WO2017198034A1 - 一种光源系统及其投影设备、照明装置 - Google Patents

一种光源系统及其投影设备、照明装置 Download PDF

Info

Publication number
WO2017198034A1
WO2017198034A1 PCT/CN2017/081373 CN2017081373W WO2017198034A1 WO 2017198034 A1 WO2017198034 A1 WO 2017198034A1 CN 2017081373 W CN2017081373 W CN 2017081373W WO 2017198034 A1 WO2017198034 A1 WO 2017198034A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser
unit
filter unit
light source
Prior art date
Application number
PCT/CN2017/081373
Other languages
English (en)
French (fr)
Inventor
郭祖强
胡飞
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to EP17798598.3A priority Critical patent/EP3460571A4/en
Priority to US16/099,417 priority patent/US11150547B2/en
Publication of WO2017198034A1 publication Critical patent/WO2017198034A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the present application relates to the field of projection and illumination, and in particular to a light source system, a projection device thereof, and a lighting device.
  • laser light sources are increasingly used in the field of projection and illumination. Since lasers have the advantages of high energy density and small optical expansion, laser light sources have gradually replaced bulbs and LED light sources in the field of high-intensity light sources. Among them, the blue laser is used as the excitation light source to stimulate the yellow phosphor to produce yellow light and combine the light into white light. It has become the mainstream of application because of its high luminous efficiency and good stability.
  • the prior art generally adopts two independent light sources, wherein the blue laser light emitted by one light source is processed by the relay processing to the yellow phosphor powder sheet, so that the blue laser light excites the yellow phosphor to generate yellow fluorescence; the other light source also emits the blue laser light.
  • the yellow fluorescent light After being relayed, the yellow fluorescent light is combined with the yellow fluorescent light to form a white light.
  • the prior art system leads to an overly complicated system structure, a large volume, an excessive arrangement of optical devices, and high cost, and it is difficult to make a miniaturized product.
  • a light source system including an excitation light unit, a spectral filter unit, a scattering unit, and a laser receiving unit is provided.
  • the excitation light unit is for emitting excitation light to the spectral filter unit.
  • the spectroscopic filter unit is configured to reflect/transmit a portion of the excitation light to the scattering unit, and the scattering unit is configured to scatter the portion of the excitation light to generate the first light having the first polarization state and the second light having the second polarization state And emitted to the spectroscopic filter unit; the spectroscopic filter unit transmits/reflects the second light from the scattering unit.
  • the spectroscopic filter unit is further configured to transmit/reflect another portion of the excitation light to the laser receiving unit, and the laser unit generates the laser light and emits the light to the spectroscopic filter unit under the illumination of the portion of the excitation light; the spectroscopic filter unit also reflects/ The laser light from the laser-receiving unit is transmitted, so that the spectroscopic filter unit combines the second light transmitted/reflected by the spectroscopic filter unit and the reflected/transmitted laser light.
  • a projection apparatus having a light source using the above-described light source system.
  • a lighting device the light source of which employs the above-described light source system.
  • the invention divides the excitation light generated by one excitation light unit into two paths at the spectroscopic filter unit, and finally emits the light by the excitation light and the laser light. Since only one laser source is used, the light is greatly simplified.
  • the design of the road structure has important practical application value in the fields of beam illumination and three-piece projection system.
  • FIG. 1 is a schematic structural view of a light source system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a light source system according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a light source system according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a light source system according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a light source system according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a light source system according to Embodiment 6 of the present invention.
  • FIG. 7 is a schematic structural diagram of a light source system according to Embodiment 7 of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the light source system of the present embodiment includes an excitation light unit, a spectral filter unit, a scattering unit, and a laser receiving unit.
  • the excitation light unit includes a laser light source 301 and a relay lens 303, and the laser light source 301 preferably employs a blue light LD.
  • the relay lens 303 is located on the optical path through which the laser light propagates.
  • the spectroscopic filter unit includes at least one beam splitter 304.
  • the embodiment is specifically one piece, and is disposed obliquely on the optical path of the laser light propagated through the relay lens 303.
  • the beam splitter 304 has two sides, and faces the surface of the excitation light unit and the scattering unit.
  • On one side 3041, the surface of the beam splitter 304 facing the laser receiving unit is the second surface 3042; the second surface 3042 of the beam splitter is plated with a film (AR film) that transmits P light and S light and reflects the laser function, and the first surface thereof 3041 is uncoated.
  • AR film a film
  • the scattering unit includes a first collection lens 305 and a diffusion sheet 306; the laser receiving unit includes a second collection lens 307 and a phosphor device (ie, a rotating reflective color wheel) 308.
  • a phosphor device ie, a rotating reflective color wheel
  • the laser light source 301 emits linearly polarized light, that is, S light, and the relay lens 303 performs light processing (for example, processing such as homogenization, shaping, convergence, compression, etc.) on the S light to emit it as excitation light to the spectral filter unit, using the relay lens.
  • 303 can increase the energy density uniformity of subsequent spots incident on the color wheel 308, thereby improving the light conversion efficiency of the color wheel 308.
  • the laser light source 301 may also emit P light.
  • the first face 3041 of the beam splitter reflects a portion of the S light to the scattering unit (eg, the first of the beamsplitter
  • the surface 3041 has a reflectance of 9% for the S light, and 9% of the S light is reflected to the scattering unit);
  • the first collecting lens 305 converges the portion of the S light reflected by the spectral filtering unit to the scattering sheet 306, the scattering sheet 306
  • the partial S light is subjected to Lambertian scattering to generate the same proportion of S light and P light and transmitted to the beam splitter 304 via the first collecting lens 305;
