WO2017199830A1 - カロテノイドの精製物を得る方法 - Google Patents
カロテノイドの精製物を得る方法 Download PDFInfo
- Publication number
- WO2017199830A1 WO2017199830A1 PCT/JP2017/017800 JP2017017800W WO2017199830A1 WO 2017199830 A1 WO2017199830 A1 WO 2017199830A1 JP 2017017800 W JP2017017800 W JP 2017017800W WO 2017199830 A1 WO2017199830 A1 WO 2017199830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carotenoid
- extract
- mass
- added
- phycocyanin
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K10/00—Animal feeding-stuffs
- A23K10/30—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
- A23K10/37—Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/105—Aliphatic or alicyclic compounds
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/179—Colouring agents, e.g. pigmenting or dyeing agents
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L5/00—Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
- A23L5/40—Colouring or decolouring of foods
- A23L5/42—Addition of dyes or pigments, e.g. in combination with optical brighteners
- A23L5/43—Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
- A23L5/44—Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/31—Hydrocarbons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P23/00—Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/405—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/80—Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
- Y02P60/87—Re-use of by-products of food processing for fodder production
Definitions
- the present invention relates to a method for obtaining a purified carotenoid, and more particularly to a method for obtaining a purified carotenoid from a residue obtained by producing phycocyanin by culturing algae and then extracting the phycocyanin.
- Blue-green algae are not only used as health foods but also as phycocyanin pigment sources because they contain a large amount of useful substances such as carotenoids, nucleic acid-related substances, amino acids, vitamins, minerals, and phycocyanin pigments.
- Phycocyanin dyes usually have an absorption maximum wavelength at 618 nm and exhibit a water-soluble and vivid blue color. Therefore, they are used as water-soluble natural colorants for foods such as chewing gum and ice confectionery, or cosmetics such as eye shadows and lipsticks. It is used as a colorant for creams, eyeliners, shampoos, and emulsions.
- Carotenoids have an antioxidant effect and are expected to have an antioxidant effect even after being taken into the body, so they are also added to various health foods and supplements.
- zeaxanthin is widely used for the purpose of coloring cultured fish and improving the egg yolk quality of chicken eggs.
- it is only two carotenoids that exist in the macular region of the human retina together with lutein. It is known to be related to a reduction in the risk of macular degeneration (Patent Document 1, Non-Patent Document 1).
- Non-patent Document 2 zeaxanthin and lutein have been reported to have strong antitumor promoting properties. Recent reports have shown that it can play an important role in combating conditions that induce cardiovascular disease, atherosclerosis, skin cancer, ovarian cancer, and the like.
- the phycocyanin dye can be produced, for example, from the following four steps (Patent Documents 2 and 3). 1) Water extraction process of cyanobacteria algae body components, 2) Centrifugation step, 3) Concentration process by ultrafiltration, 4) Drying process.
- Patent Documents 2 and 3 1) Water extraction process of cyanobacteria algae body components, 2) Centrifugation step, 3) Concentration process by ultrafiltration, 4) Drying process.
- the residue after separation of phycocyanin generated by this production process is often discarded even though it contains a large amount of nucleic acid-related substances, amino acids, carotenoid pigments, vitamins, minerals, etc. Not only will this become a source of environmental pollution, it will also lead to the waste of valuable biomass resources. Therefore, effective reuse of the residue is desired.
- chlorophyll degradation products are also known to be harmful (Patent Document 4).
- Chlorophyll contained in algae can cause photosensitivity, for example, cases of livestock damage due to feeding have been known for a long time, and excessive eating of chlorella tablets is also widely known to cause human injury. It became. This is directly attributed to pheophorbide produced by the decomposition of chlorophyll, and photosensitivity reaction reveals photosensitivity such as sunlight dermatitis, but this pheophorbide used white shark
- LD 50 has a value of 45.5 mg / 100 g or more and MLD 50 has a value of 12 mg / 100 g or more (Non-patent Document 3).
- chlorophyll tends to be acidic or pheophorbide a is easily generated by the coexistence of an organic solvent, there remains a problem in using carotenoids extracted from algae as a health food as they are.
- Non-patent Document 4 In the purification of carotenoids derived from microalgae, especially zeaxanthin, separation from chlorophyll is difficult and the purification process is complicated. In order to overcome these points, fermentation production by the terrestrial bacterium Erwinia uredovora has been studied, but its yield is extremely low and cannot be practically used (Non-patent Document 4).
- an object of the present invention is to provide an industrially useful production method for carotenoids that contributes to effective utilization of algal culture residue and does not contain harmful substances.
- Another object of the present invention is to provide functional foods, feeds, cosmetics, food colors, and the like containing purified carotenoids.
- a method for obtaining a purified product of carotenoid from the residue (A) obtained by extracting the phycocyanin After performing the step (I) of extracting carotenoid from the residue (A) in the presence of an alkaline substance, the residue is filtered, Saponification step (II) using an alkaline substance for decomposing chlorophyll contained in the obtained carotenoid extract (B), A subsequent carotenoid precipitation step (III), The amount of alkaline substance used in the step (I) for extracting carotenoid is equivalent to x mol with respect to the solid content mass (1 kg) of the residue (A) from which phycocyanin is extracted, When the amount of the alkaline substance used in the saponification step (II) is y mol equivalent to the solid content mass (1 kg) of the carotenoid extract (B), A method for obtaining a purified carotenoid product characterized by satisfying the following conditions.
- the temperature at which the step (I) for extracting carotenoid and the saponification step (II) are performed is 30 to 50 ° C.
- the industrially useful manufacturing method which does not contain the harmful
- the present invention includes the following items. 1.
- a method for obtaining a purified product of carotenoid from a residue (A) obtained by extracting phycocyanin after producing phycocyanin by culturing algae After performing the step (I) of extracting carotenoid from the residue (A) in the presence of an alkaline substance, the residue is filtered, Saponification step (II) using an alkaline substance for decomposing chlorophyll contained in the obtained carotenoid extract (B), A subsequent carotenoid precipitation step (III),
- the amount of alkaline substance used in the step (I) for extracting carotenoid is equivalent to x mol with respect to the solid content mass (1 kg) of the residue (A) from which phycocyanin is extracted,
- the amount of the alkaline substance used in the saponification step (II) is y mol equivalent to the solid content mass (1 kg) of the carotenoid extract (B)
- the temperature at which the step (I) for extracting carotenoid and the saponification step (II) are performed is 30 to 50 ° C. 2.
- the alkaline substance is potassium hydroxide or sodium hydroxide; A method for obtaining a purified product of carotenoid according to 1.
- Algae is a cyanobacterium containing spirulina or phycocyanin Or 2. A method for obtaining a purified product of carotenoid according to 1. 4).
- the carotenoid is zeaxanthin, ⁇ -carotene, or myxoxanthophyll. ⁇ 3.
- ⁇ 4. A food, feed, cosmetic, or food color containing carotenoid obtained by the method for obtaining a purified carotenoid product according to any one of the above.
- a step (first step) of obtaining an extract obtained by extracting phycocyanin in algae into an aqueous suspension is performed.
- Algae which can be used for the preparation of this extract include the genus Arthrospira, the genus Spirulina, the genus Aphanizomenon, the genus Fischerella, the genus Anabaena, the genus Nesmo (Genus Synechocystis), genus Synechococcus, genus Tolypothrix, genus Aphanothace, genus Mastigoclaus, genus Pleurocapsa To Arsulospira, which has been produced on a scale and has been confirmed to be safe Which is desirable.
- Examples of the algae used in the present invention include raw algae and dried algae, but phycocyanin is easily extracted in the step of obtaining an extract obtained by extracting phycocyanin in algae into an aqueous suspension. Dry algae are preferred because the amount of phycocyanin that can be extracted is also stable.
- Raw algae are harvested by a method such as centrifugation and filtration of algae cultured in water, and usually contain 70 to 90% by mass of water.
- Algae are usually cultured in natural water or artificial light in water, but it is preferable to harvest cyanobacteria that are irradiated with light and undergoing photosynthesis. Especially for cyanobacteria grown in outdoor culture tanks under natural light, photosynthesis continues and the water temperature rises after 10 am, compared to cyanobacteria harvested at night or immediately after the start of light irradiation. More preferred are cyanobacteria harvested from sunset to sunset.
- Examples of the dried algae include those obtained by freeze-drying or spray-drying raw algae cultured by the above method.
- an extract is obtained in the first step, a calcium salt and phosphate are reacted in the extract in the second step to obtain calcium phosphate, and phycocyanin is added to the calcium phosphate.
- a calcium salt and phosphate are reacted in the extract in the second step to obtain calcium phosphate
- phycocyanin is added to the calcium phosphate.
- the first step and the second step may be performed as follows. 1.
- the first step is a step of preparing an aqueous suspension containing algae and a calcium salt, and obtaining an extract obtained by extracting phycocyanin in the algae into the aqueous suspension.
- the first step is a step of preparing an aqueous suspension containing algae and phosphate, and obtaining an extract obtained by extracting phycocyanin in the algae into the aqueous suspension
- the second step is the extract.
- an extract obtained by extracting phycocyanin in algae into an aqueous suspension is obtained, and in the second step, phosphate and calcium salt are added to the extract to obtain calcium phosphate, and the calcium phosphate is added to the calcium phosphate.
- the first step is a step of preparing an aqueous suspension containing algae, calcium salt and phosphate, and obtaining an extract obtained by extracting phycocyanin in the algae into the aqueous suspension. Then, the process proceeds to the second step as it is, and calcium phosphate is obtained with the extract, and adsorbate can be obtained by adsorbing phycocyanin impurities to the calcium phosphate. In addition, the 3. In the first step, calcium salt and / or phosphate may be added.
- a water suspension containing algae and a calcium salt is prepared as a first step, and a step of obtaining an extract in which phycocyanin in the algae is extracted into the water suspension is obtained.
- the extraction time of phycocyanin therein can be shortened, and an extract with less elution of phycocyanin impurities, particularly carotenoids, is preferable.
- the following description of the first step and the second step is 1. The above method is assumed.
- Examples of a method for obtaining an extract in the first step include a method of preparing an aqueous suspension containing algae and a calcium salt, and extracting the phycocyanin in the algae by maintaining the extract at 0 to 40 ° C. Is mentioned.
- First method Add calcium salt to the algae-suspended aqueous solution.
- Second method examples include a method of adding algae to an aqueous solution of calcium salt and suspending it, but the second method. Is preferred.
- Examples of the calcium salt used in the preparation of the aqueous solution of the calcium salt used in the present invention include water-soluble calcium salts such as calcium chloride, calcium nitrate, and calcium nitrite, among which calcium chloride is preferable.
- the concentration of the calcium salt in the aqueous suspension is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass, and still more preferably 0.5 to 3% by mass.
- the aqueous solution of calcium salt is suspended in the range where the concentration of cyanobacteria is 0.1 to 20% by mass in terms of solid content. A range of 2 to 8% by mass is more preferable.
- the suspension is preferably prepared in the range where the temperature of the aqueous suspension is 0 to 40 ° C, more preferably 0 to 35 ° C.
- An aqueous suspension containing algae and calcium salt is prepared, and phycocyanin in the algae is extracted into the aqueous suspension to obtain an extract.
- Phycocyanin is extracted from algae by standing still, but may be stirred if necessary.
- the extraction time is preferably 1 to 48 hours, more preferably 1 to 20 hours.
- phycocyanin in algae can be efficiently extracted into an aqueous suspension by adding a basic compound to the aqueous suspension or subjecting it to ultrasonic irradiation. Both the addition of the basic compound and the ultrasonic irradiation treatment may be performed, or only one of them may be performed. When both are performed, the basic compound may be added after ultrasonic irradiation, or the ultrasonic irradiation treatment may be performed after adding the basic compound, but the ultrasonic wave is added after adding the basic compound. It is preferable to perform irradiation treatment.
