the cooling air flow direction.
- This magnetic steel plate 106 has a cover 102 and a through hole 104, for example, similarly to the first pressing plate 24A of the fifth embodiment.
- a plurality of gaps 31 are also provided in the first pressing plate 24A.
- the gap 31 of the first pressing plate 24A is formed in, for example, substantially the same shape as the gap 31 of the rotor core 21.
- the first pressing plate 24A is thicker than the magnetic steel plate 106 in the thickness in the axial direction Z. For this reason, while providing the cover 102 in the magnetic steel plate 106 and providing the relatively large gap 31 in the first pressing plate 24A, the motor 1 can be further reduced in weight.
- FIG. 17 is a cross-sectional view showing the electric motor 1 of the second modification.
- the rotor core 21 of the present modification includes a plurality of members 90 that are overlapped with each other in the axial direction Z and each form part of the yoke 25, as in the fourth embodiment.
- Each member 90 is a magnetic steel plate laminated in the axial direction Z so as to form the rotor core 21, for example.
- Each of the plurality of members 90 has a spoke 29. The spokes 29 of the plurality of members 90 are disposed at positions that are at least partially different from each other in the circumferential direction ⁇ .
- an example of the wind control structure 100 is formed by a plurality of spokes 29 that are arranged at least partially different from each other in the circumferential direction ⁇ .
- FIG. 18 is a partially exploded perspective view showing the rotor 20 of the present embodiment.
- a wind control plate 108 as a separate member is attached to the first pressing plate 24A.
- the wind control plate 108 has a cover 102 and a through hole 104, and forms an example of the wind control structure 100.
- a plurality of gaps 31 are provided in the first pressing plate 24A of the present modification.
- the gap 31 of the first pressing plate 24A is formed in, for example, substantially the same shape as the gap 31 of the rotor core 21.
- the cooling performance of the electric motor 1 can be improved even when a relatively large gap 31 is provided between the spokes 29, as in the fifth embodiment. it can.
- FIG. 19 is a cross-sectional view showing the electric motor 1 of the present embodiment.
- a lightening portion 40 is formed on the extension line of each spoke 29 in the rotor core 21, on the extension line of each spoke 29 in the rotor core 21, a lightening portion 40 is formed.
- “on the spoke extension line in the rotor core” is, for example, on the extension line of the center line C (see FIG. 20) of the spoke 29.
- the center line C of the spoke 29 is a center line that passes through the center of the spoke 29 in the circumferential direction ⁇ and extends in the longitudinal direction of the spoke 29 (substantially parallel to the radial direction R in the present embodiment).
- “on the spoke extension line in the rotor core” is not limited to the above example, and may be on an extension line obtained by extending a part of the spoke 29 that is out of the center line C in the longitudinal direction of the spoke 29.
- FIG. 20 is an enlarged cross-sectional view showing a region surrounded by the F20 line of the electric motor 1 shown in FIG.
- the portion located on the rotor bar 35 side of the lightening portion 40 that is, the portion located outside in the radial direction R is located outside the gap 31 in the radial direction R.
- the lightening portion 40 is located on the outer side in the radial direction R with respect to the imaginary line IL that connects between the arc-shaped portions 31 a of the two adjacent gaps 31.
- the thinned portion 40 does not enter the spoke 29 and is provided at a position outside the spoke 29 in the radial direction R (that is, the yoke 25).
- the formation position of the lightening part 40 is not restricted to the said example. For example, in a case where sufficient rigidity can be secured, a part of the lightening portion 40 may be provided on the spoke 29.
- the thinned portion 40 is arranged at a sufficient distance from the rotor bar 35 so as not to disturb the magnetic flux passing through the rotor core 21.
- the lightening portion 40 is disposed in the yoke 25 at a position closer to the spoke 29 than to the rotor bar 35.
- the lightening portion 40 is disposed in the vicinity of the spoke 29.
- An iron core portion through which a magnetic flux can pass is provided between the thinned portion 40 and the rotor bar 35.
- Each hollow portion 40 penetrates the rotor core 21 in the axial direction Z.
- the thinned portion 40 is formed so as to be symmetric with respect to the center line C of the spoke 29 when viewed from the axial direction Z.
- the lightening portion 40 is formed so that the outer portion in the radial direction R is along the circumferential direction ⁇ , and the inner portion in the radial direction R is inside the radial direction R in the central portion of the circumferential direction ⁇ . It is formed so as to bulge out.
- the thinned portion 40 of the present embodiment is formed in a substantially triangular shape.
- the “substantially triangular shape” referred to in the present application includes a triangle having a curved side and a triangle having rounded corners.
- the thinned portion 40 is disposed with one convex portion (corner portion) 41 facing the spoke 29. That is, the thinned portion 40 is arranged with the convex portion 41 facing the inside in the radial direction R of the yoke 25.
- the “convex portion” in the present application means, for example, a corner portion of a polygonal shape (substantially triangular shape in the present embodiment).
- the convex portion 41 of the lightening portion 40 is located, for example, on an extension line of the center line C of the spoke 29.
- the connecting portion 29a (root portion) of each spoke 29 with respect to the yoke 25 is a pair of bulges in the direction away from the center line C of the spoke 29 (circumferential direction ⁇ ) as it goes outward in the radial direction R of the yoke 25. It has swelling parts 30A and 30B (the 1st swelling part 30A and the 2nd swelling part 30B). That is, the first bulge portion 30A is a bulge portion formed by providing a corner radius portion 31e at the corner of the gap 31 where the arc-shaped portion 31a and the straight portion 31d are connected.
- the second bulge portion 30B is a bulge portion formed by providing a corner radius portion 31e at the corner of the gap 31 where the arc-shaped portion 31a and the straight portion 31c are connected.
- the convex portion 41 of the thinned portion 40 is disposed toward the region 32 between the pair of bulging portions 30A and 30B of the connecting portion 29a of the spoke 29 with respect to the yoke 25.
- the thinned portion 40 is larger in the maximum width W1 of the thinned portion 40 in the circumferential direction ⁇ than the maximum width (maximum thickness) W2 of the thinned portion 40 in the radial direction R. It has a flat shape.
- the maximum width W1 of the thinned portion 40 in the circumferential direction ⁇ is larger than the width W of the spokes 29 in the circumferential direction ⁇ .
- FIG. 21 is a diagram illustrating an example of magnetic flux lines of the electric motor 1 of the present embodiment.
- the magnetic flux generated by energizing the stator coil 13 forms a closed loop around the stator coil 13. Specifically, the magnetic flux passes between the stator coils 13 adjacent in the circumferential direction ⁇ and between the rotor bars 35 adjacent in the circumferential direction ⁇ , and then travels between the gap 31 and the rotor bar 35. A part of the magnetic flux flowing between the gap 31 and the rotor bar 35 passes between the rotor bar 35 and the cutout part 40 in the yoke 25, and the rest passes between the gap 31 and the cutout part 40.
- the magnetic flux passing between the rotor bar 35 and the thinned portion 40 and the magnetic flux passing between the gap 31 and the thinned portion 40 are adjacent between the adjacent rotor bars 35 in the circumferential direction ⁇ and in the circumferential direction ⁇ . After passing between the stator coils 13, the stator core 11 flows outside the stator coil 13 in the radial direction R. In this way, a closed loop of magnetic flux is formed.
- the electric motor 1 having such a configuration, weight reduction can be achieved while suppressing a decrease in magnetic characteristics.
- a comparative example consider the case where the rotor core 21 is provided with the lightening portion 40 without considering a specific position.
- the provision of the hollow portion 40 limits the magnetic flux flow path in the yoke 25 around the hollow portion 40, resulting in an increase in magnetic resistance due to magnetic flux saturation.
- the magnetic resistance increases, the magnetic characteristics of the electric motor 1 may be reduced, and the efficiency and torque of the electric motor 1 may be reduced.
- the lightening portion 40 is formed on the extension line of the spoke 29 in the rotor core 21.
- a part of the magnetic flux passing through the yoke 25 is By bypassing the thinning portion 40 through a part of the spoke 29 (for example, the connection portion 29a of the spoke 29) around the periphery, the surrounding portion of the thinning portion 40 can be passed without being saturated.
- the structure of this embodiment even if it is a case where the thinning part 40 is provided, the magnetic characteristic of the electric motor 1 does not fall easily. Thereby, the weight reduction of the electric motor 1 can be achieved, suppressing the fall of the magnetic characteristic of the electric motor 1.
- the connecting portion 29a of the spoke 29 with respect to the yoke 25 has the bulging portions 30A and 30B in order to avoid stress concentration occurring at the corner portion of the gap 31 and the like.
- the electric motor 1 becomes heavier by that amount.
- the lightening portion 40 is provided in the vicinity of the spoke 29 using the bulging portions 30A and 30B, so that the weight of the electric motor 1 is reduced. From another point of view, even when the rotor core 21 is provided with the thinned portion 40, the mechanical strength of the rotor core 21 is kept high by the bulging portions 30A and 30B. Thereby, the electric motor 1 excellent in both mechanical strength and weight reduction can be provided.
- the lightening portion 40 has a substantially triangular shape. According to such a configuration, the magnetic flux is likely to branch off on both sides of the thinned portion 40. For this reason, even if it is a case where the thickness reduction part 40 is provided, the fall of the magnetic characteristic of the electric motor 1 can further be suppressed.
- the thinned portion 40 has a shape including a convex portion 41 facing the spoke 29. According to such a configuration, even when the convex portion 41 is provided in the thinned portion 40 so that the area of the thinned portion 40 is relatively large, the thinned portion 40 and the spoke 29 in which the convex portion 41 exists. In between, a part of the magnetic flux can bypass the thinned portion 40 by passing through the connecting portion 29a of the spoke 29. Thereby, while further reducing the weight of the electric motor 1 by increasing the area of the thinned portion 40, it is possible to suppress a decrease in the magnetic characteristics of the electric motor 1.
- the thinned portion 40 has a substantially triangular shape with the convex portion 41 facing the spoke 29. According to such a configuration, since the convex portion (corner portion) of the thinning portion 40 does not exist between the thinning portion 40 and the rotor bar 35, the magnetic flux between the thinning portion 40 and the rotor bar 35 can be reduced. Saturation is less likely to occur. On the other hand, a portion of the magnetic flux can bypass the thinning portion 40 by passing through the connecting portion 29a of the spoke 29 between the thinning portion 40 and the spoke 29 where the convex portion 41 exists. Thereby, the fall of the magnetic characteristic of the electric motor 1 can further be suppressed.
- the convex portion 41 of the lightening portion 40 faces the region 32 between the pair of bulging portions 30A and 30B. According to such a configuration, part of the magnetic flux passes through the bulging portions 30 ⁇ / b> A and 30 ⁇ / b> B of the spoke 29 between the thinning portion 40 and the spoke 29 where the convex portion 41 of the thinning portion 40 exists. As a result, it is possible to bypass the meat extraction portion 40 through a part of the spoke 29. As a result, the magnetic flux is less likely to be saturated around the thinned portion 40, and the deterioration of the magnetic characteristics of the electric motor 1 can be further suppressed.
- the thinned portion 40 has a flat shape in which the maximum width W1 in the circumferential direction ⁇ is larger than the maximum width W2 in the radial direction R. According to such a configuration, since the maximum width W2 in the radial direction R of the thinned portion 40 is relatively small, the thinned portion 40 is less likely to inhibit the magnetic flux. On the other hand, since the maximum width W1 in the circumferential direction ⁇ of the thinned portion 40 is relatively large, the motor 1 can be further reduced in weight. Thereby, the electric motor 1 which was further excellent in both the magnetic characteristics and weight reduction can be provided.
- the lightening portion 40 does not enter the spoke 29 but is provided at a position outside the spoke 29 in the radial direction R (that is, the yoke 25). According to such a configuration, it becomes easy to ensure the mechanical strength of the spoke 29. Thereby, the electric motor 1 excellent also in terms of strength can be provided.
- a part of the cooling air supplied from the blower 60 into the housing 5 flows into the inside of the thinning portion 40. Also good. Thereby, the electric motor 1 excellent also in terms of cooling efficiency can be provided.
- the lightening part 40 is a hole aiming at weight reduction, for example, and cooling air may not flow.
- a seventh embodiment will be described with reference to FIG.
- This embodiment is different from the sixth embodiment in that the thinned portion 40 is formed in a substantially circular shape.
- the configurations other than those described below are the same as those in the sixth embodiment.