  • the beam splitting sheet 304 transmits the P light therein, and reflects the S light.
  • the P and S lights produced by the diffuser 306 may also be in different ratios when a particular diffuser is selected as desired.
  • the first face 3041 and the second face 3042 of the beam splitter also transmit another portion of the S light to the laser receiving unit, and the second collecting lens 307 converges the portion of the S light transmitted by the spectral filter unit to the color wheel 308, the color wheel 308 Having a yellow phosphor material that is subjected to laser light, that is, yellow fluorescence, and is emitted to the spectral filter unit via the second collection lens 307 under illumination of the portion of the S light; the second surface 3042 of the beam splitter reflects yellow fluorescence from the laser unit .
  • the spectral filter unit combines the transmitted P light and the reflected yellow fluorescent light, and since the P light is blue light, the blue light and the yellow light combine to form a uniform white light.
  • the laser light emitted by the laser light source 301 is not limited to a blue laser, and is not limited to one color; the color wheel may also generate light of other colors than yellow fluorescence according to the selection of the fluorescent material, as long as the light filtering is performed.
  • the light transmitted by the unit and the reflected fluorescence are combined into white light; according to actual needs, the light transmitted by the spectral filtering unit and the reflected fluorescent light may also be combined into light of other colors.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the excitation light unit of the embodiment further includes a liquid crystal device 302 disposed on the optical path between the laser light source 301 and the relay lens 303.
  • the liquid crystal molecules are deflected by a certain angle by adjusting the liquid crystal device 302.
  • the polarization direction of the light of the liquid crystal device 302 is also rotated by a certain angle. The larger the deflection angle of the liquid crystal molecules, the greater the polarization direction of the light is deflected. Therefore, the liquid crystal device 302 is mainly used to adjust the polarization state of the laser light.
  • the laser light emitted by the laser light source 301 passes through the liquid crystal device 302 to form a first polarization state S light and a second polarization state P light having a certain proportional relationship, and is transmitted to the spectral filter unit through the relay lens 303.
  • the S light emitted through the liquid crystal device 302 is Icoa ⁇
  • the P light is Isin ⁇
  • I is the intensity of the laser light
  • the first surface 3041 of the beam splitter of the present embodiment is coated with a film of a PBS (polarization beam splitter) function, that is, a reflective S light and a transmission P.
  • the second surface 3042 is plated with a film that transmits P light and reflects the laser function.
  • the first face 3041 of the beam splitter reflects the S light from the excitation light unit to the scattering unit; the scattering unit performs Lambertian scattering on the S light to generate the same proportion of S light and P light and emits to the spectral filter unit; The first side 3041 and the second side 3042 of the sheet transmit P light therein, wherein the S light is reflected off by the first surface 3041.
  • the first surface 3041 and the second surface 3042 of the beam splitter also transmit the P light from the excitation light unit to the laser receiving unit, and the laser unit generates yellow fluorescence under the illumination of the P light and is emitted to the spectral filter unit; the beam splitter
  • the second side 3042 reflects yellow fluorescence.
  • the spectral filter unit combines the transmitted P light and the reflected yellow fluorescent light into white light.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the light source system of the present embodiment also includes a laser light source 301, a relay lens 303, a beam splitter 304, a first collecting lens 305, a diffusing sheet 306, a second collecting lens 307, and a reflective color wheel 308.
  • the excitation light unit of the present embodiment further includes a liquid crystal device 302 disposed on the optical path between the laser light source 301 and the relay lens 303.
  • the second surface 3042 of the beam splitter of the present embodiment is plated with a film that transmits P light and reflects laser light, and the first surface 3041 is uncoated. According to the uncoated glass property, the first surface 3041 of the beam splitter can reflect the S light and the P light at different reflectances respectively.
  • the reflectance of the first surface 3041 of the beam splitter to the S light is 9. %
  • the reflectance to P light is 2%.
  • the laser light source 301 emits a blue laser light, and the laser light passes through the liquid crystal device 302 to form S-light and P-light having a proportional relationship, and is emitted as excitation light to the spectral filter unit via the relay lens 303.
  • the ratio of the S light to the P light changes, and the reflectance of the excitation light on the first surface 3041 of the beam splitter ranges from 2% to 9%.
  • the scattering unit performs a Lambertian scattering of the S light and the P light reflected by the beam splitter 304 to generate the same ratio of S light and P light and emits it to the spectral filter unit.
  • S light has 9% reflection on the first surface 3041, and P light has 2% reflection
  • the average back reflection rate is 5.5%
  • the transmittance is 94.5%
  • the first side of the beam splitter The 3041 and the second side 3042 transmit 94.5% of the light therein, that is, the excitation light reflected by the beam splitter 304, and still 94.5% of the light is again utilized.
  • the first face 3041 and the second face 3042 of the beam splitter also transmit 91% of the S light and 98% of the P light from the excitation light of the excitation light unit to the laser receiving unit, and the laser light is irradiated by the laser light in this portion. Yellow fluorescence is generated and emitted to the spectral filter unit; the second surface 3042 of the beam reflects yellow fluorescence.
  • the spectral filter unit combines the transmitted S light, the P light, and the reflected yellow fluorescent light into white light.
  • the S light is a light vector perpendicular to the incident surface
  • the P light is a light vector parallel to the incident surface
  • the S light is The design of the light vector parallel to the incident surface
  • the beam splitter 304 is made of glass.
  • the reflectance of the spectroscopic sheet to the excitation light can be obtained according to the Fresnel formula.
  • ⁇ 1 is the incident angle
  • ⁇ 2 is the refraction angle
  • n 1 is the refractive index of the air
  • n 1 is the refractive index of the spectroscope.
  • the expressions of the reflectance Rs and the refractive index Ts of the polarized light perpendicular to the incident surface, that is, the S light are as follows.
