WO2017200055A1 - 細胞培養基材、細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法、細胞培養基材のメンテナンス液 - Google Patents
細胞培養基材、細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法、細胞培養基材のメンテナンス液 Download PDFInfo
- Publication number
- WO2017200055A1 WO2017200055A1 PCT/JP2017/018725 JP2017018725W WO2017200055A1 WO 2017200055 A1 WO2017200055 A1 WO 2017200055A1 JP 2017018725 W JP2017018725 W JP 2017018725W WO 2017200055 A1 WO2017200055 A1 WO 2017200055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell culture
- culture substrate
- cell
- contour curve
- substrate according
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/02—Form or structure of the vessel
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M23/00—Constructional details, e.g. recesses, hinges
- C12M23/20—Material Coatings
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0068—General culture methods using substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0652—Cells of skeletal and connective tissues; Mesenchyme
- C12N5/0654—Osteocytes, Osteoblasts, Odontocytes; Bones, Teeth
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/10—Mineral substrates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/10—Mineral substrates
- C12N2533/12—Glass
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/10—Mineral substrates
- C12N2533/14—Ceramic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/10—Mineral substrates
- C12N2533/18—Calcium salts, e.g. apatite, Mineral components from bones, teeth, shells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2535/00—Supports or coatings for cell culture characterised by topography
Definitions
- the present invention relates to a cell culture substrate, a method for producing a cell-containing material, a method for producing a cell culture substrate, a cell observation method, and a maintenance liquid for the cell culture substrate.
- regenerative medical techniques for transplanting cell tissues obtained by culturing cells outside the body into the body have attracted attention.
- development of a regenerative medical technique for culturing various cells that differentiate into a biological tissue in a cell culture dish to regenerate stem cells such as iPS cells and biological tissues such as bones, blood vessels, skin, and heart has been progressing.
- a polystyrene cell culture dish As a substrate used for cell culture, a polystyrene cell culture dish has been generally used. However, when a polystyrene cell culture dish is used as a culture substrate, there is a problem that the adhesion rate and viable cell rate of cultured cells are low. Moreover, since the polystyrene cell culture dish has low heat resistance, there is a problem that it cannot be reused by heat sterilization.
- Patent Document 1 focuses on the fact that polystyrene cell culture dishes are not suitable for uses such as primary cell culture and cell culture without serum, and cell culture in which a surface of a substrate on which cells are cultured is coated with a colloidal silica film. An apparatus is described.
- Patent Document 2 describes a method of creating a bioactive surface by enzymatic modification of a molecule or molecular assembly on a surface having amorphous silicon dioxide (silica), using a polypeptide for enzyme modification, It is described that the method is used for cell culture.
- amorphous silicon dioxide silicon dioxide
- Patent Document 3 describes a cell culture substrate containing a copolymer of methoxyethyl acrylate, dimethylacrylamide, and one or more inorganic materials selected from water-swellable clay minerals and silica.
- a cell mass (spheroid) in which cells are three-dimensionally aggregated is used as a cell culture substrate that can be cultured in a uniform size without using an additive such as a collagen gel.
- a cell culture substrate having a structure in which a plurality of recesses having a depth of 100 to 500 ⁇ m and an inner diameter of 100 to 1000 ⁇ m are provided is described. It is also described that the cell culture substrate further has a continuous concavo-convex structure with a mode pitch of 2 nm to 10 ⁇ m.
- Patent Document 5 focuses on the formation origin of cell aggregates (spheroids) and the extension of cell aggregates on the cell culture substrate, and has a structure suitable for improving aggregate formation efficiency on one surface of a glass substrate.
- a cell culture substrate in which a plurality of recesses having openings in a funnel shape and pores at the bottom thereof are arranged, and the recesses are at least a glass substrate cleaning step, a Cr film mask formation step, a resist mask formation step, etching Describes a cell culture substrate formed through a process flow comprising a Cr film mask opening forming step and a wet etching step of a glass substrate.
- Non-Patent Document 1 describes that cell culture characteristics are improved when the distance between a gold nanodot and another gold nanodot is 58 nm rather than 110 nm on the surface of a gold nanodot / polyethylene glycol substrate. Yes.
- Cavalcanti-Adam E.C. A. Micoulet, A .; Blumel, J .; , Auernheimer, J.A. Kessler, H .; Spatz, J .; P. , Eur, J.M. Cell Biol. 85 (2006) 219-224.
- the present invention is a cell culture substrate having excellent culture solution resistance, low cell toxicity, high adhesion rate and viable cell rate of cultured cells, excellent thermal stability and hardly absorbing ultraviolet light.
- Another object of the present invention is to provide a method for producing a cell-containing material using the cell culture substrate, a method for producing a cell culture substrate, a cell observation method, and a maintenance liquid for the cell culture substrate.
- the present inventors have intensively studied the mechanism during cell culture, and in order to improve the adhesion of the cell to the cell culture substrate and realize high activation such as cell proliferation, it is attached to the temporary foot of the cell. It is important to stabilize the integrin protein and extracellular matrix proteins such as fibrinogen, fibronectin, laminin, and vitronectin that intervene between the cell and the substrate on the culture surface of the cell culture substrate.
- a concavo-convex structure capable of accommodating integrin proteins (several nm to several tens of nm) and extracellular matrix proteins such as fibrinogen and fibronectin (several nm to several tens of nm) has a certain degree of cell culture medium. It may be possible to improve cell adhesion and viability by being formed on the culture surface of the material. It was heading.
- a cell culture substrate comprising a substrate made of an inorganic material,
- the cell culture substrate has a plurality of uneven structures on the culture surface,
- the concavo-convex structure was measured with an atomic force microscope in accordance with JISB0601 and JISR1683 (the measurement area is 1 ⁇ m square, the cut-off value of the low-pass contour curve filter is 1 nm, and the cut-off value of the high-pass contour curve filter is 170 nm.
- the average length of the contour curve elements of the concavo-convex structure in at least one direction is 1 to 170 nm (the average line is a curve representing a long wavelength component blocked by the high-pass contour curve filter by the least square method).
- the cell culture substrate is a line parallel to the straight line and showing a cumulative relative frequency distribution of 50% in the contour curve).
- the watershed height of the contour curve is 0.1 to 8 nm (the height of the watershed method is defined by an upper end line indicating a cumulative relative frequency distribution of 100% of the height in the contour curve and a height It is the average of the distance between the lowest point of the inverted valley in the contour curve measured by the watershed method and the lower end line in a state where the lower end line indicating the cumulative relative frequency distribution of 0% is inverted and horizontally corrected. ), The cell culture substrate according to claim 1.
- the aspect ratio of the period W1 in the contour curve of the concavo-convex structure in the X direction and the period W2 in the contour curve of the concavo-convex structure in the Y direction orthogonal to the X direction is 1.95 or less (the aspect ratio is The cell culture substrate according to (1) or (2), which is an average of values obtained by dividing the larger value of the periods W1 and W2 by the smaller value.
- a method for producing a cell-containing material comprising a step of culturing cells on the cell culture substrate according to any one of (1) to (10).
- a method for producing a cell culture substrate which comprises subjecting the cell culture substrate according to any one of (1) to (10) to autoclaving to produce a cell culture substrate for reuse.
- a cell culture medium having excellent culture solution resistance, low cell toxicity, high adhesion rate and viable cell rate of cultured cells, excellent thermal stability, and hardly absorbing ultraviolet light. Material can be provided. Furthermore, the present invention can also provide a method for producing a cell-containing material using the cell culture substrate, a method for producing a cell culture substrate, a cell observation method, and a maintenance liquid for the cell culture substrate.
- FIG. 2 is an X-ray diffraction pattern showing the crystallinity of the cell culture substrate surfaces of Examples 1 to 3 and Comparative Examples 1 and 2, and FIG. 2 (a) is an X-ray diffraction pattern in a low angle region, and FIG. b) is an X-ray diffraction pattern in a high angle region.
- 2 is an atomic force microscope image showing an uneven structure on the culture surface of the cell culture substrates of Examples 1 to 3 and Comparative Examples 1 and 2.
- FIG. 3 is a graph showing the amount of adsorbed protein on the culture surface of the cell culture substrates of Examples 1 to 3 and Comparative Examples 1 and 2.
- 5 is a graph showing the relationship between cell culture time and cell area in the cell culture substrates of Examples 1 to 3 and Comparative Examples 1 and 2.
- the cell culture substrate of this embodiment includes a substrate made of an inorganic material and has a plurality of concavo-convex structures on the culture surface.
- the cut-off value of the low-pass contour curve filter is 1 nm
- the cut-off value of the high-pass contour curve filter is 170 nm
- the average length of the contour curve elements of the concavo-convex structure in at least one direction is 1-170 nm.
- the direction in which the probe for measuring the atomic force is line-scanned at a high speed with respect to the culture surface of the cell culture substrate as a sample is defined as the A direction.
- the direction in which the starting point position for scanning the probe at high speed is gradually moved perpendicularly to the A direction is defined as the B direction.
- the measurement area on the culture surface of the cell culture substrate is 1 ⁇ m square, and an area of 1 ⁇ m in the A direction and 1 ⁇ m in the B direction can be set.
- the number of measurement points may be 256 points in the A direction and 256 points in the B direction. In the case of finer measurement, the number of measurement points may be 512 points in the A direction and 512 points in the B direction.
- the contour curve of the concavo-convex structure can be obtained by measurement with an atomic force microscope.
- Drawing 1 is a mimetic diagram showing an example of a contour curve of concavo-convex structure in one embodiment.
- a portion above the average line TA in the contour curve M of the concavo-convex structure is a mountain, and a portion below the valley is a valley.
- the average line is parallel to the straight line, and the cumulative relative frequency distribution 50 of the height in the contour curve is 50. It is a line which shows%.
- the “height” relating to the cumulative relative frequency distribution is the difference between the ordinate axis value at each location and the lowest value of the ordinate axis value.
- the contour curve M in the present embodiment has a plurality of peaks and valleys, and a curve portion formed by a mountain P 1 and a valley Q (specifically, right adjacent) Q adjacent to the mountain P 1 is one contour curve. is an element, further mountain P 2 are continuous. Therefore, the length of the profile elements is the distance from the origin A of the mountain P 1 to the end point B of the trough Q adjacent to the mountain P 1.
- the present invention has at least one direction in which the average length of the contour curve elements is 1 to 170 nm.
- the average length of the contour curve element is 1 to 170 nm. Integrin protein and extracellular matrix protein can be efficiently accommodated in the recess.
- the average length of the contour curve elements is preferably 1 to 130 nm, and more preferably 1 to 80 nm.
- the measurement direction in which the average length of the contour curve elements is within the above preferable range is preferably two or more directions.
- the measurement region in which the average length of the contour curve elements falls within the preferable range is a plurality of regions. Further, the existence probability of the measurement region in which the average length of the contour curve elements is within the above preferable range on the culture surface of the cell culture substrate of the present embodiment is preferably 10% or more, and 20% or more. More preferably, it is more preferably 30% or more.
- the height of the contour curve is preferably optimized from the viewpoint of the adhesion of cells to the culture surface.
- the watershed height of the contour curve is preferably from 0.1 to 8 nm, more preferably from 1 to 6 nm, and even more preferably from 1 to 5 nm.
- Extracellular matrix proteins fibrous, the center is hydrophobic, and the terminal is electrostatically charged.
- the fibrous protein is most likely to be adsorbed to the base material when the terminal part enters the concavo-convex structure and the central part does not enter the concavo-convex structure. Furthermore, as the density of the fibrous protein increases, the fibrous protein molecule rises due to the hydrophobic interaction between the exposed hydrophobic centers, and the contact frequency between the cell-binding region and the cell increases, Cells become easier to bind. These synergistic effects tend to increase the cell adhesion rate.
- the size (the hydrated size) of the terminal part of the extracellular matrix protein is several nm, it is considered that the watershed method height of the contour curve as described above is preferable.
- the height of the contour curve in the watershed method is a state in which the upper end line indicating the cumulative relative frequency distribution of 100% in the contour curve and the lower end line indicating the cumulative relative frequency distribution of height are inverted and horizontally corrected.
- the average of the distance between the lowest point of the valley after inversion and the bottom line in the contour curve measured by the watershed method.
- the Vincent-Solele algorithm L. Vincent, P. Solle, “Watersheds in Digital Spheres 13: An Efficient Algorithm Bases on Immersion Simulations,” (1991).) Is automatically processed by the program.
- the average length of the contour curve element obtained by the above measuring method is 1 to 170 nm, while the concave portion having an inner diameter of 100 to 1000 ⁇ m and a depth of 100 to 500 ⁇ m as in Patent Document 4 above.
- a part does not need to exist on the base material of this embodiment.
- the aspect of Patent Document 4 in which a concavo-convex structure is formed on the inner surface of a concave portion having an inner diameter of 100 to 1000 ⁇ m and a depth of 100 to 500 ⁇ m is a structure for forming a spheroid (cell mass) and is intended for the formation of a spheroid. It is preferable not to be included in this embodiment.
- the uneven structure is preferably a groove-like, hole-like or scale-like uneven structure.
- the concavo-convex structure is a groove-like, hole-like, or scale-like concavo-convex structure, proteins can be accommodated regularly, and adherent cells can be regularly formed on the culture surface.
- the porous concavo-convex structure is surrounded by the charged end portion of the extracellular matrix protein in close contact with the concavo-convex structure, so that the extracellular matrix protein adsorbs to the substrate and the extracellular matrix protein stands up. This is advantageous in that the cell adhesion rate is likely to increase.
- a groove-shaped uneven structure can be produced by scraping the surface of the substrate or the base material, and if it is a hole-shaped uneven structure, a member that forms a hole is pressed from the surface of the substrate or the base material. It is excellent in that the concavo-convex structure can be easily formed.
- the groove shape means a shape in which concave portions are continuously formed in the depth direction, and a linear groove structure is preferable from the viewpoint of regularly accommodating proteins.
- the hole shape means a state where holes are scattered on the surface of the base material when viewed from the top surface of the base material.
- scale shape means the uneven structure in which a recessed part exists around a convex part. The groove-like, hole-like or scale-like uneven structure can be confirmed as an atomic force microscope image.
- the average length W1 of the contour curve elements of the concavo-convex structure in the X direction (the direction satisfying that the average length of the contour curve elements of the concavo-convex structure is 1 to 170 nm) is orthogonal to the X direction.
- the aspect ratio with the average length W2 of the contour curve elements of the concavo-convex structure in the Y direction is preferably 1.95 or less.
- the aspect ratio is an average of values obtained by dividing the larger value of the average values W1 and W2 by the smaller value.
- the aspect ratio is 1.95 or less, the charged end portion of the extracellular matrix protein is tightly surrounded by the concavo-convex structure, so that the adsorption of the extracellular matrix protein to the substrate and the extracellular matrix protein Standing is likely to occur, and the cell adhesion rate is likely to increase. More preferably, the aspect ratio is 1.5 or less, and further preferably 1.2 or less. When the average values W1 and W2 are the same value, the aspect ratio indicates 1, which is the lower limit.
- the roughness value can also be used as an index indicating the surface roughness of the uneven structure.
- the roughness value is a value obtained by quantifying the roughness of the surface by a root-mean-square value (Rrms).
- Rrms root-mean-square value
- h (Xi) the height at the measurement point Xi
- h the average value of the heights.
- the Rrms value is represented by the square root of the average of the square values of deviations with respect to the average value h.
- the present inventors consider the following mechanism as a hypothesis regarding the adhesiveness (cell adhesiveness) of cells to the culture surface. That is, when the cell culture medium is contained in the cell culture substrate, it is considered that the following processes (1) to (3) proceed and the cells exhibit functions. (1) Ion and water come into contact with the culture surface to form a hydrated layer (first adsorption process). (2) The protein in the cell culture medium is adsorbed on the hydration layer on the culture surface to form a protein adsorption layer (second adsorption process). (3) The cell adheres to the protein adsorption layer and extends (third adhesion process). Furthermore, it is considered that the cell adhesion and the viable cell rate are improved by accommodating the protein (terminal thereof) in the concave portion in the concavo-convex structure on the culture surface.
- a cell culture base material will not be specifically limited if it is a base material provided with the board
- inorganic materials include aluminum oxide, aluminum nitride, boron nitride, silicon nitride, silicon oxide, aluminum hydroxide, calcium hydroxide, calcium carbonate, calcite, calcium carbonate, light calcium carbonate, heavy calcium carbonate, and ultrafine carbonic acid.
- a calcium phosphate compound may be used as the inorganic material.
- the calcium phosphate compound is selected from phosphoric acid sources (phosphoric acid, primary sodium phosphate, secondary sodium phosphate, primary potassium phosphate, secondary potassium phosphate, primary ammonium phosphate, secondary ammonium phosphate, etc. Or a mixture of a calcium source (one or more salts selected from calcium nitrate, calcium carbonate, calcium chloride, calcium hydroxide, calcium acetate, etc.), or a mixed reaction product. It is preferable.