- FIG. 22 is a cross-sectional view showing the electric motor 1 of the seventh embodiment.
- the lightening portion 40 of the present embodiment is formed in a substantially circular shape in a cross-sectional shape viewed from the axial direction Z.
- the “substantially circular” in the present application is, for example, a perfect circle, but may be an ellipse instead. Further, the “substantially circular” may be a flat circular shape in which the maximum width W1 of the thinned portion 40 in the circumferential direction ⁇ is larger than the maximum width W2 of the thinned portion 40 in the radial direction R.
- the lightening part 40 is formed in a substantially circular shape. According to such a configuration, a relatively large area of the thinned portion 40 can be secured. Thereby, the further weight reduction of the electric motor 1 can be achieved.
- an eighth embodiment will be described with reference to FIG.
- This embodiment is different from the sixth embodiment in that the arrangement position of the lightening portion 40 is set so as to satisfy a predetermined condition.
- a description will be given on behalf of the arrangement position of one thinning portion 40, but all the thinning portions 40 provided in the rotor core 21 may be set so as to satisfy the following conditions.
- the configurations other than those described below are the same as those in the sixth embodiment.
- FIG. 23 is an enlarged cross-sectional view of a part of the electric motor 1 according to the eighth embodiment.
- the shortest separation distance between the gap 31 and the hollow portion 40 is D as viewed from the axial direction Z, and the width of the spoke 29 in the circumferential direction ⁇ . Is W so that D ⁇ W / 2 (hereinafter referred to as condition 1).
- connection portion 29a of the spoke 29 with respect to the yoke 25 has a pair of bulge portions 30A and 30B, as in the sixth embodiment.
- the lightening portion 40 has a first side 42A that faces the first bulge portion 30A of the spoke 29 and a second side 42B that faces the second bulge portion 30B of the spoke 29.
- the first side 42 ⁇ / b> A and the second side 42 ⁇ / b> B are formed separately on both sides of the convex portion 41 of the thinned portion 40.
- the distance between the edge of the first bulge portion 30A defined by the corner rounded portion 31e and the first side 42A of the thinning portion 40 is between the gap 31 and the thinning portion 40. This corresponds to the shortest separation distance D. Further, the distance between the edge of the second bulge portion 30B defined by the corner rounded portion 31e and the second side 42B of the thinning portion 40 is the shortest separation distance D between the gap 31 and the thinning portion 40. It corresponds to.
- the thinning portion 40 satisfies the above condition 1 when the shortest separation distance between the gap 31 and the thinning portion 40 is D and the width of the spoke 29 in the circumferential direction ⁇ is W. , D ⁇ W.
- the thinning portion 40 has Q + D ⁇ when the shortest separation distance between the gap 31 and the rotor bar 35 is K and the shortest separation distance between the rotor bar 35 and the thinning portion 40 is Q. It is formed so as to satisfy K (hereinafter referred to as condition 2). Note that the thinned portion 40 may be formed so as to satisfy both the condition 1 and the condition 2, or may be formed so as to satisfy only one of the condition 1 and the condition 2.
- the shortest separation distance K between the air gap 31 and the rotor slot 33 (rotor bar 35) is set to a distance at which the magnetic characteristics of the rotor 20 are not deteriorated due to magnetic saturation.
- the shortest separation distance K is the amount of magnetic flux flowing between the air gap 31 and the rotor bar 35 when a predetermined voltage is applied to the stator coil 13 in a configuration in which the hollow portion 40 is not formed in the yoke 25.
- the magnetic flux density is set to be equal to or less than the saturation magnetic flux density.
- the magnetic flux passing through the inner side in the radial direction R than the lightening portion 40 is obstructed by the lightening portion 40, and magnetic saturation occurs between the gap 31 and the lightening portion 40. It can be surely suppressed.
- the shortest separation distance D between the gap 31 and the thinned portion 40 and the width W of the spoke are set so as to further satisfy D ⁇ W.
- the lightening portion 40 can be arranged relatively far from the rotor bar 35. Thereby, saturation of the magnetic flux between the rotor bar 35 and the lightening part 40 can further be suppressed.
- the magnetic flux flowing between the gap 31 and the rotor bar 35 is branched between the gap 31 and the lightening part 40 and between the rotor bar 35 and the lightening part 40. For this reason, when magnetic saturation occurs between the gap 31 and the lightening part 40 or between the rotor bar 35 and the lightening part 40, the gap 31 and the gap 31 are compared with the case where the lightening part 40 is not formed.
- the magnetic flux density with the rotor bar 35 decreases.
- Q + D ⁇ K where K is the shortest separation distance between the gap 31 and the rotor bar 35 and Q is the shortest separation distance between the rotor bar 35 and the cutout portion 40.
- a sufficient width with respect to the flow of magnetic flux can be ensured between the rotor bar 35 and the lightening portion 40. Therefore, for example, it is possible to suppress a magnetic saturation between the rotor bar 35 and the lightening portion 40 and a decrease in the magnetic flux density between the gap 31 and the rotor bar 35.
- the structure of embodiment is not limited to the said example.
- the configurations of the above-described embodiments and modification examples can be applied in combination with each other.
- the electric motor 1 is applied to a railway vehicle.
- the electric motor 1 may be used for a vehicle such as an automobile or an industrial use such as an elevator hoist.
- the spoke 29 is provided, it is not limited to this, The number of spokes can be set arbitrarily.
- the thinned portion 40 may have, for example, a substantially triangular shape with the convex portion 41 facing outward in the radial direction R. Further, the thinned portion 40 may have a shape other than a substantially triangular shape or a substantially circular shape. Further, the rotor iron core 21 may have the spokes 29 directly fixed to the shaft 23 without having the support portion 27. In addition, a part of the lightening part 40 (for example, at least a part of the convex part 41) is located on the inner side in the radial direction R from the virtual line IL that connects between the arcuate parts 31a of the two adjacent gaps 31. It is also possible (see FIG. 24).