  • the light vector of the incident light is related to the refractive index of the beam splitter, the refractive index of the air, and the incident angle.
  • the reflectance Rs of the first surface 3041 of the beam splitter for the S light is 9%
  • the P light is The reflectance Rp is 2%.
  • the reflectance of the beam splitter to the S light and the P light is also other values. The technician can flexibly and reasonably design the ratio of the excitation light transmission and the reflection according to actual needs, thereby controlling the ratio of the light transmitted by the spectral filter unit and the light combined by the laser light, thereby obtaining the final desired light.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the light source system of the present embodiment also includes a laser light source 301, a liquid crystal device 302, a relay lens 303, a spectral filter unit, a first collection lens 305, a diffusion sheet 306, a second collection lens 307, and a reflection type.
  • Color wheel 308 the light source system of the present embodiment also includes a laser light source 301, a liquid crystal device 302, a relay lens 303, a spectral filter unit, a first collection lens 305, a diffusion sheet 306, a second collection lens 307, and a reflection type.
  • Color wheel 308 the light source system of the present embodiment also includes a laser light source 301, a liquid crystal device 302, a relay lens 303, a spectral filter unit, a first collection lens 305, a diffusion sheet 306, a second collection lens 307, and a reflection type.
  • Color wheel 308 the light source system of the present embodiment also includes a laser light source 301, a liquid crystal device 302, a relay lens 303,
  • the spectroscopic filter unit of the embodiment includes a plurality of spectroscopic segments, and at least one of the spectroscopic segments is included in the spectroscopic sheet in order to meet different blue and yellow ratios.
  • the second surface is plated with a film that transmits P light and reflects the laser function.
  • the film is plated on the second side of the beam splitter closest to the laser unit. In FIG. 3, the beam splitter is specifically two pieces.
  • the surface 404 is plated with a film that transmits P light and reflects laser light.
  • the surface of the surface 401, the surface 402, and the surface 403 may be a film coated with a function of reflecting S light and transmitting P light.
  • the S light reflectance is about 18%; When the three sides are not coated, the S light reflectance is about 27%, and so on, in combination with the deflection angle of the liquid crystal device 302, an arbitrary reflectance of the excitation light from 2% to 27% can be achieved.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the incident angle of the excitation light emitted by the excitation light unit with respect to the beam splitter 304 is 45°, so that the incident excitation light is perpendicular to the emitted white light, as shown in FIG. 5, the present embodiment
  • the incident angle of the excitation light relative to the beam splitter 304 in this embodiment is not equal to 45°, and may be greater than 45° or less than 45°.
  • Such a design can meet some special structural requirements. .
  • the other technical solutions in this embodiment can adopt the principles consistent with the foregoing embodiments, and therefore are not described again.
  • the embodiment is an optical path structure derivingly designed according to the first embodiment.
  • the second surface 4042 of the beam splitter of the embodiment is plated with a film that reflects P light and transmits laser light, and the first surface thereof is 4041. Uncoated.
  • the excitation light unit emits S light to the spectroscopic filter unit; the first surface 4041 of the beam splitter transmits a portion of the S light to the scattering unit; the scattering sheet 406 of the scattering unit performs Lambertian scattering on the portion of the S light to produce the same proportion of S
  • the light and the P light are emitted to the spectroscopic filter unit, and the spectroscopic sheet reflects the P light therein.
  • the first face 4041 and the second face 4042 of the beam splitter also reflect another portion of the S light to the laser receiving unit, and the color wheel 408 of the laser unit generates yellow fluorescence under the illumination of the portion of the S light and is emitted to the spectral filter unit.
  • the second side 4042 of the beam splitter transmits yellow fluorescence.
  • the spectral filter unit combines the reflected P light and the transmitted yellow fluorescent light into white light.
  • this embodiment is an optical path structure derivingly designed according to the second embodiment.
  • the first surface 4041 of the beam splitter of the embodiment is plated with a film that transmits S light and reflects P light, and the second surface is coated with the first surface 4042.
  • the excitation light unit emits S light and P light having a proportional relationship to the spectral filter unit, and the light distribution sheet
  • the S light from the excitation light unit is transmitted to the scattering unit;
  • the scattering sheet 406 of the scattering unit performs a Lambertian scattering of the S light to generate the same ratio of S light and P light and is emitted to the spectral filter unit;
  • the second of the light splitting sheet Face 4042 reflects the P light therein.
  • the first face 4041 of the beam splitter reflects the P light from the excitation light unit to the laser receiving unit, the color wheel 408 of the laser unit generates yellow fluorescence under the illumination of the P light and is emitted to the spectral filter unit; the splitter transmits yellow fluorescence .
  • the spectral filter unit combines the reflected P light and the transmitted yellow fluorescent light into white light.
  • the light source system and the projection device and the illumination device provided by the invention divide the excitation light generated by one excitation light unit into two paths at the spectral filtering unit, and finally are combined by the excitation light and the laser light, since only
  • the use of a laser source greatly simplifies the design of the optical path structure;
  • the present invention utilizes the principle of polarization for splitting the excitation light so that the same excitation light can be effectively split without requiring the excitation light itself to contain different light components;
  • the ratio of S light and P light can be allocated according to different requirements, so that the finally emitted white light is obtained by combining P light and fluorescence according to a predetermined ratio, and can meet different design requirements as needed;
  • Invented whether the beam splitter is coated, the number of splitters, and the combination form can be flexibly and diversely designed to more precisely control the ratio of S light and P light after passing through the spectral filter unit, so that the final white light meets different requirements.
  • the design of the present invention exhibits many advantages in the