- the calcium phosphate compounds calcium hydrogen phosphate anhydrate (CaHPO 4), calcium hydrogen phosphate dihydrate (CaHPO 4 ⁇ 2H 2 O) , tricalcium phosphate (Ca 3 (PO 4) 2 ), Calcium dihydrogen phosphate anhydrate (Ca (H 2 PO 4 ) 2 ), calcium dihydrogen phosphate monohydrate (Ca (H 2 PO 4 ) 2 .H 2 O), tetracalcium phosphate (Ca 4 O (PO 4) 2), hydroxyapatite (Ca 10 (PO 4) 6 (OH) 2), octacalcium phosphate (Ca 8 H 2 (PO 4 ) 6 ⁇ 5H 2 O), amorphous calcium phosphate ( Ca 3 (PO 4 ) 2 ⁇ nH 2 O).
- hydroxyapatite and octacalcium phosphate which are useful in cell culture are preferable, and hydroxyapatite having a high biological / cell affinity is more preferable.
- the inorganic material silicon oxide (silica) is preferable, and quartz glass is more preferable.
- silica which is a subcomponent of bone
- the culture of osteoblasts can be highly activated.
- a side part is comprised with the same inorganic material as a board
- the oxide of boron may affect the living body, it is preferable that the cell culture substrate does not contain B 2 O 3 on the culture surface.
- the non-culture surface may or may not contain B 2 O 3 .
- a substrate made of an inorganic material a cell culture substrate that is excellent in thermal stability and culture solution resistance and does not give toxicity to cells. Further, it is less likely to absorb ultraviolet light than when polystyrene is used as a substrate material.
- the cell culture substrate contains an inorganic material, it contains the organic compound such as a copolymer of methoxyethyl acrylate and dimethylacrylamide. It is preferably not included in the cell culture substrate of the embodiment.
- the cells cultured on the cell culture substrate are not particularly limited, and examples thereof include adipocytes, osteoblasts, chondrocytes, skeletal muscle cells, myofibroblasts, hepatocytes, iPS cells, peripheral nerve cells, glial cells, Pigment cells, corneal endothelial cells, corneal parenchymal cells, iris parenchymal cells, trabecular meshwork cells, smooth muscle cells, chondrocytes, bone cells, adipocytes, endocrine cells, chromaffin cells, vascular smooth muscle cells, hair matrix cells, Examples include chondrocytes, amnion-derived cells, fetal kidney-derived cells, and the like.
- the culture surface of the cell culture substrate preferably has a concavo-convex structure coated with a porous SiO 2 film. By covering with a porous SiO 2 film, cell culture tends to be more highly activated.
- the culture surface of the cell culture substrate has an uneven structure coated with a calcium phosphate compound film.
- the calcium phosphate compound is selected from phosphoric acid sources (phosphoric acid, primary sodium phosphate, secondary sodium phosphate, primary potassium phosphate, secondary potassium phosphate, primary ammonium phosphate, secondary ammonium phosphate, etc. Or a mixture of a calcium source (one or more salts selected from calcium nitrate, calcium carbonate, calcium chloride, calcium hydroxide, calcium acetate, etc.), or a mixed reaction product. It is preferable.
- the calcium phosphate compounds calcium hydrogen phosphate anhydrate (CaHPO 4), calcium hydrogen phosphate dihydrate (CaHPO 4 ⁇ 2H 2 O) , tricalcium phosphate (Ca 3 (PO 4) 2 ), Calcium dihydrogen phosphate anhydrate (Ca (H 2 PO 4 ) 2 ), calcium dihydrogen phosphate monohydrate (Ca (H 2 PO 4 ) 2 .H 2 O), tetracalcium phosphate (Ca 4 O (PO 4) 2), hydroxyapatite (Ca 10 (PO 4) 6 (OH) 2), octacalcium phosphate (Ca 8 H 2 (PO 4 ) 6 ⁇ 5H 2 O), amorphous calcium phosphate ( Ca 3 (PO 4 ) 2 ⁇ nH 2 O).
- hydroxyapatite and octacalcium phosphate which are useful in cell culture are preferable, and hydroxyapatite having a high biological / cell affinity is more preferable.
- the substrate has a pure inorganic material (particularly, SiO 2 ) composition and an amorphous structure (from XRD).
- the thickness of the porous SiO 2 film or calcium phosphate compound film is preferably 1 to 200 nm, more preferably 5 to 170 nm, still more preferably 10 to 160 nm, and most preferably 40 to 150 nm. preferable. Even if the film thickness is 1 to 200 nm, the surface shape of the substrate of the cell culture substrate and the uneven structure of the culture surface are not significantly different from each other. Easy to form structure. From the same viewpoint, the film is preferably formed conformally in the concavo-convex structure.
- the porous SiO 2 film or the calcium phosphate compound film is used to finely adjust the average length and aspect ratio of the contour curve element of the concavo-convex structure, the height of the contoured watershed method, and the roughness value of the concavo-convex structure. You can also. For example, as the film thickness increases, fine adjustments can be made to reduce the average length of the contour curve elements without significantly changing the height of the watershed method of the contour curve.
- a porous SiO 2 film or a calcium phosphate compound film is formed on the surface of the cell culture substrate so that a region without a film and a region with a film are formed.
- the boundary region with the region where the film is present can be scanned with, for example, an atomic force microscope or a stylus type surface shape measuring instrument, and the film thickness can be measured.
- a method for forming a region without a film there is a method in which a substance that inhibits film formation (for example, a chemical-resistant polyimide tape) is previously applied to a part of the substrate surface.
- a substance that inhibits film formation for example, a chemical-resistant polyimide tape
- an extremely shallow angle for example, the surface of the sample
- Smart Lab 9 kW manufactured by Rigaku Corporation
- the membrane cross-section of the cell culture substrate with a focused ion processing apparatus, observe the membrane cross-section with a high-resolution transmission electron microscope (for example, HT7700 manufactured by Hitachi High-Technologies Corporation), and measure the film thickness. is there.
- a high-resolution transmission electron microscope for example, HT7700 manufactured by Hitachi High-Technologies Corporation
- the visible light transmittance of the cell culture substrate is preferably 70% or more. Thereby, it becomes a cell culture substrate excellent in transparency and facilitates favorable cell observation with an optical microscope. More preferably, the visible light transmittance is 80% or more, and even more preferably, the visible light transmittance is 90% or more.
- a typical example of a conventional cell culture substrate having a visible light transmittance of less than 70% is a substrate in which an inorganic material is coated on a polystyrene culture dish.
- the visible light transmittance is about 64%, so there is a problem in using it for optical observation.
- the casting method cannot control the arrangement of particles. Since the film structure is relatively rough due to particle agglomeration and causes irregular reflection of light, there is a problem in applications such as cell observation.
- the cell culture substrate of this embodiment does not cause this problem because it does not use an ultraviolet light-absorbing material such as polystyrene.
- the method for forming the concavo-convex structure on the culture surface of the cell culture substrate is not particularly limited, and a known grinding / polishing method can be used.
- a known grinding / polishing method can be used.
- quartz glass (silica) is used as the cell culture substrate, a method for forming a concavo-convex structure on the culture surface by grinding and polishing will be described below.
- ⁇ Grinding process In the grinding process, the plate-like workpiece is held between the upper and lower surface plates, and the surface plate and the workpiece are rotated and moved relative to each other while supplying a polishing liquid (polishing slurry) containing free abrasive grains.
- a polishing liquid polishing slurry
- diamond fine powder is pelletized, and the surface plate and work piece are fed while supplying grinding fluid (coolant) with a surface plate in which a plurality of these pellets are arranged.
- it is performed by a fixed abrasive method performed by rotating and relatively moving. Further, grinding with a diamond pad may be performed.
- the quartz glass substrate that has undergone the grinding process is substantially free from defects such as large waviness, chipping, and cracks.
- the quartz glass substrate may be subjected to only alkali cleaning, may be subjected to acid cleaning after being subjected to acid cleaning, or may be only subjected to acid cleaning.
- the polishing step is a step of polishing the surface of the glass substrate so that the finally required surface roughness (uneven structure) can be efficiently obtained.
- the polishing method employed in this step is not particularly limited, and polishing can be performed using a polishing pad and a polishing liquid in a double-side polishing machine.
- polishing can be performed using a polishing pad and a polishing liquid in a double-side polishing machine.
- polishing pad it is preferable to use a hard pad so that the finally required surface roughness (uneven structure) can be easily obtained.
- urethane foam is preferably used.
- polishing liquid it is preferable to use cerium oxide having an average particle diameter of 0.6 to 2.5 ⁇ m as abrasive grains (polishing material), and the abrasive grains dispersed in water to form a slurry. .
- the mixing ratio of water and abrasive grains is about 1: 9 to 3: 7.
- the cleaning method is not particularly limited, and any cleaning method may be used as long as it can clean the surface of the quartz glass substrate after the polishing step.
- the cleaned quartz glass substrate is subjected to ultrasonic cleaning and drying steps as necessary.
- the drying step is a step of drying the surface of the quartz glass substrate after removing the cleaning liquid remaining on the surface of the quartz glass substrate with isopropyl alcohol (IPA) or the like.
- IPA isopropyl alcohol
- IPA isopropyl alcohol
- the IPA vapor drying step is performed for 2 minutes, and the liquid IPA adhering to the surface of the quartz glass substrate is removed while being removed by the IPA vapor.
- the drying process of the quartz glass substrate is not particularly limited, and a known drying method such as spin drying or air knife drying can be employed.
- the method for producing a cell-containing material of this embodiment includes a step of culturing by applying cells to the uneven structure in the cell culture substrate.
- a cell-containing material such as a cell tissue or a living tissue that is highly active in cell culture and excellent in adhesion to a substrate.
- the culture time when the cell density is 90% of the culture surface of the cell culture substrate made of polystyrene is 1T.
- the cells are cultured using the cell culture substrate of this embodiment with a culture time of 1 / 2T to 2 / 3T.
- the culture time that is 90% of the culture surface of the cell culture substrate made of polystyrene is 24 hours, a shorter culture time of 12 to 16 hours is obtained by using the cell culture substrate of this embodiment.
- the cells can be cultured until the cell density reaches 90% of the culture surface of the cell culture substrate of the present embodiment.
- the present embodiment can provide a method for autoclaving a cell culture substrate to produce a cell culture substrate for reuse.
- Conventional polystyrene dishes can be sterilized with gamma rays.
- the gamma ray sterilization apparatus becomes a large-scale facility such as radiation control, polystyrene dishes used for cell culture are often discarded after use.
- the cell culture substrate of the present embodiment can be sterilized by autoclaving because the substrate is made of an inorganic material. For this reason, for example, it is possible to immediately sterilize a cell culture substrate immediately after use in a laboratory and prepare a cell culture substrate for reuse.
- the conditions for autoclaving vary depending on the material used for the cell culture substrate. For example, when a quartz glass (silica) substrate is used, the temperature is 100 to 150 ° C., the pressure is 0.10 MPa to 0.5 MPa, and the heating time is 1 to 30.
- the autoclave treatment is carried out for 20 minutes, preferably at a temperature of 121 ° C. and a saturated water vapor pressure of 0.20 MPa.
- the maintenance solution for the cell culture substrate of this embodiment is used to remove cell adhesion proteins and extracellular matrix (eg, fibrinogen) secreted by cells, which are residual substances on the cell culture substrate, and decomposes the protein.
- a maintenance solution for example, ethanol, phosphate buffered saline (PBS), fetal bovine serum (FBS), FBS / ⁇ MEM medium containing cell culture solution ( ⁇ MEM), sodium dodecyl sulfate (SDS), etc. are used to weaken the maintenance solution. Bound proteins and the like can be removed.
- proteins or the like that are strongly bound can be decomposed and removed using a solution in which the weight ratio of ultrapure water: ammonia water: hydrogen peroxide water is 5: 1: 1, 1N hydrochloric acid, or the like. Finally, a clean surface can be obtained by rinsing repeatedly with ultrapure water.
- the cell observation method of this embodiment is a method for optically observing cells on a cell culture substrate.
- Conventional polystyrene dishes reflect light and are difficult to observe optically.
- ultraviolet light having a wavelength of 200 to 400 nm is incident, since fluorescence is emitted from polystyrene, it is not suitable for observation under ultraviolet light.
- the cell culture substrate of the present embodiment does not use an ultraviolet light-absorbing material such as polystyrene, and is excellent in transparency and visible light permeability. It becomes easy to observe the above cells with, for example, an optical microscope.
- Example 1 Both surfaces of the silica glass substrate made of silica were ground using a double-side grinding machine (manufactured by Hamai Sangyo Co., Ltd., 4-way system lapping machine). For grinding, zirconia-based alumina (AZ) fine powder manufactured by Heisei Sankei Co., Ltd. was used as the abrasive grains, the load was 60 to 90 g / cm 2 , and the platen rotation speed was 20 to 50 rpm. Both surfaces of the quartz glass substrate after grinding were polished using a double-side polishing machine (4 way polish machine manufactured by Hamai Sangyo Co., Ltd.).
- AZ zirconia-based alumina
- a urethane pad was used as the polishing pad, MIIRE E manufactured by Mitsui Mining & Smelting Co., Ltd. was used as the abrasive grain, the load was 60 to 100 g / cm 2 , and the platen rotation speed was 20 to 50 rpm. did. Thereby, a cell culture substrate made of a silica substrate was produced.
- Example 2 Metal for producing cell culture substrate in which silica substrate is coated with porous silica membrane
- CAC hexadecyltrimethylammonium chloride
- 524 mg of hexadecyltrimethylammonium chloride (CTAC) was added to 1.4 ml of water and stirred until dispersed to obtain solution A.
- CTAC hexadecyltrimethylammonium chloride
- TMOS tetramethoxysilane
- Solution B Solution A and Solution B were mixed so that the TMOS / CTAC was 8 in molar ratio, and 0.1 ml of 1N HCl was further added to obtain a mixture C.
- a chemical-resistant polyimide tape (registered trademark: Kapton) is pasted on a part of the substrate surface in advance, and the polyimide tape is peeled off at the stage before the baking treatment after the film formation, and then partially by baking.
- the base material formed into a film was obtained.
- the boundary region between the film-free area (the area where the tape was applied) and the area where the film was applied (the area where the tape was not applied) was detected with a stylus type surface shape measuring instrument (DEKTACK3ST manufactured by ULVAC, Inc.).
- the sample surface is scanned with a needle, and a height profile is obtained under the conditions of measurement distance: 100 ⁇ m, scanning speed: 50 s, data points: 8000 points, stylus pressure: 3 mg, and values at five locations are averaged.
- WEP stylus type surface shape measuring instrument
- Example 3 Method for producing cell culture substrate in which silica substrate is coated with calcium phosphate
- a 1000 ml beaker put 700 ml water, then 1.9850 g NaCl, 0.525 g NaHCO 3 , 0.336 g KCl, 0.342 g K 2 HPO 4 / 3H 2 O, 0.4575 g MgCl / 6H 2 O, 57 ml of 1N HCl, 0.417 g CaCl 2 , 0.1065 g Na 2 SO 4 , 9.0855 g Na 2 C (CH 2 OH) 3 were added and at 36.5 ° C. Stirring was performed (stirring was performed until the silica substrate was immersed).
- Example 1 The silica substrate of Example 1 (12.5 mm ⁇ 25 mm) was immersed in 1.5SBF (2 ml) at 36.5 ° C., and allowed to stand for 35 hours. Thereafter, the silica substrate was washed with ultrapure water and baked at 550 ° C. for 3 hours. As a result, a cell culture substrate in which a silica substrate was coated with a calcium phosphate film was produced. The film thickness of the calcium phosphate film was 40 nm.
- Example 2 As a method for measuring the film thickness, as in Example 2, a chemical-resistant polyimide tape (registered trademark name: Kapton) was previously applied to a part of the substrate surface, and the polyimide tape was preliminarily fired after film formation. Was peeled off to obtain a partially formed substrate by firing. An atomic force microscope (SII NanoTechnology Co., Ltd., probe station name NanoNavi IIs) was used as a boundary region between the region without the film (the portion where the tape was applied) and the region with the film (the portion where the tape was not applied). / Unit name Nanocut).
- a cantilever (model number: Micro Cantilever SI-DF40, spring constant: 26 N / m, resonance frequency: 294 Hz) mounted with a silicon nitride probe, measurement mode: dynamic force mode, scanning range : 10 ⁇ m ⁇ 10 ⁇ m, scanning frequency: 1.00 Hz, X direction data points: 256 points, Y direction data points: 256 points, and the height of each point was imaged.