- a part of the lightening portion 40 may enter the spoke 29 and be provided on the spoke 29.
- a part of the lightening portion 40 may be provided in a region 32 between the pair of bulging portions 30A and 30B in the connection portion 29a of the spoke 29. According to such a configuration, the area of the thinned portion 40 can be further increased. As a result, the motor 1 can be further reduced in weight.
- fins 62 may be provided on the inner surface of the gap 31 (see FIG. 25).
- the fin 62 may be a plate-like portion extending in the axial direction Z, or a protrusion provided on the inner surface of the gap 31.
- the cooling performance can be improved by increasing the heat radiation area.
- fins 64 may be provided on the inner surface of the thinning portion 40 (see FIG. 26).
- the fin 64 may be a plate-like portion extending in the axial direction Z, or may be a protrusion provided on the inner surface of the thinned portion 40.
- the cooling performance can be improved by increasing the heat radiation area.
- the rotor core has a plurality of spokes arranged between the yoke and the shaft so as to be spaced apart along the circumferential direction of the yoke and supporting the yoke.
- the weight of the electric motor can be reduced.
- SYMBOLS 1 Electric motor, 21 ... Rotor core, 23 ... Shaft, 25 ... Yoke, 29 ... Spoke, 29a ... Connection part of spoke with respect to yoke, 31 ... Air gap, 35 ... Rotor bar (conductor), 40 ... Meat removal part, 41 ... Projection part of the lightening part, 80 ... fixing part, 84 ... support surface, 91 ... first member, 92 ... second member, 95 ... first spoke, 96 ... second spoke, 100 ... wind control structure, 102 ... cover , Z: axial direction, R: radial direction, ⁇ : circumferential direction.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Induction Machinery (AREA)
Abstract
実施形態のかご形誘導電動機は、中心軸回りに回転可能な回転子鉄心と、前記回転子鉄心が固定されたシャフトとを持つ。前記回転子鉄心は、環状のヨークと、複数のスポークとを有する。前記ヨークは、少なくとも1つの導体を支持する。前記複数のスポークは、前記ヨークの周方向に離間して配置され、前記ヨークと前記シャフトとの間に設けられて前記ヨークを支持する。
Description
本発明の実施形態は、かご形誘導電動機に関する。
一般に、かご形誘導電動機は、固定子と、固定子の内側に配置されて導体を有した回転子とを備え、産業用や鉄道用など多岐に亘って用いられている。
ところで、かご形誘導電動機は、さらなる軽量化が期待されている。
ところで、かご形誘導電動機は、さらなる軽量化が期待されている。
本発明が解決しようとする課題は、軽量化を図ることができるかご形誘導電動機を提供することである。
実施形態のかご形誘導電動機は、中心軸回りに回転可能な回転子鉄心と、前記回転子鉄心が固定されたシャフトとを持つ。前記回転子鉄心は、環状のヨークと、複数のスポークとを有する。前記ヨークは、少なくとも1つの導体を支持する。前記複数のスポークは、前記ヨークの周方向に離間して配置され、前記ヨークと前記シャフトとの間に設けられて前記ヨークを支持する。
以下、実施形態のかご形誘導電動機を、図面を参照して説明する。なお以下の説明では、略同じまたは類似の機能を有する構成に同一の符号を付す。そして、それら構成の重複する説明は省略する場合がある。また以下に示すいくつかの図面では、説明の便宜上、電動機のハウジングの図示を省略している。
(第1の実施形態)
図1から図3を参照して、第1の実施形態のかご形誘導電動機1について説明する。
図1は、本実施形態のかご形誘導電動機1を示す断面図である。
本実施形態のかご形誘導電動機1(以下、単に「電動機1」という。)は、例えば鉄道車両の台車などに取り付けられて車輪を駆動する電動機である。本実施形態の電動機1は、例えば三相6極の電動機である。ただし、電動機1の極数は、4極でもよく、8極でもよく、これら以外の極数でもよい。
図1から図3を参照して、第1の実施形態のかご形誘導電動機1について説明する。
図1は、本実施形態のかご形誘導電動機1を示す断面図である。
本実施形態のかご形誘導電動機1(以下、単に「電動機1」という。)は、例えば鉄道車両の台車などに取り付けられて車輪を駆動する電動機である。本実施形態の電動機1は、例えば三相6極の電動機である。ただし、電動機1の極数は、4極でもよく、8極でもよく、これら以外の極数でもよい。
なお以下の説明では、電動機1の回転中心軸(以下、中心軸Oという。)に沿う方向を軸方向Zといい、中心軸Oに直交する方向を径方向Rといい、中心軸O回りに周回する方向を周方向θという。なお、軸方向Z、径方向R、および周方向θは、後述するヨーク25の軸方向、径方向、および周方向と称されてもよく、または回転子鉄心21の軸方向、径方向、および周方向と称されてもよい。
まず、電動機1の全体構成について説明する。
図1に示すように、電動機1は、ハウジング5と、固定子10と、回転子20と、軸受50A,50Bと、ブロワ―60と、を備えている。
図1に示すように、電動機1は、ハウジング5と、固定子10と、回転子20と、軸受50A,50Bと、ブロワ―60と、を備えている。
ハウジング5は、固定子10および回転子20を収容するとともに、第1通風口5aと、第2通風口5bとを有する。第1通風口5aおよび第2通風口5bは、それぞれハウジング5の外部に開口している。例えば、第1通風口5aは、ハウジング5の軸方向Zの一端部に設けられ、ブロワ―60から冷却風が供給される吸気口である。一方で、第2通風口5bは、ハウジング5の軸方向Zの他端部に設けられ、ハウジング5の内部を流れた冷却風がハウジング5の外部に排気される排気口である。このような電動機1では、ブロワ―60が駆動されることで、ハウジング5の内部を冷却風が流れ、固定子10および回転子20が冷却される。これにより、電動機1の強制風冷(強制空冷)方式の冷却構造が実現されている。ただし、電動機1は、強制風冷方式の電動機に限らず、シャフト23(後述)にファンが取り付けられた自己通風方式や、自然冷却方式の電動機でもよい。
固定子10は、固定子鉄心11と、固定子コイル13と、を備えている。
固定子鉄心11は、例えば環状の磁性鋼板が軸方向Zに複数枚積層されることで、軸方向Zに延びた筒状に形成されている。固定子鉄心11は、回転子20の外側に配置されている。固定子鉄心11の内周部分には、軸方向Zに延びた複数の固定子スロット15が設けられている。複数の固定子スロット15は、周方向θに等間隔で形成されている。
固定子コイル13は、固定子スロット15内に挿入されている。
固定子鉄心11は、例えば環状の磁性鋼板が軸方向Zに複数枚積層されることで、軸方向Zに延びた筒状に形成されている。固定子鉄心11は、回転子20の外側に配置されている。固定子鉄心11の内周部分には、軸方向Zに延びた複数の固定子スロット15が設けられている。複数の固定子スロット15は、周方向θに等間隔で形成されている。
固定子コイル13は、固定子スロット15内に挿入されている。
回転子20は、回転子鉄心21と、シャフト23と、押さえ板24A,24Bと、を備えている。
回転子鉄心21は、例えば環状の磁性鋼板が軸方向Zに複数枚積層されることで、軸方向Zに延びた筒状に形成されている。回転子鉄心21の外周面は、固定子鉄心11の内周面に対して径方向Rに隙間gをあけて対向している。
シャフト23は、電動機1の中心軸Oと同軸に配置されるとともに、軸受50A,50Bによって回転可能に支持されている。シャフト23には、回転子鉄心21が固定されている。これにより、回転子鉄心21は、電動機1の中心軸Oと同軸に配置されるとともに、中心軸O回りに回転可能に設けられている。
押さえ板24A,24Bは、シャフト23に固定されている。押さえ板24A,24Bは、例えば回転子鉄心21の軸方向Zの端面に沿う板状に形成されている。押さえ板24A,24Bは、軸方向Zにおいて、回転子鉄心21の両側に分かれて位置し、回転子鉄心21を両側から保持している。
回転子鉄心21は、例えば環状の磁性鋼板が軸方向Zに複数枚積層されることで、軸方向Zに延びた筒状に形成されている。回転子鉄心21の外周面は、固定子鉄心11の内周面に対して径方向Rに隙間gをあけて対向している。
シャフト23は、電動機1の中心軸Oと同軸に配置されるとともに、軸受50A,50Bによって回転可能に支持されている。シャフト23には、回転子鉄心21が固定されている。これにより、回転子鉄心21は、電動機1の中心軸Oと同軸に配置されるとともに、中心軸O回りに回転可能に設けられている。
押さえ板24A,24Bは、シャフト23に固定されている。押さえ板24A,24Bは、例えば回転子鉄心21の軸方向Zの端面に沿う板状に形成されている。押さえ板24A,24Bは、軸方向Zにおいて、回転子鉄心21の両側に分かれて位置し、回転子鉄心21を両側から保持している。
次に、本実施形態の回転子鉄心21について詳しく説明する。
図2は、図1中に示された電動機1のF2-F2線に沿う断面図である。
図2に示すように、本実施形態の回転子鉄心21は、ヨーク25と、支持部27と、複数のスポーク29と、を有している。
図2は、図1中に示された電動機1のF2-F2線に沿う断面図である。
図2に示すように、本実施形態の回転子鉄心21は、ヨーク25と、支持部27と、複数のスポーク29と、を有している。
ヨーク25は、軸方向Zから見た場合に円環状(円筒状)に形成され、複数のロータバー35(導体)を支持している。詳しく述べると、ヨーク25の外周部分には、軸方向Zに延びた複数の回転子スロット33が形成されている。複数の回転子スロット33は、互いに径方向Rの同じ位置に設けられ、周方向θに等間隔で配置されている。各回転子スロット33には、ロータバー35が挿入されている。なお、回転子スロットは、図面に示されたような全閉スロットに限らず、半閉スロットでも構わない。ロータバー35は、アルミニウムや銅などの金属材料により形成されている。ロータバー35の軸方向Zの両端部は、回転子鉄心21の軸方向Zの両端面から軸方向Zに張り出している。回転子鉄心21から張り出した複数のロータバー35の端部は、図示しない環状のエンドリングにより一体に接続されている。
支持部27は、ヨーク25の径方向Rの内側に配置され、ヨーク25を支持している。詳しく述べると、支持部27は、円筒状に形成され、中心軸Oと同軸に配置されている。支持部27の内側には、上述したシャフト23が配置されている。シャフト23は、支持部27に対して圧入や焼嵌めなどにより固定されている。
複数のスポーク29は、ヨーク25とシャフト23との間に設けられ、シャフト23に対してヨーク25を支持する。なお本願でいう「ヨークとシャフトとの間に設けられ」とは、スポーク29がシャフト23に直接に接続されている場合に限らず、スポーク29とシャフト23との間に別要素(例えば本実施形態では支持部27)が存在する場合なども含む。例えば本実施形態では、複数のスポーク29は、ヨーク25と支持部27との間に設けられ、ヨーク25と支持部27とを接続している。また本願でいう「シャフトに対してヨークを支持する」とは、スポーク29がシャフト23に直接に接続されてヨーク25を支持する場合に限らず、シャフト23に取り付けられた別要素(例えば本実施形態では支持部27)にスポーク29が接続されることで、シャフト23に対してヨーク25が支持される場合なども含む。
また本願でいう「スポーク」とは、ヨーク25とシャフト23との間に設けられた線状部を意味し、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に沿って延びた要素に限らず、前記放射方向に対して交差する方向に沿って延びた要素でもよい。なお「線状部」とは、直線状に延びた要素に限らず、曲線状に延びた要素や、屈曲した要素、幅が徐々に変化する要素なども該当する。
本実施形態では、各スポーク29は、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に沿って直線状に延びている。各スポーク29は、例えばヨーク25および支持部27と一体に設けられたスポーク状のリブである。複数のスポーク29は、周方向θに互いに離間して配置されている。スポーク29は、軸方向Zから見て、径方向Rに沿って一定の幅Wで延びるとともに、径方向Rの両端部においてヨーク25の内周面および支持部27の外周面と滑らかに接続している。スポーク29は、周方向θに等間隔で複数(本実施形態では6本)配置されている。