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源系统及其投影设备、照明装置。光源系统包括:激发光单元(301,302,303),用于发射激发光;分光滤光单元(304)将激发光的一部分反射到散射单元(305,306);散射单元(305,306)对其进行散射从而产生第一光和第二光;分光滤光单元(304)透射其中的第二光,还将激发光的另一部分透射到受激光单元(307,308);受激光单元(307,308)在其照射下产生受激光,分光滤光单元(304)反射受激光,从而分光滤光单元(304)将透射的第二光和反射的受激光合光出射。由于只需采用一个激发光光源,因此大大简化了光路结构的设计。

Description

一种光源系统及其投影设备、照明装置 技术领域
本申请涉及投影及照明领域,具体涉及一种光源系统及其投影设备、照明装置。
背景技术
目前,在投影及照明领域越来越广泛到应用激光光源,由于激光具有能量密度高、光学扩展量小的优势,在高亮度光源领域,激光光源已经逐渐取代灯泡和LED光源。其中,采用蓝光激光作为激发光源激发黄色荧光粉产生黄光并合光成白光的设计方案,以其光效高、稳定性好等优点成为应用的主流。现有技术通常采用两个独立光源,其中一路光源发出的蓝光激光经过中继处理后成像到黄色荧光粉片处,从而蓝光激光激发黄色荧光粉产生黄色荧光;另外一路光源也发出的蓝光激光,并经中继系统后与黄色荧光合光成白光出射;现有技术的这种方案导致系统结构过于复杂,体积大,光学器件设置过多,且成本高昂,很难做成小型化产品。
发明内容
根据本发明的一方面,提供一种光源系统,其包括激发光单元、分光滤光单元、散射单元、受激光单元。
激发光单元用于向分光滤光单元发射激发光。分光滤光单元用于将激发光的一部分反射/透射到散射单元,散射单元用于对该部分激发光进行散射从而产生具有第一偏振态的第一光和具有第二偏振态的第二光并发射到分光滤光单元;分光滤光单元透射/反射来自散射单元的第二光。分光滤光单元还用于将激发光的另一部分透射/反射到受激光单元,受激光单元在该部分激发光的照射下产生受激光并发射到分光滤光单元;分光滤光单元还反射/透射来自受激光单元的受激光,从而分光滤光单元将其透射/反射的第二光和反射/透射的受激光合光出射。
根据本发明的第二方面,提供一种投影设备,其光源采用上述光源系统。
根据本发明的第三方面,提供一种照明装置,其光源采用上述光源系统。
本发明在分光滤光单元处将一个激发光单元产生的激发光分为两路,并最终由激发光和受激光合光出射,由于只需采用一个激光源,因此大大简化了光 路结构的设计,在光束照明、三片式投影系统等领域具有重要的实际应用价值。
附图说明
图1为本发明实施例一的光源系统结构示意图;
图2为本发明实施例二的光源系统结构示意图;
图3为本发明实施例三的光源系统结构示意图;
图4为本发明实施例四的光源系统结构示意图;
图5为本发明实施例五的光源系统结构示意图;
图6为本发明实施例六的光源系统结构示意图;
图7为本发明实施例七的光源系统结构示意图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
如图1所示,本实施例的光源系统包括激发光单元、分光滤光单元、散射单元、受激光单元。
具体地,激发光单元包括激光光源301和中继透镜303,激光光源301优选地采用蓝光LD。中继透镜303位于激光传播的光路上。
分光滤光单元包括至少一片分光片304,本实施例具体为一片,倾斜设置在经中继透镜303后激光传播的光路上;分光片304具有两面,朝向激发光单元与散射单元的面为第一面3041,分光片304朝向受激光单元的面为第二面3042;分光片的第二面3042镀有透射P光及S光、反射受激光功能的膜(AR膜),其第一面3041未镀膜。
散射单元包括第一收集透镜305和散射片306;受激光单元包括第二收集透镜307和荧光粉装置(即旋转反射式色轮)308。
光源系统的光路原理详述如下:
激光光源301发出线偏振光即S光,中继透镜303对S光进行光处理(例如匀光、整形、汇聚、压缩等处理)使其作为激发光发射到分光滤光单元,利用中继透镜303可以提高后续入射到色轮308上的光斑的能量密度均匀性,从而提高色轮308的光转换效率。在其它的实施方式中,激光光源301发出的也可以是P光。
分光片的第一面3041将S光的一部分反射到散射单元(例如分光片的第一 面3041对S光的反射率为9%,则9%的S光被反射到散射单元);第一收集透镜305将分光滤光单元反射的该部分S光汇聚到散射片306,散射片306对该部分S光进行朗伯散射从而产生相同比例的S光和P光并经第一收集透镜305发射到分光片304;分光片304透射其中的P光,反射S光。在其它实施方式中,当根据需要选择特定散射片时,散射片306产生的P光和S光也可以是不同比例。
