WO2016192222A1 - 一种双色激光光源 - Google Patents

一种双色激光光源 Download PDF

Info

Publication number
WO2016192222A1
WO2016192222A1 PCT/CN2015/088941 CN2015088941W WO2016192222A1 WO 2016192222 A1 WO2016192222 A1 WO 2016192222A1 CN 2015088941 W CN2015088941 W CN 2015088941W WO 2016192222 A1 WO2016192222 A1 WO 2016192222A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
diffusion
red
blue
laser light
Prior art date
Application number
PCT/CN2015/088941
Other languages
English (en)
French (fr)
Inventor
田有良
刘显荣
李巍
Original Assignee
海信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信集团有限公司 filed Critical 海信集团有限公司
Publication of WO2016192222A1 publication Critical patent/WO2016192222A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of projection display, and more particularly to a two-color laser light source.
  • Laser is a high-brightness, directional, light source that emits a monochromatic coherent beam. Due to its many advantages, laser has been used as a light source in projection display technology in recent years. However, due to the high coherence of the laser, the speckle effect is inevitably generated. This phenomenon is not only particularly noticeable in the case of using a pure laser as a light source, but also in the scheme of laser and fluorescence, and a hybrid light source of laser and LED. The so-called speckle refers to the coherent light source illuminating a rough object. The scattered light, because of its same wavelength and constant phase, will cause interference in space. Some parts of the space have interference and some interference occurs.
  • the final result is that there are granular bright and dark spots on the screen, that is, some unfocused spots flicker, and the long-slung viewing is easy to cause dizziness, which will undoubtedly cause the degradation of the projected image quality and reduce the user's viewing experience. .
  • the present invention provides a two-color laser light source, which is composed of a first diffusing portion and a second diffusing portion that are controlled to rotate to form a dissipating spot system, which can simultaneously dissipate the blue laser and the red laser to effectively reduce the dispersion.
  • the plaque phenomenon solves the technical problem in the prior art that the quality of the projected image is degraded due to the speckle effect caused by the use of the laser light source.
  • a two-color laser light source comprising a blue laser and a red laser, respectively emitting a blue laser and a red laser; a fluorescent wheel, the surface of which is coated with a green phosphor, and the green phosphor is excited by a blue laser to emit green
  • the color fluorescence also includes a dissipative system including:
  • a first diffusing portion the first diffusing portion is controlled to rotate, and is disposed in the beam shaping optical path of the blue laser and the red laser for diffusing the blue laser and the red laser;
  • the second diffusion portion is controlled to rotate, and is disposed before the blue laser, the red laser, and the green fluorescent incident light rod, for sequentially transmitting at least the blue laser and the red laser Forming blue light and red light output;
  • the first diffusion portion is made of a diffusion sheet material, and the surface thereof is coated with a diffuser;
  • the divergence angle of the diffuser of the first diffusing portion is gradually decreasing along the radial direction of the center of the first diffusing portion
  • the second diffusion portion includes a diffusion region for transmitting the blue laser and the red laser, and a non-diffusion region for transmitting the green fluorescence;
  • the diffusion region of the second diffusion portion is a diffusion sheet material, and the surface thereof is coated with a diffuser;
  • the non-diffusion region is a green color filter or a transparent material for entering the light bar through the green fluorescent light;
  • the diffusion region of the second diffusion portion includes a blue laser diffusion region and a red laser a diffusion region for sequentially transmitting the blue laser light and the red laser light in the second diffusion portion;
  • the red laser diffusion region includes a plurality of sub-diffusion regions, and the plurality of sub-diffusion regions have different divergence angles to the red laser;
  • a sub-diffusion region of the plurality of sub-diffusion regions located in the intermediate region has a divergence angle with respect to the red laser light greater than a divergence angle of the sub-diffusion region at the two side regions to the red laser light;
  • an area of the sub-diffusion portion located in the intermediate portion of the plurality of sub-diffusion portions is larger than an area of the sub-diffusion portion located at the both side regions.
  • the stationary diffusing member is a condition for increasing the phase of the laser beam to break the phase, thereby affecting the degree of influence, but the moving diffusing member can By increasing the spatial random phase and the random phase of the laser beam, the interference condition of the phase constant can be destroyed to a large extent, so that the coherence of the laser beam can be better reduced, and the projection image of the laser source is weakened. Speckle phenomenon.
  • a first diffusing portion is disposed in the beam shaping optical path of the blue laser and the red laser, and the first diffusing portion is controlled to rotate for diffusing the blue laser or the red laser, whether for the blue laser beam or the laser beam
  • the coherence of the laser beam can be reduced by increasing the random phase in the spatial direction of the laser beam
  • the second diffusion portion is disposed before the blue laser and the red laser and the green fluorescent incident light rod, and the second diffusion portion is controlled to rotate, At least through the blue laser and the red laser, the laser after the combined light is diffused again, further generating a random phase in space, and the two moving diffusion members are superimposed on each other, and the laser beam is decohered, thereby
  • the projected laser source can form more independent speckle patterns on the projected image, and the more the number of independent speckle patterns, the weaker the phenomenon of light and dark spots can be effectively weakened by the integral action of the human eye, thereby effectively reducing the laser light.
  • the speckle effect improves the quality of
  • the laser beam can be diffused to homogenize the spot energy, thereby facilitating the laser beam to reduce energy through the optical lens. Too concentrated or high energy density causes the optical components to heat up too quickly or deposit dust.
  • the blue laser beam that is homogenized is easy to excite the fluorescent wheel to improve the excitation efficiency of the fluorescence and avoid uneven energy of the spot. The energy concentrates the temperature process and causes the surface of the fluorescent wheel to burn. .
  • the second diffusion portion includes a diffusion region for transmitting and dissipating the blue laser and the red laser, and the non-diffusion region is for transmitting the green Fluorescence, which has the effect of dissipating the laser source and outputting the three primary colors of the system, can reduce the use of the color filter components, thereby facilitating the simplification of the light source system architecture.
  • the dissipating plaque system composed of the first diffusing portion and the second diffusing portion is shared for the dissipating plaques of the blue laser and the red laser, and the disperse optical path design is not separately performed for each laser. , reducing the complexity of the light path of the light source and improving the efficiency of the scatter spot.
  • FIG. 1 is a schematic structural view of a two-color laser light source according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of a two-color laser light source according to Embodiment 2 of the present invention.
  • FIG. 3A, FIG. 3B is a schematic view showing a shape of a laser spot after passing through a diffusion member according to Embodiment 2 of the present invention;
  • FIG. 4 is a schematic view showing a first diffusion portion according to Embodiment 2 of the present invention;
  • 5 is a schematic view showing a plane distribution of a fluorescent wheel according to Embodiment 2 of the present invention;
  • FIG. 6 is a schematic view of a second diffusion sheet in Embodiment 2 of the present invention.
  • FIG. 7 is a schematic diagram showing another partition of a second diffusion sheet in Embodiment 2 of the present invention.
  • Embodiment 8 is a schematic diagram showing a Gaussian distribution of laser beam energy in Embodiment 2 of the present invention.
  • Embodiment 1 of the present invention provides a two-color laser light source, as shown in FIG. 1, comprising a blue laser array 11 and a red laser array 12, respectively emitting a blue laser and a red laser, and a fluorescent wheel 4, the surface of which is coated Covered with a green phosphor, the green phosphor is excited by a blue laser to emit green fluorescence, wherein the blue laser and the red laser are shaped by the beam shaping device 2 before entering the fluorescent wheel 4 and the light combining member 5, in the beam shaping device 2 includes a first diffusing portion 31 of the astigmatism system 3, wherein the first diffusing portion 31 is controlled to rotate, and is located in the beam shaping optical path of the blue laser and the red laser for diffusing the blue laser and the red laser.
  • the blue laser light is reflected by the light combining member 5 to the fluorescent wheel, and reaches the light combining member 5 again through the fluorescent wheel transmission and the relay loop optical path, and is reflected and outputted, and the red laser light and the green fluorescent group respectively pass through the reflection of the light combining member 5 and Transmission, the three colors are mixed to form a white combined light.
  • the second diffusing portion 32 is controlled to rotate, that is, a moving diffusing member disposed before the blue laser, the red laser, and the green fluorescent incident light rod 6, for sequentially transmitting at least the blue laser and the red
  • the laser because of the sequential transmission of blue and red lasers by rotation, can form a sequence of output blue and red light, which can be used to output three primary colors for the system.
  • the second diffusing portion 32 and the first diffusing portion 31 constitute a dissipating spot system of the laser light source of the embodiment of the present invention.