スポーク29の本数は、例えば電動機1の極数の整数倍の数に設定されている。なお「整数倍」とは、1倍を含む。例えば本実施形態では、スポーク29の本数は、電動機1の極数と同数に設定されている。ただし、スポーク29の本数は、電動機1の極数の整数倍とは異なる数でもよい。なお、スポーク29の本数が電動機1の極数の整数倍とは異なる場合については後述する。
次に、隣り合うスポーク29の間の空隙31について詳述する。
本実施形態では、各空隙(空間部)31は、例えばそれぞれ略同一形状に形成されている。本実施形態では、空隙31の軸方向Zから見た断面形状は、略台形状に形成されている。なお本願でいう「略台形状」とは、辺が曲線状の台形状や、角に丸みを持つ台形状を含む。
本実施形態では、各空隙(空間部)31は、例えばそれぞれ略同一形状に形成されている。本実施形態では、空隙31の軸方向Zから見た断面形状は、略台形状に形成されている。なお本願でいう「略台形状」とは、辺が曲線状の台形状や、角に丸みを持つ台形状を含む。
本実施形態では、空隙31の軸方向Zから見た断面形状は、弧状部31a,31bと、直状部31c,31dと、隅アール部31e,31e,31f,31fと、により囲まれて形成されている。弧状部31aは、ヨーク25の内周縁であって、例えば中心軸Oを中心とする円弧状に形成されている。弧状部31bは、支持部27の外周縁であって、例えば中心軸Oを中心とする円弧状に形成されている。弧状部31bは、弧状部31aよりも径方向Rの内側において、周方向θにおける同じ位置に設けられている。直状部31c,31dは、各弧状部31a,31bの端部同士を接続するように直線状に延びている。
各隅アール部31eは、弧状部31aと直状部31c,31dとが接続される隅部(角部)に設けられている。各隅アール部31eは、例えば円弧状に形成され、弧状部31aと直状部31c,31dとを滑らかに接続している。なお隅アール部31eは、「円弧部」と称されてもよい。一方で、他の各隅アール部31fは、弧状部31bと直状部31c,31dとが接続される隅部に設けられている。隅アール部31fは、例えば円弧状に形成され、弧状部31bと直状部31c,31dとを滑らかに接続している。これらにより、上記隅部における応力集中が抑制されている。
図3は、本実施形態の電動機1の磁束線の一例を示す断面図である。
図3に示すように、固定子コイル13が通電されることで発生する磁束は、固定子コイル13回りに閉ループを形成する。具体的に、磁束は、周方向θで隣り合う固定子コイル13の間、および周方向θで隣り合うロータバー35の間を通った後、ヨーク25において空隙31とロータバー35との間を通る。言い換えると、磁束は、スポーク29よりも径方向Rの外側を通る。空隙31とロータバー35との間を通った磁束は、周方向θで隣り合うロータバー35の間、および周方向θに隣り合う固定子コイル13の間を通った後、固定子鉄心11において固定子コイル13よりも径方向Rの外側を流れる。このようにして磁束の閉ループが形成されている。そして、固定子コイル13回りの磁束を周方向θに回転させることで、回転子20が連れ回されて回転する。
図3に示すように、固定子コイル13が通電されることで発生する磁束は、固定子コイル13回りに閉ループを形成する。具体的に、磁束は、周方向θで隣り合う固定子コイル13の間、および周方向θで隣り合うロータバー35の間を通った後、ヨーク25において空隙31とロータバー35との間を通る。言い換えると、磁束は、スポーク29よりも径方向Rの外側を通る。空隙31とロータバー35との間を通った磁束は、周方向θで隣り合うロータバー35の間、および周方向θに隣り合う固定子コイル13の間を通った後、固定子鉄心11において固定子コイル13よりも径方向Rの外側を流れる。このようにして磁束の閉ループが形成されている。そして、固定子コイル13回りの磁束を周方向θに回転させることで、回転子20が連れ回されて回転する。
このような構成の電動機1によれば、軽量化を図ることができる。すなわち本実施形態の回転子鉄心21は、環状のヨーク25とシャフト23との間に設けられてヨーク25を支持する複数のスポーク29を有する。このような構成によれば、隣り合うスポーク29の間に比較的大きな空隙31を設けることができる。これにより、電動機1の軽量化を図ることができる。また、磁束がスポーク29よりも径方向Rの外側を通る場合、スポーク29を設けた場合でも電動機1の磁気特性の低下を抑制することができる。
本実施形態では、スポーク29は、直線状に形成されている。このような構成によれば、電動機1の機械的強度を確保しつつ、スポーク29の間の空隙31を大きくしやすい。このため、電動機1のさらなる軽量化を図りやすくなる。
ここで、回転子20において磁束が流れる経路は、すべり周波数で回転子20内の相対位置が変化する。このため、スポーク29の本数が電動機1の極数で割り切れない本数であると、スポーク29の有無によって、スポーク29を通ってシャフト23付近まで磁束が流れる部分と、スポーク29よりも径方向Rの外側のみで磁束流路が形成される部分とが生じることがある。このため、回転子20と固定子10との間の流れる磁束が偏り、固定子10に対する回転子20のトルク脈動などが生じる可能性がある。
しかしながら本実施形態では、スポーク29は、電動機1の極数と同数の6本形成されている。これにより、スポーク29の位置に関わらず、固定子10から回転子20に作用する力を均等にすることができる。これにより、回転子20にトルク脈動などが生じることを抑制することができる場合がある。これは、スポーク29の本数が、電動機1の極数の整数倍である場合も同様である。
例えば本実施形態では、ブロワ―60からハウジング5内に供給された冷却風(またはシャフト23に取り付けられたファンから送られた冷却風)の一部は、空隙31の内部に流入してもよい。これにより、冷却効率面でも優れた電動機1を提供することができる。なお、空隙31は、例えば軽量化を目的とした穴であり、冷却風が流れなくてもよい。
次に、第1の実施形態のいくつかの変形例について説明する。これらのような構成によっても、第1の実施形態と同様に、電動機1の軽量化を図ることができる。
(第1変形例)
図4は、第1変形例の電動機1を示す断面図である。
図4に示すように、第1変形例の電動機1では、各スポーク29は、少なくとも1つ(例えば複数)の曲がり部71を有した波型に形成されている。各スポーク29は、曲がり部71において周方向θに湾曲している。
(第1変形例)
図4は、第1変形例の電動機1を示す断面図である。
図4に示すように、第1変形例の電動機1では、各スポーク29は、少なくとも1つ(例えば複数)の曲がり部71を有した波型に形成されている。各スポーク29は、曲がり部71において周方向θに湾曲している。
(第2変形例)
図5は、第2変形例の電動機1を示す断面図である。
図5に示すように、第2変形例の電動機1では、空隙31の軸方向Zから見た断面形状は、略三角形状に形成されている。すなわち本変形例では、複数のスポーク29に含まれる少なくとも一部のスポーク29は、隣り合うスポーク29の間の空隙31が略三角形状となるように配置されている。なお本願でいう「略三角形状」とは、辺が曲線状の三角形状や、角に丸みを持つ三角形状を含む。
図5は、第2変形例の電動機1を示す断面図である。
図5に示すように、第2変形例の電動機1では、空隙31の軸方向Zから見た断面形状は、略三角形状に形成されている。すなわち本変形例では、複数のスポーク29に含まれる少なくとも一部のスポーク29は、隣り合うスポーク29の間の空隙31が略三角形状となるように配置されている。なお本願でいう「略三角形状」とは、辺が曲線状の三角形状や、角に丸みを持つ三角形状を含む。
別の観点で見ると、本変形例の複数のスポーク29は、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に対して交差する方向に沿って延びている。また、本変形例の複数のスポーク29は、中心軸Oを中心とする放射方向に対して、周方向θで第1側に傾いた第1傾斜スポーク29Aと、周方向θで第1側とは反対側である第2側に傾いた第2傾斜スポーク29Bとを含む。第1傾斜スポーク29Aと第2傾斜スポーク29Bとは、周方向θにおいて例えば交互に配置されている。
このような構成によれば、互いに異なる方向に延びた複数のスポーク29によって空隙31が囲まれるため、電動機1の機械的強度を高めることができる場合がある。このため、例えば電動機1の振動(騒音)や寿命の面で優れた電動機1を提供することができる。
(第2の実施形態)
次に、図6を参照して、第2の実施形態について説明する。
本実施形態は、スポーク29の本数が電動機1の極数の整数倍とは異なる数に設定された点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
次に、図6を参照して、第2の実施形態について説明する。
本実施形態は、スポーク29の本数が電動機1の極数の整数倍とは異なる数に設定された点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
図6は、第2の実施形態の電動機1を示す断面図である。
図6に示すように、本実施形態では、スポーク29の本数は、電動機1の極数の整数倍とは異なる数に設定されている。すなわち、スポーク29の本数は、電動機1の極数で割り切れない数に設定されている。例えば本実施形態では、電動機1が6極であり、スポーク29の本数は7本である。ただし、実施形態の構成は、上記例に限定されない。
図6に示すように、本実施形態では、スポーク29の本数は、電動機1の極数の整数倍とは異なる数に設定されている。すなわち、スポーク29の本数は、電動機1の極数で割り切れない数に設定されている。例えば本実施形態では、電動機1が6極であり、スポーク29の本数は7本である。ただし、実施形態の構成は、上記例に限定されない。
ここで、スポーク29の本数が電動機1の極数で割り切れる数であると、回転子20と固定子10との間を流れる磁束の大きさが時間的に変化し、トルク脈動の原因となる場合がある。しかしながら本実施形態では、スポーク29の本数は、電動機1の極数で割り切れない数に設定されている。このような構成によれば、電動機1の生じるトルク脈動を抑制することができる場合がある。
(第3の実施形態)
次に、図7を参照して、第3の実施形態について説明する。
本実施形態は、スポーク29がシャフト23に直接に固定されている点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
次に、図7を参照して、第3の実施形態について説明する。
本実施形態は、スポーク29がシャフト23に直接に固定されている点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
図7は、第3の実施形態の電動機1を示す断面図である。
図7に示すように、本実施形態の回転子鉄心21は、支持部27を有さずに、スポーク29がシャフト23に直接に固定されている。詳しく述べると、シャフト23には、それぞれスポーク29をシャフト23に固定する複数の固定部80が設けられている。本実施形態では、各固定部80は、シャフト23に設けられた一対の突出部82A,82B(キー構造)を有する。本実施形態では、一対の突出部82A,82Bは、シャフト23と一体に設けられて、シャフト23から径方向Rの外側に向けて突出している。一対の突出部82A,82Bの各々は、軸方向Zに沿って延びている。各スポーク29は、一対の突出部82A,82Bの間に挿入されて、一対の突出部82A,82Bによって両側から挟まれている。これにより、スポーク29は、シャフト23に固定されている。なお本願で言う「固定」とは、回転子鉄心21の回転に伴ってシャフト23が回転する接続関係を意味し、スポーク29と固定部80との間に僅かな遊びがある場合なども含む。
図7に示すように、本実施形態の回転子鉄心21は、支持部27を有さずに、スポーク29がシャフト23に直接に固定されている。詳しく述べると、シャフト23には、それぞれスポーク29をシャフト23に固定する複数の固定部80が設けられている。本実施形態では、各固定部80は、シャフト23に設けられた一対の突出部82A,82B(キー構造)を有する。本実施形態では、一対の突出部82A,82Bは、シャフト23と一体に設けられて、シャフト23から径方向Rの外側に向けて突出している。一対の突出部82A,82Bの各々は、軸方向Zに沿って延びている。各スポーク29は、一対の突出部82A,82Bの間に挿入されて、一対の突出部82A,82Bによって両側から挟まれている。これにより、スポーク29は、シャフト23に固定されている。なお本願で言う「固定」とは、回転子鉄心21の回転に伴ってシャフト23が回転する接続関係を意味し、スポーク29と固定部80との間に僅かな遊びがある場合なども含む。
一対の突出部82A,82Bの各々は、周方向θでスポーク29を支持する支持面84を有する。支持面84は、回転子鉄心21が回転する際に、例えばスポーク29が当接することで回転子鉄心21の回転方向(周方向θ)の力を受ける。これにより、回転子鉄心21が回転する場合、回転子鉄心21の回転に伴ってシャフト23が回転する。
例えば第1の実施形態の構造において、スポーク29の間の空隙31を比較的大きく形成すると、径方向Rにおける支持部27の厚みが薄くなる場合がある。径方向Rにおける支持部27の厚みが薄くなると、圧入や焼嵌めなどによって支持部27をシャフト23に取り付けても、シャフト23に対する回転子鉄心21の固定が緩くなる可能性がある。シャフト23に対する回転子鉄心21の固定が緩くなると、シャフト23と回転子鉄心21との間で滑りが生じ、電動機1の効率が低下する場合がある。
そこで本実施形態では、それぞれスポーク29をシャフト23に固定する複数の固定部80が設けられ、各固定部80が周方向θでスポーク29を支持する支持面84を有することで、回転子鉄心21の回転に伴ってシャフト23が確実に回転する。このため、支持部27の厚みなどに制約されずに、空隙31を大きく形成することができる。空隙31を大きく形成することができると、電動機1のさらなる軽量化を図ることができる。また本実施形態の構成によれば、支持部27を省略することができる。この観点でも、電動機1のさらなる軽量化を図ることができる。
次に、第3の実施形態のいくつかの変形例について説明する。
(第1変形例)
図8は、第1変形例の電動機1を示す断面図である。
図8に示すように、本変形例の固定部80は、シャフト23に設けられた溝(キー溝)86A,86Bと、溝86A,86Bに挿入された係合部材(キー)88A,88Bとを有する。係合部材88A,88Bは、溝86A,86Bに挿入された状態で、シャフト23の表面から径方向Rの外側に向けて突出した一対の突出部82A,82Bを形成している。溝86A,86Bおよび係合部材88A,88Bの各々は、軸方向Zに延びている。各スポーク29は、一対の突出部82A,82Bの間に挿入されて、一対の突出部82A,82Bによって両側から挟まれている。これにより、スポーク29は、シャフト23に固定されている。
(第1変形例)