- the height was defined as the difference between each measurement point and the minimum height among the measurement points.
- the film thickness was calculated by averaging the values of five height profiles of arbitrary image cross sections.
- the above-mentioned SBF is a simulated body fluid that artificially reproduces the concentration of inorganic ions in human plasma, and the ion concentration (mM) of 1.5SBF is Na + : 213.0, K + : 7.5, Mg 2+ : 2.25, Ca 2+ : 3.75, Cl ⁇ : 222.0, HCO 3 ⁇ : 6.3, HPO 4 2 ⁇ : 1.5, SO 4 2 ⁇ : 0.75. .
- Comparative Examples 1 and 2 A cell culture substrate made of a commercially available boron-containing silicate glass substrate (Matsunami Glass Industry Co., Ltd.) was used as Comparative Example 1, and a cell culture substrate made of a polystyrene dish (Corning International Co., Ltd., USA) was used as Comparative Example 2.
- the atomic composition of the surface was measured by fluorescent X-ray analysis. Further, the average transmittance of visible light (400 to 800 nm) was measured. The light transmittance at a wavelength of 400 to 800 nm was measured for each wavelength of 1 nm using an ultraviolet-visible spectrophotometer V-750 manufactured by JASCO Corporation. The baseline was air, and the ratio of the transmitted light intensity out of the light intensity incident on the substrate and the film was defined as the transmittance. All the transmittances at each wavelength were averaged, and the average transmittance in the visible light region was calculated. The measurement results are shown in Table 1.
- FIG. 2A is an X-ray diffraction pattern in the low angle region
- FIG. 2B is an X-ray diffraction pattern in the high angle region.
- FIG. 2A and 2B show (a) to (c) show Examples 1 to 3 in order
- (d) to (e) show Comparative Examples 1 and 2 in order.
- FIG. 2A in the measurement in the low angle region, a high intensity peak was observed only in the pattern (b).
- This measurement result indicates that the silica film covering the silica substrate of Example 2 has a regular nanoscale pore structure.
- a peak was observed only in the pattern (c).
- This measurement result shows Ca and P of the calcium phosphate film covering the silica substrate of Example 3.
- FIG. 3 is an atomic force microscope image, (a) to (c) showing Examples 1 to 3 in order, and (d) to (e) showing Comparative Examples 1 to 2 in order.
- 3 (a) to 3 (e) has a measurement range of 1 ⁇ m 2 , and the height of a contour curve described later is described on the right side of each image.
- FIG. 3A shows that a plurality of concave and convex linear groove structures are formed in parallel on the surface of the base material of Example 1, and the Rrms value was 0.38 nm.
- the scale-like uneven structure was formed in the base-material surface of Example 2, and Rrms value was 1.43 nm.
- FIG. 3C a scale-like uneven structure with linear grooves was formed on the surface of the base material of Example 3, and the Rrms value was 1.21 nm.
- the base material surface of Comparative Example 1 had an irregular shape, and the Rrms value was 2.18 nm (FIG. 3D). A random fibrous structure was observed on the surface of the base material of Comparative Example 2, and the Rrms value was 1.87 nm (FIG. 3 (e)).
- the surface shapes of the substrates of Examples 1 to 3 and Comparative Examples 1 and 2 were measured.
- an atomic force microscope probe station name: NanoNavi IIs / unit name: Nanocute, manufactured by SII Nanotechnology Co., Ltd.
- a cantilever model number: Micro Cantilever SI-DF40, spring constant: 26 N / m, resonance frequency: 294 Hz mounted with a probe was used.
- the measurement conditions are as follows.
- Measurement mode Dynamic force mode Scanning range: 1 ⁇ m ⁇ 1 ⁇ m Scanning frequency: 1.00Hz Number of data points in the X direction: 256 points Y direction data points: 256 points Low pass filter value: 1 nm High pass filter value: 150 nm.
- the contour curve obtained by measurement with an atomic force microscope is analyzed with analysis software (product name: NanoNavi II / IIs, manufactured by SII Nanotechnology Co., Ltd.), the average length of contour curve elements of the concavo-convex structure, water
- the shed method height and aspect ratio were calculated (see Table 2).
- the mean line is parallel to the straight line when the curve representing the long wavelength component blocked by the high-pass contour curve filter is corrected to a straight line by the least square method, and the cumulative relative frequency distribution 50 of the height in the contour curve is 50. It was set as the line which shows%.
- the height of the watershed method is obtained by horizontally correcting the upper end line indicating the cumulative relative frequency distribution of height 100% and the lower end line indicating the cumulative relative frequency distribution of height 0% in the contour curve.
- Calculation was performed by averaging the distance between the lowest point of the valley after inversion and the bottom line in the contour curve measured by the method.
- the measurement by the watershed method is based on the Vincent-Soil algorithm (L. Vincent, P. Solle, “Watershed in Digital Spheres 13: An Efficient Algorithm Based on the Current Simulations,” (1991).) was automatically processed.
- the aspect ratio an average W1 of the contour curve elements of the concavo-convex structure in the X direction and an average W2 of the contour curve elements of the concavo-convex structure in the Y direction orthogonal to the X direction are calculated, and the period W1 In the period W2, a value obtained by dividing the larger value by the smaller value was averaged.
- the solution was allowed to stand in an incubator for 24 hours. Thereafter, the absorbance was measured by UV spectrum measurement, and the amount of adsorption was derived.
- Colorimetric Determination (BCA method) is used a two-stage reaction, first, by a peptide bond of protein, Cu 2+ ions are reduced the Cu +. Next, as shown in the structural formula below, a purple product (Cu (I) (BCA) 2 complex) in which two molecules of bicinchoninic acid (BCA) chelate coordinate with Cu + ions is generated. Purple color intensity depends on protein concentration. Therefore, the absorbance at 562 nm can be measured to quantify the protein concentration.
- the measurement results of the protein adsorption amount are shown in FIG.
- the amount of adsorbed albumin is larger in the base materials of Comparative Examples 1 and 2 than in Examples 1 to 3, whereas the amount of adsorbed fibrinogen is higher in Examples 1 and 3 than in Comparative Examples 1 and 2. More results than the substrate.
- fibrinogen having a high adsorption amount in the substrates of Examples 1 to 3 is a cell adhesion protein, and thus has excellent cell adhesion.
- albumin having a high adsorption amount in the base materials of Comparative Examples 1 and 2 is a cell adhesion-inhibiting protein, and therefore has poor cell adhesion.
- Example 1 to 3 and Comparative Examples 1 and 2 were sterilized and washed. Specifically, 50% by volume, 70% by volume and 90% by volume of ethanol 3 times each, PBS 3 times, 10% by volume FBS / ⁇ MEM containing fetal bovine serum (FBS) and cell culture medium ( ⁇ MEM) The medium was used three times for sterilization and washing.
- FBS fetal bovine serum
- ⁇ MEM cell culture medium
- Osteoblast-like cells were cultured in 10% by volume of FBS / ⁇ MEM medium for 1 week.
- the culture conditions were 37 ° C., CO 2 concentration 5%, and relative humidity 99%.
- the substrate was washed with PBS, trypsin / ethylenediaminetetraacetic acid (EDTA) and PBS, and cells not attached to the substrate were washed away.
- 10% by volume FBS / ⁇ MEM medium was added.
- the cultured osteoblast-like cells having a cell density of 5000 cells / cm 2 were seeded on the substrates of Examples 1-3 and Comparative Examples 1-2.
- the culture conditions were 37 ° C., CO 2 concentration 5%, relative humidity 99%, and the viable cell ratio and cell area (cell adhesion area) after 5 hours, 22 hours, 55 hours, and 72 hours were measured.
- the viable cell rate was measured by MTT assay.
- MTT assay is a method in which MTT [3- (4,5-dimethyl-thiazol-2-yl) -2,5-diphenyltetrazolium bromide] incorporated into cells is converted into mitochondrial dehydrogenase (succinic acid).
- the formazan dye produced by reduction by dehydrogenase is extracted with dimethyl sulfoxide.
- the absorbance at a wavelength of 570 nm of the formazan dye solution is colorimetrically determined to measure the viable cell rate.
- Absorbance was measured with an ultraviolet-visible spectrophotometer V-750 manufactured by JASCO Corporation, using a 10% by volume FBS / ⁇ MEM medium as the background, and the absorbance at a wavelength of 570 nm was measured for each culture time.
- the viable cell ratio (%) is the maximum absorbance in the MTT assay method of this example and the comparative example being 100%, and the relative ratio of the absorbance at each culture time is expressed in%.
- the cell area is the area of one cell adhering to the culture surface, and the area of 100 cells imaged by an inverted routine microscope CKX41 manufactured by Olympus Corporation was averaged at each culture time. Value.
- FIG. 5 is a graph showing the relationship between the cell culturing time and the viable cell rate in the substrates of Examples 1 to 3 and Comparative Examples 1 and 2.
- the viable cell rate tended to increase.
- Example 1 to 3 when the cell culture time was 72 hours, the viable cell rate exceeded 40%, indicating that the cell viability was high even in long-term culture.
- Example 3 provided with the uneven
- Comparative Example 1 it is considered that the viable cell rate was likely to be low also in that B 2 O 3 was included in the culture surface.
- FIG. 6 is a graph showing the relationship between the cell culture time and the cell area in the substrates of Examples 1 to 3 and Comparative Examples 1 and 2.
- the cell area tended to be the largest when the culture time was 22 hours.
- the culture time was 55 hours and 72 hours, the cell area tended to decrease. This is thought to be because if the cells proliferate too much, the distance between the cells is reduced and the cells become smaller.
- the cell area exceeded 2000 ⁇ m 2 , indicating excellent cell adhesion.
- Example 3 provided with the concavo-convex structure covered with the calcium phosphate film showed a high value in which the cell area exceeded 3000 ⁇ m 2 when the cell culture time was 22 hours.
- M Contour curve of concavo-convex structure
- TA Average line showing 50% cumulative relative frequency distribution of height P 1 ... First mountain P 2 ... Second mountain Q ... Valley A ... Start point of first mountain P 1 B ... End point of valley Q
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Cell Biology (AREA)
- Virology (AREA)
- Clinical Laboratory Science (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Tropical Medicine & Parasitology (AREA)
- Analytical Chemistry (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本発明の目的は、耐培養液性に優れ、細胞低毒性であり、かつ、培養した細胞の接着率や生細胞率が高く、熱安定性に優れ、また紫外光を吸収しにくい細胞培養基材を提供することである。 無機材料で構成された基板を備える細胞培養基材において、細胞培養基材は、培養面に複数の凹凸構造を有し、JISB0601及びJISR1683に準拠して原子間力顕微鏡で凹凸構造を測定したときに(測定領域は1μm四方、ローパス用輪郭曲線フィルタのカットオフ値が1nm、ハイパス用輪郭曲線フィルタのカットオフ値が170nmである)、少なくとも1つの方向についての凹凸構造の輪郭曲線要素の長さの平均が1~170nmである(平均線は、前記ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線である)。
Description
本発明は、細胞培養基材、細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法、細胞培養基材のメンテナンス液に関する。
近年、体外で細胞を培養して得られた細胞組織を、体内へ移植する再生医療技術が注目されている。例えば、生体組織へ分化する種々の細胞を細胞培養皿で培養し、iPS細胞などの幹細胞や、骨、血管、皮膚、心臓などの生体組織を再生する再生医療技術の開発が進んでいる。
細胞の培養に用いられる基材としては、ポリスチレン細胞培養皿が一般的に用いられてきた。しかし、ポリスチレン細胞培養皿を培養基材として用いた場合、培養した細胞の接着率や生細胞率が低いという問題がある。また、ポリスチレン細胞培養皿の耐熱性は低いため、加熱滅菌によって再利用できないという問題がある。
特許文献1には、ポリスチレン細胞培養皿が一次細胞培養や血清を含まない細胞培養などの用途に適していないことに着目し、細胞を培養する基体の表面にコロイドシリカのフィルムを施した細胞培養装置が記載されている。
特許文献2には、アモルファス二酸化珪素(シリカ)を有する表面上の分子あるいは分子集合体を酵素修飾することにより、生体活性表面を作り出す方法が記載されており、酵素修飾にポリペプチドを用いること、当該方法が細胞培養に利用されることが記載されている。
特許文献3には、メトキシエチルアクリレートと、ジメチルアクリルアミドの共重合体と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料とを含有する細胞培養基材が記載されている。
特許文献4には、細胞が三次元的に凝集した細胞塊(スフェロイド)を、コラーゲンゲルなどの添加物を用いることなく、均一な大きさに培養できる細胞培養基材として、基材の表面に深さ100~500μm、内径100~1000μmの凹陥部が複数設けられた構造を有する細胞培養用基材が記載されている。当該細胞培養用基材は、さらに最頻ピッチが2nm~10μmの連続した凹凸構造を有することも記載されている。
特許文献5には、細胞培養基材について、細胞凝集体(スフェロイド)の形成起点及び細胞凝集体の伸展に着目し、凝集体形成効率の向上に好適な構造として、ガラス基板の一方の面に、開口部がロート形状でその底部に細孔を有する凹部が複数配列されてなる細胞培養基材であって、凹部が、少なくともガラス基板洗浄工程、Cr膜マスク形成工程、レジストマスク形成工程、エッチングによるCr膜マスク開口形成工程、ガラス基板のウエットエッチング工程からなるプロセスフローを介して形成された細胞培養基材が記載されている。
非特許文献1には、金ナノドット/ポリエチレングリコールの基材表面において、金ナノドットと他の金ナノドットとの間隔が、110nmよりも58nmの場合に、細胞培養特性が良好になることが記載されている。
Cavalcanti-Adam, E.A.; Micoulet, A.; Blummel, J., Auernheimer, J.; Kessler, H.; Spatz, J.P., Eur, J. Cell Biol. 85 (2006) 219-224.