分光片的第一面3041和第二面3042还将S光的另一部分透射到受激光单元,第二收集透镜307将分光滤光单元透射的该部分S光汇聚到色轮308,色轮308具有黄色荧光粉材料,其在该部分S光的照射下产生受激光即黄色荧光并经第二收集透镜307发射到分光滤光单元;分光片的第二面3042反射来自受激光单元的黄色荧光。
从而,分光滤光单元将其透射的P光和反射的黄色荧光合光出射,由于P光为蓝光,因此蓝光和黄光合光形成均匀的白光出射。
在其它的实施方式中,激光光源301发出的激光不限于蓝色激光,也不限于一种颜色;色轮根据荧光材料的选取,也可以产生黄色荧光之外其它颜色的光,只要分光滤光单元透射的光和反射的荧光合光成白光即可;根据实际需要,分光滤光单元透射的光和反射的荧光也可以合光成其它颜色的光。
实施例二:
与实施例一的区别在于,本实施例的激发光单元还包括设置于激光光源301与中继透镜303之间光路上的液晶装置302,通过调节液晶装置302使得液晶分子偏转一定的角度,经过液晶装置302的光的偏振方向也会旋转一定的角度,液晶分子偏转角度越大,光的偏振方向也偏转得越大,因此液晶装置302主要用于调节激光的偏振态.
本实施例中,激光光源301发射的激光经液晶装置302后形成具有一定比例关系的第一偏振态的S光和第二偏振态的P光,并经中继透镜303发射到分光滤光单元。例如,液晶分子旋转的角度为α,则经过液晶装置302出射的S光为Icoaα,P光为Isinα,I为激光的强度,技术人员可以根出射白光的需求来调节液晶装置302的偏转角。
本实施例与实施例一的另一区别在于,本实施例的分光片第一面3041镀有PBS(polarization beam splitter,偏振分光器)功能的膜,即反射S光、透射P 光;其第二面3042镀有透射P光、反射受激光功能的膜。
则,分光片的第一面3041将来自激发光单元的S光反射到散射单元;散射单元对S光进行朗伯散射从而产生相同比例的S光和P光并发射到分光滤光单元;分光片的第一面3041和第二面3042透射其中的P光,其中的S光被第一面3041反射掉。
分光片的第一面3041和第二面3042还将来自的激发光单元的P光透射到受激光单元,受激光单元在P光的照射下产生黄色荧光并发射到分光滤光单元;分光片的第二面3042反射黄色荧光。
从而,分光滤光单元将其透射的P光和反射的黄色荧光合光成白光出射。
实施例三:
如图3所示,本实施例的光源系统也包括激光光源301、中继透镜303、分光片304、第一收集透镜305、散射片306、第二收集透镜307、反射式色轮308。
与实施例一的区别在于,本实施例的激发光单元还包括设置于激光光源301与中继透镜303之间光路上的液晶装置302。本实施例的分光片的第二面3042镀有透射P光、反射受激光功能的膜,第一面3041未镀膜。根据不镀膜的玻璃性质,分光片的第一面3041可以对S光和P光分别以不同的反射率进行反射,本实施例中,分光片的第一面3041对S光的反射率为9%,对P光的反射率为2%。
光源系统的光路原理详述如下:
激光光源301发出蓝色激光,激光经液晶装置302后会形成具有一定比例关系的S光和P光,经中继透镜303后作为激发光发射到分光滤光单元。
通过调节液晶装置302,S光和P光的比例会发生变化,则激发光在分光片的第一面3041的反射率的变化范围为2%-9%。
散射单元对分光片304反射的S光和P光进行朗伯散射从而产生相同比例的S光和P光并发射到分光滤光单元。对于这部分S光和P光,在第一面3041处S光有9%反射,P光有2%反射,则平均后反射率为5.5%,透射率为94.5%,分光片的第一面3041和第二面3042透射其中94.5%的光,即被分光片304反射的激发光中,仍然有94.5%的光再次得到利用。
分光片的第一面3041和第二面3042还将来自的激发光单元的激发光中91%的S光和98%的P光透射到受激光单元,受激光单元在这部分激发光的照射下产生黄色荧光并发射到分光滤光单元;分光片的第二面3042反射黄色荧光。
从而,分光滤光单元将其透射的S光、P光和反射的黄色荧光合光成白光出射。
本实施例中,S光为垂直于入射面的光矢量,P光为平行于入射面的光矢量(在其它实施方式中,也可以采用P光为垂直于入射面的光矢量,S光为平行于入射面的光矢量的设计),分光片304采用玻璃材质。关于分光片对激发光的反射率可根据菲涅尔公式得到,本实施例中,令θ1为入射角,θ2为折射角,n1为空气折射率,n1为分光片折射率。根据菲涅尔公式,垂直于入射面的偏振光即S光的反射率Rs和折射率Ts的表达式如下,
Figure PCTCN2017081373-appb-000001