図8は、第1変形例の電動機1を示す断面図である。
図8に示すように、本変形例の固定部80は、シャフト23に設けられた溝(キー溝)86A,86Bと、溝86A,86Bに挿入された係合部材(キー)88A,88Bとを有する。係合部材88A,88Bは、溝86A,86Bに挿入された状態で、シャフト23の表面から径方向Rの外側に向けて突出した一対の突出部82A,82Bを形成している。溝86A,86Bおよび係合部材88A,88Bの各々は、軸方向Zに延びている。各スポーク29は、一対の突出部82A,82Bの間に挿入されて、一対の突出部82A,82Bによって両側から挟まれている。これにより、スポーク29は、シャフト23に固定されている。
(第2変形例)
図9は、第2変形例の電動機1を示す断面図である。
図9に示すように、本変形例の固定部80は、シャフト23に設けられた溝86である。溝86は、シャフト23の表面に対して径方向Rの内側に窪んでいる。溝86は、軸方向Zに沿って延びている。溝86は、周方向θでスポーク29に対応する位置に設けられている。スポーク29の端部は、溝86に挿入されている。これにより、スポーク29は、シャフト23に固定されている。各溝86は、周方向θでスポーク29を支持する支持面84を有する。支持面84は、固定子鉄心11に対して回転子鉄心21が回転する際に、例えばスポーク29が当接することで回転子鉄心21の回転方向(周方向θ)の力を受ける。これにより、回転子鉄心21の回転に伴ってシャフト23が回転する。
図9は、第2変形例の電動機1を示す断面図である。
図9に示すように、本変形例の固定部80は、シャフト23に設けられた溝86である。溝86は、シャフト23の表面に対して径方向Rの内側に窪んでいる。溝86は、軸方向Zに沿って延びている。溝86は、周方向θでスポーク29に対応する位置に設けられている。スポーク29の端部は、溝86に挿入されている。これにより、スポーク29は、シャフト23に固定されている。各溝86は、周方向θでスポーク29を支持する支持面84を有する。支持面84は、固定子鉄心11に対して回転子鉄心21が回転する際に、例えばスポーク29が当接することで回転子鉄心21の回転方向(周方向θ)の力を受ける。これにより、回転子鉄心21の回転に伴ってシャフト23が回転する。
これら第1変形例および第2変形例の構成によっても、第3の実施形態と同様に、回転子鉄心21の回転に伴ってシャフト23を確実に回転させることができる。このため、空隙31を大きく形成することができ、電動機1のさらなる軽量化を図ることができる。
(第4の実施形態)
次に、図10を参照して、第4の実施形態について説明する。
本実施形態は、複数のスポーク29が周方向θで少なくとも部分的に互いにずれた位置に配置されている点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
次に、図10を参照して、第4の実施形態について説明する。
本実施形態は、複数のスポーク29が周方向θで少なくとも部分的に互いにずれた位置に配置されている点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
図10は、第4の実施形態の回転子鉄心21を一部分解して示す斜視図である。
図10に示すように、本実施形態の回転子鉄心21は、軸方向Zに互いに重ねられるとともにそれぞれヨーク25の一部を形成している複数の部材90を有する。各部材90は、例えば回転子鉄心21を形成するように軸方向Zに積層された磁性鋼板である。本実施形態では、複数の部材90は、複数の第1部材91と、複数の第2部材92とを含む。第1部材91と第2部材92とは、例えば周方向θにおけるスポーク29の配置位置が異なることを除き、互いに略同じである。本実施形態では、複数の第1部材91が軸方向Zに連続して積層されることで第1部材91のセットが形成されている。同様に、複数の第2部材92が軸方向Zに連続して積層されることで第2部材92のセットが形成されている。そして、第1部材91のセットと第2部材92のセットとが軸方向Zに交互に積層されている。第1部材91のセットと第2部材92のセットは、カシメ固定や溶接などで互いに連結されている。なお、第1部材91と第2部材92とは、1枚ずつ交互に配置されてもよい。
図10に示すように、本実施形態の回転子鉄心21は、軸方向Zに互いに重ねられるとともにそれぞれヨーク25の一部を形成している複数の部材90を有する。各部材90は、例えば回転子鉄心21を形成するように軸方向Zに積層された磁性鋼板である。本実施形態では、複数の部材90は、複数の第1部材91と、複数の第2部材92とを含む。第1部材91と第2部材92とは、例えば周方向θにおけるスポーク29の配置位置が異なることを除き、互いに略同じである。本実施形態では、複数の第1部材91が軸方向Zに連続して積層されることで第1部材91のセットが形成されている。同様に、複数の第2部材92が軸方向Zに連続して積層されることで第2部材92のセットが形成されている。そして、第1部材91のセットと第2部材92のセットとが軸方向Zに交互に積層されている。第1部材91のセットと第2部材92のセットは、カシメ固定や溶接などで互いに連結されている。なお、第1部材91と第2部材92とは、1枚ずつ交互に配置されてもよい。
そして本実施形態では、複数のスポーク29は、第1部材91によって形成された複数の第1スポーク95と、第2部材92によって形成された複数の第2スポーク96とを有する。そして、各第1スポーク95の少なくとも一部と各第2スポーク96の少なくとも一部とは、周方向θで互いに異なる位置に配置されている。
図11は、本実施形態の電動機1を示す断面図である。
図11に示すように、本実施形態では、各第1スポーク95は、周方向θの位置として、隣り合う第2スポーク96の間に対応した位置に配置されている。言い換えると、第1スポーク95は、軸方向Zから見た場合に、隣り合う第2スポーク96の間の空隙31と重なる位置に配置されている。同様に、各第2スポーク96は、周方向θの位置として、隣り合う第1スポーク95の間に対応した位置に配置されている。言い換えると、第2スポーク96は、軸方向Zから見た場合に、隣り合う第1スポーク95の間の空隙31に重なる位置に配置されている。
図11に示すように、本実施形態では、各第1スポーク95は、周方向θの位置として、隣り合う第2スポーク96の間に対応した位置に配置されている。言い換えると、第1スポーク95は、軸方向Zから見た場合に、隣り合う第2スポーク96の間の空隙31と重なる位置に配置されている。同様に、各第2スポーク96は、周方向θの位置として、隣り合う第1スポーク95の間に対応した位置に配置されている。言い換えると、第2スポーク96は、軸方向Zから見た場合に、隣り合う第1スポーク95の間の空隙31に重なる位置に配置されている。
このような構成によれば、第1スポーク95の間の空隙31の周囲が第2スポーク96によって補強されている。同様に、第2スポーク96の間の空隙31の周囲が第1スポーク95によって補強されている。これにより、電動機1の機械的強度を高めることができる。また別の観点で見ると、周方向θにおいて少なくとも部分的に互いに異なる位置に配置された第1スポーク95と第2スポーク96とによって電動機1の機械的強度を高めることができると、第1スポーク95および第2スポーク96の幅Wを細くすることができる。これにより、電動機1のさらなる軽量化を図ることができる。
なお、回転子鉄心21の複数のスポーク29は、周方向θにおいて、少なくとも部分的に互いに異なる位置に配置された3種類以上のスポーク29を有してよい。
なお、回転子鉄心21の複数のスポーク29は、周方向θにおいて、少なくとも部分的に互いに異なる位置に配置された3種類以上のスポーク29を有してよい。
次に、第4の実施形態のいくつかの変形例について説明する。
(第1変形例)
図12は、第1変形例の電動機1を示す断面図である。
図12に示すように、本変形例では、第1スポーク95および第2スポーク96の各々は、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に対して交差する方向に沿って延びている。例えば、第1スポーク95は、中心軸Oを中心とする放射方向に対して、周方向θで第1側に傾いた第1傾斜スポーク29Aである。一方で、第2スポーク96は、周方向θで第1側とは反対側である第2側に傾いた第2傾斜スポーク29Bである。第1スポーク95および第2スポーク96は、軸方向Zから見た場合に、互いに交差するように配置されている。
このような構成によれば、第1スポーク95と第2スポーク96とによって複数の方向に対する剛性が向上し、電動機1の全体としての機械的強度をさらに高めることができる。
(第1変形例)
図12は、第1変形例の電動機1を示す断面図である。
図12に示すように、本変形例では、第1スポーク95および第2スポーク96の各々は、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に対して交差する方向に沿って延びている。例えば、第1スポーク95は、中心軸Oを中心とする放射方向に対して、周方向θで第1側に傾いた第1傾斜スポーク29Aである。一方で、第2スポーク96は、周方向θで第1側とは反対側である第2側に傾いた第2傾斜スポーク29Bである。第1スポーク95および第2スポーク96は、軸方向Zから見た場合に、互いに交差するように配置されている。
このような構成によれば、第1スポーク95と第2スポーク96とによって複数の方向に対する剛性が向上し、電動機1の全体としての機械的強度をさらに高めることができる。
(第2変形例)
図13は、第2変形例の電動機1を示す断面図である。
図13に示すように、本変形例では、第1スポーク95および第2スポーク96の各々は、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に対して交差する方向に沿って延びている。本変形例では、第1部材91および第2部材92の各々が、複数の第1傾斜スポーク29Aと、複数の第2傾斜スポーク29Bとを含む。すなわち、第1部材91において、第1傾斜スポーク29Aと第2傾斜スポーク29Bとが周方向θで交互に配置されている。同様に、第2部材92において、第1傾斜スポーク29Aと第2傾斜スポーク29Bとが周方向θで交互に配置されている。
このような構成によれば、第1変形例と同様に、電動機1の全体としての機械的強度を高めることができる。
図13は、第2変形例の電動機1を示す断面図である。
図13に示すように、本変形例では、第1スポーク95および第2スポーク96の各々は、中心軸Oを中心とする放射方向(ヨーク25の径方向R)に対して交差する方向に沿って延びている。本変形例では、第1部材91および第2部材92の各々が、複数の第1傾斜スポーク29Aと、複数の第2傾斜スポーク29Bとを含む。すなわち、第1部材91において、第1傾斜スポーク29Aと第2傾斜スポーク29Bとが周方向θで交互に配置されている。同様に、第2部材92において、第1傾斜スポーク29Aと第2傾斜スポーク29Bとが周方向θで交互に配置されている。
このような構成によれば、第1変形例と同様に、電動機1の全体としての機械的強度を高めることができる。
(第5の実施形態)
次に、図14を参照して、第5の実施形態について説明する。
本実施形態は、回転子鉄心21または回転子鉄心21の周囲の少なくとも一方に制風構造100が設けられた点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
次に、図14を参照して、第5の実施形態について説明する。
本実施形態は、回転子鉄心21または回転子鉄心21の周囲の少なくとも一方に制風構造100が設けられた点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
図14は、本実施形態の電動機1を示す断面図である。
図14に示すように、第1押さえ板24Aは、ハウジング5内の風の流れ方向(第1通風口5aから第2通風口5bに向かう方向)において、回転子鉄心21よりも上流側に位置する。一方で、第2押さえ板24Bは、ハウジング5内の風の流れ方向において、回転子鉄心21よりも下流側に位置する。
図14に示すように、第1押さえ板24Aは、ハウジング5内の風の流れ方向(第1通風口5aから第2通風口5bに向かう方向)において、回転子鉄心21よりも上流側に位置する。一方で、第2押さえ板24Bは、ハウジング5内の風の流れ方向において、回転子鉄心21よりも下流側に位置する。
図15は、本実施形態の回転子20を一部分解して示す斜視図である。なお説明の便宜上、図15では、ロータバー35およびエンドリングの図示を省略している。
図15に示すように、本実施形態では、回転子鉄心21の周囲に制風構造100が設けられる場合の一例として、第1押さえ板24Aに制風構造100が設けられている。本実施形態の制風構造100は、回転子鉄心21の空隙31の少なくとも一部を軸方向Zから覆うカバー102と、カバー102に設けられた複数の貫通穴104とを有する。複数の貫通穴104は、回転子鉄心21の空隙31に連通する。個々の貫通穴104は、軸方向Zから見た場合、回転子鉄心21の空隙31に比べて小さい。また、複数の貫通穴104の開口面積の合計は、回転子鉄心21の複数の空隙31の開口面積の合計に比べて小さい。一方で、第2押さえ板24Bには、複数の空隙31が設けられている。第2押さえ板24Bの空隙31は、例えば回転子鉄心21の空隙31と略同じ形状に形成されている。
図15に示すように、本実施形態では、回転子鉄心21の周囲に制風構造100が設けられる場合の一例として、第1押さえ板24Aに制風構造100が設けられている。本実施形態の制風構造100は、回転子鉄心21の空隙31の少なくとも一部を軸方向Zから覆うカバー102と、カバー102に設けられた複数の貫通穴104とを有する。複数の貫通穴104は、回転子鉄心21の空隙31に連通する。個々の貫通穴104は、軸方向Zから見た場合、回転子鉄心21の空隙31に比べて小さい。また、複数の貫通穴104の開口面積の合計は、回転子鉄心21の複数の空隙31の開口面積の合計に比べて小さい。一方で、第2押さえ板24Bには、複数の空隙31が設けられている。第2押さえ板24Bの空隙31は、例えば回転子鉄心21の空隙31と略同じ形状に形成されている。
次に、本実施形態の制風構造100の作用について説明する。
図14に示すように、ハウジング5内を流れて回転子鉄心21の空隙31に向かう冷却風の一部は、第1押さえ板24Aにおいて、貫通穴104から回転子鉄心21の空隙31に流入する。一方で、ハウジング5内を流れて回転子鉄心21の空隙31に向かう冷却風の残りの一部は、第1押さえ板24Aにおいてカバー102に衝突し、流れ方向が変化する。そして、流れ方向が変化した冷却風の一部は、固定子鉄心11と回転子鉄心21との間の隙間gに流入する。例えば、制風構造100は、貫通穴104から回転子鉄心21の空隙31に流入する冷却風の量よりも固定子鉄心11と回転子鉄心21との間の隙間gに流入する冷却風の量が多くなるように、ハウジング5内を流れる冷却風の流れ方向を変化させる。