上述のように、ポリスチレン細胞培養皿に代わる細胞培養基材の研究開発が進められている。例えば、細胞培養基材としてポリスチレン細胞培養皿の上に無機材料を被覆することによって、耐培養液性に優れ、細胞へ毒性を与えずに細胞を培養することができる。しかしながら、培養した細胞の接着率や生細胞率、熱安定性に改善の余地があり、またポリスチレンを基板材料として使用するために紫外光吸収の問題があった。
本発明は、耐培養液性に優れ、細胞低毒性であり、かつ、培養した細胞の接着率や生細胞率が高く、熱安定性に優れ、また紫外光を吸収しにくい細胞培養基材の提供を目的とする。また、当該細胞培養基材を用いた細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法及び細胞培養基材のメンテナンス液も提供することを目的とする。
本発明者らは、細胞培養時のメカニズムについて鋭意検討し、細胞培養基材への細胞の接着性を向上させ、細胞増殖等の高活性化を実現するためには、細胞の仮足に付いているインテグリンタンパク質や、細胞と基材との間に介在するフィブリノーゲン、フィブロネクチン、ラミニン、ビトロネクチンなどの細胞外マトリクスタンパク質を細胞培養基材の培養面に安定化させること、すなわちタンパク質の足場形成が重要であること、そのためには、インテグリンタンパク質(数nm~数十nm)や、フィブリノーゲンやフィブロネクチンなどの細胞外マトリクスタンパク質(数nm~数十nm)を収容し得る凹凸構造が所定程度に細胞培養基材の培養面に形成されていることによって、細胞接着性や生細胞率を向上させる可能性があることを見出した。
上記の知見に基づき、本発明者らは、以下の(1)~(16)の本発明を完成するに至った。
(1)無機材料で構成された基板を備える細胞培養基材であって、
前記細胞培養基材は、培養面に複数の凹凸構造を有し、
JISB0601及びJISR1683に準拠して原子間力顕微鏡で前記凹凸構造を測定したときに(測定領域は1μm四方、ローパス用輪郭曲線フィルタのカットオフ値が1nm、ハイパス用輪郭曲線フィルタのカットオフ値が170nmである)、
少なくとも1つの方向についての前記凹凸構造の輪郭曲線要素の長さの平均が1~170nmである(平均線は、前記ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線である)、細胞培養基材。
(2)前記輪郭曲線のウォーターシェッド法高さが0.1~8nmである(前記ウォーターシェッド法高さは、前記輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した前記輪郭曲線における反転後の谷の最下点と前記下端線との距離の平均である)、請求項1記載の細胞培養基材。
(3)X方向についての凹凸構造の輪郭曲線における周期W1と、X方向と直交するY方向についての凹凸構造の輪郭曲線における周期W2とのアスペクト比が1.95以下である(アスペクト比は、周期W1、W2のうち、大きい方の値を小さい方の値で除した値の平均である)、(1)又は(2)記載の細胞培養基材。
(4)培養面が、多孔質SiO2膜で被覆された凹凸構造をなす、(1)~(3)のいずれか記載の細胞培養基材。
(5)培養面が、リン酸カルシウム化合物膜で被覆された凹凸構造をなす、(1)~(3)のいずれか記載の細胞培養基材。
(6)多孔質SiO2膜又はリン酸カルシウム化合物膜の厚みが、1~200nmである、(4)又は(5)記載の細胞培養基材。
(7)無機材料がSiO2を含む、(1)~(6)のいずれか記載の細胞培養基材。
(8)培養面にB2O3が含まれない、(1)~(7)のいずれか記載の細胞培養基材。
(9)可視光透過率が、70%以上である、(1)~(8)のいずれか記載の細胞培養基材。
(10)凹凸構造が、溝状、孔状又は鱗状である、(1)~(9)のいずれか記載の細胞培養基材。
(11)(1)~(10)のいずれか記載の細胞培養基材で細胞を培養する工程を有する、細胞含有物の作製方法。
(12)ポリスチレンからなる細胞培養基材を用いて細胞を培養し、細胞の密度がポリスチレンからなる細胞培養基材の培養面の90%となる培養時間を1Tとした場合に、(1)~(10)のいずれか記載の細胞培養基材を用いて1/2T~2/3Tの培養時間で細胞を培養する、細胞含有物の作製方法。
(13)(1)~(10)のいずれか記載の細胞培養基材をオートクレーブ処理し、再利用用細胞培養基材を作製する、細胞培養基材の作製方法。
(14)オートクレーブ処理後の細胞培養基材上のタンパク質を除去する、(13)記載の細胞培養基材の作製方法。
(15)(1)~(10)のいずれか記載の細胞培養基材上の細胞を光学的に観察する、細胞観察方法。
(16)(1)~(10)のいずれか記載の細胞培養基材上の細胞接着性タンパク質を除去するために用いられる、細胞接着性タンパク質を分解する成分を含有する、メンテナンス液。
(1)無機材料で構成された基板を備える細胞培養基材であって、
前記細胞培養基材は、培養面に複数の凹凸構造を有し、
JISB0601及びJISR1683に準拠して原子間力顕微鏡で前記凹凸構造を測定したときに(測定領域は1μm四方、ローパス用輪郭曲線フィルタのカットオフ値が1nm、ハイパス用輪郭曲線フィルタのカットオフ値が170nmである)、
少なくとも1つの方向についての前記凹凸構造の輪郭曲線要素の長さの平均が1~170nmである(平均線は、前記ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線である)、細胞培養基材。
(2)前記輪郭曲線のウォーターシェッド法高さが0.1~8nmである(前記ウォーターシェッド法高さは、前記輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した前記輪郭曲線における反転後の谷の最下点と前記下端線との距離の平均である)、請求項1記載の細胞培養基材。
(3)X方向についての凹凸構造の輪郭曲線における周期W1と、X方向と直交するY方向についての凹凸構造の輪郭曲線における周期W2とのアスペクト比が1.95以下である(アスペクト比は、周期W1、W2のうち、大きい方の値を小さい方の値で除した値の平均である)、(1)又は(2)記載の細胞培養基材。
(4)培養面が、多孔質SiO2膜で被覆された凹凸構造をなす、(1)~(3)のいずれか記載の細胞培養基材。
(5)培養面が、リン酸カルシウム化合物膜で被覆された凹凸構造をなす、(1)~(3)のいずれか記載の細胞培養基材。
(6)多孔質SiO2膜又はリン酸カルシウム化合物膜の厚みが、1~200nmである、(4)又は(5)記載の細胞培養基材。
(7)無機材料がSiO2を含む、(1)~(6)のいずれか記載の細胞培養基材。
(8)培養面にB2O3が含まれない、(1)~(7)のいずれか記載の細胞培養基材。
(9)可視光透過率が、70%以上である、(1)~(8)のいずれか記載の細胞培養基材。
(10)凹凸構造が、溝状、孔状又は鱗状である、(1)~(9)のいずれか記載の細胞培養基材。
(11)(1)~(10)のいずれか記載の細胞培養基材で細胞を培養する工程を有する、細胞含有物の作製方法。
(12)ポリスチレンからなる細胞培養基材を用いて細胞を培養し、細胞の密度がポリスチレンからなる細胞培養基材の培養面の90%となる培養時間を1Tとした場合に、(1)~(10)のいずれか記載の細胞培養基材を用いて1/2T~2/3Tの培養時間で細胞を培養する、細胞含有物の作製方法。
(13)(1)~(10)のいずれか記載の細胞培養基材をオートクレーブ処理し、再利用用細胞培養基材を作製する、細胞培養基材の作製方法。
(14)オートクレーブ処理後の細胞培養基材上のタンパク質を除去する、(13)記載の細胞培養基材の作製方法。
(15)(1)~(10)のいずれか記載の細胞培養基材上の細胞を光学的に観察する、細胞観察方法。
(16)(1)~(10)のいずれか記載の細胞培養基材上の細胞接着性タンパク質を除去するために用いられる、細胞接着性タンパク質を分解する成分を含有する、メンテナンス液。
本発明によれば、耐培養液性に優れ、細胞低毒性であり、かつ、培養した細胞の接着率や生細胞率が高く、熱安定性に優れ、また紫外光を吸収しにくい細胞培養基材を提供することができる。さらに、本発明は、当該細胞培養基材を用いた細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法及び細胞培養基材のメンテナンス液も提供することができる。
以下、本発明の実施形態について説明する。なお、本発明は当該実施形態によって限定的に解釈されるものではない。
(細胞培養基材)
本実施形態の細胞培養基材は、無機材料で構成された基板を備えかつ培養面に複数の凹凸構造を有する。
本実施形態において、JISB0601(2013)及びJISR1683(2014)に準拠して、原子間力顕微鏡で凹凸構造を測定したときに(測定領域は1μm四方、ローパス用輪郭曲線フィルタのカットオフ値が1nm、ハイパス用輪郭曲線フィルタのカットオフ値が170nmである)、少なくとも1つの方向についての凹凸構造の輪郭曲線要素の長さの平均が1~170nmである。
本実施形態の細胞培養基材は、無機材料で構成された基板を備えかつ培養面に複数の凹凸構造を有する。
本実施形態において、JISB0601(2013)及びJISR1683(2014)に準拠して、原子間力顕微鏡で凹凸構造を測定したときに(測定領域は1μm四方、ローパス用輪郭曲線フィルタのカットオフ値が1nm、ハイパス用輪郭曲線フィルタのカットオフ値が170nmである)、少なくとも1つの方向についての凹凸構造の輪郭曲線要素の長さの平均が1~170nmである。
原子間力顕微鏡における測定においては、原子間力を測定する探針を、試料である細胞培養基材の培養面に対し、高速にライン走査する方向をA方向とする。また、探針を高速にライン走査する始点位置を、A方向と垂直に少しずつ移動させる方向をB方向とする。
細胞培養基材の培養面における測定領域は、1μm四方とし、A方向に1μm、B方向に1μmの領域を設定することができる。測定点数は、A方向に256点、B方向に256点としてもよく、さらに微細に測定を行う場合には、A方向に512点、B方向に512点としてもよく、測定領域の大きさなどに応じて適宜調整できる。
ローパス用輪郭曲線フィルタのカットオフ値を1nm、ハイパス用輪郭曲線フィルタのカットオフ値を170nmと設定することで、長さ「1~170nm」の輪郭曲線要素を検出できる。
細胞培養基材の培養面における測定領域は、1μm四方とし、A方向に1μm、B方向に1μmの領域を設定することができる。測定点数は、A方向に256点、B方向に256点としてもよく、さらに微細に測定を行う場合には、A方向に512点、B方向に512点としてもよく、測定領域の大きさなどに応じて適宜調整できる。
ローパス用輪郭曲線フィルタのカットオフ値を1nm、ハイパス用輪郭曲線フィルタのカットオフ値を170nmと設定することで、長さ「1~170nm」の輪郭曲線要素を検出できる。
原子間力顕微鏡における測定により、凹凸構造の輪郭曲線を得ることができる。図1は、一実施形態における凹凸構造の輪郭曲線の一例を示す、模式図である。
凹凸構造の輪郭曲線Mにおける平均線TAより上側の部分が山、下側の部分が谷である。本発明における平均線は、ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線である。なお、累積相対度数分布に関する「高さ」は、各箇所の縦座標軸値と縦座標軸値の最低値との差である。
図1に示すように、本実施形態における輪郭曲線Mは複数の山及び谷を有し、山P1、それに隣り合う谷(具体的には右隣)Qからなる曲線部分が一つの輪郭曲線要素であり、さらに山P2が連続する。したがって、輪郭曲線要素の長さは、山P1の起点Aから山P1に隣接する谷Qの終点Bまでの距離である。本発明は、この輪郭曲線要素の長さの平均が1~170nmである方向を少なくとも1つ有するものである。
凹凸構造の輪郭曲線Mにおける平均線TAより上側の部分が山、下側の部分が谷である。本発明における平均線は、ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線である。なお、累積相対度数分布に関する「高さ」は、各箇所の縦座標軸値と縦座標軸値の最低値との差である。
図1に示すように、本実施形態における輪郭曲線Mは複数の山及び谷を有し、山P1、それに隣り合う谷(具体的には右隣)Qからなる曲線部分が一つの輪郭曲線要素であり、さらに山P2が連続する。したがって、輪郭曲線要素の長さは、山P1の起点Aから山P1に隣接する谷Qの終点Bまでの距離である。本発明は、この輪郭曲線要素の長さの平均が1~170nmである方向を少なくとも1つ有するものである。
細胞の仮足に付いているインテグリンタンパク質や細胞外マトリクスタンパク質は約1~170nmの周期で存在する傾向にあることから、輪郭曲線要素の長さの平均が1~170nmであることによって、複数のインテグリンタンパク質や細胞外マトリクスタンパク質を凹部内に効率的に収容できる。輪郭曲線要素の長さの平均は、好ましくは1~130nmであり、さらに好ましくは1~80nmである。
本実施形態の細胞培養基材の培養面において、輪郭曲線要素の長さの平均が上記好ましい範囲内となる測定方向は、2方向以上であることが好ましい。これにより、インテグリンタンパク質や細胞外マトリクスタンパク質の収容性が向上し、細胞接着性が向上する傾向にある。
輪郭曲線要素の長さの平均が上記好ましい範囲内となる測定領域は、複数領域であることが好ましい。また、本実施形態の細胞培養基材の培養面における、輪郭曲線要素の長さの平均が上記好ましい範囲内となる測定領域の存在確率は、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。
本実施形態の細胞培養基材の培養面において、輪郭曲線要素の長さの平均が上記好ましい範囲内となる測定方向は、2方向以上であることが好ましい。これにより、インテグリンタンパク質や細胞外マトリクスタンパク質の収容性が向上し、細胞接着性が向上する傾向にある。
輪郭曲線要素の長さの平均が上記好ましい範囲内となる測定領域は、複数領域であることが好ましい。また、本実施形態の細胞培養基材の培養面における、輪郭曲線要素の長さの平均が上記好ましい範囲内となる測定領域の存在確率は、10%以上であることが好ましく、20%以上であることがより好ましく、30%以上であることがさらに好ましい。
輪郭曲線の高さは、細胞の培養面への接着性の観点から最適化することが好ましい。具体的には、輪郭曲線のウォーターシェッド法高さが0.1~8nmであることが好ましく、1~6nmであることがより好ましく、1~5nmであることがさらに好ましい。
この機構は次の通りと推測される。細胞外マトリクスタンパク質(フィブリノーゲン、フィブロネクチン、ビトロネクチン、ラミニン)は、細胞が接着する前に細胞培養液から基材に吸着する。その中で細胞が結合、接着するのに重要なタンパク質は線維状であり、中心部が疎水性、末端部が静電気的に電荷を帯びている。このため、線維状タンパク質は、その末端部が凹凸構造に入り込みかつ中心部が凹凸構造に入り込まない場合に、基材に最も吸着されやすくなる。さらに、線維状タンパク質の密度が増えると、露出した疎水性の中心部同士の疎水性相互作用により線維状タンパク質分子が起立していき、細胞が結合可能な領域と細胞との接触頻度が高まり、細胞が結合しやすくなる。これらの相乗作用によって細胞接着率が高くなりやすい。ここで、細胞外マトリクスタンパク質の末端部のサイズ(水和した大きさ)は数nmであることから、上記程度の輪郭曲線のウォーターシェッド法高さが好ましいと考えられる。
輪郭曲線のウォーターシェッド法高さは、輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した輪郭曲線における反転後の谷の最下点と下端線との距離の平均である。ウォーターシェッド法による計測では、Vincent-Soilleのアルゴリズム(L. Vincent, P. Solle “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583 (1991).)を適用したプログラムによって自動処理される。
この機構は次の通りと推測される。細胞外マトリクスタンパク質(フィブリノーゲン、フィブロネクチン、ビトロネクチン、ラミニン)は、細胞が接着する前に細胞培養液から基材に吸着する。その中で細胞が結合、接着するのに重要なタンパク質は線維状であり、中心部が疎水性、末端部が静電気的に電荷を帯びている。このため、線維状タンパク質は、その末端部が凹凸構造に入り込みかつ中心部が凹凸構造に入り込まない場合に、基材に最も吸着されやすくなる。さらに、線維状タンパク質の密度が増えると、露出した疎水性の中心部同士の疎水性相互作用により線維状タンパク質分子が起立していき、細胞が結合可能な領域と細胞との接触頻度が高まり、細胞が結合しやすくなる。これらの相乗作用によって細胞接着率が高くなりやすい。ここで、細胞外マトリクスタンパク質の末端部のサイズ(水和した大きさ)は数nmであることから、上記程度の輪郭曲線のウォーターシェッド法高さが好ましいと考えられる。
輪郭曲線のウォーターシェッド法高さは、輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した輪郭曲線における反転後の谷の最下点と下端線との距離の平均である。ウォーターシェッド法による計測では、Vincent-Soilleのアルゴリズム(L. Vincent, P. Solle “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583 (1991).)を適用したプログラムによって自動処理される。
本実施形態の凹凸構造は、上記測定方法で得られる輪郭曲線要素の長さの平均が、1~170nmである一方、上記特許文献4のように内径100~1000μm、深さ100~500μmの凹陥部は、本実施形態の基材上には存在しなくてもよい。特に、内径100~1000μm、深さ100~500μmの凹陥部の内面に凹凸構造を形成する特許文献4の態様は、スフェロイド(細胞塊)を形成するための構造であり、スフェロイドの形成を目的としない本実施形態には含まれないことが好ましい。
凹凸構造は、溝状、孔状又は鱗状の凹凸構造であることが好ましい。凹凸構造が溝状、孔状又は鱗状の凹凸構造であれば、タンパク質を規則的に収容することができ、接着する細胞を培養面上に規則的に形成することができる。中でも孔状の凹凸構造は、細胞外マトリクスタンパク質の有電荷末端部が凹凸構造に密着して包囲されるので、上記した細胞外マトリクスタンパク質の基材への吸着及び細胞外マトリクスタンパク質の起立が生じやすくなり、細胞接着率が高まりやすい点で有利である。また、例えば、溝状の凹凸構造であれば基板又は基材の表面を削ることによって作製でき、孔状の凹凸構造であれば基板又は基材の表面上から孔を形成する部材を押圧することによって作製できるなど、凹凸構造を容易に形成できる点で優れている。本実施形態において溝状とは、凹部が奥行き方向に連続的に形成された形状を意味し、タンパク質を規則的に収容する観点から直線状の溝構造が好ましい。また、孔状とは、基材上面から俯瞰した場合に孔が基材表面に点在している状態を意味する。また、鱗状とは、凸部の周囲に凹部が存在する凹凸構造を意味する。溝状、孔状又は鱗状の凹凸構造は、原子間力顕微鏡像として確認できる。