Figure PCTCN2017081373-appb-000002
平行于入射面的偏振光即P光的反射率Rp和折射率Tp的表达式如下,
Figure PCTCN2017081373-appb-000003
Figure PCTCN2017081373-appb-000004
可见,入射光的光矢量与分光片折射率、空气折射率以及入射角等因素相关,本实施例具体求得的分光片第一面3041对S光的反射率Rs为9%,对P光的反射率Rp为2%,在其它的实施方式中,由于相关参数的具体取值不同,因此分光片对S光和P光的反射率也会是其它的值。技术人员可以根据实际需要,灵活合理地设计激发光透、反射的比例,从而控制分光滤光单元透射的光和受激光合光时的比例,从而得到最终所需的光。
实施例四:
如图4所示,本实施例的光源系统也包括激光光源301、液晶装置302、中继透镜303、分光滤光单元、第一收集透镜305、散射片306、第二收集透镜307、反射式色轮308。
为了满足不同的蓝光与黄光比例要求,可以增加分光片数量,本实施例与上述各实施例的区别在于,本实施例的分光滤光单元包括多片分光片,分光片中至少一片分光片的第二面镀有透射P光、反射受激光功能的膜,优选地,该膜镀在最接近受激光单元的分光片的第二面上,图3中,分光片具体为两片, 面404镀有透射P光、反射受激光功能的膜。面401、面402、面403中部分面可以是镀有反射S光、透射P光功能的膜,当其中有两面不镀膜而另一面镀有AR膜时,S光反射率约为18%;当三面都不镀膜时,S光反射率约为27%,依次类推,结合液晶装置302的偏转角度,可以实现激发光从2%-27%之间的任意反射率。
本实施例其它技术方案可以采取与上述各实施例一致的原理,故不再赘述。
实施例五:
上述各实施例中,为便于设计和制备,激发光单元发射的激发光相对于分光片304的入射角为45°,从而入射的激发光与出射的白光垂直,如图5所示,本实施例与上述各实施例的区别在于,本实施例中激发光相对于分光片304的入射角不等于45°,可以大于45°,也可以小于45°,这样的设计可以满足一些特殊的结构需求。本实施例其它技术方案可以采取与上述各实施例一致的原理,故不再赘述。
实施例六:
如图6所示,本实施例是根据实施例一派生设计的的光路结构,本实施例的分光片的第二面4042镀有反射P光、透射受激光功能的膜,其第一面4041未镀膜。
激发光单元向分光滤光单元发射S光;分光片的第一面4041将S光的一部分透射到散射单元;散射单元的散射片406对该部分S光进行朗伯散射从而产生相同比例的S光和P光并发射到分光滤光单元,分光片反射其中的P光。
分光片的第一面4041和第二面4042还将S光的另一部分反射到受激光单元,受激光单元的色轮408在该部分S光的照射下产生黄色荧光并发射到分光滤光单元;分光片的第二面4042透射黄色荧光。
从而,分光滤光单元将其反射的P光和透射的黄色荧光合光成白光出射。
实施例七
如图7所示,本实施例是根据实施例二派生设计的的光路结构,本实施例的分光片的第一面4041镀有透射S光、反射P光的膜,其第二面4042镀有反射P光、透射受激光功能的膜。
激发光单元向分光滤光单元发射具有一定比例关系的S光和P光,分光片 将来自激发光单元的S光的透射到散射单元;散射单元的散射片406对S光进行朗伯散射从而产生相同比例的S光和P光并发射到分光滤光单元;分光片的第二面4042反射其中的P光。
分光片的第一面4041将来自激发光单元的P光反射到受激光单元,受激光单元的色轮408在P光的照射下产生黄色荧光并发射到分光滤光单元;分光片透射黄色荧光。
从而,分光滤光单元将其反射的P光和透射的黄色荧光合光成白光出射。
本发明所提供的光源系统及其投影设备、照明装置,在分光滤光单元处将一个激发光单元产生的激发光分为两路,并最终由激发光和受激光合光出射,由于只需采用一个激光源,因此大大简化了光路结构的设计;本发明对激发光进行分光利用了偏振的原理,从而使得对同一激发光就能有效分光,而不需要激发光本身包含不同的光成分;本发明通过调节液晶装置,可以根据不同的需求分配S光和P光的比例,使得最终出射的白光是按照预定比例的P光与荧光合光得到的,可以根据需要满足不同的设计要求;本发明对分光片是否镀膜、分光片的数量以及组合形式可以做出灵活多样的设计,从而更为精确得控制经过分光滤光单元后S光和P光的比例,使得最终出射的白光满足不同的需求,本发明的设计在光束照明、三片式投影系统等领域表现出诸多优势,具有重要的实际应用价值。
以上内容是结合具体的实施方式对所作的进一步详细说明,不能认定的具体实施只局限于这些说明。对于所属技术领域的普通技术人员来说,在不脱离构思的前提下,还可以做出若干简单推演或替换。