図14に示すように、ハウジング5内を流れて回転子鉄心21の空隙31に向かう冷却風の一部は、第1押さえ板24Aにおいて、貫通穴104から回転子鉄心21の空隙31に流入する。一方で、ハウジング5内を流れて回転子鉄心21の空隙31に向かう冷却風の残りの一部は、第1押さえ板24Aにおいてカバー102に衝突し、流れ方向が変化する。そして、流れ方向が変化した冷却風の一部は、固定子鉄心11と回転子鉄心21との間の隙間gに流入する。例えば、制風構造100は、貫通穴104から回転子鉄心21の空隙31に流入する冷却風の量よりも固定子鉄心11と回転子鉄心21との間の隙間gに流入する冷却風の量が多くなるように、ハウジング5内を流れる冷却風の流れ方向を変化させる。
回転子鉄心21の空隙31に流入した冷却風は、回転子鉄心21の内部を流れることで、回転子鉄心21を冷却する。回転子鉄心21の内部を流れた冷却風は、第2押さえ板24Bの空隙31を通り、第2通風口5bからハウジング5の外部に排気される。一方で、固定子鉄心11と回転子鉄心21との間の隙間gに流入した冷却風は、固定子鉄心11と回転子鉄心21との間の隙間gを流れることで、固定子鉄心11および回転子鉄心21およびの両方を冷却する。そして、固定子鉄心11と回転子鉄心21との間の隙間gを流れた冷却風は、第2通風口5bからハウジング5の外部に排気される。
ここで、電動機1の駆動時には、固定子10の固定子コイル13や回転子20のロータバー35などの近傍において温度が特に高くなる。このため、なるべく多くの冷却風が、固定子鉄心11と回転子鉄心21との間の隙間gに供給されることが望ましい。
しかしながら、軽量化を目的として、回転子鉄心21の隣り合うスポーク29の間に比較的大きな空隙31が設けられた場合、ハウジング5内を流れる冷却風の大部分がスポーク29の間の空隙31に流入し、固定子鉄心11と回転子鉄心21との間の隙間gに冷却風が供給されにくくなる可能性がある。
しかしながら、軽量化を目的として、回転子鉄心21の隣り合うスポーク29の間に比較的大きな空隙31が設けられた場合、ハウジング5内を流れる冷却風の大部分がスポーク29の間の空隙31に流入し、固定子鉄心11と回転子鉄心21との間の隙間gに冷却風が供給されにくくなる可能性がある。
そこで本実施形態では、制風構造100は、隣り合うスポーク29の間の空隙31に向かう冷却風の少なくとも一部の流れを回転子鉄心21と固定子鉄心11との間の隙間gに向けて変化させる。これにより、スポーク29の間に比較的大きな空隙31を設けた場合であっても、電動機1の冷却性能を高めることができる。
次に、第5の実施形態のいくつかの変形例について説明する。
(第1変形例)
図16は、第1変形例の電動機1を示す断面図である。
図16に示すように、本変形例では、制風構造100は、回転子鉄心21の一部を形成する磁性鋼板(積層鋼板)106に設けられている。詳しく述べると、本変形例の制風構造100は、冷却風の流れ方向において回転子鉄心21の上流側端部に位置する1枚または複数枚の磁性鋼板106に設けられている。この磁性鋼板106は、例えば第5の実施形態の第1押さえ板24Aと同様に、カバー102と、貫通穴104とを有する。
(第1変形例)
図16は、第1変形例の電動機1を示す断面図である。
図16に示すように、本変形例では、制風構造100は、回転子鉄心21の一部を形成する磁性鋼板(積層鋼板)106に設けられている。詳しく述べると、本変形例の制風構造100は、冷却風の流れ方向において回転子鉄心21の上流側端部に位置する1枚または複数枚の磁性鋼板106に設けられている。この磁性鋼板106は、例えば第5の実施形態の第1押さえ板24Aと同様に、カバー102と、貫通穴104とを有する。
一方で、本変形例では、第1押さえ板24Aにも複数の空隙31が設けられている。第1押さえ板24Aの空隙31は、例えば回転子鉄心21の空隙31と略同じ形状に形成されている。ここで、一般的に、第1押さえ板24Aは、軸方向Zの厚さにおいて、磁性鋼板106よりも厚い。このため、磁性鋼板106にカバー102を設けるとともに、第1押さえ板24Aに比較的大きな空隙31を設けることで、電動機1のさらなる軽量化を図ることができる。
(第2変形例)
図17は、第2変形例の電動機1を示す断面図である。
図17に示すように、本変形例の回転子鉄心21は、第4の実施形態と同様に、軸方向Zに互いに重ねられるとともにそれぞれヨーク25の一部を形成している複数の部材90を有する。各部材90は、例えば回転子鉄心21を形成するように軸方向Zに積層された磁性鋼板である。複数の部材90の各々は、スポーク29を有する。そして、複数の部材90のスポーク29は、周方向θで少なくとも部分的に互いに異なる位置に配置されている。これにより、スポーク29の間の空隙31は、別のスポーク29によって覆われ、軸方向Zから見た場合の実質的な開口面積が小さくなっている。言い換えると、空隙31を軸方向Zから覆うスポーク29は、カバー102の一例を形成している。このため、スポーク29の間の空隙31には、冷却風が流入しにくくなっている。すなわち本変形例では、周方向θで少なくとも部分的に互いに異なる位置に配置された複数のスポーク29によって制風構造100の一例が形成されている。
図17は、第2変形例の電動機1を示す断面図である。
図17に示すように、本変形例の回転子鉄心21は、第4の実施形態と同様に、軸方向Zに互いに重ねられるとともにそれぞれヨーク25の一部を形成している複数の部材90を有する。各部材90は、例えば回転子鉄心21を形成するように軸方向Zに積層された磁性鋼板である。複数の部材90の各々は、スポーク29を有する。そして、複数の部材90のスポーク29は、周方向θで少なくとも部分的に互いに異なる位置に配置されている。これにより、スポーク29の間の空隙31は、別のスポーク29によって覆われ、軸方向Zから見た場合の実質的な開口面積が小さくなっている。言い換えると、空隙31を軸方向Zから覆うスポーク29は、カバー102の一例を形成している。このため、スポーク29の間の空隙31には、冷却風が流入しにくくなっている。すなわち本変形例では、周方向θで少なくとも部分的に互いに異なる位置に配置された複数のスポーク29によって制風構造100の一例が形成されている。
(第3変形例)
図18は、本実施形態の回転子20を一部分解して示す斜視図である。なお説明の便宜上、図18では、ロータバー35およびエンドリングの図示を省略している。
図18に示すように、本変形例では、第1押さえ板24Aに、別部材としての制風板108が取り付けられている。制風板108は、カバー102と、貫通穴104とを有し、制風構造100の一例を形成している。一方で、本変形例の第1押さえ板24Aには、複数の空隙31が設けられている。第1押さえ板24Aの空隙31は、例えば回転子鉄心21の空隙31と略同じ形状に形成されている。
図18は、本実施形態の回転子20を一部分解して示す斜視図である。なお説明の便宜上、図18では、ロータバー35およびエンドリングの図示を省略している。
図18に示すように、本変形例では、第1押さえ板24Aに、別部材としての制風板108が取り付けられている。制風板108は、カバー102と、貫通穴104とを有し、制風構造100の一例を形成している。一方で、本変形例の第1押さえ板24Aには、複数の空隙31が設けられている。第1押さえ板24Aの空隙31は、例えば回転子鉄心21の空隙31と略同じ形状に形成されている。
これら第1から第3変形例の構成によっても、第5の実施形態と同様に、スポーク29の間に比較的大きな空隙31を設けた場合であっても、電動機1の冷却性能を高めることができる。
(第6の実施形態)
次に、図19から図21を参照して、第6の実施形態について説明する。
本実施形態は、回転子鉄心21に肉抜部40が設けられた点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
次に、図19から図21を参照して、第6の実施形態について説明する。
本実施形態は、回転子鉄心21に肉抜部40が設けられた点で、第1の実施形態とは異なる。なお、以下に説明する以外の構成は、第1の実施形態と同様である。
図19は、本実施形態の電動機1を示す断面図である。
図19に示すように、回転子鉄心21における各スポーク29の延長線上には、肉抜部40が形成されている。なお「回転子鉄心におけるスポークの延長線上」とは、例えばスポーク29の中心線C(図20参照)の延長線上である。なお、スポーク29の中心線Cとは、周方向θにおけるスポーク29の中心を通るとともに、スポーク29の長手方向(本実施形態では径方向Rと略平行)に延びた中心線である。ただし、「回転子鉄心におけるスポークの延長線上」とは、上記例に限らず、スポーク29のなかで中心線Cを外れた部分をスポーク29の長手方向に延長した延長線上でもよい。
図19に示すように、回転子鉄心21における各スポーク29の延長線上には、肉抜部40が形成されている。なお「回転子鉄心におけるスポークの延長線上」とは、例えばスポーク29の中心線C(図20参照)の延長線上である。なお、スポーク29の中心線Cとは、周方向θにおけるスポーク29の中心を通るとともに、スポーク29の長手方向(本実施形態では径方向Rと略平行)に延びた中心線である。ただし、「回転子鉄心におけるスポークの延長線上」とは、上記例に限らず、スポーク29のなかで中心線Cを外れた部分をスポーク29の長手方向に延長した延長線上でもよい。
図20は、図19中に示された電動機1のF20線で囲まれた領域を拡大して示す断面図である。図20に示すように、本実施形態では、肉抜部40のうちロータバー35側に位置する部分、すなわち径方向Rの外側に位置する部分は、空隙31よりも径方向Rの外側に位置する。また本実施形態では、肉抜部40は、隣り合う2つの空隙31の弧状部31aの間を繋ぐ仮想線ILよりも、径方向Rの外側に位置する。言い換えると、肉抜部40は、スポーク29に入り込まずに、スポーク29よりも径方向Rの外側の位置(すなわちヨーク25)に設けられている。なお、肉抜部40の形成位置は、上記例に限らない。例えば十分な剛性が確保できる場合などでは、肉抜部40の一部は、スポーク29に設けられてもよい。
一方で、肉抜部40は、回転子鉄心21を通る磁束を阻害しないように、ロータバー35から十分な距離を離して配置されている。例えば、肉抜部40は、ヨーク25において、ロータバー35に対してよりもスポーク29に対して近い位置に配置されている。本実施形態では、肉抜部40は、スポーク29の近傍に配置されている。そして、肉抜部40とロータバー35との間には、磁束が通ることができる鉄心部分が設けられている。
各肉抜部40は、回転子鉄心21を軸方向Zに貫通している。肉抜部40は、軸方向Zから見てスポーク29の中心線Cに対して対称となるように形成されている。本実施形態では、肉抜部40は、径方向Rの外側の部分が周方向θに沿うように形成され、径方向Rの内側の部分が周方向θの中央部において径方向Rの内側に向かって膨出するように形成されている。言い換えると、本実施形態の肉抜部40は、略三角形状に形成されている。本願でいう「略三角形状」とは、辺が曲線状の三角形や、角に丸みを持つ三角形を含む。
本実施形態では、肉抜部40は、スポーク29に対して1つの凸部(角部)41を向けて配置されている。すなわち、肉抜部40は、ヨーク25の径方向Rの内側に凸部41を向けて配置されている。なお本願でいう「凸部」とは、例えば多角形状(本実施形態では略三角形状)の角部を意味する。本実施形態では、肉抜部40の凸部41は、例えばスポーク29の中心線Cの延長線上に位置する。
ここで、ヨーク25に対する各スポーク29の接続部29a(根本部)は、ヨーク25の径方向Rの外側に向けて進むに従いスポーク29の中心線Cから離れる方向(周方向θ)に膨らむ一対の膨らみ部30A,30B(第1膨らみ部30Aおよび第2膨らみ部30B)を有する。すなわち、第1膨らみ部30Aは、弧状部31aと直状部31dとが接続される空隙31の隅部に隅アール部31eが設けられることで形成された膨らみ部である。同様に、第2膨らみ部30Bは、弧状部31aと直状部31cとが接続される空隙31の隅部に隅アール部31eが設けられることで形成された膨らみ部である。本実施形態では、肉抜部40の凸部41は、ヨーク25に対するスポーク29の接続部29aの一対の膨らみ部30A,30Bの間の領域32に向けて配置されている。
また別の観点で見ると、肉抜部40は、周方向θにおける該肉抜部40の最大幅W1が径方向Rにおける該肉抜部40の最大幅(最大厚さ)W2に比べて大きな扁平形状である。例えば本実施形態では、周方向θにおける肉抜部40の最大幅W1は、周方向θにおけるスポーク29の幅Wよりも大きい。
図21は、本実施形態の電動機1の磁束線の一例を示す図である。
図21に示すように、固定子コイル13が通電されることで発生する磁束は、固定子コイル13回りに閉ループを形成する。具体的に、磁束は、周方向θで隣り合う固定子コイル13の間、および周方向θで隣り合うロータバー35の間を通った後、空隙31とロータバー35との間に向かう。空隙31とロータバー35との間を流れる磁束の一部は、ヨーク25においてロータバー35と肉抜部40との間を通り、残りは、空隙31と肉抜部40との間を通る。ロータバー35と肉抜部40との間を通った磁束、および空隙31と肉抜部40との間を通った磁束は、周方向θで隣り合うロータバー35の間、および周方向θで隣り合う固定子コイル13の間を通った後、固定子鉄心11において固定子コイル13よりも径方向Rの外側を流れる。このようにして磁束の閉ループが形成されている。
図21に示すように、固定子コイル13が通電されることで発生する磁束は、固定子コイル13回りに閉ループを形成する。具体的に、磁束は、周方向θで隣り合う固定子コイル13の間、および周方向θで隣り合うロータバー35の間を通った後、空隙31とロータバー35との間に向かう。空隙31とロータバー35との間を流れる磁束の一部は、ヨーク25においてロータバー35と肉抜部40との間を通り、残りは、空隙31と肉抜部40との間を通る。ロータバー35と肉抜部40との間を通った磁束、および空隙31と肉抜部40との間を通った磁束は、周方向θで隣り合うロータバー35の間、および周方向θで隣り合う固定子コイル13の間を通った後、固定子鉄心11において固定子コイル13よりも径方向Rの外側を流れる。このようにして磁束の閉ループが形成されている。
このような構成の電動機1によれば、磁気特性の低下を抑制しつつ、軽量化を図ることができる。ここで比較例として、特定の位置を考慮せずに回転子鉄心21に肉抜部40を設けた場合について考える。この比較例の構造では、肉抜部40が設けられることでヨーク25における磁束流路が肉抜部40の周囲で限定され、磁束の飽和による磁気抵抗の上昇が生じる。磁気抵抗の上昇が生じると、電動機1の磁気特性が低下し、電動機1の効率やトルクが低下する可能性がある。
そこで本実施形態では、回転子鉄心21におけるスポーク29の延長線上に、肉抜部40が形成されている。この場合、肉抜部40が設けられることでヨーク25における磁束流路が肉抜部40の周囲で限定される場合であっても、ヨーク25を通る一部の磁束は、肉抜部40の周囲でスポーク29の一部(例えばスポーク29の接続部29a)を通って肉抜部40を迂回することで、肉抜部40の周囲を飽和することなく通ることができる。このため、本実施形態の構成によれば、肉抜部40を設けた場合であっても、電動機1の磁気特性が低下しにくい。これにより、電動機1の磁気特性の低下を抑制しつつ、電動機1の軽量化を図ることができる。