本実施形態において、X方向(凹凸構造の輪郭曲線要素の長さの平均が1~170nmであることを満たす方向)についての凹凸構造の輪郭曲線要素の長さの平均W1と、X方向と直交するY方向についての凹凸構造の輪郭曲線要素の長さの平均W2とのアスペクト比は、1.95以下であることが好ましい。アスペクト比は、平均W1、W2のうち、大きい方の値を小さい方の値で除した値の平均である。
アスペクト比が1.95以下の場合は、細胞外マトリクスタンパク質の有電荷末端部が凹凸構造に密着して包囲されるので、上記した細胞外マトリクスタンパク質の基材への吸着及び細胞外マトリクスタンパク質の起立が生じやすくなり、細胞接着率が高まりやすい。より好ましくは、アスペクト比が1.5以下であり、さらに好ましくは1.2以下である。また、平均W1とW2とが同一の値の場合には、アスペクト比は下限である1を示す。
アスペクト比が1.95以下の場合は、細胞外マトリクスタンパク質の有電荷末端部が凹凸構造に密着して包囲されるので、上記した細胞外マトリクスタンパク質の基材への吸着及び細胞外マトリクスタンパク質の起立が生じやすくなり、細胞接着率が高まりやすい。より好ましくは、アスペクト比が1.5以下であり、さらに好ましくは1.2以下である。また、平均W1とW2とが同一の値の場合には、アスペクト比は下限である1を示す。
凹凸構造の表面粗さを示す指標として、ラフネス値を用いることもできる。ラフネス値とは、Root-mean-square値(Rrms)によって、表面の粗さを数値化した値である。下記の数式中、nは測定点数(n=265×265)、h(Xi)は測定点Xiでの高さ、hは高さの平均値である。Rrms値は、平均値hに対する偏差の2乗値の平均に対する平方根で表される。
本発明者らは、細胞の培養面への接着性(細胞接着性)について、以下のようなメカニズムを仮説として考えている。
すなわち、細胞培養基材中に細胞培養液を収容させると、以下の(1)~(3)のプロセスが進行し、細胞が機能を発現すると考えている。
(1)培養面にイオン及び水が接触して水和層を形成すること(第1吸着プロセス)。
(2)培養面上の水和層に細胞培養液中のタンパク質が吸着し、タンパク質吸着層を形成すること(第2吸着プロセス)。
(3)細胞がタンパク質吸着層に接着し、伸展すること(第3接着プロセス)。
さらに、培養面の凹凸構造における凹部にタンパク質(の末端)が収容されることによって、細胞接着性や生細胞率が向上すると考えている。
すなわち、細胞培養基材中に細胞培養液を収容させると、以下の(1)~(3)のプロセスが進行し、細胞が機能を発現すると考えている。
(1)培養面にイオン及び水が接触して水和層を形成すること(第1吸着プロセス)。
(2)培養面上の水和層に細胞培養液中のタンパク質が吸着し、タンパク質吸着層を形成すること(第2吸着プロセス)。
(3)細胞がタンパク質吸着層に接着し、伸展すること(第3接着プロセス)。
さらに、培養面の凹凸構造における凹部にタンパク質(の末端)が収容されることによって、細胞接着性や生細胞率が向上すると考えている。
<培養基材>
細胞培養基材は、無機材料で構成された基板を備える基材であれば特に限定されない。無機材料としては、例えば、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化ケイ素、水酸化アルミニウム、水酸化カルシウム、炭酸カルシウム、方解石、カルシウムカーボネート、軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウム、石膏、硫酸カルシウム、大理石、硫酸バリウム、炭酸バリウム、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸ストロンチウム、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズ等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
また、無機材料として、リン酸カルシウム化合物を用いてもよい。リン酸カルシウム化合物は、リン酸源(リン酸、第1リン酸ナトリウム、第2リン酸ナトリウム、第1リン酸カリウム、第2リン酸カリウム、第1リン酸アンモニウム、第2リン酸アンモニウム、などより選択される1種以上の塩)と、カルシウム源(硝酸カルシウム、炭酸カルシウム、塩化カルシウム、水酸化カルシウム、酢酸カルシウム、などより選択される1種以上の塩)との混合物、又は混合反応物であることが好ましい。リン酸カルシウム化合物としては、リン酸一水素カルシウム無水和物(CaHPO4)、リン酸一水素カルシウム二水和物(CaHPO4・2H2O)、リン酸三カルシウム(Ca3(PO4)2)、リン酸二水素カルシウム無水和物(Ca(H2PO4)2)、リン酸二水素カルシウム1水和物(Ca(H2PO4)2・H2O)、リン酸四カルシウム(Ca4O(PO4)2)、水酸アパタイト(Ca10(PO4)6(OH)2)、リン酸八カルシウム(Ca8H2(PO4)6・5H2O)、非晶質リン酸カルシウム(Ca3(PO4)2・nH2O)が挙げられる。この中でも、細胞培養で有用な水酸アパタイトとリン酸八カルシウムが好ましく、より好ましくは生体・細胞親和性の高い水酸アパタイトである。
無機材料としては、酸化珪素(シリカ)であることが好ましく、石英ガラスがより好ましい。骨の副成分であるシリカを用いることによって、骨芽細胞の培養を高活性化することができる。また、側部は基板と同じ無機材料で構成されることが好ましい。なお、ホウ素の酸化物は生体にとって影響を与える恐れがあるため、細胞培養基材は、培養面にB2O3を含まないことが好ましい。なお、培養面にB2O3を含まなければ、非培養面にB2O3を含んでも含まなくてもよい。
無機材料で構成された基板を用いることによって、熱安定性、耐培養液性に優れ、細胞へ毒性を与えない細胞培養基材となる。また、ポリスチレンを基板材料として用いる場合に比べ、紫外光を吸収しにくい。
なお、例えば特許文献3のように、無機材料を含有する細胞培養基材であっても、メトキシエチルアクリレートとジメチルアクリルアミドとの共重合体のような有機化合物を含有するような場合には、本実施形態の細胞培養基材に含まれないことが好ましい。
細胞培養基材は、無機材料で構成された基板を備える基材であれば特に限定されない。無機材料としては、例えば、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化ケイ素、水酸化アルミニウム、水酸化カルシウム、炭酸カルシウム、方解石、カルシウムカーボネート、軽質炭酸カルシウム、重質炭酸カルシウム、極微細炭酸カルシウム、石膏、硫酸カルシウム、大理石、硫酸バリウム、炭酸バリウム、酸化マグネシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸ストロンチウム、カオリンクレー、焼成クレー、タルク、セリサイト、光学ガラス、ガラスビーズ等が挙げられ、これらを1種単独で用いてもよく、2種以上を併用してもよい。
また、無機材料として、リン酸カルシウム化合物を用いてもよい。リン酸カルシウム化合物は、リン酸源(リン酸、第1リン酸ナトリウム、第2リン酸ナトリウム、第1リン酸カリウム、第2リン酸カリウム、第1リン酸アンモニウム、第2リン酸アンモニウム、などより選択される1種以上の塩)と、カルシウム源(硝酸カルシウム、炭酸カルシウム、塩化カルシウム、水酸化カルシウム、酢酸カルシウム、などより選択される1種以上の塩)との混合物、又は混合反応物であることが好ましい。リン酸カルシウム化合物としては、リン酸一水素カルシウム無水和物(CaHPO4)、リン酸一水素カルシウム二水和物(CaHPO4・2H2O)、リン酸三カルシウム(Ca3(PO4)2)、リン酸二水素カルシウム無水和物(Ca(H2PO4)2)、リン酸二水素カルシウム1水和物(Ca(H2PO4)2・H2O)、リン酸四カルシウム(Ca4O(PO4)2)、水酸アパタイト(Ca10(PO4)6(OH)2)、リン酸八カルシウム(Ca8H2(PO4)6・5H2O)、非晶質リン酸カルシウム(Ca3(PO4)2・nH2O)が挙げられる。この中でも、細胞培養で有用な水酸アパタイトとリン酸八カルシウムが好ましく、より好ましくは生体・細胞親和性の高い水酸アパタイトである。
無機材料としては、酸化珪素(シリカ)であることが好ましく、石英ガラスがより好ましい。骨の副成分であるシリカを用いることによって、骨芽細胞の培養を高活性化することができる。また、側部は基板と同じ無機材料で構成されることが好ましい。なお、ホウ素の酸化物は生体にとって影響を与える恐れがあるため、細胞培養基材は、培養面にB2O3を含まないことが好ましい。なお、培養面にB2O3を含まなければ、非培養面にB2O3を含んでも含まなくてもよい。
無機材料で構成された基板を用いることによって、熱安定性、耐培養液性に優れ、細胞へ毒性を与えない細胞培養基材となる。また、ポリスチレンを基板材料として用いる場合に比べ、紫外光を吸収しにくい。
なお、例えば特許文献3のように、無機材料を含有する細胞培養基材であっても、メトキシエチルアクリレートとジメチルアクリルアミドとの共重合体のような有機化合物を含有するような場合には、本実施形態の細胞培養基材に含まれないことが好ましい。
<細胞>
細胞培養基材上で培養される細胞は特に限定されないが、例えば、脂肪細胞、骨芽細胞、軟骨細胞、骨格筋細胞、筋線維芽細、肝細胞、iPS細胞、末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞、角膜実質細胞、虹彩実質細胞、線維柱帯細胞、平滑筋細胞、軟骨細胞、骨細胞、脂肪細胞、内分泌細胞、クロム親和性細胞、管平滑筋細胞、毛母細胞、軟骨細胞、羊膜由来細胞、胎児腎由来細胞等が挙げられる。
細胞培養基材上で培養される細胞は特に限定されないが、例えば、脂肪細胞、骨芽細胞、軟骨細胞、骨格筋細胞、筋線維芽細、肝細胞、iPS細胞、末梢神経細胞、グリア細胞、色素細胞、角膜内皮細胞、角膜実質細胞、虹彩実質細胞、線維柱帯細胞、平滑筋細胞、軟骨細胞、骨細胞、脂肪細胞、内分泌細胞、クロム親和性細胞、管平滑筋細胞、毛母細胞、軟骨細胞、羊膜由来細胞、胎児腎由来細胞等が挙げられる。
<膜>
細胞培養基材の培養面は、多孔質SiO2膜で被覆された凹凸構造をなすことが好ましい。多孔質SiO2膜で被覆されることによって、細胞培養をより高活性化できる傾向にある。
細胞培養基材の培養面は、多孔質SiO2膜で被覆された凹凸構造をなすことが好ましい。多孔質SiO2膜で被覆されることによって、細胞培養をより高活性化できる傾向にある。
細胞培養基材の培養面は、リン酸カルシウム化合物膜で被覆された凹凸構造をなすことも好ましい。リン酸カルシウム化合物膜で被覆されることによって、長時間培養時の生細胞率の向上や、細胞面積の増加など、細胞培養をより高活性化できる傾向にある。リン酸カルシウム化合物は、リン酸源(リン酸、第1リン酸ナトリウム、第2リン酸ナトリウム、第1リン酸カリウム、第2リン酸カリウム、第1リン酸アンモニウム、第2リン酸アンモニウム、などより選択される1種以上の塩)と、カルシウム源(硝酸カルシウム、炭酸カルシウム、塩化カルシウム、水酸化カルシウム、酢酸カルシウム、などより選択される1種以上の塩)との混合物、又は混合反応物であることが好ましい。リン酸カルシウム化合物としては、リン酸一水素カルシウム無水和物(CaHPO4)、リン酸一水素カルシウム二水和物(CaHPO4・2H2O)、リン酸三カルシウム(Ca3(PO4)2)、リン酸二水素カルシウム無水和物(Ca(H2PO4)2)、リン酸二水素カルシウム1水和物(Ca(H2PO4)2・H2O)、リン酸四カルシウム(Ca4O(PO4)2)、水酸アパタイト(Ca10(PO4)6(OH)2)、リン酸八カルシウム(Ca8H2(PO4)6・5H2O)、非晶質リン酸カルシウム(Ca3(PO4)2・nH2O)が挙げられる。この中でも、細胞培養で有用な水酸アパタイトとリン酸八カルシウムが好ましく、より好ましくは生体・細胞親和性の高い水酸アパタイトである。
ただし、本発明は、上記膜で被覆されない無機材料(特にSiO2)基板からなる基材であっても、十分な細胞培養が可能である。この場合には、基板が純粋な無機材料(特にSiO2)組成であり、アモルファス構造(XRDより)であることが好ましいと考えられる。
ただし、本発明は、上記膜で被覆されない無機材料(特にSiO2)基板からなる基材であっても、十分な細胞培養が可能である。この場合には、基板が純粋な無機材料(特にSiO2)組成であり、アモルファス構造(XRDより)であることが好ましいと考えられる。
多孔質SiO2膜又はリン酸カルシウム化合物膜の厚みは、1~200nmであることが好ましく、5~170nmであることがより好ましく、10~160nmであることがさらに好ましく、40~150nmであることが最も好ましい。膜厚が1~200nmであることによって、被覆されていても、細胞培養基材の基板の表面形状と培養面の凹凸構造とが甚大には相違しにくく、細胞培養基材の所望される凹凸構造を形成しやすい。同じ観点で、上記膜は凹凸構造中にコンフォーマルに形成されていることが好ましい。また、多孔質SiO2膜又はリン酸カルシウム化合物膜は、凹凸構造の輪郭曲線要素の長さの平均やアスペクト比、輪郭曲線のウォーターシェッド法高さ、凹凸構造のラフネス値を微調整するために使用することもできる。例えば、膜厚が増すにつれ、輪郭曲線のウォーターシェッド法高さを大幅には変更させずに、輪郭曲線要素の長さの平均を下げる微調整が可能である。
膜厚の測定方法としては、細胞培養基材の表面において、膜のない領域と、膜のある領域とができるように、多孔質SiO2膜又はリン酸カルシウム化合物膜を形成し、膜の無い領域と膜の有る領域との境界領域について、例えば原子間力顕微鏡または触針式表面形状測定器によって走査し、膜厚を計測することができる。膜のない領域を形成する方法としては、膜の形成を阻害する物質(例えば、耐薬品性のポリイミドテープ)を予め基板表面上の一部へ貼る方法が挙げられる。
また、細胞培養基材をそのままの状態で(非破壊で)膜厚を測定するには、X線反射率法(例えばリガク株式会社製、Smart Lab 9kW)によって、試料表面に極浅い角度(例えば、0.1~5.0°)でX線を入射させ、その入射角の対鏡面方向に反射したX線強度プロファイルを測定し、既に知られている多孔質SiO2膜やリン酸カルシウム化合物膜のシミュレーション結果と比較して、パラメータを最適化することにより、測定することができる。なお、収束イオン加工装置により細胞培養基材における膜断面を切り出し、高分解の透過型電子顕微鏡(例えば日立ハイテクノロジーズ株式会社製 HT7700)により膜断面を観察し、膜厚を実測することも可能である。
膜厚の測定方法としては、細胞培養基材の表面において、膜のない領域と、膜のある領域とができるように、多孔質SiO2膜又はリン酸カルシウム化合物膜を形成し、膜の無い領域と膜の有る領域との境界領域について、例えば原子間力顕微鏡または触針式表面形状測定器によって走査し、膜厚を計測することができる。膜のない領域を形成する方法としては、膜の形成を阻害する物質(例えば、耐薬品性のポリイミドテープ)を予め基板表面上の一部へ貼る方法が挙げられる。
また、細胞培養基材をそのままの状態で(非破壊で)膜厚を測定するには、X線反射率法(例えばリガク株式会社製、Smart Lab 9kW)によって、試料表面に極浅い角度(例えば、0.1~5.0°)でX線を入射させ、その入射角の対鏡面方向に反射したX線強度プロファイルを測定し、既に知られている多孔質SiO2膜やリン酸カルシウム化合物膜のシミュレーション結果と比較して、パラメータを最適化することにより、測定することができる。なお、収束イオン加工装置により細胞培養基材における膜断面を切り出し、高分解の透過型電子顕微鏡(例えば日立ハイテクノロジーズ株式会社製 HT7700)により膜断面を観察し、膜厚を実測することも可能である。
細胞培養基材の可視光透過率が70%未満であると、光の透過性能が低く観察感度が低くなってしまうので、細胞観察等の用途では問題である。したがって、本発明の実施形態では、細胞培養基材の可視光透過率が70%以上であることが好ましい。これにより透明性に優れた細胞培養基材となり、光学顕微鏡による細胞観察が良好に行いやすい。より好ましくは可視光透過率が80%以上であり、さらに好ましくは可視光透過率が90%以上である。また、従来の可視光透過率70%未満の細胞培養基材の代表例は、ポリスチレン培養皿の上に無機材料が被覆された基材であり、例えば、細胞親和性の高いリン酸カルシウムナノ結晶をキャスト法によりポリスチレン細胞培養皿を被覆した基材の場合、可視光透過率が64%程度となるため、光学的観察に用いるには問題があり、加えて、キャスト法では粒子の並び方を制御できず、粒子の凝集体に起因する比較的粗い膜構造となり、光の乱反射を引き起こすため、細胞観察等の用途には問題があった。ポリスチレンによる紫外光吸収の点でも問題を有していたが、本実施形態の細胞培養基材は、ポリスチレンのような紫外光吸収性の材料を用いていないので、この問題を生じることもない。
(凹凸形成方法)
細胞培養基材の培養面に凹凸構造を形成する方法は、特に限定されず、公知の研削・研磨方法を用いることができる。一例として、細胞培養基材として石英ガラス(シリカ)を用いる場合に、研削及び研磨によって培養面の凹凸構造を形成する方法を、以下に説明する。
細胞培養基材の培養面に凹凸構造を形成する方法は、特に限定されず、公知の研削・研磨方法を用いることができる。一例として、細胞培養基材として石英ガラス(シリカ)を用いる場合に、研削及び研磨によって培養面の凹凸構造を形成する方法を、以下に説明する。
<研削工程>
研削工程は上下の定盤間に板状の被加工物を保持し、遊離砥粒を含む研磨液(研磨スラリー)を供給しながら定盤と被加工物とを回転させて相対移動することにより行う遊離砥粒法や、レジン、メタル、ビトリファイド等のボンドでダイヤモンド微粉をペレット状にし、このペレットを複数個配置した定盤によって研削液(クーラント)を供給しながら定盤と被加工物とを回転させて相対移動することにより行う固定砥粒法により行われることが一般的である。また、ダイヤモンドパッドによる研削を行ってもよい。研削工程を経た石英ガラス基板は、大きなうねり、欠け、ひび等の欠陥がほぼ除去される。