  • the light rod 6 collects the three primary colors of light into the optical machine portion (not shown), and realizes that the laser light source provides illumination for the optical machine portion.
  • the blue laser and the red laser sequentially pass through the first expansion of the dissipative system 3
  • the diffusing portion and the second diffusing portion are capable of dissipating the blue laser and the red laser with the two diffusing members of the motion, and solving the problem that the two-color laser light source uses the poor display quality of the projected image due to the speckle effect.
  • the problem is that the first diffusion part of the same movement can also homogenize the spot energy to the laser beam diffusion, thereby facilitating the laser beam to reduce the energy concentration or the high energy density through the optical lens.
  • the second diffusing portion acts as a dissipative spot for the blue laser and the red laser to diffuse in sequence, and the output is also blue and red, which can be used to provide three primary color outputs for the system.
  • Embodiment 2 of the present invention provides a laser light source. As shown in FIG. 2, a blue laser array for outputting a blue laser and a red laser array 12 outputting a red laser are vertically arranged, and a vertically arranged array is emitted. The beams are also perpendicular to each other. This arrangement facilitates reducing the volume occupied by the laser and is advantageous for sharing the beam shaping device.
  • the laser spot emitted by the laser may have uneven brightness, and the beam area is too large, thereby causing low optical transmittance of the optical component, low fluorescence excitation efficiency, and the laser beam diffusion angle is greater than the light bar collection angle.
  • the low collection efficiency affects the brightness of the projection light source and so on. Therefore, it is necessary to reflect a series of beams such as reflection and refraction of the laser, reduce the divergence angle, reduce the beam area, and homogenize the spot energy.
  • the laser beam after beam shaping can be Used for illumination, as well as for fluorescent excitation of subsequent fluorescent wheels.
  • the first diffusion portion is fixedly disposed in the beam shaping optical path of the blue laser light and the red laser light, and specifically may be disposed at the rear end of the beam shaping optical path for diffusing the blue laser light and the red laser light.
  • the beam shaping device 2 comprises a mirror unit 21, a convex lens 22 and a concave lens 23, and preferably the beam shaping device 2 further comprises a first diffusing portion 31 behind the concave lens, the first diffusing portion 31 being fixed Settings.
  • the convex lens 22 and the concave lens 23 constitute a telescope system.
  • the beam shaping device sequentially combines the blue laser and the red laser, and reduces the beam and homogenizes the shaping process.
  • the mirror unit 21 is located in front of the blue and red laser arrays, and is placed at an angle of 45° with both of the laser arrays.
  • the mirror unit 21 may be composed of a set of mirrors having a spacing, the mirror lens portion The sub-range can reflect a light source, and the mirror spacing can allow transmission of another light source.
  • reflection of one of the blue and red laser sources and transmission of the other source can be achieved, and the beam output from the two laser arrays can be reduced by the beam spacing. And the output of the composite beam with the same direction can achieve the purpose of compact structure.
  • the blue laser and the red laser are each collimated by a collimating lens (not shown) to reduce the divergence angle of the laser, so that more The amount of light reaches or passes through the mirror unit, thereby improving the shaping efficiency of the laser.
  • the blue laser and the red laser combined by the mirror unit 21 sequentially pass through a telescope system composed of a convex lens 41 and a concave lens 42.
  • the telescope group functions to further reduce the laser beam to reduce the spot size or The area of the beam increases the transmittance of the beam in the back end optics.
  • the blue laser and the red laser are emitted after being diffused for the first time through the first diffusion portion 31, wherein the blue laser light is transmitted through the first diffusion portion 31 and then incident on the fluorescent wheel 4, and the red laser is transparent. After passing through the first diffusion portion 31, it is incident on the light combining member 5.
  • the first diffusing portion can diffuse the laser beam, and on the other hand, the spatial random phase of the laser beam can be increased by motion, and the interference condition of the phase constant is destroyed, thereby achieving a certain dissipating.
  • the purpose of the spot on the other hand, it can play the role of homogenizing the spot energy of the laser beam. This is especially important for the blue laser.
  • the blue laser will act as the excitation light for the fluorescent wheel, if the spot is not homogenized, It may cause uneven distribution of laser spot intensity, local energy concentration, and direct incident on the surface of the fluorescent wheel.
  • the laser spot with more concentrated light intensity will generate high heat and cause burning damage to the surface of the fluorescent wheel, resulting in failure to properly excite fluorescence.
  • the subsequent optical components will reduce the excessive concentration of energy or the high energy density, causing the optical components to heat up too quickly or deposit dust.
  • the first diffusing portion 31 is disposed at the rear end of the beam shaping optical path, considering that the laser beam has been shrunk, the spot area is already small, and is facilitated to be transmitted through the optical lens to the optical system below, and then the diffusion is performed.
  • the diffusion efficiency of the laser beam in order to achieve the excitation condition of the incident fluorescent wheel, it is necessary to perform the final spot homogenization to evenly distribute the energy.
  • the first diffusing portion 31 may be a diffuser material, and the surface thereof may be coated with a diffusing body, such as frosted glass or two components, which can diffusely reflect light and destroy the directivity of the laser. and also The microstructure can be processed on the surface of the diffusion sheet to achieve the same diffuse reflection effect.
  • a diffusing body such as frosted glass or two components
  • the moving diffuser member can increase the effect of decoherence on the laser beam, and the degree of homogenization of the laser beam or spot is also greater, as shown in FIGS. 3A and 3B.
  • the moving diffuser member ⁇ With the rotation, the position of the center of the spot will also shift, thereby forming a plurality of spots superimposed, and thus the area of the finally formed spot is larger. Therefore, the degree of homogenization of the laser spot is also better.
  • the divergence angle of the diffuser on the surface of the first diffusing portion gradually decreases along the radial direction of the center of the first diffusing portion, as shown in FIG. Show.
  • the laser can already provide two primary colors of blue and red, and a wavelength conversion device is also required to generate green of one of the three primary colors.
  • the fluorescent wheel is a commonly used wavelength conversion device having a rotating shaft and capable of being rotated by a motor. As shown in FIG. 5, the fluorescent wheel 4 includes a transmitting portion 42 and a reflecting portion 41, wherein the transmitting portion 42 is for transmitting excitation light, and the wavelength is short. The principle that the light excites light of a long wavelength is the blue laser as the excitation light.
  • the surface of the reflecting portion 41 is coated with a green phosphor.
  • the transmissive portion 42 and the reflecting portion 41 are alternately placed at the position where the excitation light source is incident. Therefore, when the beam-shaped blue laser light is incident on the surface of the fluorescent wheel, it can transmit a part of the laser light and can be excited by the excitation of a part of the laser light.
  • the blue laser illuminates the green fluorescent powder to emit green fluorescence and is reflected by the surface of the fluorescent wheel 4 to reach the light combining member 5.
  • the transmitting portion When the fluorescent wheel rotates to the portion of the transmitting portion 42, the transmitting portion may be transparent glass, the blue laser light will pass through the transmitting portion 42, and then return from the back side of the fluorescent wheel 4 to the light combining device 5 via the blue laser circuit, blue
  • the laser circuit is usually composed of a relay lens and a mirror.
  • a collimating lens group may be disposed on the front/back side of the fluorescent wheel 4 for reducing the diffusion angle of the transmitted laser light or the reflected fluorescent light, and enhancing the degree of convergence of the light beam.
  • the red laser beam that has undergone beam shaping is directly incident on the light combining device 5 after passing through the first diffusion sheet.
  • the light combining device 5 may select a piece of X-closing mirror.
  • the X-closing mirror is composed of two lenses which are arranged in an "X" shape, and the surface thereof is subjected to a coating effect to achieve an anti-A through B or an anti-B through A color selection effect.
  • anti-red translucent green lenses, or anti-green red-transparent, blue-transparent lenses by making reasonable plating on the X-integrated lens, and in the design of the optical path, the light should be avoided as much as possible in the area where the transmittance of the lens center is not high. High reflectance and high transmittance of light can be achieved.
  • the X-closing mirror 5 is composed of a piece of anti-blue transparent red, transparent lens and a red-transparent blue, transparent lens, wherein the red-red transparent blue lens can be used to red laser Reflecting, and transmitting the blue laser, the transmitted blue laser is reflected by another anti-blue transparent red lens to the fluorescent wheel, and finally returns to the X-coupling mirror 5 after a series of optical path conversions, and is The anti-blue transparent red-green lens in the X-closing mirror 5 is reflected out.