- the irradiation method when performing the ultrasonic irradiation treatment is not limited as long as it can destroy algal cells and promote the transfer of phycocyanin into suspension, and examples include batch type and continuous type. However, a continuous type in which ultrasonic waves are continuously applied is preferable.
- a continuous ultrasonic irradiation treatment apparatus for example, a multiple ultrasonic dispersion apparatus for production manufactured by Nippon Seiki Seisakusho Co., Ltd. may be used.
- phosphate is added to the aqueous extract of phycocyanin obtained in the first step.
- the phosphate may be added as a solid or in the form of an aqueous solution.
- the phosphate include sodium phosphate such as sodium phosphate, sodium dihydrogen phosphate and disodium hydrogen phosphate; potassium phosphate such as potassium phosphate, potassium dihydrogen phosphate and dipotassium hydrogen phosphate;
- magnesium phosphate water-soluble inorganic salts such as ammonium dihydrogen phosphate, among which sodium phosphate and potassium phosphate are preferable, sodium phosphate is particularly preferable, and disodium hydrogen phosphate is most preferable.
- the phosphate is preferably added to the extract so that the phosphate concentration is 1 to 5% by mass in the extract, and is preferably added to the extract so that the concentration is 2 to 3% by mass. Is more preferable.
- phosphate to the extract.
- the phosphate reacts with the calcium salt in the water extract to cause precipitation of calcium phosphate and adsorbs and adsorbs chlorophyll and other contaminants contaminated with phycocyanin pigment on the calcium phosphate.
- the purity of the phycocyanin pigment can be increased.
- After adding the phosphate it may be allowed to stand or may be stirred if necessary.
- the time required for the reaction (adsorption) of calcium ions and phosphate ions is preferably 2 to 10 hours, and more preferably 3 to 5 hours.
- the pH when adsorbing phosphate and algae to obtain an adsorbate in the extract is preferably 4 to 8, more preferably 5 to 6, because the amount of phycocyanin obtained is increased.
- the pH can be adjusted, for example, by adding a basic compound or an acidic compound to the extract.
- the basic compound include alkali compounds such as sodium hydroxide, potassium hydroxide and lithium hydroxide; carbonates of alkali metals such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and lithium carbonate; hydrogen carbonate Examples thereof include alkali metal hydrogen carbonates such as sodium, potassium hydrogen carbonate and lithium hydrogen carbonate; alkali metal acetates such as sodium acetate, potassium acetate and lithium acetate.
- the acidic compound examples include citric acid, hydrochloric acid, lactic acid, acetic acid, and the like.
- the pH of the extract can also be adjusted by adding a basic compound or acidic compound to the aqueous suspension in advance. If the pH of the aqueous suspension at this time is adjusted to 7 to 6, the pH of the extract is preferably 5 to 6.
- algal residues and the adsorbate are removed from the extract after completion of the second step, but if the extract contains a chelating agent prior to the third step, the amount of recovered phycocyanin may be increased. Is particularly preferable. This is because phycocyanin includes phycocyanin C and allophycocyanin. Allophycocyanin is adsorbed on calcium phosphate, and allophycocyanin adsorbed on this calcium phosphate is removed together with calcium phosphate in the next third step, but before the third step. The inventor believes that when the chelating agent is contained in the extract, the chelating agent is adsorbed on the calcium phosphate, so that allophycocyanin is separated from the calcium phosphate and remains in the extract.
- the chelating agent may be added before the third step.
- the chelating agent may be added to the algae aqueous suspension in the first step, or may be added to the prepared extract. It may be added to the extract before obtaining the adsorbate in the process, or may be added after obtaining the adsorbate. In the present invention, it is preferably added at the time of suspension adjustment.
- the chelating agent examples include organic carboxylates such as sodium citrate, sodium oxalate, sodium tartrate, sodium gluconate; nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminopentaacetic acid (DTPA) Amino carbonates such as dihydroxyethyl glycine (DFG), triethanolamine (TEA), N- (2-hydroxyethyl) iminodiacetic acid (HEIDA), hydroxyethylenediaminetetraacetic acid (HEDTA) and the like; Examples thereof include ether carboxylates such as sodium carboxymethyltaltronate (CMT) and sodium carboxymethyloxysuccinate (CMOS). Of these, sodium citrate and sodium ethylenediaminetetraacetate are more preferable.
- organic carboxylates such as sodium citrate, sodium oxalate, sodium tartrate, sodium gluconate
- NTA nitrilotriacetic acid
- EDTA
- the amount of chelating agent added is preferably 5 to 100% by mass, more preferably 10 to 40% by mass based on the amount of calcium chloride used.
- Algal residue can be obtained from the extract in the third step.
- means for obtaining these include various methods, such as a filtration method using a filter medium such as filter paper and filter cloth, a decantation method performed by collecting the supernatant from the precipitate, and a centrifugation method. Of these, separation by centrifugation is preferable.
- Centrifugation may be performed under conditions that can remove algae residues and adsorbates from the extract, but is preferably performed under a centrifugal acceleration of 1,000 to 30,000 G for 10 seconds to 2 hours, and a gravitational acceleration of 3 Centrifugation conditions of 1 to 30 minutes at 1,000 to 10,000 G are more preferred.
- the obtained residue is preferably dried by a spray dryer method, a freeze-drying method or the like in order to prevent deterioration of carotenoids contained, particularly zeaxanthin, and to prevent decay.
- step (I) of extracting carotenoid from the residue (A) obtained by the above operation is performed.
- the present invention is characterized in that this extraction step is performed in the presence of an alkaline substance.
- the alkaline substance to be used include those usually used, and preferred examples include alkaline substances such as potassium hydroxide, sodium hydroxide, sodium carbonate and potassium carbonate.
- a solvent extraction method using ethanol or a water-ethanol mixed solution is preferably performed. Further, when a water-ethanol mixed solution is used, the content is preferably 99% by mass to 80% by mass.
- the temperature at the time of extraction can be in the range of 30-50 ° C. Preferable extraction time includes 30 minutes to 24 hours.
- a filtration process can be performed by a well-known and usual method, for example, can also be filtered using a commercially available filter paper.
- the extract after filtration is concentrated to obtain a carotenoid extract (B).
- the solid component mass of the extract (B) is preferably 2.0% by mass to 33% by mass of the extract (B), more preferably 2.0% by mass to 6.6% by mass, and 2.0% by mass. It is particularly preferable that the content be ⁇ 3.3 mass%.
- the solid content mass is measured after drying the solvent at 105 ° C. after distilling off the solvent at a vacuum of 10 kPa or less while heating a part of the obtained extract at 40 ° C.
- disassembling the chlorophyll contained in the obtained carotenoid extract (B) is performed.
- the purpose of this step is to decompose and remove chlorophyll contained in the extract (B).
- the present invention is characterized in that the extraction step (I) and the saponification step (II) using an alkaline substance are carried out. Further, in order to improve the extraction efficiency and efficiently remove chlorophyll, the alkaline substance The amount of use is in a specific range. More specifically, in the present invention, the following usage amounts of alkaline substances are preferred.
- the amount of alkaline substance used in the step (I) for extracting carotenoid is equivalent to x mol with respect to the solid content mass (1 kg) of the residue (A) from which phycocyanin is extracted,
- the amount of the alkaline substance used in the saponification step (II) is y mol equivalent to the solid content mass (1 kg) of the carotenoid extract (B)
- the values of x and y are not only preferably in a specific range, but also that their numerical values influence each other. For example, if the value of x is less than 1.0, the chlorophyll content in the final purified product is high, and clogging occurs in the filtration step for carotenoid recovery performed after step (III). If it is 3.0 or more, the zeaxanthin recovery rate in step (I) is low, and blockage occurs in the filtration step for carotenoid recovery, which is not preferable.
- the mass of the alkaline substance to be used a numerical mass converted to a substantial amount of the alkaline substance is used.
- the alkaline substance since commercially available potassium hydroxide has a content of about 85%, the mass of the numerical value converted from this is used.
- the intended saponification can be performed in a short time at 30 ° C. or higher.
- the solution is stirred so as to be uniform. However, it is preferably carried out at 30 to 50 ° C.
- the time required for saponification is usually 30 minutes to 24 hours. When the time is shorter than this time, saponification of chlorophyll is insufficient, and when the time is longer, carotenoid is deteriorated.
- a precipitation step (III) for obtaining a purified carotenoid product is performed.
- diatomaceous earth filtration, diatomaceous earth washing, and diatomaceous earth elution may be performed. That is, in this step, for example, a solution in which carotenoids are precipitated with 45% by mass of ethanol water is filtered through diatomaceous earth, and then the filtrate is washed with 45% by mass of ethanol water to elute impurities. it can. Subsequently, the carotenoid eluate can be purified by eluting the filtrate with 95% by mass of ethanol water. This step has an effect that the purified carotenoid eluate is rich in zeaxanthin.
- the carotenoid obtained from the present invention can be used as a functional product in foods, feeds, cosmetics, food colors, etc. and used for various applications.
- Examples of methods for producing foods, feeds, cosmetics, edible pigments and the like as the functional products include publicly known methods.
- a 10 mM ammonium acetate aqueous solution was used with 10 (volume ratio) as the solvent 2, the concentration gradient of the solvent 1 was 60% -4 min-75% -10 min-100% -10 min-98% -1 min-60% (3 min), and the flow rate was 0. .3 to 0.35 mL, column oven temperature 40 ° C.
- ⁇ Measurement of residual phycocyanin in residue (A)> 25 mL of phosphate buffer (pH 6) is added to 0.5 g of the residue (A) and suspended uniformly, and then allowed to stand at 30 ° C. for 16 hours and centrifuged for 15 minutes. Filter the supernatant with filter paper. The absorbance at 620 nm, 560 nm, and 650 nm is measured, and the phycocyanin concentration is calculated by the following formula.
- the C phycocyanin concentration (g / L) is calculated as follows: absorbance at 0.198 ⁇ 620 nm ⁇ absorbance at 0.0019 ⁇ 560 nm ⁇ absorbance at 0.133 ⁇ 560 nm. Further, the allophycocyanin concentration (g / L) was calculated by the following equation: absorbance at 0.204 ⁇ 650 nm ⁇ absorbance at 0.519 ⁇ 620 nm ⁇ absorbance at 0.019 ⁇ 650 nm, and total phycocyanin concentration (g / L) was C phycocyanin + Calculated with allophycocyanin.
- ⁇ Content of chlorophyll in the final purified product The solvent of the final purified product is replaced with 85 mass% acetone aqueous solution. Acetone is added, and the mixture is filtered through a 3G2 glass filter. The filtration residue is washed with an 85 mass% aqueous acetone solution. Diethyl ether (ether) and water are added to the filtrate in a ratio of 1: 1 and distributed, and the ether layer is separated. Half of the ether is added to the aqueous layer and water is added in the same amount as the ether, and the resulting ether layer is added to the initially distributed ether layer. An equal amount of water is added to the combined ether layers and distributed to obtain an ether layer.
- ether Diethyl ether
- chlorophyll content (%) ether capacity (L) ⁇ (absorbance at 16.8 ⁇ 642.5 nm + absorbance at 7.12 ⁇ 660 nm) / amount of sample (mg) ⁇ 100% is obtained.
- the filtration rate of the filtration for recovering the precipitated carotenoid performed after the carotenoid precipitation step (III) was measured as follows.
- the carotenoid deposit produced from 40 g of the residue (A) was passed through a 1.8 cm 2 filter medium precoated with 1 cm of a filter aid, and suction filtered at 0.02 MPa, and the amount of filtration per unit time was measured. At that time, when the filtration rate became 10 mL / cm 2 / hour or less, it was judged to be blocked.