研削工程は上下の定盤間に板状の被加工物を保持し、遊離砥粒を含む研磨液(研磨スラリー)を供給しながら定盤と被加工物とを回転させて相対移動することにより行う遊離砥粒法や、レジン、メタル、ビトリファイド等のボンドでダイヤモンド微粉をペレット状にし、このペレットを複数個配置した定盤によって研削液(クーラント)を供給しながら定盤と被加工物とを回転させて相対移動することにより行う固定砥粒法により行われることが一般的である。また、ダイヤモンドパッドによる研削を行ってもよい。研削工程を経た石英ガラス基板は、大きなうねり、欠け、ひび等の欠陥がほぼ除去される。
<研削後の洗浄工程>
研削工程を経た石英ガラス基板には、表面に研削液や石英ガラス粉が残存している可能性がある。そのため、洗浄工程を設けることが好ましい。洗浄工程においては、種々の洗浄方法を採用することができる。例えば、石英ガラス基板に対して、アルカリ洗浄のみを行ってもよく、また、酸洗浄を行った後にアルカリ洗浄を行ってもよく、また、酸洗浄のみを行ってもよい。
研削工程を経た石英ガラス基板には、表面に研削液や石英ガラス粉が残存している可能性がある。そのため、洗浄工程を設けることが好ましい。洗浄工程においては、種々の洗浄方法を採用することができる。例えば、石英ガラス基板に対して、アルカリ洗浄のみを行ってもよく、また、酸洗浄を行った後にアルカリ洗浄を行ってもよく、また、酸洗浄のみを行ってもよい。
<研磨工程>
研磨工程は、最終的に必要とされる面粗さ(凹凸構造)が効率よく得られるように、ガラス基板の表面を研磨加工する工程である。この工程で採用される研磨方法としては、特に限定されず、両面研磨機において、研磨パッドおよび研磨液を使用して研磨することができる。なお、本実施形態においては凹凸構造が必須であるため、いわゆる鏡面研磨工程は行わないことが好ましい。
研磨工程は、最終的に必要とされる面粗さ(凹凸構造)が効率よく得られるように、ガラス基板の表面を研磨加工する工程である。この工程で採用される研磨方法としては、特に限定されず、両面研磨機において、研磨パッドおよび研磨液を使用して研磨することができる。なお、本実施形態においては凹凸構造が必須であるため、いわゆる鏡面研磨工程は行わないことが好ましい。
研磨パッドとしては、最終的に必要とされる面粗さ(凹凸構造)を得やすいように、硬質パッドを使用することが好ましく、たとえば発泡ウレタンを使用することが好ましい。研磨液としては、平均粒径が0.6~2.5μmの酸化セリウムを砥粒(研磨材)として使用し、この砥粒を水に分散させてスラリー状にしたものを使用することが好ましい。水と砥粒との混合比率は、1:9~3:7程度である。
<研磨後の洗浄工程>
研磨工程後に、石英ガラス基板の洗浄工程を採用することが好ましい。洗浄方法としては特に限定されず、研磨工程後の石英ガラス基板の表面を清浄に洗浄できる方法であればいずれの洗浄方法でもよい。洗浄された石英ガラス基板は、必要に応じて超音波による洗浄および乾燥工程を行う。乾燥工程は、石英ガラス基板の表面に残る洗浄液をイソプロピルアルコール(IPA)等により除去した後、石英ガラス基板の表面を乾燥させる工程である。たとえば、スクラブ洗浄後の石英ガラス基板に水リンス洗浄工程を2分間行ない、洗浄液の残渣を除去する。次いで、IPA洗浄工程を2分間行い、石英ガラス基板の表面に残る水をIPAにより除去する。最後に、IPA蒸気乾燥工程を2分間行い、石英ガラス基板の表面に付着している液状のIPAをIPA蒸気により除去しつつ乾燥させる。石英ガラス基板の乾燥工程としては特に限定されず、たとえばスピン乾燥、エアーナイフ乾燥などの、石英ガラス基板の乾燥方法として公知の乾燥方法を採用することができる。
研磨工程後に、石英ガラス基板の洗浄工程を採用することが好ましい。洗浄方法としては特に限定されず、研磨工程後の石英ガラス基板の表面を清浄に洗浄できる方法であればいずれの洗浄方法でもよい。洗浄された石英ガラス基板は、必要に応じて超音波による洗浄および乾燥工程を行う。乾燥工程は、石英ガラス基板の表面に残る洗浄液をイソプロピルアルコール(IPA)等により除去した後、石英ガラス基板の表面を乾燥させる工程である。たとえば、スクラブ洗浄後の石英ガラス基板に水リンス洗浄工程を2分間行ない、洗浄液の残渣を除去する。次いで、IPA洗浄工程を2分間行い、石英ガラス基板の表面に残る水をIPAにより除去する。最後に、IPA蒸気乾燥工程を2分間行い、石英ガラス基板の表面に付着している液状のIPAをIPA蒸気により除去しつつ乾燥させる。石英ガラス基板の乾燥工程としては特に限定されず、たとえばスピン乾燥、エアーナイフ乾燥などの、石英ガラス基板の乾燥方法として公知の乾燥方法を採用することができる。
(細胞含有物の作製方法)
本実施形態の細胞含有物の作製方法は、細胞培養基材における凹凸構造に、細胞を適用して培養する工程を有する。細胞を凹凸構造に適用することによって、細胞培養が高活性化し、かつ、基材への接着性に優れた、細胞組織や生体組織などの細胞含有物を作製することができる。
本実施形態の細胞含有物の作製方法は、細胞培養基材における凹凸構造に、細胞を適用して培養する工程を有する。細胞を凹凸構造に適用することによって、細胞培養が高活性化し、かつ、基材への接着性に優れた、細胞組織や生体組織などの細胞含有物を作製することができる。
細胞含有物の作製方法において、ポリスチレンからなる細胞培養基材を用いて細胞を培養し、細胞の密度がポリスチレンからなる細胞培養基材の培養面の90%となる培養時間を1Tとした場合に、本実施形態の細胞培養基材を用いて1/2T~2/3Tの培養時間で細胞を培養することが好ましい。例えば、ポリスチレンからなる細胞培養基材の培養面の90%となる培養時間が24時間である場合に対し、本実施形態の細胞培養基材を用いることによって、12~16時間というより短い培養時間でも、細胞の密度が本実施形態の細胞培養基材の培養面の90%になるまで、細胞培養することができる。
(再利用用細胞培養基材の作製方法)
本実施形態は、細胞培養基材をオートクレーブ処理し、再利用用の細胞培養基材を作製する方法を提供することができる。従来のポリスチレンディッシュでは、ガンマ線で滅菌処理を行うことが可能であった。しかし、ガンマ線滅菌装置は放射線の管理など大規模な設備となるため、細胞培養に用いられたポリスチレンディッシュは使用後に廃棄されることが多かった。これに対し、本実施形態の細胞培養基材は、無機材料で基板が構成されているため、オートクレーブ処理で滅菌処理することができる。このため、例えば実験室において使用直後の細胞培養基材をすぐに滅菌処理し、再利用用の細胞培養基材を作製することが可能となる。
本実施形態は、細胞培養基材をオートクレーブ処理し、再利用用の細胞培養基材を作製する方法を提供することができる。従来のポリスチレンディッシュでは、ガンマ線で滅菌処理を行うことが可能であった。しかし、ガンマ線滅菌装置は放射線の管理など大規模な設備となるため、細胞培養に用いられたポリスチレンディッシュは使用後に廃棄されることが多かった。これに対し、本実施形態の細胞培養基材は、無機材料で基板が構成されているため、オートクレーブ処理で滅菌処理することができる。このため、例えば実験室において使用直後の細胞培養基材をすぐに滅菌処理し、再利用用の細胞培養基材を作製することが可能となる。
オートクレーブ処理の条件は、細胞培養基材に用いる材料によって異なるが、例えば石英ガラス(シリカ)基板を用いる場合には、温度100~150℃、圧力0.10MPa~0.5MPa、加熱時間1~30分間で、好ましくは、温度121℃で飽和水蒸気圧0.20MPaで20分間のオートクレーブ処理をする。
当該作製方法においては、オートクレーブ処理後の細胞培養基材上のタンパク質を除去することが好ましい。メンテナンス液を繰り返し用いて処理することによって、細胞培養基材上の残留物質であるタンパク質をより除去しやすくなる。
(メンテナンス液)
本実施形態の細胞培養基材のメンテナンス液は、細胞培養基材上の残留物質である細胞が分泌した細胞接着性タンパク質や細胞外マトリクス(例えばフィブリノーゲン)を除去するために用いられ、タンパク質を分解する成分を含有する。メンテナンス液としては、例えば、エタノール、リン酸緩衝生理食塩水(PBS)、ウシ胎児血清(FBS)、細胞培養液(αMEM)を含むFBS/αMEM培地、ドデシル硫酸ナトリウム(SDS)等を用いて弱く結合したタンパク質等を除去することができる。次いで、超純水:アンモニア水:過酸化水素水の重量比が5:1:1である溶液または1Nの塩酸等を用いて強く結合したタンパク質等を分解・除去できる。最後に、超純水によって繰り返しリンスし清浄な表面を得ることができる。
本実施形態の細胞培養基材のメンテナンス液は、細胞培養基材上の残留物質である細胞が分泌した細胞接着性タンパク質や細胞外マトリクス(例えばフィブリノーゲン)を除去するために用いられ、タンパク質を分解する成分を含有する。メンテナンス液としては、例えば、エタノール、リン酸緩衝生理食塩水(PBS)、ウシ胎児血清(FBS)、細胞培養液(αMEM)を含むFBS/αMEM培地、ドデシル硫酸ナトリウム(SDS)等を用いて弱く結合したタンパク質等を除去することができる。次いで、超純水:アンモニア水:過酸化水素水の重量比が5:1:1である溶液または1Nの塩酸等を用いて強く結合したタンパク質等を分解・除去できる。最後に、超純水によって繰り返しリンスし清浄な表面を得ることができる。
(細胞観察方法)
本実施形態の細胞観察方法は、細胞培養基材上の細胞を光学的に観察する方法である。従来のポリスチレンディッシュは光を反射するため、光学的に観察することが困難であった。特に、波長200~400nmの紫外光を入射した場合、ポリスチレンから蛍光が発せられるため、紫外光下での観察には不向きであった。これに対し、本実施形態の細胞培養基材は、ポリスチレンのような紫外光吸収性の材料を用いておらず、また透明性に優れ、可視光透過性にも優れることから、細胞培養基材上の細胞を例えば光学顕微鏡で観察することが容易となる。
本実施形態の細胞観察方法は、細胞培養基材上の細胞を光学的に観察する方法である。従来のポリスチレンディッシュは光を反射するため、光学的に観察することが困難であった。特に、波長200~400nmの紫外光を入射した場合、ポリスチレンから蛍光が発せられるため、紫外光下での観察には不向きであった。これに対し、本実施形態の細胞培養基材は、ポリスチレンのような紫外光吸収性の材料を用いておらず、また透明性に優れ、可視光透過性にも優れることから、細胞培養基材上の細胞を例えば光学顕微鏡で観察することが容易となる。
以下、本発明の具体的な実施例について説明する。なお、本発明は当該実施例によって限定的に解釈されるものではない。
(実施例1)
シリカからなる石英ガラス基板の両表面を、両面研削機(浜井産業株式会社製、4ウェイ方式ラップ盤)を用いて研削加工した。研削加工には、砥粒に平成サンケイ株式会社製、ジルコニア系アルミナ(AZ)微粉を用い、荷重は60~90g/cm2、定盤回転数を20~50rpmにて実施した。研削後の石英ガラス基板の両表面を、両面研磨機(浜井産業株式会社製、4ウェイ方式 ポリッシュ盤)を用いて研磨加工した。研磨加工には、研磨用パットに発泡ウレタンパットを用い、砥粒に三井金属鉱業株式会社製、MIREK Eを用い、荷重は60~100g/cm2、定盤回転数を20~50rpmにて実施した。これにより、シリカ基板からなる細胞培養基材を作製した。
シリカからなる石英ガラス基板の両表面を、両面研削機(浜井産業株式会社製、4ウェイ方式ラップ盤)を用いて研削加工した。研削加工には、砥粒に平成サンケイ株式会社製、ジルコニア系アルミナ(AZ)微粉を用い、荷重は60~90g/cm2、定盤回転数を20~50rpmにて実施した。研削後の石英ガラス基板の両表面を、両面研磨機(浜井産業株式会社製、4ウェイ方式 ポリッシュ盤)を用いて研磨加工した。研磨加工には、研磨用パットに発泡ウレタンパットを用い、砥粒に三井金属鉱業株式会社製、MIREK Eを用い、荷重は60~100g/cm2、定盤回転数を20~50rpmにて実施した。これにより、シリカ基板からなる細胞培養基材を作製した。
(実施例2)
(シリカ基板を多孔性シリカ膜で被覆した細胞培養基材の作製法)
524mgのヘキサデシルトリメチルアンモニウムクロリド(CTAC)を、1.4mlの水に添加し、分散するまで攪拌して、溶液Aを得た。次に、1.94mlのテトラメトキシシラン(TMOS)に、0.472mlの水、及び0.1mlの0.1N-HClを添加し、30℃で60分攪拌して、溶液Bを得た。溶液A及び溶液Bを、TMOS/CTACがモル比で8となるように混合し、さらに0.1mlの1N-HClを添加して混合液Cを得た。混合液Cを室温(20℃)で15分攪拌後、培養面に凹凸形状を有する実施例1のシリカ基板(12.5mm×25mm)に対して、6000rpm、10秒の条件でスピンコートを行った。混合液Cが塗布されたシリカ基板を60℃で18時間加熱し、CTAC/TMOS複合膜を形成した。さらに、当該複合膜が形成されたシリカ基板を450℃で6時間焼成した。これにより、シリカ基板が多孔性シリカ膜で被覆された細胞培養基材を作製した。多孔性シリカ膜の膜厚は150nmであった。
膜厚の測定方法としては、耐薬品性のポリイミドテープ(登録商標名:カプトン)を予め基板表面上の一部へ貼り、成膜後の焼成処理前段階においてポリイミドテープを剥がし、焼成によって部分的に成膜された基材を得た。膜の無い領域(テープを貼りつけた箇所)と、膜の有る領域(貼り付けていない箇所)との境界領域を、触針式表面形状測定器(アルバック株式会社製、DEKTACK3ST)によって、ダイヤモンド探針により試料面を走査し、測定距離:100μm、走査速度:50s、データ点数:8000点、触針圧:3mgの条件によって、高さプロファイルを得て、5箇所の値を平均し、膜厚を算出した。
(シリカ基板を多孔性シリカ膜で被覆した細胞培養基材の作製法)
524mgのヘキサデシルトリメチルアンモニウムクロリド(CTAC)を、1.4mlの水に添加し、分散するまで攪拌して、溶液Aを得た。次に、1.94mlのテトラメトキシシラン(TMOS)に、0.472mlの水、及び0.1mlの0.1N-HClを添加し、30℃で60分攪拌して、溶液Bを得た。溶液A及び溶液Bを、TMOS/CTACがモル比で8となるように混合し、さらに0.1mlの1N-HClを添加して混合液Cを得た。混合液Cを室温(20℃)で15分攪拌後、培養面に凹凸形状を有する実施例1のシリカ基板(12.5mm×25mm)に対して、6000rpm、10秒の条件でスピンコートを行った。混合液Cが塗布されたシリカ基板を60℃で18時間加熱し、CTAC/TMOS複合膜を形成した。さらに、当該複合膜が形成されたシリカ基板を450℃で6時間焼成した。これにより、シリカ基板が多孔性シリカ膜で被覆された細胞培養基材を作製した。多孔性シリカ膜の膜厚は150nmであった。
膜厚の測定方法としては、耐薬品性のポリイミドテープ(登録商標名:カプトン)を予め基板表面上の一部へ貼り、成膜後の焼成処理前段階においてポリイミドテープを剥がし、焼成によって部分的に成膜された基材を得た。膜の無い領域(テープを貼りつけた箇所)と、膜の有る領域(貼り付けていない箇所)との境界領域を、触針式表面形状測定器(アルバック株式会社製、DEKTACK3ST)によって、ダイヤモンド探針により試料面を走査し、測定距離:100μm、走査速度:50s、データ点数:8000点、触針圧:3mgの条件によって、高さプロファイルを得て、5箇所の値を平均し、膜厚を算出した。
(実施例3)
(シリカ基板がリン酸カルシウムで被覆された細胞培養基材の作製法)
1000mlのビーカに、700mlの水を入れ、次に、11.9850gのNaCl、0.525gのNaHCO3、0.336gのKCl、0.342gのK2HPO4/3H2O、0.4575gのMgCl/6H2O、57mlの1N-HCl、0.417gのCaCl2、0.1065gのNa2SO4、9.0855gのNa2C(CH2OH)3を添加し、36.5℃で攪拌した(攪拌は、シリカ基板を浸漬するまで行った)。次に、ビーカ内の溶液のpH測定を行い、pHが7.4になるまでHClを投入した。その後、当該溶液を1000mlのメスフラスコへ移し、アパタイト被覆液(1.5SBF)を得た。36.5℃の1.5SBF(2ml)に実施例1のシリカ基板(12.5mm×25mm)を浸漬し、35時間静置した。その後、シリカ基板を超純水により洗浄し、550℃で3時間焼成した。これにより、シリカ基板がリン酸カルシウム膜で被覆された細胞培養基材を作製した。リン酸カルシウム膜の膜厚は40nmであった。
膜厚の測定方法としては、実施例2と同様に、耐薬品性のポリイミドテープ(登録商標名:カプトン)を予め基板表面上の一部へ貼り、成膜後の焼成処理前段階においてポリイミドテープを剥がし、焼成によって部分的に成膜された基材を得た。膜の無い領域(テープを貼りつけた箇所)と、膜の有る領域(貼り付けていない箇所)との境界領域を、原子間力顕微鏡(エスアイアイ・ナノテクノロジー株式会社製、プローブステーション名NanoNavi IIs/ユニット名Nanocute)により計測した。具体的には、窒化シリコン製の探針がマウントされたカンチレバー(型番:Micro Cantilever SI-DF40、バネ定数:26N/m、共振周波数:294Hz)によって、測定モード:ダイナミック・フォース・モード、走査範囲:10μm×10μm、走査周波数:1.00Hz、X方向データ点数:256点、Y方向データ点数:256点とし、各点の高さを画像化した。高さとは、各測定点と測定点のうち最低高さとの差分とした。任意の画像断面の高さプロファイル5箇所の値を平均して膜厚を算出した。
(シリカ基板がリン酸カルシウムで被覆された細胞培養基材の作製法)
1000mlのビーカに、700mlの水を入れ、次に、11.9850gのNaCl、0.525gのNaHCO3、0.336gのKCl、0.342gのK2HPO4/3H2O、0.4575gのMgCl/6H2O、57mlの1N-HCl、0.417gのCaCl2、0.1065gのNa2SO4、9.0855gのNa2C(CH2OH)3を添加し、36.5℃で攪拌した(攪拌は、シリカ基板を浸漬するまで行った)。次に、ビーカ内の溶液のpH測定を行い、pHが7.4になるまでHClを投入した。その後、当該溶液を1000mlのメスフラスコへ移し、アパタイト被覆液(1.5SBF)を得た。36.5℃の1.5SBF(2ml)に実施例1のシリカ基板(12.5mm×25mm)を浸漬し、35時間静置した。その後、シリカ基板を超純水により洗浄し、550℃で3時間焼成した。これにより、シリカ基板がリン酸カルシウム膜で被覆された細胞培養基材を作製した。リン酸カルシウム膜の膜厚は40nmであった。