ここで、ヨーク25に対するスポーク29の接続部29aは、空隙31の隅部などに生じる応力集中などを避けるために膨らみ部30A,30Bを有する。このような膨らみ部30A,30Bが設けられると、その分だけ電動機1が重くなる。しかしながら本実施形態の構成よれば、その膨らみ部30A,30Bを利用してスポーク29の近傍に肉抜部40が設けられることで、電動機1の軽量化が図られている。また別の観点で見ると、回転子鉄心21に肉抜部40が設けられた場合でも、膨らみ部30A,30Bによって回転子鉄心21の機械的強度が高く保たれる。これにより、機械的強度と、軽量化の両面で優れた電動機1を提供することができる。
本実施形態では、肉抜部40は、略三角形状である。このような構成によれば、磁束は、肉抜部40の両側に分岐して通りやすい。このため、肉抜部40を設けた場合であっても、電動機1の磁気特性の低下をさらに抑制することができる。
本実施形態では、肉抜部40は、スポーク29に対して向いた凸部41を含む形状である。このような構成によれば、肉抜部40に凸部41を設けることで肉抜部40の面積を比較的大きくした場合でも、凸部41が存在することになる肉抜部40とスポーク29との間において、磁束の一部はスポーク29の接続部29aを通ることで肉抜部40を迂回することができる。これにより、肉抜部40の面積を大きくすることで電動機1のさらなる軽量化を図るとともに、電動機1の磁気特性の低下を抑制することができる。
本実施形態では、肉抜部40は、スポーク29に対して凸部41が向いた略三角形状である。このような構成によれば、肉抜部40とロータバー35との間には、肉抜部40の凸部(角部)が存在しないため、肉抜部40とロータバー35との間において磁束の飽和がより生じにくい。一方で、凸部41が存在することになる肉抜部40とスポーク29との間では、磁束の一部はスポーク29の接続部29aを通ることで肉抜部40を迂回することができる。これにより、電動機1の磁気特性の低下をさらに抑制することができる。
本実施形態では、肉抜部40の凸部41は、一対の膨らみ部30A,30Bの間の領域32に向いている。このような構成によれば、肉抜部40の凸部41が存在することになる肉抜部40とスポーク29との間において、磁束の一部は、スポーク29の膨らみ部30A,30Bを通ることで、スポーク29の一部を通って肉抜部40を迂回することができる。これにより、肉抜部40の周囲で磁束がさらに飽和しにくく、電動機1の磁気特性の低下をさらに抑制することができる。
本実施形態では、肉抜部40は、周方向θの最大幅W1が径方向Rの最大幅W2に比べて大きな扁平形状である。このような構成によれば、肉抜部40の径方向Rの最大幅W2が比較的小さいため、肉抜部40が磁束を阻害しにくくなる。一方で、肉抜部40の周方向θの最大幅W1が比較的大きいため、電動機1のさらなる軽量化を図ることができる。
これにより、磁気特性と軽量化の両面でさらに優れた電動機1を提供することができる。
これにより、磁気特性と軽量化の両面でさらに優れた電動機1を提供することができる。
本実施形態では、肉抜部40は、スポーク29に入り込まずに、スポーク29よりも径方向Rの外側の位置(すなわちヨーク25)に設けられている。このような構成によれば、スポーク29の機械的強度を確保しやすくなる。これにより、強度面でも優れた電動機1を提供することができる。
例えば本実施形態では、ブロワ―60からハウジング5内に供給された冷却風(またはシャフト23に取り付けられたファンから送られた冷却風)の一部は、肉抜部40の内部に流入してもよい。これにより、冷却効率面でも優れた電動機1を提供することができる。なお、肉抜部40は、例えば軽量化を目的とした穴であり、冷却風が流れなくてもよい。
(第7の実施形態)
次に、図22を参照して、第7の実施形態について説明する。
本実施形態は、肉抜部40が略円形に形成された点で、第6の実施形態とは異なる。なお、以下に説明する以外の構成は、第6の実施形態と同様である。
次に、図22を参照して、第7の実施形態について説明する。
本実施形態は、肉抜部40が略円形に形成された点で、第6の実施形態とは異なる。なお、以下に説明する以外の構成は、第6の実施形態と同様である。
図22は、第7の実施形態の電動機1を示す断面図である。
図22に示すように、本実施形態の肉抜部40は、軸方向Zから見た断面形状において、略円形に形成されている。本願でいう「略円形」とは、例えば真円形であるが、これに代えて、楕円形などでもよい。また「略円形」とは、周方向θにおける該肉抜部40の最大幅W1が径方向Rにおける該肉抜部40の最大幅W2に比べて大きな扁平形状な円形でもよい。
図22に示すように、本実施形態の肉抜部40は、軸方向Zから見た断面形状において、略円形に形成されている。本願でいう「略円形」とは、例えば真円形であるが、これに代えて、楕円形などでもよい。また「略円形」とは、周方向θにおける該肉抜部40の最大幅W1が径方向Rにおける該肉抜部40の最大幅W2に比べて大きな扁平形状な円形でもよい。
このような構成によれば、第6の実施形態と同様に、磁気特性の低下を抑制しつつ、電動機1の軽量化を図ることができる。さらに本実施形態では、肉抜部40が略円形に形成されている。このような構成によれば、肉抜部40の面積を比較的大きく確保することができる。これにより、電動機1のさらなる軽量化を図ることができる。
(第8の実施形態)
次に、図23を参照して、第8の実施形態について説明する。
本実施形態は、肉抜部40の配置位置が所定の条件を満たすように設定された点で、第6の実施形態とは異なる。ここでは、1つの肉抜部40の配置位置を代表して説明するが、回転子鉄心21に設けられる全ての肉抜部40が以下に示す条件を満たすように設定されてもよい。なお、以下に説明する以外の構成は、第6の実施形態と同様である。
次に、図23を参照して、第8の実施形態について説明する。
本実施形態は、肉抜部40の配置位置が所定の条件を満たすように設定された点で、第6の実施形態とは異なる。ここでは、1つの肉抜部40の配置位置を代表して説明するが、回転子鉄心21に設けられる全ての肉抜部40が以下に示す条件を満たすように設定されてもよい。なお、以下に説明する以外の構成は、第6の実施形態と同様である。
図23は、第8の実施形態の電動機1の一部を拡大して示す断面図である。
図23に示すように、本実施形態の肉抜部40は、軸方向Zから見て、空隙31と肉抜部40との間の最短離間距離をDとし、周方向θにおけるスポーク29の幅をWとしたとき、D≧W/2(以下、条件1という。)を満たすように形成されている。
図23に示すように、本実施形態の肉抜部40は、軸方向Zから見て、空隙31と肉抜部40との間の最短離間距離をDとし、周方向θにおけるスポーク29の幅をWとしたとき、D≧W/2(以下、条件1という。)を満たすように形成されている。
例えば本実施形態では、ヨーク25に対するスポーク29の接続部29aは、第6の実施形態と同様に、一対の膨らみ部30A,30Bを有する。そして、肉抜部40は、スポーク29の第1膨らみ部30Aと向かい合う第1辺42Aと、スポーク29の第2膨らみ部30Bと向かい合う第2辺42Bとを有する。第1辺42Aおよび第2辺42Bは、肉抜部40の凸部41の両側に分かれて形成されている。
そして本実施形態では、隅アール部31eによって規定された第1膨らみ部30Aの縁と、肉抜部40の第1辺42Aとの間の距離が、空隙31と肉抜部40との間の最短離間距離Dに該当する。また、隅アール部31eによって規定された第2膨らみ部30Bの縁と、肉抜部40の第2辺42Bとの間の距離が、空隙31と肉抜部40との間の最短離間距離Dに該当する。
また本実施形態では、肉抜部40は、空隙31と肉抜部40との間の最短離間距離をDとし、周方向θにおけるスポーク29の幅をWとしたとき、上記条件1を満たすとともに、D<Wを満たすように形成されている。
また本実施形態では、肉抜部40は、空隙31とロータバー35との間の最短離間距離をKとし、ロータバー35と肉抜部40との間の最短離間距離をQとしたとき、Q+D≧K(以下、条件2という。)を満たすように形成されている。なお、肉抜部40は、条件1および条件2の両方を満たすように形成されてもよく、条件1および条件2のいずれか一方のみを満たすように形成されてもよい。
本実施形態では、空隙31と回転子スロット33(ロータバー35)との間の最短離間距離Kは、磁気飽和に起因する回転子20の磁気特性の低下が生じない距離に設定されている。例えば、最短離間距離Kは、ヨーク25に肉抜部40が形成されてない構成において、固定子コイル13に所定の電圧が印加されたときに、空隙31とロータバー35との間を流れる磁束の磁束密度が飽和磁束密度と同等以下になるように設定されている。
このような構成によれば、第6の実施形態と同様に、磁気特性の低下を抑制しつつ、電動機1の軽量化を図ることができる。
さらに本実施形態では、軸方向Zから見て、周方向θにおけるスポーク29の幅をWとし、空隙31と肉抜部40との間の最短離間距離をDとしたとき、D≧W/2となっている。このような構成によれば、回転子鉄心21が回転する際に、肉抜部40と空隙31との間の鉄心部分に作用する応力は、スポーク29に作用する応力に比べて過大に大きくなりにくい。これにより、電動機1の信頼性や寿命を向上させることができる。またこのような構成によれば、肉抜部40よりも径方向Rの内側を通る磁束が肉抜部40によって阻害され、空隙31と肉抜部40との間で磁気飽和が生じることをさらに確実に抑制することができる。
本実施形態では、空隙31と肉抜部40との間の最短離間距離D、および前記スポークの幅Wは、D<Wをさらに満たすように設定されている。このような構成によれば、ロータバー35に対して肉抜部40を比較的離して配置することができる。これにより、ロータバー35と肉抜部40との間における磁束の飽和をさらに抑制することができる。
ここで、空隙31とロータバー35との間を流れる磁束は、空隙31と肉抜部40との間、およびロータバー35と肉抜部40との間に分岐する。このため、空隙31と肉抜部40との間、またはロータバー35と肉抜部40との間において磁気飽和が生じると、肉抜部40が形成されていない場合と比較して、空隙31とロータバー35との間の磁束密度が低下する。本実施形態では、空隙31とロータバー35との間の最短離間距離をKとし、ロータバー35と肉抜部40との間の最短離間距離をQとしたとき、Q+D≧Kとなっている。このような構成によれば、磁束の流れに対する幅を、ロータバー35と肉抜部40との間において十分に確保できる。よって、例えばロータバー35と肉抜部40との間において磁気飽和が生じ、空隙31とロータバー35との間において磁束密度が低下することを抑制することができる。
以上、いくつかの実施形態に係る電動機1について説明したが、実施形態の構成は、上記例に限定されない。例えば上述した実施形態および変形例の構成は、互いに組み合わせて適用することができる。また上述の実施形態では、電動機1は、鉄道車両に適用されるものとしたが、例えば自動車などの車両用や、エレベータの巻上機などの産業用であってもよい。また上記実施形態では、スポーク29が6本設けられているが、これに限定されず、スポークの本数は、任意に設定可能である。
肉抜部40は、例えば凸部41が径方向Rの外側に向いた略三角形状でもよい。また、肉抜部40は、略三角形状や略円形以外の形状でもよい。また、回転子鉄心21は、支持部27を有さずに、スポーク29がシャフト23に直接に固定されてもよい。また、肉抜部40の一部(例えば凸部41の少なくとも一部)は、隣り合う2つの空隙31の弧状部31aの間を繋ぐ仮想線ILよりも、径方向Rの内側に位置してもよい(図24参照)。言い換えると、肉抜部40の一部は、スポーク29に入り込み、スポーク29に設けられてもよい。この場合、肉抜部40の一部は、スポーク29の接続部29aにおいて、一対の膨らみ部30A,30Bの間の領域32に設けられてもよい。このような構成によれば、肉抜部40の面積をさらに大きくすることができる。その結果、電動機1のさらなる軽量化を図ることができる。
また、空隙31の内部に冷却風が供給される場合、空隙31の内面には、フィン62が設けられてもよい(図25参照)。なお、フィン62は、軸方向Zに延びた板状部でもよく、空隙31の内面に設けられた突起でもよい。フィン62が設けられた場合、放熱面積の増加により冷却性能の向上を図ることができる。
また、肉抜部40の内部に冷却風が供給される場合、肉抜部40の内面には、フィン64が設けられてもよい(図26参照)。なお、フィン64は、軸方向Zに延びた板状部でもよく、肉抜部40の内面に設けられた突起でもよい。フィン64が設けられた場合、放熱面積の増加により冷却性能の向上を図ることができる。
以上説明した少なくともひとつの実施形態によれば、ヨークの周方向に沿って離間して配置され、前記ヨークとシャフトとの間に設けられてヨークを支持した複数のスポークを回転子鉄心が持つことにより、電動機の軽量化を図ることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1…電動機、21…回転子鉄心、23…シャフト、25…ヨーク、29…スポーク、29a…ヨークに対するスポークの接続部、31…空隙、35…ロータバー(導体)、40…肉抜部、41…肉抜部の凸部、80…固定部、84…支持面、91…第1部材、92…第2部材、95…第1スポーク、96…第2スポーク、100…制風構造、102…カバー、Z…軸方向、R…径方向、θ…周方向。
Claims (17)
- 中心軸回りに回転可能な回転子鉄心と、
前記回転子鉄心が固定されたシャフトと、
を備え、
前記回転子鉄心は、
少なくとも1つの導体を支持する環状のヨークと、
前記ヨークの周方向に離間して配置され、前記ヨークと前記シャフトとの間に設けられて前記ヨークを支持した複数のスポークと、
を有した、
かご形誘導電動機。 - 前記複数のスポークは、互いに隣り合う2つのスポークを含み、前記2つのスポークの間の空隙は、略三角形状である、
請求項1に記載のかご形誘導電動機。 - 前記複数のスポークに含まれるスポークの本数は、前記かご形誘導電動機の極数の整数倍の数である、
請求項1または請求項2に記載のかご形誘導電動機。 - 前記複数のスポークに含まれるスポークの本数は、前記かご形誘導電動機の極数の整数倍とは異なる数である、
請求項1または請求項2に記載のかご形誘導電動機。 - 前記回転子鉄心は、前記シャフトに設けられて前記スポークを前記シャフトに固定する固定部をさらに有し、
前記固定部は、前記ヨークの周方向で前記スポークを支持する支持面を有した、
請求項1から請求項4のいずれか1項に記載のかご形誘導電動機。 - 前記回転子鉄心は、前記ヨークの軸方向で互いに重ねられてそれぞれ前記ヨークの一部を形成している第1部材および第2部材を含み、
前記複数のスポークは、前記第1部材によって形成された第1スポークと、前記第2部材によって形成された第2スポークとを含み、