- Residue (A) The total phycocyanin remaining in lot e was 2.4% by mass, the calcium content was 0.21% by mass, and the magnesium content was 0.01% by mass. Moreover, the calcium content of the ethanol extract was 0.06% by mass, and the magnesium content was 0.03% by mass. Residue (A) The total phycocyanin remaining in lot f was 0.9 mass%, the water extract of the aqueous extract at 620 nm had an absorbance of 4.88 cm ⁇ 1 , the calcium content was 0.10 mass%, and magnesium was not detected. Further, calcium in the ethanol extract was not detected, and the magnesium content was 0.01% by mass.
- Example 1 630 g of 88 wt% EtOHaq. After adding 84 g of 25% by mass KOH / EtOH, residue (A) lot e210 g was added, and zeaxanthin was extracted while stirring at 150 ° C. for 1 hour at 30 ° C. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 630 g under reduced pressure using a rotary evaporator to obtain an extract (B). The solid content in this extract was 21 g. 4.2 g of 25% by mass KOH / EtOH was added to the extract (B). Saponification was performed with stirring at 30 ° C.
- the zeaxanthin recovery rate from the residue (A) to the final purified product, and the zeaxanthin content and chlorophyll content in the final purified product were calculated.
- the measurement results were a zeaxanthin recovery rate of 79%, a zeaxanthin content of 10%, and a chlorophyll content of 0.1% or less.
- Example 2 120 g of 90% by mass EtOHaq. After adding 16 g of 25% by mass KOH / EtOH, 40 g of residue (A) lot e was added, and zeaxanthin was extracted with stirring at 150 rpm at 50 ° C. for 1 hour. The solid was separated by filtration, and the solid content was 90% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated under reduced pressure to 60 g using a rotary evaporator to obtain an extract (B). 0.8 g of 25 mass% KOH / EtOH was added to the extract (B). Saponification was carried out at 100 ° C. for 1 hour at 50 ° C.
- a saponified extract having water-soluble saponified chlorophyll 2.5 g of diatomaceous earth was added to the saponified extract. Water was added to adjust the water ethanol concentration to 45% by mass. The mixture was stirred for 30 minutes or more to precipitate a red substance. The saponified extract having the precipitate was passed through diatomaceous earth pre-coated to a thickness of 1 cm, and the precipitate and the liquid were separated by filtration, and then 45 mass% EtOHaq. To remove impurities. The precipitate from which impurities were removed was added to 90% by mass of EtOHaq. And the solvent was distilled off to obtain a final purified product. The final purified product had a zeaxanthin recovery rate of 58%, a zeaxanthin content of 4%, and a chlorophyll content of 0.1% or less.
- Example 3 120 g of 95% by mass EtOHaq. After adding 16 g of 25% by mass KOH / EtOH, 40 g of residue (A) lot e was added, and zeaxanthin was extracted with stirring at 150 rpm at 50 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was 95% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). 0.8 g of 25 mass% KOH / EtOH was added to the extract (B). Saponification was carried out at 100 ° C. for 1 hour at 50 ° C.
- a saponified extract having water-soluble saponified chlorophyll 2.5 g of diatomaceous earth was added to the saponified extract. Water was added to adjust the water ethanol concentration to 45% by mass. The mixture was stirred for 30 minutes or more to precipitate a red substance.
- the saponified extract having the precipitate was passed through diatomaceous earth pre-coated to a thickness of 1 cm, and the precipitate and the liquid were separated by filtration, and then 45 mass% EtOHaq. To remove impurities. The precipitate from which impurities were removed was added to 95% by mass of EtOHaq. And the solvent was distilled off to obtain a final purified product. In the final purified product, the zeaxanthin recovery rate was 83%, the zeaxanthin content rate was 7.6%, and the chlorophyll content rate was 0.1% or less.
- Example 4 120 g of 88 wt% EtOHaq. After adding 16 g of 25 mass% KOH / EtOH, residue (A) lot e40 g was added, and zeaxanthin was extracted while stirring at 150 rpm at 30 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). 6.4 g of 25% by mass KOH / EtOH was added to the extract (B). Saponification was performed with stirring at 30 ° C. for 1 hour at 100 rpm to obtain a saponified extract having water-soluble saponified chlorophyll.
- Example 5 120 g of 88 wt% EtOHaq. After adding 28 g of 25% by mass KOH / EtOH, 40 g of residue (A) lot e was added, and zeaxanthin was extracted while stirring at 150 ° C. for 1 hour at 30 ° C. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). 2.5 g of diatomaceous earth was added to the extract (B). Water was added to adjust the water ethanol concentration to 45% by mass. The mixture was stirred for 30 minutes or more to precipitate a red substance.
- the saponified extract having the precipitate was passed through diatomaceous earth pre-coated to a thickness of 1 cm, and the precipitate and the liquid were separated by filtration, and then 45 mass% EtOHaq. To remove impurities.
- the precipitate from which impurities were removed was added to 88 mass% EtOHaq. And the solvent was distilled off to obtain a final purified product.
- the zeaxanthin recovery rate was 72%
- the zeaxanthin content rate was 13.8%
- the chlorophyll content rate was 0.1% or less.
- Example 6 120 g of 88 wt% EtOHaq. After adding 16 g of 25 mass% KOH / EtOH, residue (A) lot e40 g was added, and zeaxanthin was extracted while stirring at 150 rpm at 30 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. The extract (B) was obtained by adding again to the filtrate. 0.8 g of 25% by mass KOH / EtOH was added to the extract (B) and saponified while stirring at 100 rpm at 30 ° C. for 1 hour to obtain a saponified extract having water-soluble saponified chlorophyll.
- Example 7 120 g of 88 wt% EtOHaq. After adding 16 g of 25 mass% KOH / EtOH, residue (A) lot e40 g was added, and zeaxanthin was extracted while stirring at 150 rpm at 30 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). 0.8 g of 25% by mass KOH / EtOH was added to the extract (B) and saponified while stirring at 100 rpm at 30 ° C.
- a saponified extract having water-soluble saponified chlorophyll having water-soluble saponified chlorophyll.
- 2.5 g of diatomaceous earth was added to the saponified extract.
- Water was added to adjust the water ethanol concentration to 45% by mass.
- the mixture was stirred for 30 minutes or more to precipitate a red substance.
- the saponified extract having the precipitate was passed through diatomaceous earth pre-coated to a thickness of 1 cm, and the precipitate and the liquid were separated by filtration, and then 45 mass% EtOHaq. To remove impurities.
- the precipitate from which impurities were removed was added to 88 mass% EtOHaq.
- the solvent was distilled off to obtain a final purified product.
- the zeaxanthin recovery rate was 83%
- the zeaxanthin content rate was 5.3%
- the chlorophyll content rate was 0.1% or less.
- Example 8 120 g of 88 wt% EtOHaq. After adding 16 g of 25 mass% KOH / EtOH, residue (A) lot e40 g was added, and zeaxanthin was extracted while stirring at 150 rpm at 30 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). To the extract (B), 3.2 g of 25% by mass KOH / EtOH was added and saponified while stirring at 100 rpm at 30 ° C.
- a saponified extract having saponified chlorophyll that was water-soluble.
- 2.5 g of diatomaceous earth was added to the saponified extract, and the temperature was raised to 50 ° C. Water was added to adjust the water ethanol concentration to 55% by mass. The mixture was stirred for 30 minutes or more to precipitate a red substance.
- the saponified extract having the precipitate was passed through diatomaceous earth pre-coated to a thickness of 1 cm, and the precipitate and the liquid were separated by filtration, and then 55 mass% EtOHaq. To remove impurities.
- the precipitate from which impurities were removed was added to 88 mass% EtOHaq. And the solvent was distilled off to obtain a final purified product.
- the zeaxanthin recovery rate was 70%
- the zeaxanthin content rate was 43.5%
- the chlorophyll content rate was 0.1% or less.
- Example 9 120 g of 88 wt% EtOHaq. After adding 16 g of 25 mass% KOH / EtOH, residue (A) lot e40 g was added, and zeaxanthin was extracted while stirring at 150 rpm at 30 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). To the extract (B), 3.2 g of 25% by mass KOH / EtOH was added and saponified while stirring at 100 rpm at 30 ° C.
- Example 10 120 g of 88 wt% EtOHaq. After adding 16 g of 25% by mass KOH / EtOH, the residue (A) lot f120 g was added, and zeaxanthin was extracted while stirring at 150 rpm at 30 ° C. for 1 hour. Solid-liquid separation was performed by filtration, and the solid content was adjusted to 88% by mass EtOHaq. Extracted again and added to the filtrate. The extract was concentrated to 120 g under reduced pressure using a rotary evaporator to obtain an extract (B). 0.8 g of 25 mass% KOH / EtOH was added to the extract (B). Saponification was performed with stirring at 30 ° C.