膜厚の測定方法としては、実施例2と同様に、耐薬品性のポリイミドテープ(登録商標名:カプトン)を予め基板表面上の一部へ貼り、成膜後の焼成処理前段階においてポリイミドテープを剥がし、焼成によって部分的に成膜された基材を得た。膜の無い領域(テープを貼りつけた箇所)と、膜の有る領域(貼り付けていない箇所)との境界領域を、原子間力顕微鏡(エスアイアイ・ナノテクノロジー株式会社製、プローブステーション名NanoNavi IIs/ユニット名Nanocute)により計測した。具体的には、窒化シリコン製の探針がマウントされたカンチレバー(型番:Micro Cantilever SI-DF40、バネ定数:26N/m、共振周波数:294Hz)によって、測定モード:ダイナミック・フォース・モード、走査範囲:10μm×10μm、走査周波数:1.00Hz、X方向データ点数:256点、Y方向データ点数:256点とし、各点の高さを画像化した。高さとは、各測定点と測定点のうち最低高さとの差分とした。任意の画像断面の高さプロファイル5箇所の値を平均して膜厚を算出した。
上述のSBFは、ヒトの血漿中の無機イオン濃度を人工的に再現した擬似体液であり、当該1.5SBFのイオン濃度(mM)は、Na+:213.0、K+:7.5、Mg2+:2.25、Ca2+:3.75、Cl-:222.0、HCO3
-:6.3、HPO4
2-:1.5、SO4
2-:0.75、であった。
(比較例1~2)
市販のホウ素含有シリケートガラス基板(松浪硝子工業株式会社製)からなる細胞培養基材を比較例1、ポリスチレンディッシュ(米国コーニングインターナショナル株式会社製)からなる細胞培養基材を比較例2とした。
市販のホウ素含有シリケートガラス基板(松浪硝子工業株式会社製)からなる細胞培養基材を比較例1、ポリスチレンディッシュ(米国コーニングインターナショナル株式会社製)からなる細胞培養基材を比較例2とした。
(基板表面の原子組成分析)
実施例1~3及び比較例1~2の基材について、表面の原子組成を蛍光X線分析により測定した。また、可視光(400~800nm)の平均透過率を測定した。日本分光株式会社製の紫外可視分光光度計V-750により、波長400~800nmにおける光の透過率を波長1nmごとに測定した。ベースラインは空気とし、基材と膜へ入射した光強度のうち、透過した光強度の割合を透過率とした。各波長における透過率を全て平均し、可視光領域における平均透過率を算出した。測定結果を表1に示す。
実施例1~3及び比較例1~2の基材について、表面の原子組成を蛍光X線分析により測定した。また、可視光(400~800nm)の平均透過率を測定した。日本分光株式会社製の紫外可視分光光度計V-750により、波長400~800nmにおける光の透過率を波長1nmごとに測定した。ベースラインは空気とし、基材と膜へ入射した光強度のうち、透過した光強度の割合を透過率とした。各波長における透過率を全て平均し、可視光領域における平均透過率を算出した。測定結果を表1に示す。
(X線回折パターン測定)
実施例1~3及び比較例1~2の基材について、X線回折パターンを測定した。測定結果を図2に示す。図2(A)は、低角領域におけるX線回折パターンであり、図2(B)は、高角領域におけるX線回折パターンである。図2(A)及び図2(B)において、(a)~(c)は順に実施例1~3を示し、(d)~(e)は順に比較例1~2を示している。図2(A)のとおり、低角領域の測定では、(b)のパターンだけに高強度のピークが見られた。この測定結果は、実施例2のシリカ基板を被覆するシリカ膜が規則ナノスケールの細孔構造であることを示すものである。また、図2(B)の高角領域の測定では、(c)のパターンだけにピークが見られた。この測定結果は、実施例3のシリカ基板を被覆するリン酸カルシウム膜のCaとPを示すものである。
実施例1~3及び比較例1~2の基材について、X線回折パターンを測定した。測定結果を図2に示す。図2(A)は、低角領域におけるX線回折パターンであり、図2(B)は、高角領域におけるX線回折パターンである。図2(A)及び図2(B)において、(a)~(c)は順に実施例1~3を示し、(d)~(e)は順に比較例1~2を示している。図2(A)のとおり、低角領域の測定では、(b)のパターンだけに高強度のピークが見られた。この測定結果は、実施例2のシリカ基板を被覆するシリカ膜が規則ナノスケールの細孔構造であることを示すものである。また、図2(B)の高角領域の測定では、(c)のパターンだけにピークが見られた。この測定結果は、実施例3のシリカ基板を被覆するリン酸カルシウム膜のCaとPを示すものである。
(凹凸構造の観察)
実施例1~3及び比較例1~2の基材について、培養面の超微細な凹凸構造を原子間力顕微鏡で観察した。図3は原子間力顕微鏡像であり、(a)~(c)は順に実施例1~3を示し、(d)~(e)は順に比較例1~2を示している。また、図3(a)~(e)の画像は測定範囲が1μm2であり、各画像の右側には後述する輪郭曲線における高さを記載している。
実施例1~3及び比較例1~2の基材について、培養面の超微細な凹凸構造を原子間力顕微鏡で観察した。図3は原子間力顕微鏡像であり、(a)~(c)は順に実施例1~3を示し、(d)~(e)は順に比較例1~2を示している。また、図3(a)~(e)の画像は測定範囲が1μm2であり、各画像の右側には後述する輪郭曲線における高さを記載している。
図3(a)は、実施例1の基材の表面に複数の凹凸構造である直線状の溝構造が平行に形成されていることを示しており、Rrms値は0.38nmであった。また、図3(b)は、実施例2の基材表面に鱗状の凹凸構造が形成されており、Rrms値は1.43nmであった。図3(c)は、実施例3の基材表面に直線状の溝を伴う鱗状の凹凸構造が形成されており、Rrms値は1.21nmであった。一方、比較例1の基材表面は不定形な形状であり、Rrms値は2.18nmであった(図3(d))。比較例2の基材表面には、ランダムな繊維状の組織が観察され、Rrms値は1.87nmであった(図3(e))
また、実施例1~3及び比較例1~2の基材について、表面形状を測定した。具体的には、JISB0601(2013)、JISR1683(2014)に準拠し、原子間力顕微鏡(プローブステーション名:NanoNavi IIs/ユニット名:Nanocute、エスアイアイ・ナノテクノロジー株式会社製)を用い、窒化シリコン製の探針がマウントされたカンチレバー(型番:Micro Cantilever SI-DF40、バネ定数:26N/m、共振周波数:294Hz)を使用した。
測定条件は以下のとおりである。
測定モード:ダイナミック・フォース・モード
走査範囲:1μm×1μm
走査周波数:1.00Hz
X方向データ点数:256点、
Y方向データ点数:256点、
ローパスフィルター値:1nm
ハイパスフィルター値:150nm。
測定条件は以下のとおりである。
測定モード:ダイナミック・フォース・モード
走査範囲:1μm×1μm
走査周波数:1.00Hz
X方向データ点数:256点、
Y方向データ点数:256点、
ローパスフィルター値:1nm
ハイパスフィルター値:150nm。
原子間力顕微鏡による測定により得られた輪郭曲線を解析ソフトウェア(製品名:NanoNavi II/IIs、エスアイアイ・ナノテクノロジー株式会社製)で分析し、凹凸構造の輪郭曲線要素の長さの平均、ウォーターシェッド法高さ、アスペクト比を算出した(表2参照)。なお、平均線は、前記ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線とした。
ウォーターシェッド法高さは、輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した輪郭曲線における反転後の谷の最下点と下端線との距離を平均することによって算出した。ウォーターシェッド法による計測は、Vincent-Soilleのアルゴリズム(L. Vincent, P. Solle “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583 (1991).)を適用したプログラムによって自動処理された。
アスペクト比は、X方向についての凹凸構造の輪郭曲線要素の長さの平均W1と、X方向と直交するY方向についての凹凸構造の輪郭曲線要素の長さの平均W2とを算出し、周期W1、周期W2のうち、大きい方の値を小さい方の値で除した値を平均することによって算出した。
ウォーターシェッド法高さは、輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した輪郭曲線における反転後の谷の最下点と下端線との距離を平均することによって算出した。ウォーターシェッド法による計測は、Vincent-Soilleのアルゴリズム(L. Vincent, P. Solle “Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(6), 583 (1991).)を適用したプログラムによって自動処理された。
アスペクト比は、X方向についての凹凸構造の輪郭曲線要素の長さの平均W1と、X方向と直交するY方向についての凹凸構造の輪郭曲線要素の長さの平均W2とを算出し、周期W1、周期W2のうち、大きい方の値を小さい方の値で除した値を平均することによって算出した。
(タンパク質吸着量の測定)
インキュベーター内(5%-CO2,37℃)で、実施例1~3及び比較例1~2の基材に対しタンパク質の吸着を1時間行った。取り出し後、リン酸緩衝生理食塩水(PBS)で洗浄し、1wt%-ドデシル硫酸ナトリウム(SDS)溶液を2ml加えて、振盪機(100rpm)上で1時間、基材上へ吸着したタンパク質を取り除いた。取り除いた溶液を用い、比色定量法によってタンパク質吸着量測定を行った。具体的には、試薬「Quanti Pro Buffer QA」と試薬「Quanti Pro BCA QB Copper(II) sulfate solution」を取り除いた溶液に加え、インキュベーター内で24時間放置を行った。その後、UVスペクトル測定より吸光度を測定し、吸着量を導いた。
インキュベーター内(5%-CO2,37℃)で、実施例1~3及び比較例1~2の基材に対しタンパク質の吸着を1時間行った。取り出し後、リン酸緩衝生理食塩水(PBS)で洗浄し、1wt%-ドデシル硫酸ナトリウム(SDS)溶液を2ml加えて、振盪機(100rpm)上で1時間、基材上へ吸着したタンパク質を取り除いた。取り除いた溶液を用い、比色定量法によってタンパク質吸着量測定を行った。具体的には、試薬「Quanti Pro Buffer QA」と試薬「Quanti Pro BCA QB Copper(II) sulfate solution」を取り除いた溶液に加え、インキュベーター内で24時間放置を行った。その後、UVスペクトル測定より吸光度を測定し、吸着量を導いた。
比色定量法(BCA法)は、2段階の反応を用いており、まず、タンパク質のペプチド結合により、Cu2+イオンが還元されCu+となる。次に、以下に構造式を示すように2分子のビシンコニン酸(BCA)がCu+イオンをキレート配位した、紫色の産物(Cu(I)(BCA)2錯体)が生じる。紫色の発色強度は、タンパク質濃度に依存している。そのため、562nmの吸光度を測定し、タンパク質濃度を定量することができる。
タンパク質吸着量の測定結果を図4に示す。図4のとおり、アルブミンの吸着量は実施例1~3よりも比較例1~2の基材で多いのに対し、フィブリノーゲンの吸着量は実施例1~3の方が比較例1~2の基材よりも多い結果となった。このように、実施例1~3の基材において吸着量が高いフィブリノーゲンは細胞接着性タンパク質であることから、細胞接着性に優れている。一方、比較例1~2の基材において吸着量が高いアルブミンは細胞接着阻害性タンパク質であることから、細胞接着性に劣っている。
(細胞の生細胞率、接着面積の評価)
実施例1~3及び比較例1~2の基材について、滅菌及び洗浄を行った。具体的には、50体積%、70体積%及び90体積%のエタノールを各3回、PBSを3回、ウシ胎児血清(FBS)、細胞培養液(αMEM)を含む10体積%のFBS/αMEM培地を3回使用して、滅菌及び洗浄を行った。
実施例1~3及び比較例1~2の基材について、滅菌及び洗浄を行った。具体的には、50体積%、70体積%及び90体積%のエタノールを各3回、PBSを3回、ウシ胎児血清(FBS)、細胞培養液(αMEM)を含む10体積%のFBS/αMEM培地を3回使用して、滅菌及び洗浄を行った。
骨芽細胞様細胞(MC3T3-E1)を10体積%のFBS/αMEM培地で1週間培養した。培養条件は、37℃、CO2濃度5%、相対湿度99%とした。培養後、PBS、トリプシン/エチレンジアミン四酢酸(EDTA)及びPBSで基材を洗浄し、基材に接着していない細胞を洗い流した。洗浄後、10体積%のFBS/αMEM培地を添加した。
培養した細胞密度が5000細胞/cm2の骨芽細胞様細胞を、実施例1~3及び比較例1~2の基材に播種した。培養条件は、37℃、CO2濃度5%、相対湿度99%とし、5時間、22時間、55時間及び72時間後のそれぞれの生細胞率、細胞面積(細胞接着面積)を測定した。生細胞率は、MTTアッセイ法により測定した。MTTアッセイ法とは、細胞内に取り込まれたMTT〔3-(4,5-ジメチル-チアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロマイド〕が細胞内のミトコンドリアの脱水素酵素(コハク酸デヒドロゲナーゼ)によって還元され生じるフォルマザン色素を、ジメチルスルホキシドにより抽出する。そのフォルマザン色素溶液の波長570nmの吸光度を比色定量し、生細胞率を計測する方法である。吸光度は、日本分光株式会社製の紫外可視分光光度計V-750により、バックグラウンドを10体積%のFBS/αMEM培地とし、各培養時間における波長570nmの吸光度を測定した。ここで、生細胞率(%)とは、本実施例および比較例のMTTアッセイ法における最高の吸光度を100%とし、各培養時間の吸光度の相対割合を%で表したものである。また、細胞面積とは、培養面に接着している細胞1個の面積であり、各培養時間において、オリンパス株式会社製の倒立型ルーチン顕微鏡CKX41によって画像化した細胞100個についての面積を平均した値である。
図5は、実施例1~3及び比較例1~2の基材における、細胞の培養時間と細胞の生細胞率との関係を示すグラフである。図5に示すとおり、細胞培養時間が経過していくと、細胞が増殖し生細胞率が向上する傾向を示した。実施例1~3については、細胞の培養時間が72時間の場合に生細胞率が40%を超えており、長時間の培養においても細胞の生存性が高いことを示した。この中でも、リン酸カルシウム膜で被覆された凹凸構造を備える実施例3は、細胞の培養時間が72時間の場合に生細胞率が100%に近い値を示した。また、比較例1は、培養面にB2O3を含む点でも、生細胞率が低くなりやすかったと考えられる。
図6は、実施例1~3及び比較例1~2の基材における、細胞の培養時間と細胞面積との関係を示すグラフである。図6に示すとおり、実施例1~3及び比較例1については、培養時間が22時間の時に細胞面積が最も大きくなる傾向を示した。一方、培養時間が55時間、72時間になると、細胞面積は減少する傾向を示した。これは細胞が増殖しすぎると細胞同士の間隔が詰まり、細胞が小さくなるためと考えられた。実施例1~3については、細胞の培養時間が22時間の場合に細胞面積が2000μm2を超えており、細胞接着性に優れることを示した。この中でも、リン酸カルシウム膜で被覆された凹凸構造を備える実施例3は、細胞の培養時間が22時間の場合に細胞面積が3000μm2を超える高い値を示した。
M・・・凹凸構造の輪郭曲線
TA・・・高さの累積相対度数分布50%を示す平均線
P1・・・第1の山
P2・・・第2の山
Q・・・谷
A・・・第1の山P1の起点
B・・・谷Qの終点
TA・・・高さの累積相対度数分布50%を示す平均線
P1・・・第1の山
P2・・・第2の山
Q・・・谷
A・・・第1の山P1の起点
B・・・谷Qの終点
Claims (16)
- 無機材料で構成された基板を備える細胞培養基材であって、
前記細胞培養基材は、培養面に複数の凹凸構造を有し、
JISB0601及びJISR1683に準拠して原子間力顕微鏡で前記凹凸構造を測定したときに(測定領域は1μm四方、ローパス用輪郭曲線フィルタのカットオフ値が1nm、ハイパス用輪郭曲線フィルタのカットオフ値が170nmである)、
少なくとも1つの方向についての前記凹凸構造の輪郭曲線要素の長さの平均が1~170nmである(平均線は、前記ハイパス用輪郭曲線フィルタにより遮断される長波長成分を表す曲線を最小二乗法により直線に補正したとき、その直線と平行かつ、輪郭曲線における高さの累積相対度数分布50%を示す線である)、細胞培養基材。 - 前記輪郭曲線のウォーターシェッド法高さが0.1~8nmである(前記ウォーターシェッド法高さは、前記輪郭曲線における高さの累積相対度数分布100%を示す上端線と高さの累積相対度数分布0%を示す下端線とを反転させて水平補正した状態で、ウォーターシェッド法により計測した前記輪郭曲線における反転後の谷の最下点と前記下端線との距離の平均である)、請求項1記載の細胞培養基材。
- X方向についての前記凹凸構造の輪郭曲線要素の長さの平均W1と、前記X方向と直交するY方向についての前記凹凸構造の輪郭曲線要素の長さの平均W2とのアスペクト比が1.95以下である(前記アスペクト比は、前記平均長さW1、W2のうち、大きい方の値を小さい方の値で除した値の平均である)、請求項1又は2記載の細胞培養基材。
- 前記培養面が、多孔質SiO2膜で被覆された凹凸構造をなす、請求項1~3のいずれか一項記載の細胞培養基材。
- 前記培養面が、リン酸カルシウム化合物膜で被覆された凹凸構造をなす、請求項1~3のいずれか一項記載の細胞培養基材。
- 前記多孔質SiO2膜又はリン酸カルシウム化合物膜の厚みが、1~200nmである、請求項4又は5記載の細胞培養基材。
- 前記無機材料がSiO2を含む、請求項1~6のいずれか一項記載の細胞培養基材。
- 前記培養面にB2O3が含まれない、請求項1~7のいずれか一項記載の細胞培養基材。
- 可視光透過率が70%以上である、請求項1~8のいずれか一項記載の細胞培養基材。
- 前記凹凸構造が、溝状、孔状又は鱗状である、請求項1~9のいずれか一項記載の細胞培養基材。
- 請求項1~10のいずれか一項記載の細胞培養基材で細胞を培養する工程を有する、細胞含有物の作製方法。
- ポリスチレンからなる細胞培養基材を用いて細胞を培養し、前記細胞の密度が前記ポリスチレンからなる細胞培養基材の培養面の90%となる培養時間を1Tとした場合に、請求項1~10のいずれか一項記載の細胞培養基材を用いて1/2T~2/3Tの培養時間で細胞を培養する、細胞含有物の作製方法。
- 請求項1~10のいずれか一項記載の細胞培養基材をオートクレーブ処理し、再利用用細胞培養基材を作製する、細胞培養基材の作製方法。
- 前記オートクレーブ処理後の細胞培養基材上のタンパク質を除去する、請求項13記載の細胞培養基材の作製方法。
- 請求項1~10のいずれか一項記載の細胞培養基材上の細胞を光学的に観察する、細胞観察方法。