  • the stimulated green fluorescence is reflected by the fluorescent wheel to the X-coupling mirror 5, and is transmitted through the anti-red-transparent blue-transparent green lens and the anti-blue transparent red-transparent lens of the X-coupling mirror 5, and the red laser is firstly
  • the anti-red, blue-transparent, and translucent green lens reflects the anti-blue red-transparent, translucent green lens.
  • the propagation path of the three colors of light in the X-mirror is shown in the section of the combined light path.
  • the red laser, blue laser and green fluorescence are combined by a X-coupling mirror 5 to form a mixed white light and exit in the same direction.
  • the second diffusing portion 32 may be a color wheel structure.
  • the color wheel structure includes a diffusion region 321 for transmitting blue laser light and a red laser light, and a non-diffusion region. Zone 322 is used to transmit green fluorescence.
  • the diffusion zone 321 and the non-spreading zone 322 are spliced to form the color wheel tread.
  • the diffusion region 321 can be made of a diffusion sheet material, and the surface thereof can also be coated with a diffuser or a microstructure.
  • the diffusion region 321 is further divided into a blue laser diffusion region 321B and a red laser diffusion region 321R, as shown in FIG. 6 for rotating in the second diffusion portion. The blue laser and the red laser are sequentially transmitted.
  • the non-diffusion region 322 may be a green color filter or a transparent material such as transparent glass for transmitting green fluorescence, and the fluorescence is introduced into the light rod 6 for homogenization.
  • the non-diffusion region 322 is a green color filter ⁇
  • the second diffusion portion functions as a color filter output, which improves the color purity of the green fluorescence.
  • the blue laser diffusion region 321B and the red laser diffusion region 321R generally occupy different fan-shaped or central angles on the color wheel structure, and thus the two The coated areas of the diffusers on the diffusion zones are generally also different.
  • blue, red The central angles of the three cores are 15%, 25%, and 60%, respectively.
  • the blue laser diffusion region 321B occupies 54 degrees of the central angle
  • the red laser diffusion region 321R occupies 90 degrees of the central angle
  • the non-diffusion region 322 occupies the center.
  • the angle is 216 degrees.
  • the color wheel center angle distribution of the red laser diffusion region, the blue laser diffusion region and the non-diffusion region in the second diffusion portion is only an example, and the ratio of the R, G, and B colors is related to the white balance required by the system. It is not limited to the above numerical range.
  • White balance is an indicator to describe the white precision of the red, green and blue colors in the display device. White balance is affected by color temperature, ambient light and other factors. Different white balances will show different image tones. And, in the above embodiment, if the speckle phenomenon is serious, the shellfish should reduce the angle occupied by the non-diffusion zone, and increase the angle occupied by the diffusion zone, and use a large-angle diffusion zone to weaken the speckle phenomenon. .
  • the coherence characteristics of the blue laser and the red laser are relatively close, since the human eye is different in sensitivity to the speckle formed by the red laser and the blue laser, the actual situation is the degree of sensitivity of the human eye to the speckle formed by the red laser. It is higher, so it is more important for the red laser to dissipate the spot.
  • a plurality of sub-diffusion regions may be included, and the divergence angles of the plurality of sub-diffusion regions are different for the red laser, and the divergence angle of the red laser in the intermediate diffusion region of the plurality of sub-diffusion regions may be greater than
  • the divergence angle of the sub-diffusion zone on the two sides to the red laser is also larger than the area of the sub-diffusion zone on both sides.
  • the reason for this setting is that the energy distribution of the laser is Gaussian, as shown in Fig. 8. It is meant that the energy of the laser beam is concentrated in the middle, so the divergence angle of the diffusion zone located at the intermediate position needs to be larger, and the larger the area ratio, the effective divergence of the concentrated laser beam.
  • the red laser diffusing portion is three red laser sub-diffusion portions, Ra, Rb, Rc, wherein the Rb fan-shaped central angle is 45 degrees, Ra is 20 degrees, Rc is 25 degrees, and Rb is
  • the divergence angle of the diffuse reflector can be set to 5 degrees to 5.5 degrees
  • the divergence angle of the diffuse reflector at Ra can be set to 2 degrees to 2.5 degrees
  • the divergence angle of the diffuse reflector at Rc can be set to 2.5 degrees to 3 degrees.
  • the progressive arrangement of the sub-diffusion portions of the red laser diffusion portion can be effectively decohered for the characteristics of the laser Gaussian beam.
  • the working process of the laser performing the dissipating spot in the embodiment is: according to the lighting sequence of the laser, when the blue laser is illuminated, the blue laser is shaped by the beam and transmitted through the first diffusing portion 31 to achieve preliminary elimination.
  • Coherent and homogenized, reflected by the X-closing mirror 5 to the fluorescent wheel 4, when the fluorescent wheel 4 is turned to the position of the transmitting portion 42, and transmitted from the fluorescent wheel transmitting portion 42, and then converted to the X-closing mirror through the relay circuit 5 reflects the output again, this Then, the second diffusion portion 32 is rotated to the blue laser diffusion region 321B, so that the blue laser light is diffused out through the moving diffusion sheet to form blue light.
  • the blue laser light is irradiated to the green phosphor of the circumferential portion of the surface of the reflecting portion 41, and the emitted green fluorescence is reflected by the fluorescent wheel and transmitted through the X-closing mirror 5, and then, second The diffusing portion 32 is rotated to a position of the non-diffusion region 322, such as a green color filter, so that the green fluorescent light passes through the green filter of the rotating second diffusing portion, and the green color is formed by the color filter.
  • a position of the non-diffusion region 322 such as a green color filter
  • the red laser when the red laser is turned on, the red laser light passes through the beam shaping device and passes through the first diffusing portion 31, thereby achieving preliminary decoherence, reaching and being reflected by the X illuminator, and then the second diffusing portion 32 is turned to the position of the red laser diffusion region 321R, and the red laser light is sequentially diffused through Ra, Rb, Rc as the red laser diffusion region 321R rotates, so that the red laser light diffuses through the red laser diffusion region 321R to form red light. .
  • the blue laser and the red laser emitted by the blue and red lasers first pass through the moving first diffusion portion 31, which may be a diffusion sheet material, regardless of the blue color. Both the color laser beam and the laser beam can reduce the coherence of the laser beam by increasing the random phase in the spatial direction of the laser beam.
  • the second diffusing portion 32 ⁇ may be a diffuser material, and at least the blue laser light and the red laser light may be transmitted through the light, and the combined laser light is again performed.
  • the two moving diffusion members are superimposed on each other, and the laser beam is decohered, so that the laser source used for projection can form more independent speckle patterns on the projected image, and The more the number of independent speckle patterns, the weaker the phenomenon of light and dark spots by the integral action of the human eye, which can effectively reduce the speckle effect of the laser and improve the display quality of the projected image.
  • the embodiment is further characterized in that the human eye is more sensitive to red laser speckle, and the red laser diffusion in the second diffusion portion is divided into a plurality of sub-diffusion regions, and the sub-diffusion regions in the intermediate region are in area and The divergence angle of the red laser is larger than that of the two regions, so that the disperse effect of the red laser can be further enhanced according to the characteristics of the Gaussian distribution of the laser beam.
  • the laser beam diffusion can be used to homogenize the spot energy, thereby facilitating the reduction of the laser beam through the optical lens.
  • the energy is too concentrated or the energy density is high, causing the optical components to heat up too quickly or depositing dust.
  • the blue laser beam that is easy to homogenize stimulates the fluorescent wheel to enhance the fluorescence. The efficiency of the hair, avoiding the uneven energy of the spot, and the concentration of the energy process causes the surface of the fluorescent wheel to burn.
  • the second diffusing portion is a color wheel structure including a diffusion region and a non-diffusion region, and the two portions are formed by stitching to form a wheel surface, and the diffusion region and the non-diffusion region can be rotated according to the rotation of the color wheel. Sequentially outputting blue light, red light and green light, that is, the three primary colors can be output sequentially, thereby having the effect of dissipating the laser light source and outputting the three primary colors for the system, thereby reducing the use of the color filter wheel components and improving the use.
  • the utilization of optical components in the laser source system facilitates the simplification of the light source system architecture.
  • the dissipating plaque system composed of the first diffusing portion and the second diffusing portion is shared for the dissipating plaques of the blue laser and the red laser, and the disperse optical path design is not separately performed for each laser.
  • the complexity of the light path of the light source is reduced, and the efficiency of the scatter spot is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种双色激光光源,包括蓝色激光器(11)和红色激光器(12),分别发出蓝色激光和红色激光;荧光轮(4),其表面涂覆有绿色荧光粉,绿色荧光粉受蓝色激光激发发出绿色荧光,还包括消散斑系统(3),消散斑系统(3)包括:第一扩散部(31),所述第一扩散部(31)受控进行转动,设置于蓝色激光和红色激光的光束整形光路(2)中,用于扩散蓝色激光和红色激光;及第二扩散部(32),第二扩散部(32)受控进行转动,设置于蓝色激光、红色激光和绿色荧光入射光棒(6)之前,用于时序性地至少透过蓝色激光和红色激光并形成蓝光、红光输出,能够有效减弱散斑效应,提高投影图像显示质量。