- the purified product such as carotenoid obtained in the present invention can be used as, for example, functional foods, feeds, cosmetics, food colors, etc. contained in foods, feeds, cosmetics, food colors and the like.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Zoology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Organic Chemistry (AREA)
- Animal Husbandry (AREA)
- Biotechnology (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Wood Science & Technology (AREA)
- Birds (AREA)
- Biochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physiology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Emergency Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Molecular Biology (AREA)
- Botany (AREA)
- Dermatology (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Cosmetics (AREA)
Abstract
本発明は以下の条件を有するカロテノイドの製造方法を提供するものである。 カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、 (1)x及びyが以下の何れかの条件を満たす。 1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0である。 2)2.0≦x<3.0、且つy=0である。 (2)カロテノイドを抽出する工程(I)及びケン化工程(II)を行う温度が30~50℃である、条件を満たすことによる。
Description
本発明は、カロテノイドの精製物を得る方法に関し、特に藻類の培養によりフィコシアニンを産生させた後、該フィコシアニンを抽出した残渣からカロテノイドの精製物を得る方法に関する。
藍藻、特にスピルリナは、カロテノイド、核酸関連物質、アミノ酸、ビタミン、ミネラル、フィコシアニン色素等の有用物質を多量に含むため、健康食品として利用されるだけでなく、フィコシアニン色素源としても利用されている。フィコシアニン色素は、普通618nmに吸収極大波長があり、水溶性で鮮やかな青色を呈することから、食品、例えば、チューインガム、氷菓等の水溶性天然着色剤として、あるいは、化粧品、例えば、アイシャドー、口紅、クリーム、アイライナー、シャンプー、乳液等の着色剤として利用されている。
カロテノイドは抗酸化作用を有しており、体内に取り込まれた後にも抗酸化作用等が期待されることから、各種の健康食品やサプリメントにも添加されている。カロテノイドの中でもゼアキサンチンは、養殖魚の色揚げや鶏卵の卵黄質改善等の目的で広く用いられているが、ルテインと共に人間の網膜の黄斑領域に存在するただ2つのカロテノイドであり、AMD(加齢性黄斑変性症)の危険性の低下に関連していることが知られている(特許文献1、非特許文献1)。
また、ゼアキサンチン、ルテインには強い抗腫瘍促進特性を有することが報告されている(非特許文献2)。最近の報告では、心循環器疾患、アテローム性動脈硬化症、皮膚ガン、卵巣ガン等を誘導する状態への対抗における重要な役割を担うことができることが明らかにされている。
前記フィコシアニン色素は、例えば、次の4工程から製造できる(特許文献2、3)。
1)藍藻藻体成分の水抽出工程、
2)遠心分離工程、
3)限外ろ過による濃縮工程、
4)乾燥工程。
しかしながら、本製造工程によって発生するフィコシアニン分離後の残渣には、未だ多量の核酸関連物質、アミノ酸、カロテノイド色素、ビタミン、ミネラル等が含まれているにも拘らず、廃棄している場合が多く、環境汚染源問題となるだけでなく、貴重なバイオマス資源の浪費にもつながるものである。従って、当該残渣の有効な再利用が望まれている。
1)藍藻藻体成分の水抽出工程、
2)遠心分離工程、
3)限外ろ過による濃縮工程、
4)乾燥工程。
しかしながら、本製造工程によって発生するフィコシアニン分離後の残渣には、未だ多量の核酸関連物質、アミノ酸、カロテノイド色素、ビタミン、ミネラル等が含まれているにも拘らず、廃棄している場合が多く、環境汚染源問題となるだけでなく、貴重なバイオマス資源の浪費にもつながるものである。従って、当該残渣の有効な再利用が望まれている。
一方、クロロフィルの分解物は有害性であることも知られている(特許文献4)。
藻類中に含まれるクロロフィルは光過敏症の原因になり、例えば、飼料付与による家畜の障害例は古くから知られており、また、クロレラ錠剤の喫食過多は人体障害を引き起こすことも広く知られることとなった。これはクロロフィルが分解して生ずるフェオフォルバイドに直接起因するものであって、その光感作反応により日光性の皮膚炎等の光過敏症を顕現するが、このフェオフォルバイドは白鼠を用いた光毒性試験の結果、LD50は45.5mg/体重100g以上、MLD50は12mg/体重100g以上の値を有するとされる(非特許文献3)。しかも、クロロフィルは酸性に傾いたり、有機溶剤の共存によってフェオフォルバイドaが生成しやすくなるので、全体から見れば、藻類から抽出したカロテノイドをそのまま健康食品として用いることには問題が残る。
藻類中に含まれるクロロフィルは光過敏症の原因になり、例えば、飼料付与による家畜の障害例は古くから知られており、また、クロレラ錠剤の喫食過多は人体障害を引き起こすことも広く知られることとなった。これはクロロフィルが分解して生ずるフェオフォルバイドに直接起因するものであって、その光感作反応により日光性の皮膚炎等の光過敏症を顕現するが、このフェオフォルバイドは白鼠を用いた光毒性試験の結果、LD50は45.5mg/体重100g以上、MLD50は12mg/体重100g以上の値を有するとされる(非特許文献3)。しかも、クロロフィルは酸性に傾いたり、有機溶剤の共存によってフェオフォルバイドaが生成しやすくなるので、全体から見れば、藻類から抽出したカロテノイドをそのまま健康食品として用いることには問題が残る。
微細藻類由来のカロテノイド、特にゼアキサンチンの精製においては、クロロフィルとの分離が困難で精製工程が複雑である。これらの点を克服するために、陸上細菌Erwinia uredovoraによる発酵生産も研究されているが、その収率は極めて低く、実用に耐えうるものではない(非特許文献4)。
J M Seddon et al,Dietary Carotenoids,VitaminsA,C,and E,and Advanced Age-Related Macular Degeneration,Journal of the American Medical Association,Vol.272,No.9,pages 1413-1420,(1994)
L Packer,M Hiramatsu,T Oshikawa,(Editors),Antioxidant Food Supplements in Human Health,Academic Press,NY,1999,pp223 and pp226
日本農芸科学会誌,1980年、vol54、No9、721~726頁
J.Bacteriol.172,6704,1990
背景技術に記載のごとく、これまでの技術では、カロテノイド、特にゼアキサンチンに係る有害性物質を含まない工業上有用な製造方法が存在せず、また、残渣の有効利用に資するカロテノイド等の製造方法がないのが現状である。
そこで、本発明では、藻類培養残渣の有効利用に資し、有害性物質を含まないカロテノイドに係る工業上有用な製造方法を提供することを課題とする。
また、本発明では、カロテノイドの精製物を含有する機能性食品、飼料、化粧品、又は食用色素等の提供をも課題とする。
そこで、本発明では、藻類培養残渣の有効利用に資し、有害性物質を含まないカロテノイドに係る工業上有用な製造方法を提供することを課題とする。
また、本発明では、カロテノイドの精製物を含有する機能性食品、飼料、化粧品、又は食用色素等の提供をも課題とする。
本発明では、藻類の培養によりフィコシアニンを産生させた後、該フィコシアニンを抽出した残渣(A)からカロテノイドの精製物を得る方法であって、
前記残渣(A)からアルカリ性物質の存在下にカロテノイドを抽出する工程(I)を行った後に、ろ過し、
得られたカロテノイド抽出物(B)に含まれるクロロフィルを分解するためのアルカリ性物質を用いたケン化工程(II)と、
その後に行うカロテノイドの析出工程(III)を有し、
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法。
(1)x及びyが以下の何れかの条件を満たす。
1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0である。
2)2.0≦x<3.0、且つy=0である。
(2)カロテノイドを抽出する工程(I)及びケン化工程(II)を行う温度が30~50℃である。
前記残渣(A)からアルカリ性物質の存在下にカロテノイドを抽出する工程(I)を行った後に、ろ過し、
得られたカロテノイド抽出物(B)に含まれるクロロフィルを分解するためのアルカリ性物質を用いたケン化工程(II)と、
その後に行うカロテノイドの析出工程(III)を有し、
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法。
(1)x及びyが以下の何れかの条件を満たす。
1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0である。
2)2.0≦x<3.0、且つy=0である。
(2)カロテノイドを抽出する工程(I)及びケン化工程(II)を行う温度が30~50℃である。
本発明によれば、藻類培養残渣の有効利用に資する、生体にとって有用なカロテノイドに係る有害性物質を含まない工業上有用な製造方法を提供することができる。
さらには、カロテノイドの精製物を含有する食品、飼料、化粧品、又は食用色素をも提供することができる。
さらには、カロテノイドの精製物を含有する食品、飼料、化粧品、又は食用色素をも提供することができる。
即ち、本発明は以下の項目から構成される。
1.藻類の培養によりフィコシアニンを産生させた後、該フィコシアニンを抽出した残渣(A)からカロテノイドの精製物を得る方法であって、
前記残渣(A)からアルカリ性物質の存在下にカロテノイドを抽出する工程(I)を行った後に、ろ過し、
得られたカロテノイド抽出物(B)に含まれるクロロフィルを分解するためのアルカリ性物質を用いたケン化工程(II)と、
その後に行うカロテノイドの析出工程(III)を有し、
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法、
(1)x及びyが以下の何れかの条件を満たす。
1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0である。
2)2.0≦x<3.0、且つy=0である。
(2)カロテノイドを抽出する工程(I)及びケン化工程(II)を行う温度が30~50℃である。
2.アルカリ性物質が水酸化カリウム、又は水酸化ナトリウムである、1.に記載のカロテノイドの精製物を得る方法、
3.藻類が、スピルリナ、又はフィコシアニンを含有する藍藻類である1.又は2.に記載のカロテノイドの精製物を得る方法、
4.カロテノイドが、ゼアキサンチン、β‐カロテン、又はミクソキサントフィルである1.~3.の何れかに記載のカロテノイドの精製物を得る方法、
5.1.~4.の何れかに記載のカロテノイドの精製物を得る方法により得られたカロテノイドを含有する食品、飼料、化粧品、又は食用色素。
1.藻類の培養によりフィコシアニンを産生させた後、該フィコシアニンを抽出した残渣(A)からカロテノイドの精製物を得る方法であって、
前記残渣(A)からアルカリ性物質の存在下にカロテノイドを抽出する工程(I)を行った後に、ろ過し、
得られたカロテノイド抽出物(B)に含まれるクロロフィルを分解するためのアルカリ性物質を用いたケン化工程(II)と、
その後に行うカロテノイドの析出工程(III)を有し、
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法、
(1)x及びyが以下の何れかの条件を満たす。
1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0である。
2)2.0≦x<3.0、且つy=0である。
(2)カロテノイドを抽出する工程(I)及びケン化工程(II)を行う温度が30~50℃である。
2.アルカリ性物質が水酸化カリウム、又は水酸化ナトリウムである、1.に記載のカロテノイドの精製物を得る方法、
3.藻類が、スピルリナ、又はフィコシアニンを含有する藍藻類である1.又は2.に記載のカロテノイドの精製物を得る方法、
4.カロテノイドが、ゼアキサンチン、β‐カロテン、又はミクソキサントフィルである1.~3.の何れかに記載のカロテノイドの精製物を得る方法、
5.1.~4.の何れかに記載のカロテノイドの精製物を得る方法により得られたカロテノイドを含有する食品、飼料、化粧品、又は食用色素。
本発明では、先ず藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程(第一工程)を行う。この抽出液の調製に用いることのできる藻類は、アルスロスピラ(Arthrospira)属、スピルリナ(Spirulina)属、アファニゾメノン(Aphanizomenon)属、フィッシェレラ(Fisherella)属、アナベナ(Anabaena)属、ネンジュモ(Nostoc)属、シネコキスチス(Synechocystis)属、シネココッカス(Synechococcus)属、トリポスリクス(Tolypothrix)属、スイゼンジノリ(Aphanothece)属、マスティゴクラディス(Mastigoclaus)属、プルロカプサ(Pleurocapsa)属等のフィコシアニンを含有する藻類が挙げられるが、工業的規模で生産され、その安全性が確認されているアルスロスピラに属するものが望ましい。
本発明で用いる藻類としては、生の藻類や、乾燥処理した藻類等が挙げられるが、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程においてフィコシアニンが抽出されやすいこと、抽出できるフィコシアニンの量も安定していることから乾燥処理した藻類が好ましい。
生の藻類は、例えば、水中で培養された藻を遠心分離、ろ過等の方法により収穫され、通常水分を70~90質量%含有している。藻類は、通常水中で自然光、又は人工光により培養されるが、光が照射され光合成を行っている状態の藍藻を収穫するのが好ましい。特に自然光下の屋外培養槽で培養されている藍藻においては、夜間若しくは光照射が始まった直後に収穫された藍藻よりは、光合成が継続して行われ、水温も上昇してくる午前10時以降から日没までに収穫された藍藻がより好ましい。
乾燥処理した藻類としては、例えば、前記の方法で培養した生の藻類を、凍結乾燥処理したものや、スプレー乾燥処理したもの等が挙げられる。