Claims (14)

  1. 一种光源系统,其特征在于,包括激发光单元、分光滤光单元、散射单元、受激光单元;
    所述激发光单元用于向所述分光滤光单元发射激发光;
    所述分光滤光单元用于将来自所述激发光单元的激发光的一部分反射/透射到所述散射单元,所述散射单元用于对该部分激发光进行散射从而产生具有第一偏振态的第一光和具有第二偏振态的第二光并发射到所述分光滤光单元;
    所述分光滤光单元用于透射/反射来自所述散射单元的第二光;
    所述分光滤光单元还用于将来自所述激发光单元的激发光的另一部分透射/反射到所述受激光单元,所述受激光单元在该部分激发光的照射下产生受激光并发射到所述分光滤光单元;
    所述分光滤光单元还用于反射/透射来自所述受激光单元的受激光,从而所述分光滤光单元将其透射的第二光和反射的受激光合光出射,或者将其反射的第二光和透射的受激光合光出射。
  2. 如权利要求1所述的光源系统,其特征在于,
    所述激发光单元包括激光光源和中继透镜;所述激光光源用于发射激光,所述中继透镜用于对所述激光光源发射的激光进行光处理使其作为激发光发射到所述分光滤光单元;
    所述散射单元包括散射片和第一收集透镜;所述第一收集透镜用于将所述分光滤光单元反射/透射的激发光的一部分汇聚到所述散射片,所述散射片用于对该部分激发光进行朗伯散射从而产生第一光和第二光并经所述第一收集透镜发射到所述分光滤光单元;
    所述受激光单元包括第二收集透镜和荧光粉装置,所述第二收集透镜用于将所述分光滤光单元透射/反射的激发光的另一部分汇聚到所述荧光粉装置,所述荧光粉装置在该部分激发光的照射下产生受激光并经所述第二收集透镜发射到所述分光滤光单元。
  3. 如权利要求2所述的光源系统,其特征在于,
    所述荧光粉装置为反射式色轮。
  4. 如权利要求1所述的光源系统,其特征在于,
    所述分光滤光单元包括至少一片分光片;
    所述分光片朝向所述激发光单元与所述散射单元的面为第一面,所述分光 片朝向所述受激光单元的面为第二面;
    所述分光片中至少一片分光片的第二面镀有透射第二光、反射受激光功能的膜;
    或者,所述分光片中至少一片分光片的第二面镀有反射第二光、透射受激光功能的膜。
  5. 如权利要求4所述的光源系统,其特征在于,
    所述分光片的设计使得所述激发光以45度的入射角照射到所述分光片上。
  6. 如权利要求4所述的光源系统,其特征在于,
    所述分光片的第一面对第一光的反射率为9%,对第二光的反射率为2%。
  7. 如权利要求4所述的光源系统,其特征在于,
    所述至少一片分光片除所述第二面外的其它面中部分面镀有反射第一光、透射第二光功能的膜,或者镀有透射第一光、反射第二光功能的膜。
  8. 如权利要求2所述的光源系统,其特征在于,
    所述激发光单元还包括设置于所述激光光源与所述中继透镜之间光路上的液晶装置,所述液晶装置用于调节激光的偏振态,所述激光光源发射的激光经所述液晶装置后形成具有一定比例关系的第一偏振态的第一光和第二偏振态的第二光,并经所述中继透镜发射到所述分光滤光单元。
  9. 如权利要求8所述的光源系统,其特征在于,
    所述第一光为S光,所述第二光为P光。
  10. 如权利要求1-6任一项所述的光源系统,其特征在于,
    所述激发光单元向所述分光滤光单元发射的激发光为具有第一偏振态的第一光;
    所述第一面用于将所述第一光的一部分反射/透射到所述散射单元;
    所述第一面和所述第二面用于将所述第一光的另一部分透射/反射到所述受激光单元从而激发所述受激光单元产生受激光。
  11. 如权利要求1-9任一项所述的光源系统,其特征在于,
    所述激发光单元向所述分光滤光单元发射的激发光为具有第一偏振态的第一光和具有第二偏振态的第二光;
    所述第一面镀有反射第一光、透射第二光功能的膜;所述第一面用于将所述第一光反射到所述散射单元;所述第一面和所述第二面用于将所述第二光透射到所述受激光单元,所述受激光单元在所述第二光的照射下产生受激光;
    或者,所述第一面镀有透射第一光、反射第二光功能的膜;所述第一面用于将所述第一光透射到所述散射单元;所述第一面和所述第二面用于将所述第二光反射到所述受激光单元,所述受激光单元在所述第二光的照射下产生受激光。
  12. 如权利要求1-9任一项所述的光源系统,其特征在于,
    所述激发光单元向所述分光滤光单元发射的激发光为具有第一偏振态的第一光和具有第二偏振态的第二光;
    所述第一面用于将所述第一光的一部分以及所述第二光的一部分反射/透射到所述散射单元;
    所述第一面和所述第二面用于将所述第一光的另一部分以及所述第二光的另一部分透射/反射到所述受激光单元从而激发所述受激光单元产生受激光。
  13. 一种投影设备,其特征在于,所述投影设备的光源为权利要求1-12任一项所述的光源系统。
  14. 一种照明装置,其特征在于,所述照明装置的光源为权利要求1-12任一项所述的光源系统。
PCT/CN2017/081373 2016-05-19 2017-04-21 一种光源系统及其投影设备、照明装置 WO2017198034A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17798598.3A EP3460571A4 (en) 2016-05-19 2017-04-21 LIGHT SOURCE SYSTEM, PROJECTION DEVICE THEREOF AND LIGHTING DEVICE THEREFOR
US16/099,417 US11150547B2 (en) 2016-05-19 2017-04-21 Light source system with beamsplitter, projection device of same, and lighting device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610338099.5 2016-05-19
CN201610338099.5A CN107402494A (zh) 2016-05-19 2016-05-19 一种光源系统及其投影设备、照明装置

Publications (1)

Publication Number Publication Date
WO2017198034A1 true WO2017198034A1 (zh) 2017-11-23

Family

ID=60324800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081373 WO2017198034A1 (zh) 2016-05-19 2017-04-21 一种光源系统及其投影设备、照明装置

Country Status (4)