- 請求項1~10のいずれか一項記載の細胞培養基材上の細胞接着性タンパク質を除去するために用いられる、細胞接着性タンパク質を分解する成分を含有するメンテナンス液。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780030554.8A CN109153960B (zh) | 2016-05-20 | 2017-05-18 | 细胞培养基质、细胞内含物的制备方法、细胞培养基质的制备方法 |
US16/302,828 US11286449B2 (en) | 2016-05-20 | 2017-05-18 | Cell culture substratum, method for producing cell-containing material, method for producing cell culture substratum, method for observing cells, and cell culture substratum maintenance fluid |
EP17799479.5A EP3460041A4 (en) | 2016-05-20 | 2017-05-18 | CELL CULTURE SUBSTRATE, METHOD FOR PRODUCING CELL-CONTAINING MATERIAL, METHOD FOR PRODUCING CELL CULTURAL SUBSTRATE, METHOD FOR MONITORING CELLS AND CELL CULTURE SUBSTRATE LIQUID |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-101029 | 2016-05-20 | ||
JP2016101029A JP6838869B2 (ja) | 2016-05-20 | 2016-05-20 | 細胞培養基材、細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法、細胞培養基材のメンテナンス液 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017200055A1 true WO2017200055A1 (ja) | 2017-11-23 |
Family
ID=60325946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/018725 WO2017200055A1 (ja) | 2016-05-20 | 2017-05-18 | 細胞培養基材、細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法、細胞培養基材のメンテナンス液 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11286449B2 (ja) |
EP (1) | EP3460041A4 (ja) |
JP (1) | JP6838869B2 (ja) |
CN (1) | CN109153960B (ja) |
WO (1) | WO2017200055A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020090839A1 (ja) * | 2018-10-29 | 2020-05-07 | 株式会社 Ion Chat Research | 先端にナノ構造をもった電極 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11513254A (ja) | 1995-10-06 | 1999-11-16 | コーニング インコーポレイテッド | 細胞培養のためのコロイドシリカ |
JP2003310256A (ja) * | 2002-02-25 | 2003-11-05 | Pentax Corp | 細胞培養担体および細胞培養方法 |
WO2005038011A1 (ja) * | 2003-10-17 | 2005-04-28 | Dai Nippon Printing Co., Ltd. | 人工細胞組織の作成方法、及びそのための基材 |
JP2007535320A (ja) | 2004-04-30 | 2007-12-06 | シュヴェルトナー,ハイコ | 生体活性を有する骨芽細胞刺激表面を製造するための酵素的方法およびその利用 |
JP2012249547A (ja) | 2011-05-31 | 2012-12-20 | Oji Holdings Corp | 細胞培養用基材及びその製造方法 |
JP2013039071A (ja) | 2011-08-15 | 2013-02-28 | Ricoh Co Ltd | 細胞培養基材及びその製造方法 |
JP2013102713A (ja) | 2011-11-11 | 2013-05-30 | Kawamura Institute Of Chemical Research | 接着細胞の培養方法及びそれに用いる細胞培養基材 |
JP2013255483A (ja) * | 2012-05-18 | 2013-12-26 | Medical Science Co Ltd | 細胞培養器 |
JP2015062400A (ja) * | 2013-08-30 | 2015-04-09 | 独立行政法人放射線医学総合研究所 | 癌組織由来細胞凝集塊を調製するための方法及び癌組織由来細胞凝集塊を用いる抗癌剤スクリーニング方法、抗癌剤の定量分析又は癌組織の放射線感受性試験 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2657403B2 (ja) | 1988-09-13 | 1997-09-24 | 旭光学工業株式会社 | 細胞の観察・培養器具 |
DE10307925A1 (de) | 2002-02-25 | 2003-09-04 | Pentax Corp | Träger für eine Zellkultur und Verfahren zur Kultivierung von Zellen |
JP2007076089A (ja) * | 2005-09-13 | 2007-03-29 | Konica Minolta Opto Inc | 表面凹凸形状光学フィルムの製造方法及び表面凹凸形状光学フィルム |
WO2008042640A1 (en) * | 2006-09-29 | 2008-04-10 | Wisconsin Alumni Research Foundation | The use of topographic cues to modulate stem cell behaviors |
KR101688282B1 (ko) * | 2011-09-08 | 2016-12-20 | 미쯔비시 레이온 가부시끼가이샤 | 미세 요철 구조를 표면에 갖는 투명 필름, 그의 제조 방법 및 투명 필름의 제조에 이용되는 기재 필름 |
JP2013244483A (ja) | 2012-05-29 | 2013-12-09 | Hitachi Constr Mach Co Ltd | 熱機関の排ガス浄化装置及び排ガス浄化方法 |
CA2935909A1 (en) * | 2014-01-10 | 2015-07-16 | Jx Nippon Oil & Energy Corporation | Optical substrate, mold to be used in optical substrate manufacture, and light emitting element including optical substrate |
-
2016
- 2016-05-20 JP JP2016101029A patent/JP6838869B2/ja active Active
-
2017
- 2017-05-18 WO PCT/JP2017/018725 patent/WO2017200055A1/ja unknown
- 2017-05-18 CN CN201780030554.8A patent/CN109153960B/zh active Active
- 2017-05-18 EP EP17799479.5A patent/EP3460041A4/en active Pending
- 2017-05-18 US US16/302,828 patent/US11286449B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11513254A (ja) | 1995-10-06 | 1999-11-16 | コーニング インコーポレイテッド | 細胞培養のためのコロイドシリカ |
JP2003310256A (ja) * | 2002-02-25 | 2003-11-05 | Pentax Corp | 細胞培養担体および細胞培養方法 |
WO2005038011A1 (ja) * | 2003-10-17 | 2005-04-28 | Dai Nippon Printing Co., Ltd. | 人工細胞組織の作成方法、及びそのための基材 |
JP2007535320A (ja) | 2004-04-30 | 2007-12-06 | シュヴェルトナー,ハイコ | 生体活性を有する骨芽細胞刺激表面を製造するための酵素的方法およびその利用 |
JP2012249547A (ja) | 2011-05-31 | 2012-12-20 | Oji Holdings Corp | 細胞培養用基材及びその製造方法 |
JP2013039071A (ja) | 2011-08-15 | 2013-02-28 | Ricoh Co Ltd | 細胞培養基材及びその製造方法 |
JP2013102713A (ja) | 2011-11-11 | 2013-05-30 | Kawamura Institute Of Chemical Research | 接着細胞の培養方法及びそれに用いる細胞培養基材 |
JP2013255483A (ja) * | 2012-05-18 | 2013-12-26 | Medical Science Co Ltd | 細胞培養器 |
JP2015062400A (ja) * | 2013-08-30 | 2015-04-09 | 独立行政法人放射線医学総合研究所 | 癌組織由来細胞凝集塊を調製するための方法及び癌組織由来細胞凝集塊を用いる抗癌剤スクリーニング方法、抗癌剤の定量分析又は癌組織の放射線感受性試験 |
Non-Patent Citations (3)
Title |
---|
CAVALCANTI-ADAM, E.A.; MICOULET, A.; BLUMMEL, J.; AUERNHEIMER, J.; KESSLER, H.; SPATZ, J.P., EUR, J. CELL BIOL., vol. 85, 2006, pages 219 - 224 |
L. VINCENT; P. SOLLE: "Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 13, no. 6, 1991, pages 583, XP000949356, DOI: doi:10.1109/34.87344 |
See also references of EP3460041A4 |
Also Published As
Publication number | Publication date |
---|---|
US20190292504A1 (en) | 2019-09-26 |
US11286449B2 (en) | 2022-03-29 |
JP6838869B2 (ja) | 2021-03-03 |
EP3460041A1 (en) | 2019-03-27 |
CN109153960A (zh) | 2019-01-04 |
CN109153960B (zh) | 2022-08-26 |
EP3460041A4 (en) | 2020-01-22 |
JP2017205082A (ja) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heras et al. | Osteostatin potentiates the bioactivity of mesoporous glass scaffolds containing Zn2+ ions in human mesenchymal stem cells | |
Xu et al. | Atomic-scale surface of fused silica induced by chemical mechanical polishing with controlled size spherical ceria abrasives | |
CN105537589B (zh) | 一种slm成型钛种植体表面处理方法 | |
Jokanović et al. | Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite | |
CN107385419B (zh) | 一种提高医用镁合金表面耐腐蚀及亲水性能的涂层及其制备方法 | |
CA1234163A (en) | Support particles coated with precursors for biologically active glass | |
Shruti et al. | Cerium, gallium and zinc containing mesoporous bioactive glass coating deposited on titanium alloy | |
Moritz et al. | Nanoroughening of sandblasted 3Y-TZP surface by alumina coating deposition for improved osseointegration and bacteria reduction | |
Lu et al. | Effects of storage methods on time-related changes of titanium surface properties and cellular response | |
Sopcak et al. | Effect of phase composition of calcium silicate phosphate component on properties of brushite based composite cements | |
Han et al. | Porous titania surfaces on titanium with hierarchical macro-and mesoporosities for enhancing cell adhesion, proliferation and mineralization | |
Tas | X-ray-amorphous calcium phosphate (ACP) synthesis in a simple biomineralization medium | |
Tithito et al. | Fabrication of biocomposite scaffolds made with modified hydroxyapatite inclusion of chitosan-grafted-poly (methyl methacrylate) for bone tissue engineering | |
CN110325477A (zh) | 硫酸钡球状复合粉末及其制造方法 | |
Tiainen et al. | The effect of fluoride surface modification of ceramic TiO2 on the surface properties and biological response of osteoblastic cells in vitro | |
WO2017200055A1 (ja) | 細胞培養基材、細胞含有物の作製方法、細胞培養基材の作製方法、細胞観察方法、細胞培養基材のメンテナンス液 | |
Vargas-Osorio et al. | Effect of glycerol and H3PO4 on the bioactivity and degradability of rod-like SBA-15 particles with active surface for bone tissue engineering applications | |
Shah et al. | Acid catalysed synthesis of bioactive glass by evaporation induced self assembly method | |
Vaja et al. | Multifunctional advanced coatings based on ZnO/M obtained by nanocasting method | |
CN104721885A (zh) | 一种介孔硅酸钙镁/小麦蛋白复合材料及其制备方法和应用 | |
Silva et al. | Alumina applied in bone regeneration: Porous α-alumina and transition alumina | |
JP2001198208A (ja) | リン酸カルシウム系生体用セラミック焼結体およびその製造方法 | |
Wei et al. | Preparation and characterization of well ordered mesoporous diopside nanobiomaterial | |
Tang et al. | Preparation and in vitro characterization of crack-free mesoporous titania films | |
Huang et al. | Photochemical synthesis of silver nanoparticles/eggshell membrane composite, its characterization and antibacterial activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799479 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017799479 Country of ref document: EP Effective date: 20181220 |