本発明の藻類からのフィコシアニンの抽出方法は第一工程で抽出液を得て、第二工程で該抽出液中でカルシウム塩とリン酸塩とを反応させてリン酸カルシウムを得ると共に、該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ、吸着物を得る。第二工程でこの様な操作を行うには、例えば、第一工程と第二工程を下記の通りそれぞれ行えば良い。
1.前記第一工程が藻類とカルシウム塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程で、第二工程が前記抽出液にリン酸塩を添加してリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得る工程。
2.前記第一工程が藻類とリン酸塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程で、第二工程が前記抽出液にカルシウム塩を添加してリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得る工程。
3.前記第一工程で藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得て、第二工程で前記抽出液にリン酸塩とカルシウム塩を添加してリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得る工程。
1.前記第一工程が藻類とカルシウム塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程で、第二工程が前記抽出液にリン酸塩を添加してリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得る工程。
2.前記第一工程が藻類とリン酸塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程で、第二工程が前記抽出液にカルシウム塩を添加してリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得る工程。
3.前記第一工程で藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得て、第二工程で前記抽出液にリン酸塩とカルシウム塩を添加してリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得る工程。
なお、本発明では、前記第一工程が藻類とカルシウム塩とリン酸塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程で、そのまま第二工程へ進み、前記抽出液でリン酸カルシウムを得ると共に該リン酸カルシウムにフィコシアニンの夾雑物を吸着させ吸着物を得ることもできる。また、前記3.第一工程で、カルシウム塩および/またはリン酸塩を添加しても良い。本発明の藻類からのフィコシアニンの抽出方法では、前記1.の方法のように第一工程として藻類とカルシウム塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させた抽出液を得る工程をとることにより、藻類中のフィコシアニンの抽出時間が短縮化でき、フィコシアニンの夾雑物、特にカロテノイドの溶出が少ない抽出液を得られることから好ましい。以下の第一工程と第二工程の説明は1.の方法を前提として行う。
第一工程で抽出液を得る方法としては、例えば、藻類とカルシウム塩を含有する水懸濁液を調製し、この抽出液を0~40℃に保持して藻類中のフィコシアニンを抽出させる方法等が挙げられる。
前記水懸濁液を得るには、例えば、
第1法.藻類を懸濁した水溶液にカルシウム塩を加える、
第2法.カルシウム塩の水溶液に藻類を加え懸濁する、等の方法が挙げられるが、第2法.が好ましい。
第1法.藻類を懸濁した水溶液にカルシウム塩を加える、
第2法.カルシウム塩の水溶液に藻類を加え懸濁する、等の方法が挙げられるが、第2法.が好ましい。
本発明で用いるカルシウム塩の水溶液の調製に用いるカルシウム塩としては、例えば、塩化カルシウム、硝酸カルシウム、亜硝酸カルシウム等の水溶性のカルシウム塩が挙げられるが、中でも、塩化カルシウムが好ましい。
水懸濁液中のカルシウム塩の濃度は0.1~10質量%が好ましく、0.1~5質量%がより好ましく、0.5~3質量%が更に好ましい。
藻類をカルシウム塩の水溶液に懸濁し、水懸濁液を得る際は、藍藻分の濃度が、固形分換算で0.1~20質量%となる範囲でカルシウム塩の水溶液に懸濁するのが好ましく、2~8質量%となる範囲がより好ましい。
懸濁液の調製は、水懸濁液の温度が0~40℃となる範囲で行うのが好ましく、0~35℃がより好ましい。
藻類とカルシウム塩とを含有する水懸濁液を調製し、藻類中のフィコシアニンを水懸濁液中に抽出させて抽出液を得る。フィコシアニンは静置する事により藻類から抽出してくるが、必要に応じて攪拌しても良い。抽出にかける時間は1~48時間が好ましく、1~20時間がより好ましい。
抽出液を得る際に水懸濁液に対して塩基性化合物の添加や超音波照射処理を行う事により藻類中のフィコシアニンを効率よく水懸濁液中に抽出することができる。塩基性化合物の添加と超音波照射処理を両方行っても良いし、どちらか片方のみを行っても良い。両方行う際には超音波照射を行った後に塩基性化合物を添加しても良いし、塩基性化合物を添加した後に超音波照射処理を行っても良いが、塩基性化合物を添加した後に超音波照射処理を行うのが好ましい。
超音波照射処理を行う際の照射方法は、藻類の細胞を破壊し、フィコシアニンの懸濁液中への移行を促進させることができれば制限はなく、バッチ式や連続式等が挙げられるが、なかでも、連続的に超音波を照射する連続式が好ましい。連続式の超音波照射処理装置としては、例えば、(株)日本精機製作所の生産用多連式超音波分散装置等が挙げられる。
第一工程で得られたフィコシアニンの水抽出液に第二工程でリン酸塩を加える。リン酸塩は、固体のまま添加しても良いし、水溶液とした状態で添加しても良い。リン酸塩としては、例えば、リン酸ナトリウム、リン酸二水素ナトリウム、リン酸水素二ナトリウム等のリン酸ナトリウム;リン酸カリウム、リン酸二水素カリウム、リン酸水素二カリウム等のリン酸カリウム;リン酸マグネシウム;リン酸二水素アンモニウム等の水溶性無機塩が挙げられるが、中でも、リン酸ナトリウム、リン酸カリウムが好ましく、リン酸ナトリウムが特に好ましく、リン酸水素二ナトリウムが最も好ましい。
リン酸塩は、リン酸塩の濃度が抽出液中で1~5質量%の濃度になるよう抽出液に添加するのが好ましく、2~3質量%の濃度になるよう抽出液に添加するのがより好ましい。
前記抽出液にリン酸塩を添加する。抽出液にリン酸塩を添加すると、リン酸塩が、水抽出液中のカルシウム塩と反応し、リン酸カルシウムの沈殿を生じると共にフィコシアニン色素と夾雑しているクロロフィル等の夾雑物がリン酸カルシウムに吸着し吸着物を形成する。これによりフィコシアニン色素の純度を高くすることができる。該リン酸塩を添加した後は静置しても良いし、必要に応じて攪拌しても良い。カルシウムイオンと燐酸イオンの反応(吸着)にかける時間は2~10時間が好ましく、3~5時間がより好ましい。
リン酸塩と藻類とを吸着させて抽出液中で吸着物を得る際のpHは得られるフィコシアニンの量が多くなる事から4~8が好ましく、5~6がより好ましい。pHの調製は例えば、抽出液に塩基性化合物または酸性化合物を添加する事によって行う事ができる。塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ化合物;炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸リチウム等のアルカリ金属の炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム等のアルカリ金属の炭酸水素塩;酢酸ナトリウム、酢酸カリウム、酢酸リチウム等のアルカリ金属の酢酸塩等が挙げられる。酸性化合物としては、例えば、クエン酸、塩酸、乳酸、酢酸、等が挙げられる。また、抽出液のpHは、あらかじめ水懸濁液に塩基性化合物または酸性化合物を添加しておくことで調整する事もできる。このときの水懸濁液のpHは7~6に調整しておくと、抽出液のpHが好ましい5~6となる。
第三工程で第二工程終了後の抽出液から藻類の残渣及び前記吸着物を除去するが、第三工程より前に抽出液にキレート剤を含有させておくと、フィコシアニンの回収量を増やす事ができるので特に好ましい。これは、フィコシアニンにはフィコシアニンCとアロフィコシアニンがあり、アロフィコシアニンはリン酸カルシウムに吸着し、このリン酸カルシウムに吸着したアロフィコシアニンは次の第三工程でリン酸カルシウムと共に除去されてしまうが、第三工程より前にキレート剤を抽出液に含有させておくと、キレート剤がリン酸カルシウムに吸着し、それによりアロフィコシアニンがリン酸カルシウムから離れ、抽出液に残存するからであると発明者は考えている。
キレート剤を含有させるのは、第三工程より前に行えばよく、例えば、第一工程で藻類の水懸濁液に加えても良いし、調製した抽出液に加えても良いし、第二工程で吸着物を得る前に抽出液に加えても良いし、吸着物を得た後に加えても良い。本発明では、懸濁液調整時に加えるのが好ましい。
前記キレート剤としては、例えば、クエン酸ナトリウム、シュウ酸ナトリウム、酒石酸ナトリウム、グルコン酸ナトリウム等の有機カルボン酸塩類;ニトリロ三酢酸(NTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミノ五酢酸(DTPA)等のアミノカーボネート類;ジヒドロキシエチルグリシン(DFG)、トリエタノールアミン(TEA)、N-(2-ヒドロキシエチル)イミノ二酢酸(HEIDA),ヒドロキシエチレンジアミン四酢酸(HEDTA)等のヘドロキシアミノカーボネート類;カルボキシメチルタルトロン酸ナトリウム(CMT)、カルボキシメチルオキシコハク酸ナトリウム(CMOS)等のエーテルカルボン酸塩類等が挙げられる。中でもクエン酸ナトリウム、エチレンジアミン四酢酸ナトリウムがより好ましい。
キレート剤の添加量は、塩化カルシウムの使用量を基準として5~100質量%が好ましく、10~40質量%がより好ましい。
第三工程で抽出液から藻類の残渣を得ることできる。これらを得る手段としては、種々の方法が挙げられ、例えば、ろ紙やろ布等のろ材を用いたろ過方法や、沈殿から上澄みを回収することにより行うデカンテーション法、遠心分離方法等が挙げられる。なかでも、遠心分離による分離が好ましい。
遠心分離は、抽出液から藻類の残渣及び吸着物を除去できる条件であれば良いが、重力加速度が1,000~30,000Gで10秒~2時間の遠心分離条件が好ましく、重力加速度が3,000~10,000Gで1~30分間の遠心分離条件が、より好ましい。遠心分離機としては、ディスラッジ型遠心分離機、アルファ型遠心分離機、シャープレス型遠心分離機があるが、作業性が向上することから、ディスラッジ型遠心分離機とアルファ型遠心分離機の組み合わせによる連続遠心分離が好ましい。
また、得られた残渣については、含有するカロテノイド、特にゼアキサンチンの劣化を防ぐため、また、腐敗を防ぐために、スプレードライヤー法、凍結乾燥法等により乾燥させることが好ましい。
また、得られた残渣については、含有するカロテノイド、特にゼアキサンチンの劣化を防ぐため、また、腐敗を防ぐために、スプレードライヤー法、凍結乾燥法等により乾燥させることが好ましい。
次に、前記の操作で得られた残渣(A)から、カロテノイドを抽出する工程(I)を行う。
本発明においては、この抽出工程をアルカリ性物質の存在下に行うことに特徴を有する。用いられるアルカリ性物質としては、通常用いられるものを挙げることができるが、好ましいものとして、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ性物質を挙げることができる。
抽出法としては、エタノール、又は水‐エタノール混合溶液を用いた溶剤抽出法を行うことが好ましい。
さらに、水‐エタノール混合溶液を用いる場合には、99質量%~80質量%であることが好ましい。
抽出する際の温度は30~50℃の範囲を挙げることができる。好ましい抽出時間としては、30分~24時間を挙げることができる。
本発明においては、この抽出工程をアルカリ性物質の存在下に行うことに特徴を有する。用いられるアルカリ性物質としては、通常用いられるものを挙げることができるが、好ましいものとして、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム等のアルカリ性物質を挙げることができる。
抽出法としては、エタノール、又は水‐エタノール混合溶液を用いた溶剤抽出法を行うことが好ましい。
さらに、水‐エタノール混合溶液を用いる場合には、99質量%~80質量%であることが好ましい。
抽出する際の温度は30~50℃の範囲を挙げることができる。好ましい抽出時間としては、30分~24時間を挙げることができる。
次に、前記の操作で得られた抽出液をろ過する工程を行う。ろ過工程は公知慣用の方法で行うことができ、例えば、市販のろ紙を用いてろ過する事もできる。
ろ過後の抽出液の濃縮を行い、カロテノイド抽出物(B)を得る。
該抽出物(B)の固形成分質量は、抽出物(B)の2.0質量%~33質量%が好ましく、2.0質量%~6.6質量%がより好ましく、2.0質量%~3.3質量%とすることが特に好ましい。
ここで、固形分質量は、得られた該抽出液の一部を40℃で加温しながら、真空度10kPa以下で溶媒を留去した後、105℃で乾燥後測定する。
該抽出物(B)の固形成分質量は、抽出物(B)の2.0質量%~33質量%が好ましく、2.0質量%~6.6質量%がより好ましく、2.0質量%~3.3質量%とすることが特に好ましい。
ここで、固形分質量は、得られた該抽出液の一部を40℃で加温しながら、真空度10kPa以下で溶媒を留去した後、105℃で乾燥後測定する。
次に、得られたカロテノイド抽出物(B)に含まれるクロロフィルを分解するためのアルカリ性物質を用いたケン化工程(II)を行う。本工程は、当該抽出物(B)に含まれるクロロフィルを分解・除去することを目的とする。
本発明においては、アルカリ性物質を用いた抽出工程(I)及びケン化工程(II)を行うことに特徴を有し、更に抽出効率の向上と、クロロフィルの効率的な除去のために、アルカリ性物質の使用量が、特定の範囲内であることに特徴を有する。
より具体的には、本発明では、以下のアルカリ性物質の使用量が好ましい。
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法。
(1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0であるが、xが2以上の場合には、y=0であってもよい。
本発明においては、アルカリ性物質を用いた抽出工程(I)及びケン化工程(II)を行うことに特徴を有し、更に抽出効率の向上と、クロロフィルの効率的な除去のために、アルカリ性物質の使用量が、特定の範囲内であることに特徴を有する。
より具体的には、本発明では、以下のアルカリ性物質の使用量が好ましい。
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分質量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分質量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法。
(1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0であるが、xが2以上の場合には、y=0であってもよい。
前記x、及びyの値は、各々で特定の範囲であることが好ましいだけでなく、相互の数値が互いに影響し合う関係であることを見出したことに本発明の特徴がある。