Country Link
US (1) US11150547B2 (zh)
EP (1) EP3460571A4 (zh)
CN (1) CN107402494A (zh)
WO (1) WO2017198034A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133949B (zh) * 2018-02-02 2022-08-16 深圳光峰科技股份有限公司 光源装置及具有该光源装置的投影装置
CN112445050B (zh) * 2019-08-29 2023-05-05 深圳光峰科技股份有限公司 一种投影光学系统
CN111025829A (zh) * 2019-10-30 2020-04-17 深圳彩翼光电科技有限公司 一种lcd投影机光源光路以及lcd投影机
CN212112105U (zh) * 2020-03-31 2020-12-08 深圳光峰科技股份有限公司 一种光源系统
CN111736415A (zh) * 2020-07-15 2020-10-02 成都极米科技股份有限公司 一种混合光源装置以及投影显示设备
CN114460797B (zh) * 2020-11-07 2023-02-24 成都极米科技股份有限公司 光源系统及投影设备
CN117590679B (zh) * 2024-01-19 2024-04-19 宜宾市极米光电有限公司 光源装置和投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201576164U (zh) * 2009-11-13 2010-09-08 惠州市华阳多媒体电子有限公司 一种用于3d显示的微投影仪
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN204028554U (zh) * 2014-07-28 2014-12-17 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN105116676A (zh) * 2015-09-15 2015-12-02 杭州科汀光学技术有限公司 一种混合激光光源及投影机
CN105319819A (zh) * 2014-07-28 2016-02-10 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN205910480U (zh) * 2016-05-19 2017-01-25 深圳市绎立锐光科技开发有限公司 一种光源系统及其投影设备、照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3998524A (en) * 1975-08-20 1976-12-21 Hewlett-Packard Company Birefringent polarization prism with a large angular aperture
JP3168765B2 (ja) * 1993-04-01 2001-05-21 松下電器産業株式会社 偏光装置および該偏光装置を用いた投写型表示装置
US20040227994A1 (en) * 2003-05-16 2004-11-18 Jiaying Ma Polarizing beam splitter and projection systems using the polarizing beam splitter
JP2010123464A (ja) * 2008-11-20 2010-06-03 Hitachi Displays Ltd 照明装置、光学シート及び液晶表示装置
JP5874058B2 (ja) * 2010-12-06 2016-03-01 パナソニックIpマネジメント株式会社 光源装置および投写型表示装置
CN103913936B (zh) * 2012-12-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
JP2014142524A (ja) * 2013-01-25 2014-08-07 Panasonic Corp 光源装置および投写型映像表示装置
CN104020632B (zh) * 2013-02-28 2016-08-24 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
JP6303454B2 (ja) * 2013-12-02 2018-04-04 セイコーエプソン株式会社 照明装置およびプロジェクター
CN105022216B (zh) * 2014-04-16 2017-12-15 精工爱普生株式会社 照明装置和投影机
JP6578631B2 (ja) * 2014-07-09 2019-09-25 セイコーエプソン株式会社 照明装置およびプロジェクター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201576164U (zh) * 2009-11-13 2010-09-08 惠州市华阳多媒体电子有限公司 一种用于3d显示的微投影仪
US20120242912A1 (en) * 2011-03-23 2012-09-27 Panasonic Corporation Light source apparatus and image display apparatus using the same
CN204028554U (zh) * 2014-07-28 2014-12-17 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN105319819A (zh) * 2014-07-28 2016-02-10 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
CN105116676A (zh) * 2015-09-15 2015-12-02 杭州科汀光学技术有限公司 一种混合激光光源及投影机
CN205910480U (zh) * 2016-05-19 2017-01-25 深圳市绎立锐光科技开发有限公司 一种光源系统及其投影设备、照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460571A4 *

Also Published As

Publication number Publication date
US11150547B2 (en) 2021-10-19
EP3460571A4 (en) 2020-01-01
US20200319539A1 (en) 2020-10-08
CN107402494A (zh) 2017-11-28
EP3460571A1 (en) 2019-03-27

Similar Documents

Publication Publication Date Title
WO2017198034A1 (zh) 一种光源系统及其投影设备、照明装置
EP3309610B1 (en) Dual-colour laser light source
US10197900B2 (en) Light-emitting device employing a reflective light focusing system having a focusing region and a non-focusing region and projection system incorporating the same
KR101766710B1 (ko) 발광장치 및 상기 발광장치가 응용되는 투영 시스템
JP6168611B2 (ja) 光源、光合成装置、および光源付投影装置
US20160085143A1 (en) Light-emitting device and related light source system
WO2016192222A1 (zh) 一种双色激光光源
CN205910480U (zh) 一种光源系统及其投影设备、照明装置
CN107272312A (zh) 发光装置及相关投影系统与照明系统
US11248773B2 (en) Light source system and lighting apparatus
TWI459122B (zh) 光學系統
TWI495854B (zh) 光學測定裝置、光學測定系統以及光纖結合器
TW201719993A (zh) 光源系統及照明裝置
WO2018171042A1 (zh) 一种投影机
CN110389486B (zh) 光源装置及显示设备
CN110471245A (zh) 光源系统、投影设备及照明设备
KR101083789B1 (ko) 수 개의 광빔의 조합을 가능케 하는 조명 시스템
CN108107658B (zh) 光源系统、投影系统及照明装置
TWI731105B (zh) 光源結構及投影系統
TWI521162B (zh) Light source device
CN106950785A (zh) 一种光源装置及照明装置
CN113433782A (zh) 光源装置和投影仪
CN104482504A (zh) 发光装置和照明装置
TWI730146B (zh) 光學系統
CN207262066U (zh) 灯具

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017798598

Country of ref document: EP

Effective date: 20181219