前記第1スポークの少なくとも一部と前記第2スポークの少なくとも一部とは、前記周方向で互いに異なる位置に配置されている、
請求項1から請求項5のいずれか1項に記載のかご形誘導電動機。 - 前記第1スポークと前記第2スポークとは、前記ヨークの周方向において、前記中心軸を中心とする放射方向に対して互いに反対方向に傾いている、
請求項6に記載のかご形誘導電動機。 - 前記回転子鉄心および前記回転子鉄心の周囲の少なくとも一方に設けられ、前記複数のスポークに含まれて隣り合う2つのスポークの間の空隙の少なくとも一部を前記ヨークの軸方向から覆うカバーをさらに備えた、
請求項1から請求項7のいずれか1項に記載のかご形誘導電動機。 - 前記回転子鉄心は、前記スポークの延長線上に肉抜部を有する、
請求項1から請求項8のいずれか1項に記載のかご形誘導電動機。 - 前記肉抜部は、略三角形状である、
請求項9に記載のかご形誘導電動機。 - 前記肉抜部は、前記スポークに対して凸部が向いた略三角形状である、
請求項10に記載のかご形誘導電動機。 - 前記スポークは、前記ヨークに対する接続部を有し、前記接続部は、前記ヨークの径方向の外側に向けて進むに従い前記スポークの中心線から離れる方向に膨らむ一対の膨らみ部を有し、
前記肉抜部の前記凸部は、前記一対の膨らみ部の間の領域に向いている、
請求項11に記載のかご形誘導電動機。 - 前記肉抜部は、略円形である、
請求項9に記載のかご形誘導電動機。 - 前記肉抜部は、前記ヨークの周方向の最大幅が前記ヨークの径方向の最大幅に比べて大きな扁平形状である、
請求項9から請求項13のいずれか1項に記載のかご形誘導電動機。 - 前記複数のスポークに含まれて隣り合う2つのスポークの間の空隙と前記肉抜部との間の最短離間距離をDとし、
前記複数のスポークに含まれるスポークの前記ヨークの周方向における幅をWとしたとき、
前記空隙と前記肉抜部との間の最短離間距離D、および前記スポークの幅Wは、
D≧W/2
を満たすように設定されている、
請求項9から請求項14のいずれか1項に記載のかご形誘導電動機。 - 前記空隙と前記肉抜部との最短離間距離D、および前記スポークの幅Wは、
D<W
をさらに満たすように設定されている、
請求項15に記載のかご形誘導電動機。 - 前記複数のスポークに含まれて隣り合う2つのスポークの間の空隙と前記肉抜部との間の最短離間距離をDとし、
前記空隙と前記導体との間の最短離間距離をKとし、
前記導体と前記肉抜部との間の最短離間距離をQとしたとき、
前記空隙と前記肉抜部との間の最短離間距離D、前記空隙と前記導体との間の最短離間距離K、および前記導体と前記肉抜部との間の最短離間距離Qは、
Q+D≧K
を満たすように設定されている、
請求項9から請求項16のいずれか1項に記載のかご形誘導電動機。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/301,957 US11011964B2 (en) | 2016-05-19 | 2017-05-19 | Cage induction motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016100933A JP6844957B2 (ja) | 2016-05-19 | 2016-05-19 | かご形誘導電動機 |
JP2016-100933 | 2016-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017200093A1 true WO2017200093A1 (ja) | 2017-11-23 |
Family
ID=60326333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018862 WO2017200093A1 (ja) | 2016-05-19 | 2017-05-19 | かご形誘導電動機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11011964B2 (ja) |
JP (1) | JP6844957B2 (ja) |
TW (1) | TWI641202B (ja) |
WO (1) | WO2017200093A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI708460B (zh) * | 2018-09-13 | 2020-10-21 | 日商三菱電機股份有限公司 | 籠形轉子及旋轉電機 |
CN112072883A (zh) * | 2020-08-05 | 2020-12-11 | 银川威力传动技术股份有限公司 | 用于抽油机的电机 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6689445B2 (ja) * | 2017-03-03 | 2020-04-28 | 三菱電機株式会社 | 回転子、電動機、圧縮機および送風機 |
US11031834B2 (en) * | 2018-04-12 | 2021-06-08 | Ford Global Technologies, Llc | Electric machine rotor end plate with raised flow features |
JP2021136777A (ja) * | 2020-02-27 | 2021-09-13 | セイコーエプソン株式会社 | アキシャルギャップモーター |
JP7419205B2 (ja) * | 2020-09-25 | 2024-01-22 | 株式会社日立産機システム | 回転子、かご形誘導電動機及びドライブシステム |
JP7313572B2 (ja) * | 2020-09-25 | 2023-07-24 | 三菱電機株式会社 | 電動機 |
USD1029714S1 (en) | 2021-08-19 | 2024-06-04 | Nidec Motor Corporation | Spoked rotor |
US11791679B2 (en) | 2021-08-19 | 2023-10-17 | Nidec Motor Corporation | Spoked rotor having deflectable magnet-retaining spokes |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5635849U (ja) * | 1979-08-24 | 1981-04-07 | ||
JP2009219343A (ja) * | 2008-02-13 | 2009-09-24 | Hitachi Ltd | 回転電機、および回転電機の固定子コイル接続方法 |
JP2010252598A (ja) * | 2009-04-20 | 2010-11-04 | Honda Motor Co Ltd | 電動機 |
WO2011114594A1 (ja) * | 2010-03-15 | 2011-09-22 | 株式会社安川電機 | 永久磁石形回転電機 |
WO2015059768A1 (ja) * | 2013-10-22 | 2015-04-30 | 三菱電機株式会社 | 回転電機用ロータ |
JP2016032340A (ja) * | 2014-07-28 | 2016-03-07 | トヨタ自動車株式会社 | 回転電機のロータ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61285037A (ja) | 1985-06-07 | 1986-12-15 | Hitachi Ltd | 回転電機の回転子 |
JPH01117635A (ja) | 1987-10-30 | 1989-05-10 | Mitsubishi Electric Corp | 回転電機の回転子 |
US6133663A (en) * | 1999-04-01 | 2000-10-17 | A. O. Smith Corporation | Brushless permanent magnet machine |
JP3624130B2 (ja) | 2000-01-21 | 2005-03-02 | 東海旅客鉄道株式会社 | 誘導電動機の回転子及び誘導電動機 |
JP3930294B2 (ja) | 2001-11-05 | 2007-06-13 | 株式会社東芝 | 車両用全閉外扇形電動機 |
US20060022541A1 (en) * | 2004-07-30 | 2006-02-02 | Raymond Ong | Rotor hub and assembly for a permanent magnet power electric machine |
JP2011125193A (ja) | 2009-12-14 | 2011-06-23 | Toshiba Corp | 立軸形回転電機の回転子 |
KR102073005B1 (ko) * | 2013-07-17 | 2020-02-04 | 삼성전자주식회사 | 모터 |
CN204992996U (zh) * | 2015-08-25 | 2016-01-20 | 马小安 | 一种异步电动机 |
-
2016
- 2016-05-19 JP JP2016100933A patent/JP6844957B2/ja active Active
-
2017
- 2017-05-03 TW TW106114678A patent/TWI641202B/zh active
- 2017-05-19 WO PCT/JP2017/018862 patent/WO2017200093A1/ja active Application Filing
- 2017-05-19 US US16/301,957 patent/US11011964B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5635849U (ja) * | 1979-08-24 | 1981-04-07 | ||
JP2009219343A (ja) * | 2008-02-13 | 2009-09-24 | Hitachi Ltd | 回転電機、および回転電機の固定子コイル接続方法 |
JP2010252598A (ja) * | 2009-04-20 | 2010-11-04 | Honda Motor Co Ltd | 電動機 |
WO2011114594A1 (ja) * | 2010-03-15 | 2011-09-22 | 株式会社安川電機 | 永久磁石形回転電機 |
WO2015059768A1 (ja) * | 2013-10-22 | 2015-04-30 | 三菱電機株式会社 | 回転電機用ロータ |
JP2016032340A (ja) * | 2014-07-28 | 2016-03-07 | トヨタ自動車株式会社 | 回転電機のロータ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI708460B (zh) * | 2018-09-13 | 2020-10-21 | 日商三菱電機股份有限公司 | 籠形轉子及旋轉電機 |
US11146128B1 (en) | 2018-09-13 | 2021-10-12 | Mitsubishi Electric Corporation | Squirrel-cage rotor and rotating electric machine |
CN112072883A (zh) * | 2020-08-05 | 2020-12-11 | 银川威力传动技术股份有限公司 | 用于抽油机的电机 |
Also Published As
Publication number | Publication date |
---|---|
US20190288588A1 (en) | 2019-09-19 |
TW201807929A (zh) | 2018-03-01 |
TWI641202B (zh) | 2018-11-11 |
US11011964B2 (en) | 2021-05-18 |
JP6844957B2 (ja) | 2021-03-17 |
JP2017208965A (ja) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017200093A1 (ja) | かご形誘導電動機 | |
US8487495B2 (en) | Rotor for motor | |
JP6013062B2 (ja) | 誘導電動機およびこれを用いた鉄道車両 | |
US20070052313A1 (en) | Rotating electrical machine | |
JP2009055737A (ja) | ロータおよび回転電機 | |
US20160226355A1 (en) | Magnetic inductor electric motor | |
JP2012161134A (ja) | 回転電機 | |
US10784749B2 (en) | Cooling structure of rotary electric machine and rotary electric machine | |
JP2019213282A (ja) | 回転電機および固定子冷却構造 | |
JP5892091B2 (ja) | マルチギャップ型回転電機 | |
US10784748B2 (en) | Cooling structure of rotary electric machine and rotary electric machine | |
JP7132729B2 (ja) | 回転電機 | |
JP2020010510A (ja) | 回転電機および回転子 | |
JP7359649B2 (ja) | 回転電機、及び回転電機システム | |
JP4532964B2 (ja) | 二重回転子電動機 | |
JP6762238B2 (ja) | モータ | |
CN111564915A (zh) | 定子 | |
JP2019134573A (ja) | 回転電機のステータ | |
JP7382235B2 (ja) | ロータおよび回転電機 | |
WO2023021839A1 (ja) | 誘導電動機および鉄道車両 | |
JP2019022257A (ja) | 回転電機 | |
JP6867970B2 (ja) | 突極形回転電機および回転子 | |
JP7309302B1 (ja) | 回転電機 | |
US20240097525A1 (en) | Rotary electrical machine | |
JP2019115104A (ja) | 誘導電動機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799517 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17799517 Country of ref document: EP Kind code of ref document: A1 |