例えば、xの値が1.0未満であると、最終精製物中のクロロフィル含有率が高く、かつ、工程(III)の後に行われる、カロテノイド回収のためのろ過工程において閉塞が起こり好ましくなく、3.0以上であると、工程(I)のゼアキサンチン回収率が低くなり、かつ、カロテノイド回収のためのろ過工程において閉塞が起こり好ましくない。
また、このxが、1.0≦x<3.0範囲内であっても、x+yが2.0≦x+y≦8.0の範囲を外れる場合には、x+yが2.0未満であるとクロロフィルや脂質が十分にケン化されないため、精製物中のゼアキサンチン含有率が低くなり、クロロフィル含有率は高くなる。また、8.0を超えるとゼアキサンチン回収率が低くなり好ましくない。
或いは、2.0≦x<3.0、且つy=0である場合も、本発明の範囲である。
xがこの範囲内にある場合には、ケン化工程(II)を行わなくても本発明の課題を解決することができる。
例えば、xの値が1.0未満であると、最終精製物中のクロロフィル含有率が高く、かつ、工程(III)の後に行われる、カロテノイド回収のためのろ過工程において閉塞が起こり好ましくなく、3.0以上であると、工程(I)のゼアキサンチン回収率が低くなり、かつ、カロテノイド回収のためのろ過工程において閉塞が起こり好ましくない。
また、このxが、1.0≦x<3.0範囲内であっても、x+yが2.0≦x+y≦8.0の範囲を外れる場合には、x+yが2.0未満であるとクロロフィルや脂質が十分にケン化されないため、精製物中のゼアキサンチン含有率が低くなり、クロロフィル含有率は高くなる。また、8.0を超えるとゼアキサンチン回収率が低くなり好ましくない。
或いは、2.0≦x<3.0、且つy=0である場合も、本発明の範囲である。
xがこの範囲内にある場合には、ケン化工程(II)を行わなくても本発明の課題を解決することができる。
用いるアルカリ性物質の質量は、アルカリ性物質の実質量に換算した数値の質量を用いる。例えば、アルカリ性物質として水酸化カリウムを用いる場合には、市販水酸化カリウムは、85%程度の含量であるので、これを換算した数値の質量を用いる。
前記アルカリ性物質の添加量を用いた場合には、目的とするケン化は、30℃以上において短時間で行うことができるが、クロロフィルを充分にケン化するには、溶液を均一になるよう攪拌しながら30~50℃で行うのが好ましい。
前記アルカリ性物質の添加量を用いた場合には、目的とするケン化は、30℃以上において短時間で行うことができるが、クロロフィルを充分にケン化するには、溶液を均一になるよう攪拌しながら30~50℃で行うのが好ましい。
ケン化に要する時間は、通常、30分~24時間を挙げることができる。この時間より短いとクロロフィルのケン化が不十分であり、また、長いとカロテノイドの劣化が起こるため好ましくない。
次に、カロテノイド精製物を得るための析出工程(III)を行う。
本工程では、カロテノイド析出の際に溶媒濃度調整を行うことが好ましく、析出物の洗浄液の濃度調整のために水を添加することが好ましい。
本工程では、カロテノイド析出の際に溶媒濃度調整を行うことが好ましく、析出物の洗浄液の濃度調整のために水を添加することが好ましい。
本発明では、さらに珪藻土ろ過、珪藻土洗浄、及び珪藻土溶出する工程を行ってもよい。
即ち、本工程では、例えば45質量%のエタノール水でカロテノイドを析出させた溶液を珪藻土でろ過後、ろ過物を45質量%のエタノール水で洗浄して不純物を溶出することにより、除去することができる。
次いで、95質量%のエタノール水でろ過物を溶出して、カロテノイド溶出液を精製することができる。
本工程は、当該精製されたカロテノイド溶出液には、ゼアキサンチンが豊富に含まれる効果がある。
即ち、本工程では、例えば45質量%のエタノール水でカロテノイドを析出させた溶液を珪藻土でろ過後、ろ過物を45質量%のエタノール水で洗浄して不純物を溶出することにより、除去することができる。
次いで、95質量%のエタノール水でろ過物を溶出して、カロテノイド溶出液を精製することができる。
本工程は、当該精製されたカロテノイド溶出液には、ゼアキサンチンが豊富に含まれる効果がある。
本発明より得られる、カロテノイドは、機能性製品として、食品、飼料、化粧品、食用色素等に含有させて、各用途で用いることができる。
前記機能性製品としての食品、飼料、化粧品、食用色素等の製造方法は、公知慣用の方法を挙げることができる。
前記機能性製品としての食品、飼料、化粧品、食用色素等の製造方法は、公知慣用の方法を挙げることができる。
以下、本発明に係る測定法に続き、実施例、比較例により本発明をより具体的に説明する。
<ゼアキサンチン標準液の作製>
ゼアキサンチン標準粉末(EXTRASYNTHESE社製)5mgをメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)に溶解し、100mLに定容したものをゼアキサンチン標準液とする。
ゼアキサンチン標準粉末(EXTRASYNTHESE社製)5mgをメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)に溶解し、100mLに定容したものをゼアキサンチン標準液とする。
<ゼアキサンチン標準液の濃度測定>
ゼアキサンチン標準液1mLをメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)で20mLに定容し、452nmの吸光度を測定し、下記計算式によりゼアキサンチン濃度を算出する。
具体的には、ゼアキサンチン標準液濃度(mg/100g)は吸光度×1000/2340で得られる。
ゼアキサンチン標準液1mLをメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)で20mLに定容し、452nmの吸光度を測定し、下記計算式によりゼアキサンチン濃度を算出する。
具体的には、ゼアキサンチン標準液濃度(mg/100g)は吸光度×1000/2340で得られる。
<残渣(A)のゼアキサンチン含有率測定>
残渣(A)のゼアキサンチン濃度は、残渣(A)にノルマルヘキサン:アセトン:エタノール:トルエン=10:7:6:7(容量比)混合溶媒を加え、還流させながら30分間抽出する。該抽出液を定容後、溶媒をメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)に置換後、φ0.2μmのシリンジフィルターでろ過し、条件(あ)に設定したUPLCで測定し、ゼアキサンチン標準液の測定から得た検量線から算出した。
具体的には、条件(A)は、カラムにAcquity UPLC HSS T3(φ2.1mm×100mm,1.8μm)を用い、移動相に溶媒1としてアセトニトリル:メタノール:メチルtert-ブチルエーテル=70:20:10(容量比)を溶媒2として10mM酢酸アンモニウム水溶液を用い、溶媒1の濃度勾配は60%-4min-75%-10min-100%-10min-98%-1min-60%(3min)、流量0.3~0.35mL、カラムオーブン温度40℃である。
残渣(A)のゼアキサンチン濃度は、残渣(A)にノルマルヘキサン:アセトン:エタノール:トルエン=10:7:6:7(容量比)混合溶媒を加え、還流させながら30分間抽出する。該抽出液を定容後、溶媒をメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)に置換後、φ0.2μmのシリンジフィルターでろ過し、条件(あ)に設定したUPLCで測定し、ゼアキサンチン標準液の測定から得た検量線から算出した。
具体的には、条件(A)は、カラムにAcquity UPLC HSS T3(φ2.1mm×100mm,1.8μm)を用い、移動相に溶媒1としてアセトニトリル:メタノール:メチルtert-ブチルエーテル=70:20:10(容量比)を溶媒2として10mM酢酸アンモニウム水溶液を用い、溶媒1の濃度勾配は60%-4min-75%-10min-100%-10min-98%-1min-60%(3min)、流量0.3~0.35mL、カラムオーブン温度40℃である。
<残渣(A)中の残留フィコシアニン測定>
残渣(A)0.5gにリン酸緩衝液(pH=6)25mLを加え、均一に懸濁した後、30℃で16時間静置し、15分間遠心分離する。上澄液をろ紙でろ過する。620nm、560nm、650nmの吸光度を測定し、下記計算式によりフィコシアニン濃度を算出する。
具体的には、Cフィコシアニン濃度(g/L)は0.198×620nmの吸光度-0.0019×560nmの吸光度-0.133×560nmの吸光度で算出される。
また、アロフィコシアニン濃度(g/L)は0.204×650nmの吸光度-0.519×620nmの吸光度-0.019×650nmの吸光度で算出され、総フィコシアニン濃度(g/L)はCフィコシアニン+アロフィコシアニンで算出される。
残渣(A)0.5gにリン酸緩衝液(pH=6)25mLを加え、均一に懸濁した後、30℃で16時間静置し、15分間遠心分離する。上澄液をろ紙でろ過する。620nm、560nm、650nmの吸光度を測定し、下記計算式によりフィコシアニン濃度を算出する。
具体的には、Cフィコシアニン濃度(g/L)は0.198×620nmの吸光度-0.0019×560nmの吸光度-0.133×560nmの吸光度で算出される。
また、アロフィコシアニン濃度(g/L)は0.204×650nmの吸光度-0.519×620nmの吸光度-0.019×650nmの吸光度で算出され、総フィコシアニン濃度(g/L)はCフィコシアニン+アロフィコシアニンで算出される。
<残渣(A)中の溶解性カルシウム、マグネシウム測定>
残渣(A)10gに95質量%のエタノール水溶液30gを加え、50℃で1時間攪拌した。20℃に冷却した後、4000Gで15分遠心分離し、上澄み10gを取り、0.45μmシリンジフィルターに通し、残渣(A)のエタノール抽出液を得た。本エタノール抽出液および、前述の水抽出液50μLを蛍光X線分析用ろ紙に滴下乾燥させて、Rigaku社製蛍光X線分析装置ZSX100eを用い、全元素定量分析を行った。
残渣(A)10gに95質量%のエタノール水溶液30gを加え、50℃で1時間攪拌した。20℃に冷却した後、4000Gで15分遠心分離し、上澄み10gを取り、0.45μmシリンジフィルターに通し、残渣(A)のエタノール抽出液を得た。本エタノール抽出液および、前述の水抽出液50μLを蛍光X線分析用ろ紙に滴下乾燥させて、Rigaku社製蛍光X線分析装置ZSX100eを用い、全元素定量分析を行った。
<最終精製物中のゼアキサンチン含有率測定>
最終精製物のゼアキサンチン含有率は、最終精製物をメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)に溶解し、置換後、φ0.2μmのシリンジフィルターでろ過し、条件(あ)に設定したUPLC(WACQUITY UPLC;Waters)で測定し、ゼアキサンチン標準液の測定から得た検量線から算出した。
最終精製物のゼアキサンチン含有率は、最終精製物をメチルtert-ブチルエーテル:アセトニトリル=1:1(容量比)に溶解し、置換後、φ0.2μmのシリンジフィルターでろ過し、条件(あ)に設定したUPLC(WACQUITY UPLC;Waters)で測定し、ゼアキサンチン標準液の測定から得た検量線から算出した。
<ゼアキサンチン回収率の算出>
残渣(A)から最終精製物に至るまでのゼアキサンチン回収率は、最終精製物のゼアキサンチン濃度と残渣(A)のゼアキサンチン濃度から算出することができる。すなわち、最終精製物のゼアキサンチン回収率=最終精製物のゼアキサンチン濃度/残渣(A)のゼアキサンチン濃度×100%で算出することができ、各工程のゼアキサンチン回収率も同様に算出することができる。
残渣(A)から最終精製物に至るまでのゼアキサンチン回収率は、最終精製物のゼアキサンチン濃度と残渣(A)のゼアキサンチン濃度から算出することができる。すなわち、最終精製物のゼアキサンチン回収率=最終精製物のゼアキサンチン濃度/残渣(A)のゼアキサンチン濃度×100%で算出することができ、各工程のゼアキサンチン回収率も同様に算出することができる。
<最終精製物中のクロロフィルの含有率>
最終精製物を85質量%アセトン水溶液に溶媒置換する。アセトンを加え、3G2ガラスフィルタでろ過し、ろ過残渣を85質量%アセトン水溶液で洗浄する。ろ液にジエチルエーテル(エーテル)と水を1:1の比率で加え、分配し、エーテル層を分取する。水層にエーテルを半分量さらに、水をエーテルと同量加え分配し、得られたエーテル層を初めに分配したエーテル層に加える。合わせたエーテル層に水を等量加え分配し、エーテル層を得る。水を加え、エーテル層を得る操作を3回繰り返し、最終的に得たエーテル層の642.5nmと660nmの吸光度を測定し、計算式(C)で総クロロフィル含量を算出することが出来る。
具体的には、計算式(C)は、クロロフィル含有率(%)=エーテル容量(L)×(16.8×642.5nmの吸光度+7.12×660nmの吸光度)/試料の量(mg)×100%で得られる。
最終精製物を85質量%アセトン水溶液に溶媒置換する。アセトンを加え、3G2ガラスフィルタでろ過し、ろ過残渣を85質量%アセトン水溶液で洗浄する。ろ液にジエチルエーテル(エーテル)と水を1:1の比率で加え、分配し、エーテル層を分取する。水層にエーテルを半分量さらに、水をエーテルと同量加え分配し、得られたエーテル層を初めに分配したエーテル層に加える。合わせたエーテル層に水を等量加え分配し、エーテル層を得る。水を加え、エーテル層を得る操作を3回繰り返し、最終的に得たエーテル層の642.5nmと660nmの吸光度を測定し、計算式(C)で総クロロフィル含量を算出することが出来る。
具体的には、計算式(C)は、クロロフィル含有率(%)=エーテル容量(L)×(16.8×642.5nmの吸光度+7.12×660nmの吸光度)/試料の量(mg)×100%で得られる。
<カロテノイド析出物回収時のろ過速度の測定>
カロテノイド析出工程(III)の後に行われる、析出カロテノイド回収のためのろ過のろ過速度を以下の様に測定した。残渣(A)40gから生じたカロテノイド析出液を、濾過助剤1cmをプリコートした1.8cm2のろ剤に通じ、0.02MPaで吸引濾過して、単位時間当たりの濾過量を測定した。その際、ろ過速度が10mL/cm2/時間以下になった時点で閉塞と判断した。
カロテノイド析出工程(III)の後に行われる、析出カロテノイド回収のためのろ過のろ過速度を以下の様に測定した。残渣(A)40gから生じたカロテノイド析出液を、濾過助剤1cmをプリコートした1.8cm2のろ剤に通じ、0.02MPaで吸引濾過して、単位時間当たりの濾過量を測定した。その際、ろ過速度が10mL/cm2/時間以下になった時点で閉塞と判断した。
(製造例1)<残渣(A)の製造>
人工光を使用し、7日間連続光照射下の培養槽でスピルリナを培養生産し、収穫した。得られた生の藻体1kg(固形分量18.0%)を1%塩化カルシウム溶液6L(0.09モル/リットル)に加え、攪拌機により20℃で45分間攪拌を行いスピルリナ懸濁液を得た。炭酸ナトリウム3gと炭酸水素ナトリウム3gを50mLの水に溶解し、スピルリナ懸濁液に添加(懸濁液中の塩基性化合物の濃度は、0.01モル/リットル)した。この懸濁液を2分間攪拌後、20℃で5時間、静置した。この懸濁液を連続式超音波破砕装置〔(株)日本精機製作所RUS-300TCVP型、周波数19.5kHz、超音波照射部の容積10mL、出力300W〕に導き、懸濁液を5mL/秒の速度で超音波照射部に送り超音波処理を行い、抽出液を得た。得られた抽出液にリン酸二水素ナトリウムが6.8g/リットル、リン酸水素二ナトリウムが2.2g/リットルの濃度になる様に加え、攪拌後、遠心分離機に導き、重力加速度が10,000Gで、15分間の遠心分離を行い、固形分とフィコシアニン溶液をろ別した。さらに、該固形分をスプレードライヤー法で乾燥させることで残渣(A)(ロットe、ロットf)を得た。