Description

一种双色激光光源
技术领域
[0001] 本发明涉及投影显示领域, 尤其涉及一种双色激光光源。
背景技术
[0002] 激光是一种高亮度, 方向性强, 发出单色相干光束的光源, 由于激光的诸多优 点, 近年来被逐渐作为光源应用于投影显示技术领域。 但由于激光的高相干性 , 不可避免地产生散斑效应, 这种现象不仅在使用纯激光作为光源的方案中尤 其明显, 也存在于激光和荧光, 以及激光和 LED的混合光源的方案中。 所谓散斑 是指相干光源在照射粗糙的物体吋, 散射后的光, 由于其波长相同, 相位恒定 , 就会在空间中产生干涉, 空间中有些部分发生干涉相长,有部分发生干涉相消, 最终的结果是在屏幕上出现颗粒状的明暗相间的斑点, 也就是一些未聚焦的斑 点闪烁,长吋间观看易产生眩晕感, 这无疑会造成投影图像质量的下降, 降低用 户的观看体验。
[0003] 双色激光的应用提高了激光光源的整体亮度, 满足目前激光投影的亮度应用需 求, 但是激光本身带来的散斑问题也随之加重, 成为其推广应用的一个障碍。
[0004] 如何在应用双色激光光源的同吋减小激光由于本身特性带来的散斑效应成为亟 待解决的技术问题。
技术问题
[0005] 本发明提供了一种双色激光光源, 由受控进行转动的第一扩散部和第二扩散部 组成消散斑系统, 能够同吋对蓝色激光和红色激光进行消散斑, 有效减弱散斑 现象, 解决了现有技术中由于使用激光光源带来的散斑效应而导致投影图像质 量降低的技术问题。
问题的解决方案
技术解决方案
[0006] 一种双色激光光源, 包括蓝色激光器和红色激光器, 分别发出蓝色激光和红色 激光; 荧光轮, 其表面涂覆有绿色荧光粉, 绿色荧光粉受蓝色激光激发发出绿 色荧光, 还包括消散斑系统, 该消散斑系统包括:
[0007] 第一扩散部, 第一扩散部受控进行转动, 设置于蓝色激光和红色激光的光束整 形光路中, 用于扩散蓝色激光和红色激光;
[0008] 及第二扩散部, 第二扩散部受控进行转动, 设置于蓝色激光、 红色激光和绿色 荧光入射光棒之前, 用于吋序性地至少透过蓝色激光和红色激光并形成蓝光、 红光输出;
[0009] 进一步地, 第一扩散部为为扩散片材质, 其表面涂覆有漫射体;
[0010] 进一步地, 第一扩散部的漫射体的发散角沿着第一扩散部的中心径向向外呈逐 渐减小规律分布;
[0011] 进一步地, 第二扩散部包括扩散区和非扩散区, 扩散区用于透过蓝色激光和红 色激光, 非扩散区用于透过绿色荧光;
[0012] 进一步地, 第二扩散部的扩散区为扩散片材质, 其表面涂覆有漫射体;
[0013] 进一步地, 非扩散区为绿色滤色片或透明材质, 用于透过绿色荧光进入光棒; [0014] 进一步地, 第二扩散部的扩散区包括蓝色激光扩散区和红色激光扩散区, 用于 在第二扩散部转动吋吋序性地透过蓝色激光和所述红色激光;
[0015] 进一步地, 红色激光扩散区包括多个子扩散区, 多个子扩散区对红色激光的发 散角度不同;
[0016] 进一步地, 多个子扩散区中位于中间区域的子扩散区对所述红色激光的发散角 度大于位于两侧区域的子扩散区对所述红色激光的发散角度;
[0017] 进一步地, 多个子扩散部中位于中间区域的子扩散部的面积大于位于两侧区域 的子扩散部的面积。
发明的有益效果
有益效果
[0018] 由于运动的扩散部件相比于静止的扩散部件, 静止的扩散部件是利用增加激光 光束的空间相位来破坏相位恒定这一产生干涉的条件, 但影响程度有限, 而运 动的扩散部件能够对激光光束增加空间上的随机相位, 随机相位的产生, 就可 以较大程度上破坏相位恒定这一产生干涉的条件, 从而可以较好的降低激光光 束的相干性, 减弱激光光源投影图像上的散斑现象。 本发明技术方案利用这一 原理, 首先在蓝色激光和红色激光的光束整形光路中设置第一扩散部, 第一扩 散部受控进行转动, 用于扩散蓝色激光或者红色激光, 无论对蓝色激光光束还 是激光光束均可以通过增加激光光束的空间上的随机相位, 降低激光光束的相 干性; 并在蓝色激光和红色激光以及绿色荧光入射光棒之前设置第二扩散部, 第二扩散部受控进行转动, 吋序性至少透过蓝色激光和红色激光, 对合光后的 激光再次进行扩散, 进一步产生空间上的随机相位, 两个运动的扩散部件作用 相互叠加, 对激光光束进行了消相干, 从而用于投影的激光光源在投影图像上 能够形成较多独立的散斑图样, 而独立散斑图样的数目越多, 利用人眼的积分 作用, 明暗斑点的现象就越弱, 从而能够有效减弱激光的散斑效应, 提高了投 影图像显示质量。
[0019] 同吋, 由于第一扩散部受控进行运动, 并设置于光束整形光路中, 能够对激光 光束扩散同吋起到匀化光斑能量的作用, 从而利于激光光束通过光学镜片吋减 少能量过于集中或者说能量密度高而造成光学部件发热过快或者沉积灰尘的情 况发生, 同吋便于匀化后的蓝色激光光束对荧光轮进行激发, 提高荧光的激发 效率, 避免光斑能量不均匀, 能量集中温度过程而造成荧光轮表面的灼烧。 。
[0020] 进一步地, 在本发明技术方案中, 第二扩散部包括扩散区和非扩散区, 扩散区 用于透射并对蓝色激光和红色激光消散斑, 而非扩散区用于透过绿色荧光, 兼 具对激光光源消散斑和为系统输出三基色的作用, 可以减少滤色轮部件的使用 , 从而利于简化光源系统架构。
[0021] 进一步地, 本发明技术方案, 对于蓝色激光和红色激光的消散斑共用由第一扩 散部和第二扩散部组成的消散斑系统, 非不是针对每路激光分别进行消散斑光 路设计, 降低了光源光路的复杂性, 提高了消散斑效率。
对附图的简要说明
附图说明
[0022] 图 1为本发明实施例 1双色激光光源结构示意图;
[0023] 图 2为本发明实施例 2双色激光光源结构示意图;
[0024] 图 3A, 图 3B为本发明实施例 2中为通过扩散部件后的激光光斑形状示意图; [0025] 图 4为本发明实施例 2中第一扩散部示意图; [0026] 图 5为本发明实施例 2中荧光轮平面分布示意图;
[0027] 图 6为本发明实施例 2中第二扩散片示意图;
[0028] 图 7为本发明实施例 2中又一第二扩散片分区示意图;
[0029] 图 8为本发明实施例 2中激光光束能量高斯分布示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0030] 为了使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明作 进一步地详细描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不 是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其它实施例, 都属于本发明保护的范围。
[0031] 实施例 1
[0032] 本发明实施例 1提供了一种双色激光光源, 如图 1所示, 包括蓝色激光器阵列 11 和红色激光器阵列 12, 分别发出蓝色激光和红色激光, 荧光轮 4, 其表面涂覆有 绿色荧光粉, 绿色荧光粉受蓝色激光激发发出绿色荧光, 其中, 蓝色激光和红 色激光在进入荧光轮 4和合光部件 5之前还要经过光束整形装置 2进行整形, 在光 束整形装置 2中包括消散斑系统 3的第一扩散部 31, 其中第一扩散部 31受控进行 转动, 位于蓝色激光和红色激光的光束整形光路中, 用于扩散该蓝色激光和红 色激光。 蓝色激光经过合光部件 5反射至荧光轮, 并经荧光轮透射和中继回路光 路再次到达合光部件 5, 并被反射输出, 红色激光和绿色荧光组分别经过合光部 件 5的反射和透射, 三种颜色混合形成白色合光。 第二扩散部 32受控进行转动, 即为一运动的扩散部件, 其设置于蓝色激光、 红色激光和绿色荧光入射光棒 6之 前, 用于吋序性地至少透过蓝色激光和红色激光, 由于通过转动进行吋序性的 透过蓝色和红色激光, 从而可以形成吋序性的输出蓝光和红光, 可以用于为系 统输出三基色。 第二扩散部 32与第一扩散部 31组成本发明实施例激光光源的消 散斑系统。
[0033] 光棒 6收集三基色光进入光机部分 (图中未出) , 实现激光光源为光机部分提 供照明。
[0034] 在本发明实施例中, 由于蓝色激光和红色激光依次通过消散斑系统 3的第一扩 散部和第二扩散部, 能够利用运动的两个扩散部件同吋对蓝色激光和红色激光 进行消散斑, 解决了双色激光光源使用吋由于散斑效应带来的投影图像显示质 量差的技术问题; 同吋运动的第一扩散部同吋还能够对激光光束扩散同吋起到 匀化光斑能量的作用, 从而利于激光光束通过光学镜片吋减少能量过于集中或 者说能量密度高而造成光学部件发热过快或者沉积灰尘的情况发生, 同吋便于 匀化后的蓝色激光光束对荧光轮进行激发, 提高荧光的激发效率, 避免光斑能 量不均匀, 能量集中温度过程而造成荧光轮表面的灼烧; 以及第二扩散部在依 次对蓝色激光和红色激光扩散起到消散斑作用同吋还吋序性的输出蓝光和红光 , 可用于为系统提供三基色输出。
[0035] 实施例 2
[0036] 本发明实施例 2提供了一种激光光源, 如图 2所示, 用于输出蓝色激光的蓝色激 光器阵列^和输出红色激光的红色激光器阵列 12垂直排列, 垂直排列的阵列发 出的光束也互相垂直。 这种排列方式利于减少激光器所占用的体积, 同吋有利 于光束整形装置的共用。
[0037] 由于激光器发出的激光光斑可能存在亮度不均, 及光束面积过大的问题, 进而 造成光学部件光透过率低, 荧光激发效率低, 以及激光光束扩散角大于光棒收 集角度导致激光收集效率低影响投影光源亮度等诸多问题, 因此需要对激光进 行反射, 折射等一系列光束整形, 减小其发散角, 减小光束面积, 并匀化光斑 能量, 经过光束整形的激光光束才能被用于照明, 以及用于后续的荧光轮的荧 光激发。
[0038] 其中, 第一扩散部固定设置于蓝色激光和红色激光的光束整形光路中, 具体地 可设置于光束整形光路的后端, 用于扩散所述蓝色激光和红色激光。 如图 2所述 , 光束整形装置 2包括一个反射镜单元 21, 一个凸透镜 22和一个凹透镜 23, 以及 优选地光束整形装置 2还包括位于凹透镜之后的第一扩散部 31, 第一扩散部 31固 定设置。 凸透镜 22和凹透镜 23组成望远镜系统。 光束整形装置依次对蓝色激光 和红色激光进行合束, 缩束, 匀化的整形处理。
[0039] 其中, 反射镜单元 21位于蓝色和红色激光器阵列前, 且与这两个激光阵列均呈 45°夹角放置。 反射镜单元 21可以由一组具有间隔的反射镜组成, 反射镜镜片部 分能够反射一种光源, 反射镜间隔能够允许透射另一种光源。 从而仅使用一个 反射镜单元, 就可以实现对蓝色和红色激光光源当中对一种光源的反射, 及对 另一种光源的透射, 既能够将这两个激光阵列输出的光束减小光束间隔并输出 方向一致的合成光束, 又能够达到结构紧凑的目的。
[0040] 优选地, 蓝色激光和红色激光在达到反射镜单元 21之前, 还各自经过一个准直 透镜 (图中未示出) 进行准直, 以减小激光的发散角, 使更多的光量到达或透 过反射镜单元, 从而提高激光的整形效率。
[0041] 经反射镜单元 21合束后的蓝色激光和红色激光依次通过凸透镜 41和凹透镜 42组 成的望远镜系统,此处望远镜组的作用是将激光光束进一步缩束, 减小光斑尺寸 或者说光束的面积, 提高光束在后端光学器件中的透过率。
[0042] 经过望远镜系统之后, 蓝色激光和红色激光经过第一扩散部 31进行第一次扩散 后射出, 其中, 蓝色激光透过第一扩散部 31后入射至荧光轮 4, 红色激光透过第 一扩散部 31后入射至合光部件 5。 无论对于红色激光还是蓝色激光, 该第一扩散 部都可以对激光光束进行扩散, 一方面可以通过运动增多激光光束的空间随机 相位, 破坏相位恒定这一产生干涉的条件, 从而达到一定的消散斑的目的; 另 一方面能够对激光光束起到匀化光斑能量的作用, 这一点对于蓝色激光来说尤 为重要, 由于蓝色激光将作为荧光轮的激励光, 如果光斑未进行匀化, 可能造 成由于激光光斑强度分布不均, 局部能量集中, 直接入射到荧光轮表面吋, 光 强更为集中的的激光光斑会产生高热进而对荧光轮表面产生灼烧损坏, 导致无 法正常激发荧光, 同吋无论对于红色激光和蓝色激光, 光斑能量匀化后在通过 后续光学部件吋都会减少能量过于集中或者说能量密度高而造成光学部件发热 过快或者沉积灰尘的情况发生。
[0043] 该第一扩散部 31设置于光束整形光路的后端, 是考虑到激光已经经过缩束, 光 斑面积已经较小, 利于通过光学镜片传输到下面的光学系统中, 此吋再进行扩 散, 可以提高激光光束的扩散效率, 同吋, 为了达到入射荧光轮进行激发的条 件, 也必须要进行最后一次的光斑匀化, 使能量均匀分布。
[0044] 具体地, 第一扩散部 31可以是扩散片材质, 其表面可以涂覆有漫射体, 可以选 用比如毛玻璃或者二元器件, 能够对光线产生漫反射, 破坏激光的方向性。 也 可以在扩散片表面加工微结构, 起到同样的漫反射效果。
[0045] 相比于静止的扩散片部件, 运动的扩散片部件除了能够增加对激光光束的消相 干的效果, 对激光光束或者说光斑的匀化程度也更加, 如图 3A和图 3B所示, 为 分别通过静止的扩散片部件和运动的扩散片部件后形成光斑的形状比较。 由于 激光的能量分布并不是均匀的, 经过运动的扩散片部件吋, 随着转动, 光斑中 心的位置也会发生偏移, 从而形成多个光斑叠加的效果, 进而最终形成的光斑 的面积更大, 从而对激光光斑的匀化程度也更佳。