人工光を使用し、7日間連続光照射下の培養槽でスピルリナを培養生産し、収穫した。得られた生の藻体1kg(固形分量18.0%)を1%塩化カルシウム溶液6L(0.09モル/リットル)に加え、攪拌機により20℃で45分間攪拌を行いスピルリナ懸濁液を得た。炭酸ナトリウム3gと炭酸水素ナトリウム3gを50mLの水に溶解し、スピルリナ懸濁液に添加(懸濁液中の塩基性化合物の濃度は、0.01モル/リットル)した。この懸濁液を2分間攪拌後、20℃で5時間、静置した。この懸濁液を連続式超音波破砕装置〔(株)日本精機製作所RUS-300TCVP型、周波数19.5kHz、超音波照射部の容積10mL、出力300W〕に導き、懸濁液を5mL/秒の速度で超音波照射部に送り超音波処理を行い、抽出液を得た。得られた抽出液にリン酸二水素ナトリウムが6.8g/リットル、リン酸水素二ナトリウムが2.2g/リットルの濃度になる様に加え、攪拌後、遠心分離機に導き、重力加速度が10,000Gで、15分間の遠心分離を行い、固形分とフィコシアニン溶液をろ別した。さらに、該固形分をスプレードライヤー法で乾燥させることで残渣(A)(ロットe、ロットf)を得た。
残渣(A)ロットe中に残留する総フィコシアニンは2.4質量%、でカルシウム含有率は0.21質量%、マグネシウム含有率は0.01質量%であった。また、エタノール抽出液のカルシウム含有率は0.06質量%、マグネシウム含有率は0.03質量%であった。
残渣(A)ロットf中に残留する総フィコシアニンは0.9質量%、の水抽出液の620nm吸光度は4.88cm-1でカルシウム含有率は0.10質量%、マグネシウムは検出されなかった。また、エタノール抽出液のカルシウムは検出されず、マグネシウム含有率は0.01質量%であった。
残渣(A)ロットf中に残留する総フィコシアニンは0.9質量%、の水抽出液の620nm吸光度は4.88cm-1でカルシウム含有率は0.10質量%、マグネシウムは検出されなかった。また、エタノール抽出液のカルシウムは検出されず、マグネシウム含有率は0.01質量%であった。
(実施例1)
630gの88質量%EtOHaq.中に25質量%KOH/EtOHを84g添加した後、残渣(A)ロットe210gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで630gに減圧濃縮し、抽出液(B)を得た。なお、この抽出液に含まれる固形分は21gだった。抽出液(B)に25質量%KOH/EtOHを4.2g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を13.13g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
残渣(A)から最終精製物に至るまでのゼアキサンチン回収率と、最終精製物中のゼアキサンチン含有率とクロロフィル含有率を算出した。測定結果は、ゼアキサンチン回収率79%、ゼアキサンチン含有率10%、クロロフィル含有率0.1%以下であった。
630gの88質量%EtOHaq.中に25質量%KOH/EtOHを84g添加した後、残渣(A)ロットe210gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで630gに減圧濃縮し、抽出液(B)を得た。なお、この抽出液に含まれる固形分は21gだった。抽出液(B)に25質量%KOH/EtOHを4.2g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を13.13g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
残渣(A)から最終精製物に至るまでのゼアキサンチン回収率と、最終精製物中のゼアキサンチン含有率とクロロフィル含有率を算出した。測定結果は、ゼアキサンチン回収率79%、ゼアキサンチン含有率10%、クロロフィル含有率0.1%以下であった。
(実施例2)
120gの90質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、50℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を90質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで60gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加した。50℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を90質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率58%、ゼアキサンチン含有率4%、クロロフィル含有率0.1%以下であった。
120gの90質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、50℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を90質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで60gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加した。50℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を90質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率58%、ゼアキサンチン含有率4%、クロロフィル含有率0.1%以下であった。
(実施例3)
120gの95質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、50℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を95質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加した。50℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を95質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率83%、ゼアキサンチン含有率7.6%、クロロフィル含有率0.1%以下であった。
120gの95質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、50℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を95質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加した。50℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を95質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率83%、ゼアキサンチン含有率7.6%、クロロフィル含有率0.1%以下であった。
(実施例4)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを6.4g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを6.4g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。
該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率79%、ゼアキサンチン含有率33.5%、クロロフィル含有率0.1%以下であった。
最終精製物において、ゼアキサンチン回収率79%、ゼアキサンチン含有率33.5%、クロロフィル含有率0.1%以下であった。
(実施例5)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを28g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率72%、ゼアキサンチン含有率13.8%、クロロフィル含有率0.1%以下であった。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを28g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率72%、ゼアキサンチン含有率13.8%、クロロフィル含有率0.1%以下であった。
(実施例6)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えることで、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaqで洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率75%、ゼアキサンチン含有率8.0%、クロロフィル含有率0.1%以下であった。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えることで、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaqで洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率75%、ゼアキサンチン含有率8.0%、クロロフィル含有率0.1%以下であった。
(実施例7)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率83%、ゼアキサンチン含有率5.3%、クロロフィル含有率0.1%以下であった。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率83%、ゼアキサンチン含有率5.3%、クロロフィル含有率0.1%以下であった。
(実施例8)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを3.2g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を55質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、55質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率70%、ゼアキサンチン含有率43.5%、クロロフィル含有率0.1%以下であった。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを3.2g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を55質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、55質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率70%、ゼアキサンチン含有率43.5%、クロロフィル含有率0.1%以下であった。
(実施例9)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを3.2g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を35質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、35質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率74%、ゼアキサンチン含有率39.5%、クロロフィル含有率0.1%以下であった。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを3.2g添加し、30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を35質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、35質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率74%、ゼアキサンチン含有率39.5%、クロロフィル含有率0.1%以下であった。
(実施例10)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットf120gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率74%、ゼアキサンチン含有率13.2%、クロロフィル含有率0.1%以下であった。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを16g添加した後、残渣(A)ロットf120gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを0.8g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率74%、ゼアキサンチン含有率13.2%、クロロフィル含有率0.1%以下であった。
(比較例1)
120gの88質量%EtOHaq.中に残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを4g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液したところ、珪藻土が閉塞した。
120gの88質量%EtOHaq.中に残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。抽出液(B)に25質量%KOH/EtOHを4g添加した。30℃、1時間、100rpmで攪拌しながらケン化し、水溶化したケン化クロロフィルを有するケン化抽出液を得た。該ケン化抽出液に珪藻土を2.5g添加した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液したところ、珪藻土が閉塞した。
(比較例2)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを32g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。30℃、1時間、100rpmで攪拌した後に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液したところ、珪藻土が閉塞した。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを32g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。30℃、1時間、100rpmで攪拌した後に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液したところ、珪藻土が閉塞した。
(比較例3)
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを8g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。30℃、1時間、100rpmで攪拌した後に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率68%、ゼアキサンチン含有率1.5%、クロロフィル含有率0.13%であった。
結果を下記の表に示した。