[0046] 优选地, 由于考虑到激光是呈高斯型分布的, 如图 8所示。 因此为了提高对激 光的消相干和匀化效率, 第一扩散部表面的漫射体的发散角沿着所述第一扩散 部的中心径向向外呈逐渐减小规律分布, 如图 4所示。 越靠近扩散部件中心区域 的漫射体对激光光束的发散角越大, 沿着径向向外, 越远离扩散部件中间区域 的漫射体对激光光束的发散角越小。
[0047] 由于图像是由红绿蓝三基色组成的, 在本发明实施例中激光已经可以提供蓝色 和红色两种基色, 还需要波长转换装置来产生三基色之一的绿色。 荧光轮是常 用的波长转换装置, 具有转轴, 能够受马达驱动进行转动, 如图 5所示, 荧光轮 4包括透射部 42和反射部 41, 其中透射部 42用于透射激励光, 利用波长短的光激 发波长长的光的原理, 选用蓝色激光为激励光。 反射部 41表面涂覆有绿色荧光 粉。 当荧光轮 4转动吋, 透射部 42和反射部 41, 就会交替处于激励光源入射的位 置。 从而当经过光束整形的蓝色激光入射到荧光轮表面吋, 既能够透射出一部 分激光, 还能受一部分激光的激发发出荧光。 当荧光轮 4转动反射部 41位置吋, 蓝色激光照射绿光荧光粉发出绿色荧光并经荧光轮 4的表面反射出去达到合光部 件 5。 当荧光轮转动到透射部 42部位吋, 透射部可以为透明玻璃, 蓝色激光就会 透过透射部 42, 再从荧光轮 4的背面经蓝色激光回路返回至合光器件 5, 蓝色激 光回路通常由中继透镜和反射镜构成。
[0048] 优选地, 在荧光轮 4的正面 /背面还可以设置准直透镜组, 用于减小被透射激光 或被反射的荧光光线的扩散角, 增强光束的会聚程度。
[0049] 而经过光束整形的红色激光则透过第一扩散片后直接入射到合光器件 5, 在本 实施例中, 合光器件 5可选用一片 X合光镜。 [0050] 其中, X合光镜由交叉设置成 "X"型的两片镜片组成, 其表面通过镀膜实现反 A 透 B, 或反 B透 A的颜色选择通过效果。 例如, 反红透绿镜片, 或者反绿透红、 透蓝镜片, 通过在 X合光镜片上进行合理的镀层, 并且在光路设计上让光线尽量 避幵镜片中心透过率不高的区域, 就可以实现光的高反射率和高透过率。
[0051] 在本发明实施例中, X合光镜 5由一片反蓝透红、 透绿镜片和一片反红透蓝、 透 绿镜片组成, 其中反红透蓝透绿镜片, 能够将红色激光进行反射, 并将蓝色激 光进行透射, 透射后的蓝色激光又被另一片反蓝透红透绿镜片反射至荧光轮, 最终经过一系列光路转换又回到 X合光镜 5, 并被 X合光镜 5中的反蓝透红透绿镜 片反射出去。 而受激的绿色荧光则被荧光轮反射至 X合光镜 5, 并经过 X合光镜 5 的反红透蓝透绿镜片和反蓝透红透绿镜片均透射出去, 红色激光则先由反红透 蓝、 透绿镜片反射到达反蓝透红、 透绿镜片透射出去。 三种色彩的光在 X合光镜 中的传播路径如图 2合光光路部分所示。 最终, 红色激光, 蓝色激光和绿色荧光 均经一个 X合光镜 5合光形成混合白光并沿同一方向出射。
[0052] 为了更加有效的对激光进行消散斑, 经过合光之后, 激光和荧光的混合光还要 经过消散斑系统 3的第二扩散部 32, 第二扩散部 32可以通过马达受控进行转动。 具体地, 第二扩散部 32可以为一色轮结构, 如图 6所示, 该色轮结构包括扩散区 321和非扩散区 322, 扩散区 321用于透过蓝色激光和红色激光, 非扩散区 322用 于透过绿色荧光。 扩散区 321和非扩撒区 322拼接形成该色轮轮面。
[0053] 其中, 扩散区 321可选用扩散片材质制成, 其表面也可以涂覆有漫射体或者设 置微结构。 为分别能够对蓝色激光和红色激光进行扩散, 扩散区 321又分为蓝色 激光扩散区 321B和红色激光扩散区 321R, 如图 6所示用于在第二扩散部转动吋吋 序性地依次透过蓝色激光和红色激光。
[0054] 非扩散区 322可以为绿色滤色片或者透明材质, 比如透明玻璃, 用于透过绿色 荧光, 将荧光导入光棒 6进行匀化。 当非扩散区 322为绿色滤色片吋, 第二扩散 部就起到了滤色输出的作用, 提高了绿色荧光的色彩纯度。
[0055] 考虑系统白平衡所要求的红色和蓝色的配比, 蓝色激光扩散区 321B和红色激光 扩散区 321R在色轮结构上所占的扇形面积或者说圆心角度一般不同, 因而这两 个扩散区上的漫射体的涂覆面积一般也不同。 比如在本实施例中, 蓝色, 红色 和绿色三者圆心角占比分别为 15%, 25% , 60% , 具体是蓝色激光扩散区 321B占 圆心角 54度, 红色激光扩散区 321R占圆心角 90度, 非扩散区 322占圆心角 216度 。 上述第二扩散部中红色激光扩散区、 蓝色激光扩散区和非扩散区的色轮圆心 角度分配仅为举例, R、 G、 B色彩的配比与系统所要求的白平衡有关, 在此并 不限定于上述数值范围。 白平衡是描述显示器件中红、 绿、 蓝三基色混合生成 后白色精确度的一项指标, 白平衡会受到物色温, 环境光等因素影响, 不同的 白平衡会呈现不同的图像色调。 以及, 在上述实施例中, 如果系统散斑现象严 重, 贝嚅要减小非扩散区部所占的角度, 而增大扩散区所占的角度, 使用大角 度的扩散区以期减弱散斑现象。
[0056] 虽然蓝色激光和红色激光的相干特性较为接近, 但是由于人眼对红色激光和蓝 色激光形成的散斑的敏感程度不同, 实际情况是人眼对红色激光形成的散斑敏 感程度较高, 因此对于红色激光的消散斑要更为注重。 对于红色激光扩散区 312 R, 可以包括多个子扩散区, 多个子扩散区对红色激光的发散角度设置为不同, 可以是多个子扩散区中位于中间区域的子扩散区对红色激光的发散角度大于位 于两侧区域的子扩散区对红色激光的发散角度, 且所占的面积也大于两侧区域 的子扩散区的面积, 这样设置的原因是考虑到激光的能量分布为高斯型, 如图 8 所示意, 激光光束的能量在中间较为集中, 因此越位于中间位置的扩散区的发 散角需要更大, 以及面积比例越大才能有效的对能量较为集中的激光光束进行 发散。
[0057] 例如图 7所示, 红色激光扩散部分为 3个红色激光子扩散部, Ra, Rb, Rc , 其 中 Rb扇形圆心角为 45度, Ra为 20度, Rc为 25度, 以及 Rb处漫反射体的发散角可 以设置为 5度〜 5.5度, Ra处处漫反射体的发散角可以设置为 2度〜 2.5度, Rc处漫反 射体的发散角可以设置为 2.5度~3度, 如此设置, 红色激光扩散部各子扩散部渐 进式的排列可以针对激光高斯型光束的特点有效的进行消相干。
[0058] 本实施例中激光进行消散斑的工作过程为:根据激光器点亮吋序, 当点亮蓝色 激光器吋, 蓝色激光经过光束整形, 透过第一扩散部 31, 实现初步的消相干和 匀化, 经过 X合光镜 5反射至荧光轮 4, 当荧光轮 4转到透射部 42位置吋, 并从荧 光轮透射部 42透射, 随后经中继回路光路转换到达 X合光镜 5再次反射输出, 此 吋, 第二扩散部 32转动至蓝色激光扩散区 321B, 从而蓝色激光经过运动的扩散 片扩散出射形成蓝光。 当荧光轮 4转到反射部 41吋, 蓝色激光照射到反射部 41表 面圆周部分的绿色荧光粉, 发出的绿色荧光被荧光轮反射并经 X合光镜 5透射输 出, 此吋, 第二扩散部 32转动到非扩散区 322位置, 比如为绿色滤色片, 从而绿 色荧光透过转动的第二扩散部的绿色滤光片, 经滤色形成绿光。
[0059] 同理, 当红色激光器点亮, 红色激光经光束整形装置并经透过第一扩散部 31, 实现初步的消相干, 到达并被 X合光镜反射, 此吋, 第二扩散部 32转到红色激光 扩散区 321R位置, 红色激光将随着红色激光扩散区 321R的转动依次通过 Ra, Rb , Rc, 经过再次扩散, 从而红色激光透过红色激光扩散区 321R的扩散出射形成 红光。
[0060] 综上, 在本实施例提供双色激光光源技术方案中, 蓝色和红色激光器发出的蓝 色激光和红色激光首先经过运动的第一扩散部 31, 可以为扩散片材质, 无论对 蓝色激光光束还是激光光束均可以通过增加激光光束的空间上的随机相位, 降 低激光光束的相干性。 当蓝色激光、 红色激光与荧光合光后再经过运动的第二 扩散部 32吋, 可以为扩散片材质, 吋序性至少透过蓝色激光和红色激光, 对合 光后的激光再次进行扩散, 进一步产生空间上的随机相位, 两个运动的扩散部 件作用相互叠加, 对激光光束进行了消相干, 从而用于投影的激光光源在投影 图像上能够形成较多独立的散斑图样, 而独立散斑图样的数目越多, 利用人眼 的积分作用, 明暗斑点的现象就越弱, 从而能够有效减弱激光的散斑效应, 提 高了投影图像显示质量。
[0061] 以及, 本实施例还针对人眼对红色激光散斑更为敏感的特点, 将第二扩散部中 红色激光扩散区分为多个子扩散区, 且位于中间区域的子扩散区在面积和对红 色激光的发散角度方面均大于两侧区域的子扩散区, 从而能够针对激光光束高 斯分布的特点, 进一步增强对红色激光的消散斑效果。
[0062] 同吋, 由于第一扩散部 31受控进行运动, 并设置于光束整形光路中, 能够对激 光光束扩散同吋起到匀化光斑能量的作用, 从而利于激光光束通过光学镜片吋 减少能量过于集中或者说能量密度高而造成光学部件发热过快或者沉积灰尘的 情况发生, 同吋便于匀化后的蓝色激光光束对荧光轮进行激发, 提高荧光的激 发效率, 避免光斑能量不均匀, 能量集中温度过程而造成荧光轮表面的灼烧。
[0063] 以及, 本发明实施例中, 第二扩散部为一色轮结构, 包括扩散区和非扩散区, 两部分通过拼接形成轮面, 扩散区和非扩散区随着色轮的旋转可以吋序性地依 次输出蓝光, 红光和绿光, 即能够吋序性地输出三基色, 从而兼具对激光光源 消散斑和为系统输出三基色的作用, 可以减少滤色轮部件的使用, 提高了激光 光源系统中光学部件的利用率, 利于简化光源系统架构。
[0064] 以及, 本发明实施例, 对于蓝色激光和红色激光的消散斑共用由第一扩散部和 第二扩散部组成的消散斑系统, 非不是针对每路激光分别进行消散斑光路设计 , 降低了光源光路的复杂性, 提高了消散斑效率。
[0065] 尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创 造性概念, 则可对这些实施例做出另外的变更和修改。 所以, 所附权利要求意 欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0066] 显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的 精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及其等 同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权利要求书
[权利要求 1] 一种双色激光光源, 包括蓝色激光器和红色激光器, 分别发出蓝色激 光和红色激光; 荧光轮, 其表面涂覆有绿色荧光粉, 所述绿色荧光粉 受所述蓝色激光激发发出绿色荧光, 其特征在于, 还包括消散斑系统, 所述消散斑系统包括:
第一扩散部, 所述第一扩散部受控进行转动, 设置于所述蓝色激光和 红色激光的光束整形光路中, 用于扩散所述蓝色激光和红色激光; 及第二扩散部, 所述第二扩散部受控进行转动, 设置于所述蓝色激光 、 红色激光和绿色荧光入射光棒之前, 用于吋序性地至少透过所述蓝 色激光和红色激光并形成蓝光、 红光输出。
[权利要求 2] 根据权利要求 1所述的激光光源, 其特征在于, 所述第一扩散部为扩 散片材质, 其表面涂覆有漫射体。
[权利要求 3] 根据权利要求 2所述的激光光源, 其特征在于, 所述第一扩散部的漫 射体的发散角沿着所述第一扩散部的中心径向向外呈逐渐减小规律分 布。
[权利要求 4] 根据权利要求 1所述的激光光源, 其特征在于, 所述第二扩散部包括 扩散区和非扩散区, 所述扩散区用于透过所述蓝色激光和红色激光, 所述非扩散区用于透过所述绿色荧光。
[权利要求 5] 根据权利要求 4所述的激光光源, 其特征在于, 所述扩散区为扩散片 材质, 其表面涂覆有漫射体。
[权利要求 6] 根据权利要求 4所述的激光光源, 其特征在于, 所述非扩散区为绿色 滤色片或透明材质, 用于透过所述绿色荧光进入光棒。
[权利要求 7] 根据权利要求 4所述的激光光源, 其特征在于, 所述第二扩散部的扩 散区包括蓝色激光扩散区和红色激光扩散区, 用于在所述第二扩散部 转动吋吋序性地透过所述蓝色激光和所述红色激光。
[权利要求 8] 根据权利要求 7所述的激光光源, 其特征在于, 所述红色激光扩散区 包括多个子扩散区, 所述多个子扩散区对所述红色激光的发散角度不 同。
[权利要求 9] 根据权利要求 8所述的激光光源, 其特征在于, 所述多个子扩散区中 位于中间区域的子扩散区对所述红色激光的发散角度大于位于两侧区 域的子扩散区对所述红色激光的发散角度。
[权利要求 10] 根据权利要求 8或 9所述的激光光源, 其特征在于, 所述多个子扩散部 中位于中间区域的子扩散部的面积大于位于两侧区域的子扩散部的面 积。
PCT/CN2015/088941 2015-06-03 2015-09-06 一种双色激光光源 WO2016192222A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510298324.2 2015-06-03
CN201510298324 2015-06-03

Publications (1)

Publication Number Publication Date
WO2016192222A1 true WO2016192222A1 (zh) 2016-12-08

Family

ID=54574544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088941 WO2016192222A1 (zh) 2015-06-03 2015-09-06 一种双色激光光源

Country Status (2)

Country Link
CN (1) CN105093794B (zh)
WO (1) WO2016192222A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647127A (zh) * 2016-12-29 2017-05-10 海信集团有限公司 一种激光投影系统
CN106647128A (zh) * 2016-12-29 2017-05-10 海信集团有限公司 一种光学引擎及激光投影设备
CN106773485A (zh) * 2016-12-29 2017-05-31 海信集团有限公司 一种激光投影系统
CN107065413A (zh) * 2017-05-23 2017-08-18 海信集团有限公司 一种光源装置及投影系统

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093794B (zh) * 2015-06-03 2017-02-01 海信集团有限公司 一种双色激光光源
CN105093795B (zh) 2015-06-03 2017-06-16 海信集团有限公司 一种双色激光光源
CN105573030B (zh) * 2015-12-18 2017-12-19 海信集团有限公司 一种光源及激光投影装置
CN105573031B (zh) * 2015-12-18 2018-09-21 海信集团有限公司 一种光源及激光投影装置
CN105573037B (zh) * 2015-12-31 2017-09-01 海信集团有限公司 一种激光光源及激光投影设备
CN105676577A (zh) * 2016-03-07 2016-06-15 海信集团有限公司 光源装置和激光投影显示设备
CN105892213B (zh) * 2016-06-30 2017-08-25 海信集团有限公司 一种双色激光光源驱动控制电路
CN108169990A (zh) * 2016-12-07 2018-06-15 中航国画(上海)激光显示科技有限公司 一种双色激光光源投影机及其控制方法
CN108196417A (zh) * 2016-12-08 2018-06-22 中航国画(上海)激光显示科技有限公司 一种双色激光荧光轮式投影机及其控制方法
WO2019033672A1 (zh) * 2017-08-18 2019-02-21 海信集团有限公司 双色激光光源和激光投影机
CN112147837B (zh) * 2017-08-18 2021-11-05 青岛海信激光显示股份有限公司 双色激光光源和激光投影机
CN112099296B (zh) * 2017-08-18 2021-11-05 青岛海信激光显示股份有限公司 双色激光光源和激光投影机
CN107505807A (zh) * 2017-10-10 2017-12-22 青岛海信电器股份有限公司 一种激光光源及投影显示设备
CN110389490B (zh) * 2018-04-20 2022-06-21 中强光电股份有限公司 投影装置以及照明系统
CN111258159B (zh) 2018-11-30 2022-07-12 中强光电股份有限公司 照明系统及投影装置
CN115268190A (zh) * 2018-11-30 2022-11-01 青岛海信激光显示股份有限公司 激光荧光投影系统
CN111258156B (zh) 2018-11-30 2022-01-28 青岛海信激光显示股份有限公司 激光光源的驱动方法、激光光源和激光投影仪
CN112118430B (zh) * 2019-06-20 2022-03-25 青岛海信激光显示股份有限公司 激光投影设备
CN110361919B (zh) * 2019-07-26 2020-10-23 四川长虹电器股份有限公司 一种带有复合色轮的三色激光光源
CN113900338A (zh) * 2020-06-22 2022-01-07 青岛海信激光显示股份有限公司 光源组件和投影设备
CN112578619A (zh) * 2020-11-23 2021-03-30 山西傲维光视光电科技有限公司 一种低散斑高均匀性激光光源光路结构
CN113093398B (zh) * 2021-04-09 2023-01-06 青岛海信激光显示股份有限公司 消散斑组件、光源装置及光源装置的控制方法
CN113253557B (zh) * 2021-04-30 2022-08-02 电子科技大学 一种基于菲涅尔透镜的投影仪系统
CN115388348A (zh) * 2021-05-19 2022-11-25 深圳市绎立锐光科技开发有限公司 照明装置
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源系统及投影设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661214A (zh) * 2008-08-27 2010-03-03 鸿富锦精密工业(深圳)有限公司 投影机
US20130010264A1 (en) * 2011-07-05 2013-01-10 Tatsuya Takahashi Illumination apparatus and projection apparatus
CN103062672A (zh) * 2011-10-21 2013-04-24 中强光电股份有限公司 照明系统与投影装置
CN103676428A (zh) * 2012-09-10 2014-03-26 株式会社理光 照明光源装置和投影装置以及投影装置的控制方法
CN203786412U (zh) * 2014-01-22 2014-08-20 深圳市亿思达显示科技有限公司 一种用于消除激光散斑的光源系统
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100519348B1 (ko) * 2003-01-27 2005-10-07 엘지전자 주식회사 레이저 표시 장치
JP2008134269A (ja) * 2005-03-11 2008-06-12 Matsushita Electric Ind Co Ltd 画像投影装置
CN101349813A (zh) * 2008-08-19 2009-01-21 上海上软投资有限公司 一种利用激光光源的微型投影机
JP2012194268A (ja) * 2011-03-15 2012-10-11 Seiko Epson Corp 拡散板、光源装置、及びプロジェクター
JP2013167661A (ja) * 2012-02-14 2013-08-29 Seiko Epson Corp 画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661214A (zh) * 2008-08-27 2010-03-03 鸿富锦精密工业(深圳)有限公司 投影机
US20130010264A1 (en) * 2011-07-05 2013-01-10 Tatsuya Takahashi Illumination apparatus and projection apparatus
CN103062672A (zh) * 2011-10-21 2013-04-24 中强光电股份有限公司 照明系统与投影装置
CN103676428A (zh) * 2012-09-10 2014-03-26 株式会社理光 照明光源装置和投影装置以及投影装置的控制方法
CN203786412U (zh) * 2014-01-22 2014-08-20 深圳市亿思达显示科技有限公司 一种用于消除激光散斑的光源系统
CN105093794A (zh) * 2015-06-03 2015-11-25 海信集团有限公司 一种双色激光光源

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106647127A (zh) * 2016-12-29 2017-05-10 海信集团有限公司 一种激光投影系统
CN106647128A (zh) * 2016-12-29 2017-05-10 海信集团有限公司 一种光学引擎及激光投影设备
CN106773485A (zh) * 2016-12-29 2017-05-31 海信集团有限公司 一种激光投影系统
CN107065413A (zh) * 2017-05-23 2017-08-18 海信集团有限公司 一种光源装置及投影系统

Also Published As

Publication number Publication date
CN105093794A (zh) 2015-11-25
CN105093794B (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2016192222A1 (zh) 一种双色激光光源
WO2016192221A1 (zh) 一种双色激光光源
US10451960B2 (en) Laser light source and projection display device
CN106597785B (zh) 一种荧光轮及双色激光光源
CN108287449B (zh) 一种色轮
WO2017059657A1 (zh) 一种激光消散斑光路及双色激光光源、三色激光光源
CN109407450B (zh) 双色激光光源和激光投影机
WO2017059656A1 (zh) 一种激光消散斑光路及双色激光光源、三色激光光源
CN106886124B (zh) 一种分束装置、光源系统及投影系统
WO2019033672A1 (zh) 双色激光光源和激光投影机
US20180180251A1 (en) Laser projection device and laser source thereof
CN109407451B (zh) 双色激光光源和激光投影机
TWI731105B (zh) 光源結構及投影系統
US11675261B2 (en) Illumination system and projection device
US20240133538A1 (en) Multicolor light mixing module
US20240230062A9 (en) Multicolor light mixing module
CN113900337A (zh) 光源组件和投影设备
CN113900338A (zh) 光源组件和投影设备
CN113900334A (zh) 光源组件和投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15893878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15893878

Country of ref document: EP

Kind code of ref document: A1