120gの88質量%EtOHaq.中に25質量%KOH/EtOHを8g添加した後、残渣(A)ロットe40gを加え、30℃、1時間、150rpmで攪拌しながら、ゼアキサンチンを抽出した。ろ過で固液分離し、固形分を88質量%EtOHaq.で再度抽出し、ろ液に加えた。ロータリーエバポレーターで120gに減圧濃縮し、抽出液(B)を得た。30℃、1時間、100rpmで攪拌した後に珪藻土を2.5g添加し、温度を50℃に昇温した。水を添加し、水エタノール濃度を45質量%に調整した。30分以上攪拌し、赤色の物質を析出させた。該析出物を有するケン化抽出液を厚さ1cmにプリコートした珪藻土に通液し、析出物と液体をろ別した後、45質量%EtOHaq.で洗浄し、不純物を除去した。不純物を除去した該析出物を88質量%EtOHaq.で溶出し、溶媒を溜去して最終精製物を得た。
最終精製物において、ゼアキサンチン回収率68%、ゼアキサンチン含有率1.5%、クロロフィル含有率0.13%であった。
結果を下記の表に示した。
表中の記号の意味は以下の通りである。
・珪藻土ろ過性:+(ろ過が可能)、NG(珪藻土を用いたろ過が閉塞)
・珪藻土ろ過性:+(ろ過が可能)、NG(珪藻土を用いたろ過が閉塞)
以上の実施例より、本発明を構成する要件を備えた方法で、ゼアキサンチンの回収率が高く、不純物の含有量の少ないカロテノイドの精製物を得ることができることが明らかである。
また、比較例1では、アルカリ性物質を用いないで抽出を行ったが、ろ過工程で閉塞が発生し、目的とするカロテノイドの精製物を得ることができなかった。
比較例2では、本発明の範囲外のアルカリ性物質(抽出時使用量が過剰)を用いて抽出を行ったが、ろ過工程で閉塞が発生し、目的とするカロテノイドの精製物を得ることができなかった。
比較例3では、本発明の範囲外のアルカリ性物質(抽出時使用量が過少)を用いて抽出を行ったが、クロロフィルの含有率が高く、本発明の課題を解決することができなかった。
また、比較例1では、アルカリ性物質を用いないで抽出を行ったが、ろ過工程で閉塞が発生し、目的とするカロテノイドの精製物を得ることができなかった。
比較例2では、本発明の範囲外のアルカリ性物質(抽出時使用量が過剰)を用いて抽出を行ったが、ろ過工程で閉塞が発生し、目的とするカロテノイドの精製物を得ることができなかった。
比較例3では、本発明の範囲外のアルカリ性物質(抽出時使用量が過少)を用いて抽出を行ったが、クロロフィルの含有率が高く、本発明の課題を解決することができなかった。
本発明で得られるカロテノイド等の精製物は、例えば、食品、飼料、化粧品、食用色素等に含有させた機能性食品、飼料、化粧品、又は食用色素等として利用することができる。
Claims (5)
- 藻類の培養によりフィコシアニンを産生させた後、該フィコシアニンを抽出した残渣(A)からカロテノイドの精製物を得る方法であって、
前記残渣(A)からアルカリ性物質の存在下にカロテノイドを抽出する工程(I)を行った後に、ろ過し、
得られたカロテノイド抽出物(B)に含まれるクロロフィルを分解するためのアルカリ性物質を用いたケン化工程(II)と、
その後に行うカロテノイドの析出工程(III)を有し、
カロテノイドを抽出する工程(I)におけるアルカリ性物質の使用量を、フィコシアニンを抽出した残渣(A)の固形分重量(1kg)に対してxモル相当量とし、
ケン化工程(II)におけるアルカリ性物質の使用量を、カロテノイド抽出物(B)の固形分重量(1kg)に対してyモル相当量とした場合、
以下の条件を満たすことを特徴とするカロテノイドの精製物を得る方法。
(1)x及びyが以下の何れかの条件を満たす。
1)1.0≦x<3.0、0<y≦6.1、且つ2.0≦x+y≦8.0である。
2)2.0≦x<3.0、且つy=0である。
(2)カロテノイドを抽出する工程(I)及びケン化工程(II)を行う温度が30~50℃である。 - アルカリ性物質が水酸化カリウム、又は水酸化ナトリウムである、請求項1に記載のカロテノイドの精製物を得る方法。
- 藻類が、スピルリナ、又はフィコシアニンを含有する藍藻類である請求項1又は2に記載のカロテノイドの精製物を得る方法。
- カロテノイドが、ゼアキサンチン、β‐カロテン、又はミクソキサントフィルである請求項1~3の何れかに記載のカロテノイドの精製物を得る方法。
- 請求項1~4の何れかに記載のカロテノイドの精製物を得る方法により得られたカロテノイドを含有する食品、飼料、化粧品、又は食用色素。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-099593 | 2016-05-18 | ||
JP2016099593 | 2016-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017199830A1 true WO2017199830A1 (ja) | 2017-11-23 |
Family
ID=60325907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/017800 WO2017199830A1 (ja) | 2016-05-18 | 2017-05-11 | カロテノイドの精製物を得る方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017199830A1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144868A (en) * | 1979-04-06 | 1980-11-12 | Inst Francais Du Petrole | Selective extraction of color contained in cyanophyta |
JPS55157659A (en) * | 1979-05-29 | 1980-12-08 | Bridgestone Corp | Extraction of pigments from microalgae |
JP2000152778A (ja) * | 1998-11-19 | 2000-06-06 | Yakult Honsha Co Ltd | リコペン含有藻類の製造方法及び該製造方法により得られるリコペン含有藻類 |
JP2000175696A (ja) * | 1998-12-14 | 2000-06-27 | Yoshio Tanaka | ドナリエラ藻体の抽出方法 |
JP2001512030A (ja) * | 1997-07-29 | 2001-08-21 | イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム | 新規カロテノイド産生細菌種とそれを用いたカロテノイドの生産方法 |
JP2006230272A (ja) * | 2005-02-24 | 2006-09-07 | Dainippon Ink & Chem Inc | 藍藻類からのフィコシアニンの抽出方法 |
JP2008303166A (ja) * | 2007-06-06 | 2008-12-18 | Kaneka Corp | ゼアキサンチンまたはアスタキサンチンを有効成分とする骨代謝改善剤 |
JP2015507642A (ja) * | 2013-01-10 | 2015-03-12 | ニュートリショナル セラピューティクス インコーポレイテッド ディー/ビー/エーエヌティーアイ インコーポレイテッド | 健康の維持ならびに急性および慢性障害の治療のための脂質サプリメントを含有するチュアブルウエハース |
JP2016032430A (ja) * | 2012-12-27 | 2016-03-10 | 株式会社カネカ | カロテノイド組成物の製造方法 |
JP2016069340A (ja) * | 2014-09-30 | 2016-05-09 | 富士フイルム株式会社 | 透明ゲル状水性化粧料 |
WO2016181719A1 (ja) * | 2015-05-12 | 2016-11-17 | Dic株式会社 | カロテノイドの精製物を得る方法 |
-
2017
- 2017-05-11 WO PCT/JP2017/017800 patent/WO2017199830A1/ja active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55144868A (en) * | 1979-04-06 | 1980-11-12 | Inst Francais Du Petrole | Selective extraction of color contained in cyanophyta |
JPS55157659A (en) * | 1979-05-29 | 1980-12-08 | Bridgestone Corp | Extraction of pigments from microalgae |
JP2001512030A (ja) * | 1997-07-29 | 2001-08-21 | イッサム リサーチ ディベロップメント カンパニー オブ ザ ヘブライ ユニバーシティ オブ エルサレム | 新規カロテノイド産生細菌種とそれを用いたカロテノイドの生産方法 |
JP2000152778A (ja) * | 1998-11-19 | 2000-06-06 | Yakult Honsha Co Ltd | リコペン含有藻類の製造方法及び該製造方法により得られるリコペン含有藻類 |
JP2000175696A (ja) * | 1998-12-14 | 2000-06-27 | Yoshio Tanaka | ドナリエラ藻体の抽出方法 |
JP2006230272A (ja) * | 2005-02-24 | 2006-09-07 | Dainippon Ink & Chem Inc | 藍藻類からのフィコシアニンの抽出方法 |
JP2008303166A (ja) * | 2007-06-06 | 2008-12-18 | Kaneka Corp | ゼアキサンチンまたはアスタキサンチンを有効成分とする骨代謝改善剤 |
JP2016032430A (ja) * | 2012-12-27 | 2016-03-10 | 株式会社カネカ | カロテノイド組成物の製造方法 |
JP2015507642A (ja) * | 2013-01-10 | 2015-03-12 | ニュートリショナル セラピューティクス インコーポレイテッド ディー/ビー/エーエヌティーアイ インコーポレイテッド | 健康の維持ならびに急性および慢性障害の治療のための脂質サプリメントを含有するチュアブルウエハース |
JP2016069340A (ja) * | 2014-09-30 | 2016-05-09 | 富士フイルム株式会社 | 透明ゲル状水性化粧料 |
WO2016181719A1 (ja) * | 2015-05-12 | 2016-11-17 | Dic株式会社 | カロテノイドの精製物を得る方法 |
Non-Patent Citations (2)
Title |
---|
HIYAMA T ET AL.: "Determination of carotenes by thin-layer chromatography", ANALYTICAL CHEMISTRY, vol. 29, 1969, pages 339 - 350, XP024818921 * |
SHINICHI TAKAICHI: "5. Shikiso no Bunseki d. Carotenoid no Bunseki", TEION KAGAKU, vol. 67, 2009, pages 347 - 353 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005331246B2 (en) | Isolation and purification of carotenoids from Marigold flowers | |
JP4677250B2 (ja) | 藍藻類からのフィコシアニンの抽出方法 | |
US7271298B2 (en) | Process for isolation and purification of xanthophyll crystals from plant oleoresin | |
US4320050A (en) | Process for selectively extracting dyestuffs contained in cyanophyceae algae, the so-extracted dyestuffs and their use, particularly in foodstuffs | |
CN101815790B (zh) | 类胡萝卜素的制造方法 | |
CA2696259C (en) | A process for isolation of carotenoids from plant sources | |
JP6931930B2 (ja) | 微細藻類からフコキサンチンおよび/またはポリサッカライドを生産するための改善されたプロセス | |
EP2522655B1 (en) | Preparing method for xanthophyll crystals with higher content of zeaxanthin from plant oleoresin | |
WO2007114461A1 (ja) | カロテノイドの製造方法 | |
US9682932B2 (en) | Process for production of high purity beta-carotene and lycopene crystals from fungal biomass | |
WO2012047120A1 (en) | Heterotrophic microbial production of xanthophyll pigments | |
WO2016181719A1 (ja) | カロテノイドの精製物を得る方法 | |
WO2010087400A1 (ja) | カロテノイドの分離法 | |
CN105229161B (zh) | 含类胡萝卜素的组合物的制造方法及含类胡萝卜素的组合物 | |
US10745351B2 (en) | Method of producing phycocyanin powder | |
US8481769B2 (en) | Isolation and purification of cartenoids from marigold flowers | |
WO2017199830A1 (ja) | カロテノイドの精製物を得る方法 | |
JP5116982B2 (ja) | カロテノイドの製造方法 | |
WO2021172372A1 (ja) | シス型キサントフィル組成物および使用方法 | |
JP5116994B2 (ja) | カロテノイドの製造方法 | |
JP2015204764A (ja) | 無色カロテノイドの製造方法 | |
JP2009201503A (ja) | アスタキサンチン含有抽出物の香味改善方法 | |
JP2006348270A (ja) | 藻体中でのキサントフィルの保存方法 | |
CN117820185A (zh) | 一种虾青素的提取方法及其应用 | |
RU2054476C1 (ru) | Способ получения 18-карбокси-20-(карбоксиметил)-8-этенил-13-этил-2,3-дигидро-3,7-12,17-тетраметил-21н, 23нпорфин-2-пропионовой кислоты или ее солей |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17799254 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17799254 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |