WO2017193532A1 - 二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用 - Google Patents

二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用 Download PDF

Info

Publication number
WO2017193532A1
WO2017193532A1 PCT/CN2016/101469 CN2016101469W WO2017193532A1 WO 2017193532 A1 WO2017193532 A1 WO 2017193532A1 CN 2016101469 W CN2016101469 W CN 2016101469W WO 2017193532 A1 WO2017193532 A1 WO 2017193532A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
nano material
dispersion
dispersion medium
boron nitride
Prior art date
Application number
PCT/CN2016/101469
Other languages
English (en)
French (fr)
Inventor
王立平
陈佳
崔明君
陈诚
邱诗惠
赵海超
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610310453.3A external-priority patent/CN107365261B/zh
Priority claimed from CN201610310516.5A external-priority patent/CN107365259B/zh
Priority claimed from CN201610312440.XA external-priority patent/CN107364839B/zh
Priority claimed from CN201610311073.1A external-priority patent/CN107364890B/zh
Priority claimed from CN201610315780.8A external-priority patent/CN107364840B/zh
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Priority to US16/300,273 priority Critical patent/US10843153B2/en
Publication of WO2017193532A1 publication Critical patent/WO2017193532A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/06Sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/42Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/43Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/34Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/42Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • C07C233/44Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring having the carbon atom of the carboxamide group bound to a carbon atom of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/16Amines or polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/22Amides or hydrazides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the invention particularly relates to a liquid phase stripping method for a two-dimensional nano material, a two-dimensional nano material dispersing agent, a method for preparing a two-dimensional nano material dispersion by a physical method, and a method for redispersing a two-dimensional nano material powder.
  • Two-dimensional nanomaterials generally have excellent physical and chemical properties and have broad application prospects. Taking boron nitride nanosheets as an example, it has good thermal conductivity, dielectric properties, chemical stability and wear resistance as a graphene-like two-dimensional nanomaterial.
  • molybdenum disulfide nanosheets as layered semiconductor materials, perform well in many fields such as lubrication, ion exchange, adsorption, conduction, separation, and catalysis.
  • boron nitride nanosheets tend to agglomerate due to strong ionic interactions between the sheets, making them prone to agglomeration in common solvents with limited solubility, which greatly limits their application.
  • the preparation methods of common boron nitride two-dimensional nanosheets mainly include two types: "bottom-up” synthesis method and "top-down” stripping method.
  • the "bottom-up” synthesis method is mainly a chemical vapor deposition (CVD) method, which is high in production cost and difficult to control, and is difficult to scale production.
  • the "top-down" stripping method mainly utilizes various methods to resist the strong ionic bond interaction force between boron nitride nanosheets to realize the peeling of the two-dimensional sheet nanosheet.
  • the peeling method mainly includes a mechanical peeling method (such as a tape peeling method, a ball milling method, and a fluid peeling method) and a chemical peeling method (mainly including a liquid phase peeling method, a chemical function method, and an ion insertion peeling method).
  • the existing preparation methods of the boron nitride nanosheets generally have the disadvantages of high operation difficulty, high cost, and difficulty in large-scale implementation, and the quality of the obtained boron nitride nanosheet products is unstable, and it is difficult to obtain a single layer number.
  • a small layer or a single layer of boron nitride nanosheets are known in the art.
  • the molybdenum disulfide sheet is bonded by a weak van der Waals force, and under the influence of the outside, it is prone to distortion and agglomeration, resulting in limited dispersion in a conventional solvent, and prone to agglomeration precipitation. This greatly limits its application.
  • many proposals have been made in the industry. For example, researchers have stirred or sonicated in a mixed solvent containing an oxidizing agent, and molybdenum disulfide can be peeled off in an organic solvent to form molybdenum disulfide nanosheets.
  • researchers also dissolve the amphiphilic surfactant in an organic solvent, and obtain a mixed solution by ultrasonic bathing; then, the molybdenum disulfide powder is added to the mixed solution, ultrasonically, centrifuged, the supernatant is removed, and the precipitate is collected. Dry, to obtain a solid, that is, a two-dimensional layered nanomaterial after peeling.
  • researchers have in the interlayer lithium insertion MoS 2, and MoS 2 achieved by ultrasonic ply stable dispersion in water, but the process is complicated and limits its application.
  • the main object of the present invention is to provide a two-dimensional nano material dispersant, a method for preparing a two-dimensional nano material by liquid phase stripping, and an application thereof, to overcome the deficiencies in the prior art.
  • the technical solution adopted by the present invention includes:
  • An aspect of an embodiment of the present invention provides a two-dimensional nano material dispersing agent comprising any one or a combination of two or more of an aniline oligomer, an aniline oligomer derivative, and a polyaniline conductive polymer.
  • the two-dimensional nano material dispersant is capable of stably dispersing the two-dimensional nano material in the dispersion medium by physically interacting with the two-dimensional nano material; the two-dimensional nano material is selected from two-dimensional boron nitride nano material or two-dimensional Molybdenum disulfide nanomaterials.
  • the aniline oligomer includes any one or a combination of two or more of an aniline trimer, an aniline tetramer, an aniline pentamer, and an aniline hexamer, but is not limited thereto.
  • the aniline oligomer derivative includes a derivative of any one of an aniline trimer, an aniline tetramer, an aniline pentamer, and an aniline hexamer, but is not limited thereto.
  • the aniline oligomer derivative comprises a carboxyl terminated aniline oligomer derivative, an alkyl substituted aniline oligomer derivative or an aniline oligomer linked with a functional group, or an aniline oligomerization Small molecule compound of matter.
  • the functional group includes any one of alkoxy group, carboxyl group, sulfonic acid group, and phosphoric acid group, or a combination of two or more thereof, but is not limited thereto.
  • the aniline oligomer derivative is selected from the group consisting of polymers containing aniline oligomer grafts or blocks, but is not limited thereto.
  • the polyaniline-based conductive polymer includes any one or a combination of two or more of an eigenstate polyaniline, a doped polyaniline, a substituted polyaniline, an oil-soluble polyaniline, and a water-soluble polyaniline, but Not limited to this.
  • the polyaniline-based conductive polymer comprises a polyaniline-based conductive polymer having a structural unit represented by any one of the chemical formulas (1) to (3):
  • the alkyl group is an alkyl group.
  • the weight ratio of the dispersing agent to the two-dimensional nano material is 0.1 to 10:1; preferably, the dispersing agent and the second The weight ratio of the nano-material is 0.2 to 2:1.
  • the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material is selected from nanosheets having a thickness of 1-20 nm.
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a polymer resin, but is not limited thereto.
  • Another aspect of the present invention provides a liquid phase stripping preparation method for a two-dimensional nano material, comprising: mixing boron nitride powder or molybdenum disulfide powder with a dispersing agent in a dispersion medium to form two A stable dispersion of the vitamin nanomaterial; the dispersant is selected from any of the two-dimensional nanomaterial dispersants described above.
  • the two-dimensional nano material is selected from the group consisting of two-dimensional boron nitride nano material or two-dimensional molybdenum disulfide nano material.
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a polymer resin, but is not limited thereto.
  • liquid phase stripping preparation method further comprises: centrifuging the stable dispersion of the two-dimensional nano material, and collecting a composite of the two-dimensional nano material and the dispersing agent.
  • Another aspect of an embodiment of the present invention provides a composite of a two-dimensional nanomaterial and a dispersant selected from any of the two-dimensional nanomaterial dispersants described above.
  • the two-dimensional nano material is selected from the group consisting of two-dimensional boron nitride nano material or two-dimensional molybdenum disulfide nano material.
  • the weight ratio of the dispersing agent to the two-dimensional nano material is 0.1 to 10:1, preferably 0.2 to 2:1.
  • the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material is selected from nanosheets having a thickness of 1-20 nm.
  • Another aspect of the present invention provides a two-dimensional nanomaterial dispersion comprising: a dispersion medium; and any two-dimensional nano material and dispersion dispersed as described above dispersed in the dispersion medium a complex of agents.
  • the two-dimensional nanomaterial dispersion is a fluid dispersion, preferably a liquid dispersion or a slurry.
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a polymer resin, but is not limited thereto.
  • the two-dimensional nano material dispersion comprises a two-dimensional nano material of 10 mg/mL or less.
  • the two-dimensional nanomaterial dispersion comprises 0.1 mg/mL to 5 mg/mL or 0.1 mg/mL to 3 mg/mL or 0.1 mg/mL to 2.5 mg/mL two-dimensional nanomaterial.
  • the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material is selected from nanosheets having a thickness of 1-20 nm.
  • Another aspect of the present invention provides a method for preparing a two-dimensional nano material dispersion, comprising: uniformly mixing a two-dimensional nano material and a dispersing agent in a dispersion medium to form a stable dispersion; Any of the foregoing two-dimensional nanomaterial dispersants.
  • the two-dimensional nano material is selected from the group consisting of two-dimensional boron nitride nano material or two-dimensional molybdenum disulfide nano material.
  • the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material is selected from nanosheets having a thickness of 1 to 20 nm.
  • the weight ratio of the dispersing agent to the two-dimensional nano material is 0.1 to 10:1, preferably 0.2 to 2:1.
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a polymer resin, but is not limited thereto.
  • Another aspect of the present invention provides a redispersible two-dimensional nano material powder which is obtained by removing a dispersion medium in any one of the two-dimensional nano material dispersions described above, and The powder can be directly dispersed again in the dispersion medium.
  • Another aspect of the embodiments of the present invention further provides a two-dimensional nanomaterial dispersion and redispersion method based on a physical method, comprising:
  • the two-dimensional nano material and the dispersing agent are uniformly mixed in a dispersion medium to form a stable dispersion, and the dispersing agent is selected from any one of the two-dimensional nano material dispersing agents mentioned above;
  • the composite is again dispersed in the dispersion medium to form a stable dispersion again.
  • the two-dimensional nano material is selected from the group consisting of two-dimensional boron nitride nano material or two-dimensional molybdenum disulfide nano material.
  • the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material is selected from nanosheets having a thickness of 1-20 nm.
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a polymer resin; preferably, the dispersion medium includes water and/or an organic solvent.
  • the weight ratio of the dispersing agent to the two-dimensional nano material is 0.1 to 10:1, preferably 0.2 to 2:1.
  • the physical method-based implementation of the boron nitride dispersion and redispersion method comprises: uniformly mixing the two-dimensional nano material and the dispersant in water/organic solvent to form a stable dispersion, and then the stable dispersion The drying treatment is carried out to form the composite in a powder form.
  • drying treatment is selected from at least one of spray drying, rotary evaporation, and vacuum drying, and is not limited thereto.
  • the present invention utilizes an easily synthesized, low-cost aniline oligomer, an aniline oligomer derivative or a polyaniline-based conductive polymer as a two-dimensional nano material (such as two-dimensional boron nitride nano material or two a dispersing agent for the molybdenum disulfide nanomaterial), and simply mixing the dispersing agent with boron nitride or molybdenum disulfide in a dispersion medium such as water, an organic solvent or a polymer resin, through physical interaction between the two , the dispersion and dispersion stability of the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material in the dispersion medium can be greatly improved; and the dispersant can also be obtained by a simple liquid phase stripping method.
  • a dispersion medium such as water, an organic solvent or a polymer resin
  • Two-dimensional nanomaterials such as boron nitride nanosheets and molybdenum disulfide nanosheets do not impair the physical structure and chemical properties of boron nitride, molybdenum disulfide, etc.
  • the process is clean, efficient, and easy to operate, and is advantageous for large-scale implementation.
  • Dispersing media used for dispersion or stripping of two-dimensional nanomaterials, especially water, organic solvents, etc. can be recycled, which can reduce costs and reduce emissions of waste water and waste gases.
  • Fig. 1 is an SEM image of hexagonal boron nitride before peeling in Example 1 of the present invention.
  • Figure 2 is a photograph showing the dispersion and redispersion of boron nitride in the absence of a dispersant and a dispersant in Example 1 of the present invention.
  • 3a-3b are TEM images of a boron nitride two-dimensional nanosheet after peeling in Example 1 of the present invention.
  • Figure 4 is a photograph showing the dispersion and redispersion of boron nitride in the absence of a dispersant and a dispersant in Example 3 of the present invention.
  • Fig. 5 is a TEM image of a boron nitride two-dimensional nanosheet after peeling in Example 3 of the present invention.
  • Figures 6a-b are photographs showing the dispersion and redispersion of boron nitride in the absence of a dispersant and a dispersant in Example 6 of the present invention.
  • Fig. 7 is a TEM image of a boron nitride two-dimensional nanosheet after peeling in Example 6 of the present invention.
  • Figure 8 is a photograph showing the dispersion of molybdenum disulfide in the absence of a dispersant and a dispersant in Example 9 of the present invention.
  • Fig. 9 is a SEM photograph of the molybdenum disulfide nanosheet after peeling in Example 9 of the present invention.
  • Figures 10a-b are photographs showing the dispersion of molybdenum disulfide in the absence of a dispersant and a dispersant in Example 14 of the present invention.
  • Figure 11 is a SEM photograph of a molybdenum disulfide nanosheet peeled off in Example 14 of the present invention.
  • Some embodiments of the present invention provide a two-dimensional nano material dispersant comprising any one of an aniline oligomer, an aniline oligomer derivative, and a polyaniline conductive polymer or Two or more combinations, and the two-dimensional nano material dispersant can physically disperse the two-dimensional nano material in the dispersion medium by physically interacting with the two-dimensional nano material.
  • the two-dimensional nano material is selected from the group consisting of two-dimensional boron nitride nano material or two-dimensional molybdenum disulfide nano material.
  • Some embodiments of the present invention also provide a composite of a two-dimensional nanomaterial and the aforementioned two-dimensional nanomaterial dispersant.
  • the weight ratio of the two-dimensional nano material dispersing agent to the two-dimensional nano material is preferably from 0.1 to 10:1, particularly preferably from 0.2 to 2:1.
  • Some embodiments of the present invention also provide the use of an aniline oligomer, an aniline oligomer derivative or a polyaniline-based conductive polymer as a boron nitride dispersant.
  • Some embodiments of the present invention also provide a liquid phase stripping method for preparing a two-dimensional nano material, comprising: dispersing the aforementioned two-dimensional nano material dispersant with boron nitride or molybdenum disulfide (particularly powder) in a dispersion medium (preferably water, an aqueous solution or an organic solvent) is thoroughly mixed (for example, by mechanical stirring, ultrasonic or the like) to form a stable dispersion of a two-dimensional nanomaterial.
  • a dispersion medium preferably water, an aqueous solution or an organic solvent
  • liquid phase stripping preparation method further comprises: centrifuging the stable dispersion of the two-dimensional nano material, and collecting a composite of the two-dimensional nano material and the two-dimensional nano material dispersing agent.
  • Some embodiments of the present invention also provide a type of two-dimensional nanomaterial dispersion comprising: a dispersion medium; and any two-dimensional nanomaterial and two-dimensionally dispersed as described above dispersed in the dispersion medium A composite of nanomaterial dispersants.
  • the two-dimensional nanomaterial dispersion is a fluid dispersion, preferably a liquid dispersion or a slurry.
  • the weight ratio of the two-dimensional nano material dispersing agent to the two-dimensional nano material is 0.1 to 10:1.
  • the weight ratio of the two-dimensional nano material dispersing agent to the two-dimensional nano material is 0.2 to 2:1.
  • the two-dimensional nano material dispersion comprises a two-dimensional nano material of 10 mg/mL or less.
  • the maximum dispersion of the two-dimensional nanomaterial in a dispersion medium for example, water or an organic solvent
  • a dispersion medium for example, water or an organic solvent
  • Some embodiments of the present invention also provide a method for preparing a two-dimensional nanomaterial dispersion, comprising: uniformly mixing a two-dimensional nano material and a dispersant in a dispersion medium to form a stable dispersion; the dispersant is selected from the foregoing Any of two-dimensional nanomaterial dispersants.
  • the weight ratio of the dispersing agent to the two-dimensional nano material is 0.1 to 10:1, preferably 0.2 to 2:1.
  • Some embodiments of the present invention also provide a redispersible two-dimensional nanomaterial powder by removing the dispersion medium (preferably water, organic solvent, etc.) in any of the two-dimensional nanomaterial dispersions described above.
  • the powder obtained by dispersing the medium), and the powder can be directly dispersed again in the dispersion medium.
  • Some embodiments of the present invention also provide a two-dimensional nanomaterial dispersion and redispersion method based on a physical method, comprising:
  • the two-dimensional nano material and the dispersing agent are uniformly mixed in a dispersion medium to form a stable dispersion, and the dispersing agent is selected from any one of the two-dimensional nano material dispersing agents mentioned above;
  • the composite is again dispersed in the dispersion medium to form a stable dispersion again.
  • the weight ratio of the dispersing agent to the two-dimensional nano material is 0.1 to 10:1, preferably 0.2 to 2:1.
  • the physical method-based implementation of the boron nitride dispersion and redispersion method comprises: uniformly mixing the two-dimensional nano material and the dispersant in water/organic solvent to form a stable dispersion, and then the stable dispersion The drying treatment is carried out to form the composite in a powder form.
  • the manner of the aforementioned drying treatment may be at least selected from any one of spray drying, rotary evaporation, and vacuum drying, but is not limited thereto.
  • aniline oligomer also known as aniline oligomer, contains an aniline conjugated segment shorter than polyaniline, and has an electroactive activity similar to that of polyaniline, but has no defects in the molecule and has better solubility.
  • the aniline oligomer suitable for use in the present invention may preferably be a combination of any one or more selected from the group consisting of an aniline trimer, an aniline tetramer, an aniline pentamer, and an aniline hexamer, but is not limited thereto.
  • the aforementioned aniline oligomer derivative is mainly formed based on an aniline oligomer, and the definition of the aniline oligomer is as described above.
  • the aforementioned aniline oligomer derivative may be selected from a derivative of aniline trimer, aniline tetramer, aniline pentamer, aniline hexamer or a combination of various derivatives, but not Limited to this.
  • the aforementioned aniline oligomer derivative includes a carboxylic acid-terminated aniline oligomer derivative, an aniline oligomer to which a functional group is attached, or a small molecule compound containing an aniline oligomer.
  • the functional group includes any one of alkoxy group, carboxyl group, sulfonic acid group, and phosphoric acid group, or a combination of two or more thereof, but is not limited thereto.
  • the aniline oligomer derivative is selected from the group consisting of polymers containing aniline oligomer grafts or blocks.
  • the aniline oligomer derivative has any one of the following chemical formulas:
  • M includes Na + , K + , potassium or quaternary ammonium salt cations, but is not limited thereto.
  • aniline oligomers or aniline oligomer derivatives are commercially available and can be consulted (for example, "CHEM. COMMUN.”, 2003, pp. 2768-2769; “Synthetic Metals", 2001, Vol. 122, pp. 237-242; CN101811997A; CN 1369478A, CN 1204655A, etc.) Self-made.
  • the polyaniline-based conductive polymer includes any one or a combination of two or more of an eigenstate polyaniline, a doped polyaniline, a substituted polyaniline, an oil-soluble polyaniline, and a water-soluble polyaniline, and is not limited thereto.
  • the polyaniline-based conductive polymer includes a polyaniline-based conductive polymer having a structural unit represented by any one of Chemical Formulas (1) to (3):
  • n 3 to 500.
  • the polyaniline-based conductive polymer suitable for use in the present invention can be obtained from commercially available sources, and can also be referred to literature (for example, Journal of Polymer Science, 2000, 38: 194-195, 203; Materials Herald, 2001, 15(3): 42; Journal of Solid State Chemistry, 2006, 179(1): 308-314; Chem. Commun., 1977, 16: 578-580.).
  • the dispersion medium includes any one or a combination of two or more of water, an organic solvent, and a polymer resin, but is not limited thereto.
  • the dispersion medium is selected from the group consisting of low boiling point solvents and/or high boiling polar organic solvents, for example, may be selected from the group consisting of ethanol, tetrahydrofuran, N,N-dimethylformamide, dimethyl sulfoxide. Any one or a combination of two or more of chloroform and N-methylpyrrolidone, but is not limited thereto.
  • the dispersion medium can be selected from the group consisting of water, aqueous solutions, such as aqueous alkaline solutions containing basic materials, and the like.
  • the dispersion medium may be selected from a polymer resin such as polyethylene glycol, polypropylene glycol, or the like, but is not limited thereto.
  • the two-dimensional boron nitride nano material or the two-dimensional molybdenum disulfide nano material is selected from nanosheets having a thickness of 1-20 nm.
  • the aniline oligomer can be used as a two-dimensional nanomaterial dispersant, and the aniline oligomer and the nitriding agent can be nitrided by any one or more of physical methods such as ultrasonication, stirring, shaking, and the like.
  • the boron is thoroughly mixed in the dispersion medium, so that the aniline oligomer is physically combined with boron nitride (especially two-dimensional boron nitride nanomaterial), so that boron nitride (especially two-dimensional boron nitride nanomaterial) is
  • the maximum dispersion in the dispersion medium is 10 mg/mL (preferably 0.01 mg/mL to 5 mg/mL, particularly preferably 0.1 mg/mL to 5 mg/mL).
  • a two-dimensional boron nitride nanomaterial dispersion may comprise: a dispersion medium (preferably the aforementioned organic solvent); and two-dimensional nitridation dispersed in the dispersion medium A composite of boron nanomaterials and aniline oligomers.
  • a redispersible two-dimensional boron nitride nanomaterial powder may be obtained by removing a dispersion medium in any of the boron nitride dispersions as described above (preferably the foregoing A powder obtained by an organic solvent), and the powder can be directly dispersed again in the dispersion medium. Wherein, the dispersion medium can be recycled.
  • the two-dimensional boron nitride nano material and the aniline oligomer can be uniformly mixed in an organic solvent to form a stable dispersion, and then the stable dispersion is applied by any of the drying methods described above.
  • a drying treatment i.e., removal of the organic solvent
  • the dispersion medium may preferably be an organic solvent, particularly preferably from a low boiling point solvent and/or a high boiling polar organic solvent, for example, preferably from ethanol, tetrahydrofuran, dimethylformamide, or the like. Any one or more of methyl sulfoxide, chloroform and N-methylpyrrolidone, and is not limited thereto.
  • the separation and good dispersion of the two-dimensional boron nitride nanomaterial in a dispersion medium can be achieved by physical interaction between the aniline oligomer and boron nitride.
  • the entire stripping process is simple to operate, and does not require harsh reaction conditions (such as high temperature, high pressure, strong acid and strong alkali), which is advantageous for large-scale production and application of downstream products.
  • an aniline oligomer derivative can be used as a two-dimensional nanomaterial dispersant, and the aniline oligomer can be derived by using any one or more of physical methods such as ultrasonication, stirring, shaking, and the like.
  • the material is sufficiently mixed with boron nitride in a dispersion medium, so that the aniline oligomer is physically combined with boron nitride (especially two-dimensional boron nitride nanomaterial), thereby making boron nitride (especially two-dimensional boron nitride)
  • the nanomaterial has a maximum dispersion of 10 mg/mL (preferably below 5 mg/mL) in a dispersion medium (for example, water, particularly an alkaline aqueous solution), and particularly preferably at a dispersion degree of 0.1 mg/mL to 5 mg/mL. Long-term stability exists.
  • a method for preparing a two-dimensional boron nitride nano material by liquid phase stripping may include: selecting an aniline oligomer derivative by using at least one of physical methods such as ultrasonication, stirring, shaking, and the like, The base which can be selectively added or not added is sufficiently mixed with the boron nitride powder in a dispersion medium to form a stable dispersion of the two-dimensional boron nitride nanomaterial.
  • the aniline oligomer derivative, the alkali and the boron nitride powder can be thoroughly mixed in water to form a two-dimensional boron nitride A stable dispersion of the nanomaterial is then subjected to centrifugation of the stable dispersion to obtain a composite of the two-dimensional boron nitride nanomaterial and the aniline oligomer derivative.
  • a two-dimensional boron nitride nanomaterial dispersion may comprise: a dispersion medium (preferably an aqueous phase system such as water or an aqueous solution, particularly preferably an alkaline aqueous solution); and, dispersed in the A composite of a two-dimensional boron nitride nanomaterial and an aniline oligomer derivative in a dispersion medium.
  • a dispersion medium preferably an aqueous phase system such as water or an aqueous solution, particularly preferably an alkaline aqueous solution
  • a redispersible two-dimensional boron nitride nanomaterial powder may be obtained by removing a dispersion medium (preferably water or in any of the boron nitride dispersions as described above).
  • a dispersion medium preferably water or in any of the boron nitride dispersions as described above.
  • the powder obtained by the aqueous solution, and the powder can be directly dispersed again in the dispersion medium. Wherein, the dispersion medium can be recycled.
  • the two-dimensional boron nitride nano material and the aniline oligomer derivative may be uniformly mixed in a water or an alkaline aqueous solution to form a stable dispersion, and then any of the aforementioned drying methods may be employed.
  • the stable dispersion is subjected to a drying treatment (i.e., removal of water or an aqueous alkaline solution) to form a composite of a powdery two-dimensional boron nitride nanomaterial and an aniline oligomer derivative.
  • the dispersion medium may be selected from the group consisting of water, the above-mentioned organic solvent, and the above-mentioned polymer resin. However, it is preferably water or an aqueous solution, and particularly preferably an alkaline aqueous solution.
  • the aforementioned base includes NaOH, KOH or ammonia water, etc., and is not limited thereto.
  • the aniline oligomer derivative may preferably be a carboxylic acid-terminated aniline oligomer derivative or linked with a functional group (eg, an alkoxy group, a carboxyl group, a sulfonic acid group, a phosphate group, etc.)
  • a functional group eg, an alkoxy group, a carboxyl group, a sulfonic acid group, a phosphate group, etc.
  • An aniline oligomer, such as the aniline oligomer derivative has any one of the following chemical formulae:
  • M includes Na + , K + , potassium or quaternary ammonium salt cations.
  • the two-dimensional boron nitride nanomaterial can be realized in a dispersion medium (preferably water or an aqueous solution by means of physical interaction between the aniline oligomer derivative and the two-dimensional boron nitride nanomaterial, Particularly preferred is exfoliation and good dispersion in an alkaline aqueous solution.
  • a dispersion medium preferably water or an aqueous solution by means of physical interaction between the aniline oligomer derivative and the two-dimensional boron nitride nanomaterial, Particularly preferred is exfoliation and good dispersion in an alkaline aqueous solution.
  • the entire stripping process is simple to operate, and does not require harsh reaction conditions (such as high temperature, high pressure, strong acid and strong alkali), which is advantageous for large-scale production and downstream products. Applications.
  • a polyaniline-based conductive polymer can be used as a two-dimensional nanomaterial dispersant.
  • the polyaniline-based conductive polymer and the boron nitride are sufficiently mixed in a dispersion medium by using any one or more of physical methods such as ultrasonication, stirring, and shaking, so that the polyaniline-based conductive polymer physically interacts with boron nitride.
  • boron nitride especially two-dimensional boron nitride nanomaterials
  • a dispersion medium for example water and/or the aforementioned organic solvent
  • 10 mg /mL preferably 5 mg/mL or less
  • a method for preparing a two-dimensional boron nitride nano material by liquid phase stripping may include: selecting at least one of a polyaniline conductive polymer by using at least one of physical methods such as ultrasonication, stirring, and shaking.
  • the boron nitride powder is thoroughly mixed in a dispersion medium to form a stable dispersion of the two-dimensional boron nitride nanomaterial.
  • the stable dispersion may be subjected to centrifugation to collect a composite of a two-dimensional boron nitride nano material and a polyaniline conductive polymer.
  • a two-dimensional boron nitride nanomaterial dispersion may comprise: a dispersion medium (eg, water and/or an organic solvent as described above); and, dispersed in the dispersion medium, A composite of a boron nitride nano material and a polyaniline conductive polymer.
  • the two-dimensional boron nitride nanomaterial dispersion herein is preferably a liquid dispersion or a slurry.
  • a redispersible two-dimensional boron nitride nanomaterial powder can be obtained by removing a dispersion medium (eg, water and/or in any of the boron nitride dispersions as previously described). Or a powder obtained by the aforementioned organic solvent), and the powder can be directly dispersed again in the dispersion medium. Wherein, the dispersion medium can be recycled.
  • a dispersion medium eg, water and/or in any of the boron nitride dispersions as previously described.
  • a powder obtained by the aforementioned organic solvent or a powder obtained by the aforementioned organic solvent
  • the powder can be directly dispersed again in the dispersion medium.
  • the dispersion medium can be recycled.
  • the two-dimensional boron nitride nano material and the polyaniline conductive polymer may be uniformly mixed in water and/or the aforementioned organic solvent to form a stable dispersion, and then any of the foregoing may be used.
  • the stable dispersion is subjected to a drying treatment (that is, removal of water and/or the aforementioned organic solvent) to form a composite of a powdery two-dimensional boron nitride nanomaterial and a polyaniline-based conductive polymer.
  • the dispersion medium includes any one or a combination of two or more of water, the organic solvent, and the polymer resin, and is preferably selected from an organic solvent such as various organic solvents as exemplified above.
  • the liquid phase stripping boron nitride method of the present invention can realize the two-dimensional boron nitride nano material in water and/or organic solvent by physical interaction between the polyaniline conductive polymer and the two-dimensional boron nitride nano material. Peeling and good dispersion in the dispersion medium, the entire stripping process is simple to operate, and does not require harsh reaction conditions (such as high temperature, high pressure, strong acid and strong alkali reaction conditions), which is advantageous for large-scale production and application of downstream products.
  • harsh reaction conditions such as high temperature, high pressure, strong acid and strong alkali reaction conditions
  • the liquid phase exfoliation preparation, dispersion and redispersion of the two-dimensional boron nitride nano material can be realized in a simple, low-cost and large-scale manner, in particular, the obtained redispersible boron nitride composite powder.
  • Thenly composed of a composite of two-dimensional boron nitride nanomaterials and the aforementioned two-dimensional nanomaterial dispersant has broad application prospects in the fields of functional coatings, heat conduction and composite reinforcement.
  • the aforementioned aniline oligomer or derivative thereof can be used as the two-dimensional nanomaterial.
  • Dispersant by using any one or more of physical means such as ultrasonication, stirring, shaking, etc., the aniline oligomer or its derivative and molybdenum disulfide in a dispersion medium (such as water, an aqueous solution and/or the aforementioned organic solvent, etc.) Fully mixed, such that the aniline oligomer or its derivative is physically combined with molybdenum disulfide (especially two-dimensional molybdenum disulfide nanomaterial) to make molybdenum disulfide (especially two-dimensional molybdenum disulfide nanomaterial)
  • the maximum dispersion in a dispersion medium such as water, an aqueous solution and/or the aforementioned organic solvent or the like reaches 10 mg/mL (preferably 0.1 mg/mL to 10 mg/mL, particularly preferably 0.1 mg/mL to 2.5 mg/mL)
  • a two-dimensional molybdenum disulfide nanomaterial dispersion may comprise: a dispersion medium (such as water, an aqueous solution, and/or an organic solvent as described above); and dispersed in the dispersion medium. , a composite of two-dimensional molybdenum disulfide nanomaterials and aniline oligomers or derivatives thereof.
  • a dispersion medium such as water, an aqueous solution, and/or an organic solvent as described above
  • a redispersible two-dimensional molybdenum disulfide nanomaterial powder may be obtained by removing a dispersion medium in any of the two-dimensional molybdenum disulfide nanomaterial dispersions as described above (A powder obtained by, for example, water, an aqueous solution, and/or an organic solvent as described above, and the powder can be directly dispersed again in the dispersion medium. Wherein, the dispersion medium can be recycled.
  • the aniline oligomer and/or the aniline oligomer derivative, the alkali (eg, NaOH, KOH, etc.) and the molybdenum disulfide powder may be thoroughly mixed in water to form a two-dimensional disulfide.
  • a stable dispersion of the molybdenum nanomaterial is then subjected to centrifugation of the stable dispersion to obtain a composite of the two-dimensional molybdenum disulfide nanomaterial and the aniline oligomer and/or the aniline oligomer derivative.
  • the dispersion medium may be selected from the group consisting of water, the aforementioned organic solvent, and the above-mentioned polymer resin, etc., but is preferably water or an aqueous solution, and particularly preferably an alkaline aqueous solution.
  • the aniline oligomer derivative comprises a small molecule compound containing an aniline oligomer, particularly a carboxyl terminated aniline oligomer derivative, an alkyl substituted aniline oligomer derivative. Wait.
  • an aniline oligomer particularly a carboxyl terminated aniline oligomer derivative, an alkyl substituted aniline oligomer derivative.
  • the aniline oligomer derivative may be selected from the group consisting of polymers containing aniline oligomer grafts or blocks.
  • polyethylene glycol-terminated aniline oligomers polyethylene glycol-terminated aniline trimers, tetramers and pentamers, etc.
  • polylactic acid-terminated aniline oligomers polylactic acid-terminated aniline trimers
  • the aniline oligomer derivative may preferably be a compound having any of the following chemical formulas:
  • M includes H + , Na + , K + or a quaternary ammonium salt cation.
  • the two-dimensional molybdenum disulfide nanomaterial can be realized in water by physical interaction between the aniline oligomer and/or the aniline oligomer derivative and the two-dimensional molybdenum disulfide nanomaterial.
  • / / Dispersion and good dispersion in dispersion medium such as organic solvent the entire stripping process is clean and efficient and easy to operate, do not require harsh reaction conditions (such as high temperature, high pressure, strong acid and strong alkali and other reaction conditions), which is conducive to large-scale production and development The application of its downstream products.
  • the polyaniline-based conductive polymer can be used as a two-dimensional nano material dispersant, and the polyaniline is electrically conductive by using any one or more of physical methods such as ultrasonication, stirring, and shaking.
  • the molecule and the molybdenum disulfide are thoroughly mixed in the dispersion medium, so that the polyaniline-based conductive polymer is physically combined with molybdenum disulfide (especially two-dimensional molybdenum disulfide nanomaterial), thereby making molybdenum disulfide (especially two-dimensional two)
  • the molybdenum sulfide nanomaterial has a maximum dispersion of 5 mg/mL in a dispersion medium (for example, water and/or the aforementioned organic solvent), and particularly preferably has a long-term stable presence at a dispersion degree of 0.1 mg/mL to 3 mg/mL.
  • a method for preparing a two-dimensional molybdenum disulfide nano material by liquid phase stripping may include: selecting at least one of a polyaniline conductive polymer by using at least one of physical methods such as ultrasonication, stirring, and shaking.
  • the molybdenum disulfide powder is thoroughly mixed in a dispersion medium to form a stable dispersion of the two-dimensional molybdenum disulfide nanomaterial.
  • the stable dispersion may be subjected to centrifugation to collect a composite of a two-dimensional molybdenum disulfide nano material and a polyaniline-based conductive polymer.
  • a two-dimensional molybdenum disulfide nanomaterial dispersion may comprise: a dispersion medium (eg, water and/or an organic solvent as described above); and, dispersed in the dispersion medium, A composite of a molybdenum disulfide nanomaterial and a polyaniline conductive polymer.
  • the two-dimensional molybdenum disulfide nanomaterial dispersion herein is preferably a liquid dispersion or a slurry or the like.
  • a redispersible two-dimensional molybdenum disulfide nanomaterial powder can be passed a powder obtained by dispersing a medium (for example, water and/or the aforementioned organic solvent) in any one of two-dimensional molybdenum disulfide nanomaterial dispersions as described above, and the powder can be directly dispersed again In the dispersion medium. Wherein, the dispersion medium can be recycled.
  • a medium for example, water and/or the aforementioned organic solvent
  • the two-dimensional molybdenum disulfide nano material and the polyaniline-based conductive polymer may be uniformly mixed in water and/or the aforementioned organic solvent to form a stable dispersion, and then any of the foregoing may be used.
  • the stable dispersion is subjected to a drying treatment (ie, removal of water and/or the aforementioned organic solvent) to form a composite of a two-dimensional molybdenum disulfide nanomaterial and a polyaniline-based conductive polymer in a powder form.
  • the dispersion medium includes any one or a combination of two or more of water, the organic solvent, and the polymer resin, and is preferably water or an organic solvent, for example, various organic solvents as exemplified above.
  • the liquid phase stripping boron nitride method of the invention can realize the two-dimensional two-dimensional molybdenum disulfide nano material nano material by the physical interaction between the polyaniline conductive polymer and the two-dimensional two-dimensional molybdenum disulfide nano material nano material. Peeling and good dispersion in dispersion media such as water and/or organic solvents, the entire stripping process is simple to operate, and does not require harsh reaction conditions (such as high temperature, high pressure, strong acid and strong alkali), which is advantageous for large-scale production and development. The application of its downstream products.
  • the liquid phase exfoliation preparation, dispersion and redispersion of the two-dimensional molybdenum disulfide nano material can be realized in a simple, low-cost and large-scale manner, in particular, the obtained redispersible molybdenum disulfide composite powder can be obtained.
  • the stripped molybdenum disulfide two-dimensional nanosheets are expected to have broad application prospects in the fields of semiconductors, energy, wear-resistant lubricating coatings, composite materials and the like.
  • aniline trimer p-phenylenediamine sulfate (8.87 g) and aniline (5.56 g) were placed in a three-necked flask of 1 M hydrochloric acid solution (500 mL) and cooled to -5 °C. 150 mL of ammonium persulfate (13.62 g) in hydrochloric acid (1 M) solution was slowly added dropwise to the above reaction flask through a dropping funnel. After the dropwise addition was completed, the reaction was further stirred for 1 h, and the reaction product was suction filtered with a large amount of deionized water. Wash to give a dark green solid product. The product was then washed with 10% aqueous ammonia solution, washed twice with deionized water, and finally the product was placed in a vacuum oven at 40 ° C for drying.
  • aniline trimer and boron nitride powder are mixed in a certain ratio and dissolved in ethanol (EtOH) and tetrahydrofuran (THF) respectively, and ultrasonically dispersed for 10 minutes to examine the effect of boron nitride on the aniline oligomer.
  • EtOH ethanol
  • THF tetrahydrofuran
  • the boron nitride powder to which the aniline trimer is not added is highly susceptible to aggregation in a conventional organic solvent such as tetrahydrofuran (THF) or ethanol (EtOH).
  • a conventional organic solvent such as tetrahydrofuran (THF) or ethanol (EtOH).
  • EtOH ethanol
  • boron nitride is stripped under the action of aniline oligomer, and the aniline trimer-boron nitride complex can form a stable dispersion in an organic solvent such as ethanol and tetrahydrofuran.
  • the boron content can reach 5 mg/mL) and there is no obvious precipitation.
  • FIG. 3a to FIG. 3b TEM photographs of typical boron nitride two-dimensional nanosheets (hexagonal boron nitride nanosheets) obtained after stripping in the present embodiment.
  • aniline tetramer and boron nitride powder are dissolved in THF or DMF according to a certain ratio, and dispersed by ultrasonic for 10 minutes to test the dispersion effect in the solvent.
  • Table 3 and Table 4 aniline IV When the concentration of the polymer-boron nitride complex is less than 5 mg/mL, a stable dispersion can be formed in tetrahydrofuran, and no significant precipitation occurs within 30 days.
  • the aniline trimer used in this example was synthesized by the literature (Chem. Eur. J. 2008, 14, 2909). The process comprises: dissolving aniline trimer (2.92g) in 50mL THF, then adding maleic anhydride (2.46g), reacting at 40 ° C for 3 hours, and precipitating the product with petroleum ether to obtain carboxyl terminated aniline trimer Body (4.81g).
  • the aniline tetramer used in this example was synthesized by the literature (Acta Chem. 2001, 69, 41). The process consisted of adding an aniline tetramer (2.1 g) to 50 mL of THF, then adding maleic anhydride (0.68 g), reacting at 40 ° C for 3 hours, and precipitating with petroleum ether to obtain an aniline tetramer carboxyl derivative.
  • the obtained aniline tetramer carboxyl derivative, 2 times molar equivalent of NaOH and hexagonal boron nitride powder are formulated into a certain concentration
  • the aqueous solution, ultrasonic for 10 minutes, the dispersion effect is shown in Table 6.
  • the concentration of boron nitride nanosheets is below 2.5mg/mL, a uniform dispersion can be formed.
  • the boron nitride nanosheets tend to At saturation, some precipitation occurs.
  • the carboxy-terminated aniline pentamers used in this example were synthesized according to the literature (Journal of Chemical Engineering of Higher Education, 2004, 9, 1768).
  • the process comprises: arranging the obtained aniline pentameric carboxyl derivative and 2 times molar equivalent of NaOH and boron nitride into a certain concentration of aqueous solution, and ultrasonicizing for 10 minutes, the dispersion effect is as shown in Table 7, when the boron nitride nanosheet When the concentration is below 2.5 mg/mL, a uniform dispersion can be formed. When the concentration is 5 mg/mL, the boron nitride nanosheet tends to be saturated in water, and some precipitation occurs.
  • the stabilized boron nitride nanosheet dispersion obtained in Example 3 - Example 5 is treated by vacuum drying to form a boron nitride powder. After the powder is dispersed again in water, it can be stirred or ultrasonically. A stably dispersed dispersion system was formed which was allowed to stand at room temperature for more than 30 days with substantially no sedimentation.
  • a 200 mL round bottom flask was charged with 100 mL of 1 M hydrochloric acid, aniline (7 g), dissolved with stirring and cooled to zero. Then, 17 g of ammonium persulfate was dissolved in 50 mL of 1 M hydrochloric acid solution and slowly added dropwise to the round bottom flask. After the completion of the dropwise addition, the reaction was carried out for 12 hours, and the reaction liquid was filtered, and washed twice with distilled water to obtain a dark green doped polyaniline.
  • the obtained dark green polyaniline was immersed in 10% aqueous ammonia for 12 hours, filtered, and washed with distilled water until the filtrate was neutral, and dried under vacuum at 65 ° C for 24 hours to obtain an intrinsic polyaniline (5.2 g).
  • the eigenstate polyaniline has good solubility in a strong polar solvent such as DMF, NMP or the like.
  • the eigenstate polyaniline, boron nitride powder and DMF prepared in this example were mixed in a certain ratio and ultrasonically dispersed for 10 minutes to examine the dispersion effect of boron nitride under the action of polyaniline, and the boron nitride nanosheet was in polyaniline. Peeling occurs under the action of peeling (see Figure 7 for the morphology after peeling). When the concentration of boron nitride nanosheets is below 5 mg/mL, a stable dispersion can be formed, which is left to stand for 30 days without obvious precipitation, and when boron nitride is formed. A certain degree of precipitation occurs when the nanosheet concentration reaches 10 mg/mL (see Figure 6a and Table 8).
  • a 200 mL round bottom flask was charged with 100 mL of 1 M hydrochloric acid, o-isopropylaniline (6.0 g), dissolved by stirring and cooled to zero. Then, 11.44 g of ammonium persulfate was dissolved in 50 mL of 1 M hydrochloric acid solution and slowly added dropwise to the round bottom flask. After the completion of the dropwise addition, the reaction was carried out for 12 hours, and the reaction liquid was filtered and washed twice with distilled water to obtain an ink green doped isopropylidene. Polyaniline.
  • the obtained dark green polyaniline was immersed in 10% aqueous ammonia for 12 hours, filtered, and washed with distilled water until the filtrate was neutral, and dried under vacuum at 65 ° C for 24 hours to obtain an eigenstate isopropyl-substituted polyaniline (4.6 g).
  • the eigenstate isopropyl polyaniline has good solubility in polar solvents such as THF, CHCl 3 , DMF, NMP and the like.
  • the eigenstate isopropyl polyaniline, boron nitride powder and THF prepared in this example were mixed in a certain ratio and ultrasonically dispersed for 10 minutes to examine the dispersion effect of boron nitride under the action of isopropyl-substituted polyaniline, nitrogen. Boron nanosheets are stripped under the action of isopropyl-substituted polyaniline.
  • concentration of boron nitride nanosheets is below 5mg/mL, a stable dispersion is formed.
  • the concentration of boron nitride nanosheets reaches 10mg/mL, it will be due to nanosheets. A certain degree of precipitation occurs when the concentration is too high (see Table 9).
  • a 200 mL round bottom flask was charged with 250 mL of 1 M hydrochloric acid, o-anilinesulfonic acid (4.3 g), aniline (2.3 g), dissolved by stirring and cooled to zero. Then, 11.39 g of ammonium persulfate was dissolved in 150 mL of 1 M hydrochloric acid solution and slowly added dropwise to the round bottom flask. After the completion of the dropwise addition, the reaction was carried out for 12 hours, and the reaction liquid was centrifuged, and the precipitate was washed twice with distilled water and centrifuged to obtain an ink. The green sulfonated aniline copolymer is ready for use. The sulfonated aniline copolymer has good solubility in a solvent such as H 2 O, EtOH, THF, DMF or NMP.
  • the sulfonated aniline copolymer, boron nitride powder and water (or ethanol) prepared in this example were mixed in a certain ratio, ultrasonically dispersed for 10 minutes, and the dispersion effect of the boron nitride nanosheet was examined, and the boron nitride nanosheet was sulfonated. Peeling under the action of polyaniline, when the concentration of boron nitride nanosheets is below 5mg/mL, a stable dispersion can be formed. When the concentration of boron nitride nanosheets reaches 10mg/mL, precipitation occurs due to excessive concentration of nanosheets. Table 10 - Table 11).
  • Table 11 Dispersion ability of boron nitride two-dimensional nanosheets in ethanol (mass ratio of sulfonated polyaniline and boron nitride 1:2)
  • the stabilized boron nitride nanosheet dispersions obtained in Example 6 to Example 8 were treated by vacuum drying to form boron nitride powders, and after dispersing the powders in the aforementioned organic solvent, vigorously stirring or ultrasonically Thus, a stably dispersed dispersion system can be formed which is allowed to stand at room temperature for more than 30 days without significant sedimentation.
  • aniline trimer p-phenylenediamine sulfate (8.87 g) and aniline (5.56 g) were placed in a three-necked flask containing a hydrochloric acid solution (1 M, 500 mL) and cooled to -5 °C. 150 mL of a solution of ammonium persulfate (13.62 g) in hydrochloric acid (1 M) was slowly added dropwise to the reaction flask through a dropping funnel. After the dropwise addition was completed, the reaction was further stirred for 1 hour, and the reaction product was suction filtered, and a large amount of deionized. Water was washed to give a dark green solid product.
  • aniline trimer has good solubility in a solvent such as ethanol, ethyl acetate, tetrahydrofuran, chloroform or dimethylformamide.
  • the aniline trimer obtained in this example and the molybdenum disulfide powder were mixed in a certain ratio and dissolved in ethanol (EtOH) and tetrahydrofuran (THF) respectively, and ultrasonically dispersed for 10 minutes to examine the effect of molybdenum disulfide on the aniline oligomer.
  • the dispersion effect is as shown in Table 12 and Table 13.
  • the aniline trimer - The molybdenum disulfide complex can form a stable dispersion in ethanol and tetrahydrofuran, and no obvious precipitation occurs.
  • concentration of molybdenum disulfide nanosheet reaches 5 mg/mL, a part of the layer will accumulate and precipitate after standing for 1 hour (see Figure 8).
  • aniline tetramer has good solubility in tetrahydrofuran, ethyl acetate, nitrogen, nitrogen-dimethylformamide.
  • the aniline tetramer and the molybdenum disulfide powder of the present example were dissolved in THF in a certain ratio, and ultrasonically dispersed for 10 minutes to examine the dispersion effect in the solvent, as shown in Table 14, when the concentration of the molybdenum disulfide nanosheet was Under 2.5mg/mL, the aniline tetramer-molybdenum disulfide complex can form a stable dispersion in tetrahydrofuran, no obvious precipitation occurs, when the molybdenum disulfide nanosheet When the concentration reaches 5 mg/mL, partial aggregation precipitation occurs.
  • the aniline trimer (2.92 g) was dissolved in 50 mL of THF, then maleic anhydride (2.46 g) was added, and the reaction was carried out at 40 ° C for 3 hours, and the reaction product was precipitated with petroleum ether to obtain a carboxy-terminated aniline trimer (4.8 g). ).
  • the dispersion effect is shown in Table 15.
  • the concentration of molybdenum disulfide nanosheets is less than 2.5 mg/mL, a stable dispersion can be formed. At a concentration of 5 mg/mL, the molybdenum disulfide nanosheets tend to be saturated in water and allowed to stand. Part of the precipitation occurred after some hours of precipitation.
  • the aniline tetramer (2.1 g) was added to 50 mL of THF, and then maleic anhydride (0.68 g) was added thereto, and the mixture was reacted at 40 ° C for 3 hours, and precipitated with petroleum ether to obtain an aniline tetramer carboxyl derivative.
  • the obtained aniline tetramer carboxyl derivative and 2 times molar equivalent of NaOH and molybdenum disulfide powder were mixed into a certain concentration of aqueous solution, and ultrasonication was carried out for 10 minutes, and the dispersion effect was as shown in Table 16.
  • the concentration of the molybdenum disulfide nanosheet was 3 mg. When the concentration is below 5 mL, a uniform dispersion can be formed. When the concentration is 5 mg/mL, the molybdenum disulfide nanosheet tends to be saturated in water, and some precipitation occurs after partial precipitation for 1 hour.
  • the carboxy-terminated aniline pentamers used in this example were synthesized according to the literature (Journal of Chemical Engineering of Higher Education, 2004, 9, 1768).
  • the obtained aniline pentameric carboxyl derivative and 2 times molar equivalent of NaOH and molybdenum disulfide powder were arranged into a certain concentration of aqueous solution, and ultrasonication was carried out for 10 minutes, and the dispersion effect was as shown in Table 17, when the concentration of the molybdenum disulfide nanosheet was When 2.5 mg/mL or less, a uniform dispersion liquid can be formed.
  • the concentration is 5 mg/mL, the molybdenum disulfide nanosheet tends to be saturated in water, and some precipitation occurs after standing for 1 hour.
  • the stabilized molybdenum disulfide two-dimensional nanosheet dispersion obtained in Example 9 - Example 13 was treated by vacuum drying to form a powder (refer to FIG. 9), and after dispersing these powders in the aforementioned conventional solvent, Stirring or sonication can result in a stable dispersion of the dispersion (see, for example, Figure 8) which is allowed to stand at room temperature for more than 10 days with substantially no settling.
  • the obtained dark green polyaniline was immersed in 10 wt% aqueous ammonia for 12 hours, filtered, and washed with distilled water until the filtrate was neutral, and dried under vacuum at 65 ° C for 24 hours to obtain an intrinsic polyaniline (5.2 g).
  • the eigenstate polyaniline has a strong polar solvent such as DMF or NMP. Good solubility.
  • the eigenstate polyaniline, molybdenum disulfide powder and DMF prepared in this example were mixed in a certain ratio, and ultrasonically dispersed for 10 minutes to examine the dispersion effect of molybdenum disulfide under the action of polyaniline, and the molybdenum disulfide nanosheet was in polyaniline. Peeling occurs under the action (see Figure 11 for the morphology of the stripped molybdenum disulfide nanosheet).
  • the concentration of the molybdenum disulfide nanosheet is below 3 mg/mL, a stable dispersion can be formed, and no obvious precipitation occurs after standing at room temperature for 1 day.
  • the concentration of molybdenum disulfide nanosheets reached 5 mg/mL, partial precipitation occurred (see Table 18).
  • the obtained dark green polyaniline was immersed in 10 wt% aqueous ammonia for 12 hours, filtered, and washed with distilled water until the filtrate was neutral, and dried under vacuum at 65 ° C for 24 hours to obtain an intrinsic isopropyl substituted polyaniline (4.6 g).
  • the eigenstate isopropyl polyaniline has good solubility in polar solvents such as THF, CHCl 3 , DMF, NMP and the like.
  • the sheet is stripped under the action of isopropyl-substituted polyaniline, and a stable dispersion can be formed when the concentration of the molybdenum disulfide nanosheet is below 3 mg/mL, and partial precipitation occurs when the concentration of the molybdenum disulfide nanosheet reaches 5 mg/mL (see Table 19).
  • the sulfonated polyaniline prepared by the present embodiment the molybdenum disulfide powder and water (or ethanol) are mixed in a certain ratio, and ultrasonically dispersed for 10 minutes to examine the peeling and dispersing effect of the molybdenum disulfide nanosheet, and the molybdenum disulfide nanosheet is sulfonated. Peeling under the action of acidified polyaniline, when the concentration of molybdenum disulfide nanosheet is below 3mg/mL, a stable dispersion can be formed, and when the concentration of molybdenum disulfide nanosheet reaches 5mg/mL, partial precipitation occurs when it is left for 1 hour (refer to Table 20). - Table 21).
  • the stabilized molybdenum disulfide two-dimensional nanosheet dispersion obtained in Example 14 to Example 16 was treated by vacuum drying to form molybdenum disulfide powder, and after the powder was redispersed in the aforementioned conventional solvent, vigorous stirring was carried out. Or ultrasonication, a stable dispersion system can be formed which is allowed to stand at room temperature for more than 10 days with substantially no sedimentation.

Abstract

一种二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应,利用易于合成、成本低廉的苯胺低聚物、苯胺低聚物衍生物或者聚苯胺类导电高分子等作为氮化硼纳米片或二硫化钼纳米片等二维纳米材料的分散剂,并将该分散剂与氮化硼或二硫化钼等在水、有机溶剂或高分子树脂等分散介质中简单混合,通过两者之间的物理相互作用,即可大幅提升二维纳米材料在分散介质中的分散度及分散稳定性;而且籍由所述分散剂,还可以通过简单的液相剥离方法获得二维纳米材料,其无损于二维纳米材料的物理结构和化学性能,过程清洁高效且操作简便,利于规模化实施。

Description

二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用 技术领域
本发明具体涉及一种二维纳米材料的液相剥离方法、二维纳米材料分散剂、通过物理方法制备二维纳米材料分散体以及可再分散二维纳米材料粉体的方法。
背景技术
二维纳米材料一般具有优良的物理、化学性能,应用前景广阔。以氮化硼纳米片为例,其作为一种类石墨烯二维纳米材料,具有良好的导热性、介电性、化学稳定性和耐磨性等。又如,二硫化钼纳米片作为层状半导体材料,在润滑、离子交换、吸附、传导、分离和催化等诸多领域均有优良表现。但因为此类二维纳米材料自身性质的限制,导致目前尚且较难实现此类二维纳米材料的批量制备。
例如,氮化硼纳米片由于片层间存在强烈的离子相互作用而容易团聚在一起,致使其在普通溶剂中容易发生团聚,溶解度有限,从而很大程度上限制了其应用。常见氮化硼二维纳米片的制备方法主要包括“自下而上”的合成法和“自上而下”的剥离法两大类。“自下而上”合成方法主要为化学气相沉积(CVD)法,此方法制备成本高且不易控制,难以规模化生产。“自上而下”的剥离法主要是利用各种方式对抗氮化硼纳米片之间强烈的离子键相互作用力从而实现二维片层纳米片的剥离。目前剥离法主要包括机械剥离法(如胶带剥离法、球磨法和流体剥离法)和化学剥离法(主要包括液相剥离法、化学功能法和离子插入剥离法等)。但现有的这些氮化硼纳米片的制备方法普遍存在操作难度大,成本高,难以规模化实施的缺陷,而且所获氮化硼纳米片产品质量不稳定,亦很难获得片层数单一的少层或单层氮化硼纳米片。
又例如,二硫化钼属片层之间是以较弱的范德华力结合,在外界影响下,易发生蜷曲和团聚,致使常规溶剂中的分散有限,而容易发生团聚沉淀。这就很大程度上限制了其应用。为获得二硫化钼的二维纳米材料,业界提出了诸多方案。例如,有研究人员通过在含有氧化剂的混合溶剂中搅拌或超声处理,二硫化钼可在有机溶剂中剥离并形成二硫化钼纳米片。例如,还有研究人员通过将两亲性表面活性剂溶解于有机溶剂中,水浴超声得到混合溶液;然后将二硫化钼粉体加入到混合溶液中,超声、离心、去除上清液,收集沉淀,干燥,得到固体物,即剥离后的二维层状纳米材料。又例如,有研究人员通过在MoS2层间插入锂,并通过超声实现了MoS2片层在水中的稳定分散,但是该过程复杂且限制了其应用。再例如,有研究人员报导了在一定配比的乙醇和水混合溶剂中可实现MoS2的剥离,但是分散浓度很低, 仅为0.018mg/mL。还有研究人员通过N-甲基吡咯烷酮的辅助研磨及声波降解作用,通过改变研磨时间以及研磨-声波降解时间实现了二硫化钼在水溶液中的稳定分散。但前述的二硫化钼纳米片制备方法普遍存在操作难度大,难以规模化实施等缺陷,而且所获二硫化钼纳米片产品质量不稳定。
发明内容
本发明的主要目的在于提供一种二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用,以克服现有技术中的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例的一个方面提供了一种二维纳米材料分散剂,其包括苯胺低聚物、苯胺低聚物衍生物及聚苯胺类导电高分子中的任意一种或两种以上的组合,且所述二维纳米材料分散剂能够通过物理作用与二维纳米材料结合而使二维纳米材料稳定分散于分散介质内;所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
进一步的,所述苯胺低聚物包括苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体中的任意一种或两种以上的组合,但不限于此。
进一步的,所述苯胺低聚物衍生物包括苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体中任意一种的衍生物,但不限于此。
进一步的,所述苯胺低聚物衍生物包括羧基封端的苯胺低聚物衍生物、烷基取代的苯胺低聚物衍生物或者连接有功能化基团的苯胺低聚物,或者含苯胺低聚物的小分子化合物。
优选的,所述功能化基团包括烷氧基、羧基、磺酸基、磷酸基中的任意一种或两种以上的组合,但不限于此。
优选的,所述苯胺低聚物衍生物选自含苯胺低聚物接枝或嵌段的聚合物,但不限于此。
进一步的,所述聚苯胺类导电高分子包括本征态聚苯胺、掺杂态聚苯胺、取代聚苯胺、油溶性聚苯胺和水溶性聚苯胺中的任意一种或两种以上的组合,但不限于此。
优选的,所述聚苯胺类导电高分子包括具有化学式(1)~(3)中任一者所示结构单元的聚苯胺类导电高分子:
Figure PCTCN2016101469-appb-000001
其中,n=3~500。其中的alkyl为烷基。
进一步的,所述分散剂与二维纳米材料的重量比为0.1~10:1;优选的,所述分散剂与二 维纳米材料的重量比为0.2~2:1。优选的,所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
进一步的,所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合,但不限于此。
本发明实施例的另一个方面提供了一种二维纳米材料的液相剥离制备方法,其包括:将氮化硼粉体或二硫化钼粉体与分散剂在分散介质中充分混合,形成二维纳米材料的稳定分散液;所述分散剂选自前述的任一种二维纳米材料分散剂。
进一步的,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
进一步的,所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合,但不限于此。
进一步的,所述的液相剥离制备方法还包括:对所述二维纳米材料的稳定分散液进行离心处理,收集获得二维纳米材料与分散剂的复合物。
本发明实施例的另一个方面提供了一类二维纳米材料与分散剂的复合物,所述分散剂选自前述的任一种二维纳米材料分散剂。
进一步的,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
进一步的,所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
进一步的,所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
本发明实施例的另一个方面还提供了一种二维纳米材料分散体,其包含:分散介质;以及,分散于所述分散介质中的如前所述的任一种二维纳米材料与分散剂的复合物。
进一步的,所述二维纳米材料分散体为流体状分散体,优选为液态分散体或浆料。
进一步的,所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合,但不限于此。
进一步的,所述二维纳米材料分散体包含10mg/mL以下的二维纳米材料。
优选的,所述二维纳米材料分散体包含0.1mg/mL~5mg/mL或者0.1mg/mL~3mg/mL或者0.1mg/mL~2.5mg/mL二维纳米材料。
进一步的,所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
本发明实施例的另一个方面还提供了一种二维纳米材料分散体的制备方法,其包括:将二维纳米材料及分散剂在分散介质中均匀混合形成稳定分散体;所述分散剂选自前述的任一种二维纳米材料分散剂。
进一步的,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
例如,所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
进一步的,所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
进一步的,所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合,但不限于此。
本发明实施例的另一个方面还提供了一种可再分散二维纳米材料粉体,它是通过去除前述的任一种二维纳米材料分散体中的分散介质而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。
本发明实施例的另一个方面还提供了一种基于物理方法实现的二维纳米材料分散和再分散方法,其包括:
将二维纳米材料与分散剂在分散介质中均匀混合形成稳定分散体,所述分散剂选自前述的任一种二维纳米材料分散剂;
去除所述稳定分散体中的分散介质而获得二维纳米材料与分散剂的复合物,
以及,将所述复合物再次分散于分散介质中,再次形成稳定分散体。
进一步的,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。优选的,所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
进一步的,所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合;优选的,所述分散介质包括水和/或有机溶剂。
进一步的,所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
进一步的,所述的基于物理方法的实现氮化硼分散和再分散方法包括:将二维纳米材料与分散剂于水/和有机溶剂中均匀混合形成稳定分散液,之后对所述稳定分散液进行干燥处理而形成呈粉体状的所述复合物。
进一步的,所述干燥处理的方式选自喷雾干燥、旋转蒸发和真空干燥中的至少一种,且不限于此。
较之现有技术,本发明利用易于合成、成本低廉的苯胺低聚物、苯胺低聚物衍生物或者聚苯胺类导电高分子等作为二维纳米材料(如二维氮化硼纳米材料或二维二硫化钼纳米材料)的分散剂,并将该分散剂与氮化硼或二硫化钼等在水、有机溶剂或高分子树脂等分散介质中简单混合,通过两者之间的物理相互作用,即可大幅提升二维氮化硼纳米材料或二维二硫化钼纳米材料在分散介质中的分散度及分散稳定性;而且籍由所述分散剂,还可以通过简单的液相剥离方法获得氮化硼纳米片、二硫化钼纳米片等二维纳米材料,其无损于氮化硼、二硫化钼等的物理结构和化学性能,过程清洁高效且操作简便,利于规模化实施。另外,本发明 中应用于二维纳米材料分散或剥离的分散介质,特别是水、有机溶剂等可以循环使用,能够降低成本,减少废水、废气有机物排放。
附图说明
图1是本发明实施例1中剥离前的六方氮化硼的SEM图。
图2是本发明实施例1中氮化硼在无分散剂及有分散剂作用下的分散和再分散的照片。
图3a-图3b是本发明实施例1中剥离后的氮化硼二维纳米片的TEM图。
图4是本发明实施例3中氮化硼在无分散剂及有分散剂作用下的分散和再分散的照片。
图5是本发明实施例3中剥离后的氮化硼二维纳米片的TEM图。
图6a-图6b是本发明实施例6中氮化硼在无分散剂及有分散剂作用下的分散和再分散的照片。
图7是本发明实施例6中剥离后的氮化硼二维纳米片的TEM图。
图8是本发明实施例9中二硫化钼在无分散剂及有分散剂作用下分散的照片。
图9是本发明实施例9中剥离后的二硫化钼纳米片的SEM照片。
图10a-图10b是本发明实施例14中二硫化钼在无分散剂及有分散剂作用下分散的照片。
图11是本发明实施例14中剥离的二硫化钼纳米片的SEM照片。
具体实施方式
如前所述,鉴于现有技术的不足,本案发明人经长期研究和大量实践,特提出本发明的技术方案,并获得了出乎意料的良好技术效果。如下将对本发明的技术方案及其效果等进行详细的阐述。
本发明的一些实施方案提供了一种二维纳米材料分散剂,所述二维纳米材料分散剂包括苯胺低聚物、苯胺低聚物衍生物及聚苯胺类导电高分子中的任意一种或两种以上的组合,且所述二维纳米材料分散剂能够通过物理作用与二维纳米材料结合而使二维纳米材料稳定分散于分散介质内。
进一步的,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
进一步的,在无需加入任何添加剂和反应剂的情况下,仅通过简单的物理混合(例如机械搅拌、超声、振荡等物理方式,当然在一些实施方案中也可配合其它合适的非物理方法),并利用所述二维纳米材料分散剂与氮化硼或二硫化钼(特别是二维氮化硼纳米材料或二维二硫化钼纳米材料,如二维氮化硼纳米片或二维二硫化钼纳米片)之间的物理弱相互作用,就能使二维氮化硼纳米材料或二维二硫化钼纳米材料在分散介质中实现稳定分散。
本发明的一些实施方案还提供了二维纳米材料与前述二维纳米材料分散剂的复合物。
其中,所述二维纳米材料分散剂与二维纳米材料的重量比优选为0.1~10:1,尤其优选为0.2~2:1。
本发明的一些实施方案还提供了苯胺低聚物、苯胺低聚物衍生物或者聚苯胺类导电高分子作为氮化硼分散剂的用途。
本发明的一些实施方案还提供了一种液相剥离制备二维纳米材料的方法,其包括:将前述二维纳米材料分散剂与氮化硼或二硫化钼(特别是粉体)在分散介质(优选为水、水溶液或有机溶剂)中充分混合(例如通过机械搅拌、超声等物理方式混合),形成二维纳米材料的稳定分散液。
进一步的,所述的液相剥离制备方法还包括:对所述二维纳米材料的稳定分散液进行离心处理,收集获得二维纳米材料与二维纳米材料分散剂的复合物。
本发明的一些实施方案还提供了一类二维纳米材料分散体,其包含:分散介质;以及,分散于所述分散介质中的、如前所述的任一种二维纳米材料与二维纳米材料分散剂的复合物。
进一步的,所述二维纳米材料分散体为流体状分散体,优选为液态分散体或浆料。
进一步的,在前述二维纳米材料与二维纳米材料分散剂的复合物中,所述二维纳米材料分散剂与二维纳米材料的重量比为0.1~10:1。
优选的,在前述二维纳米材料与二维纳米材料分散剂的复合物中,所述二维纳米材料分散剂与二维纳米材料的重量比为0.2~2:1。
进一步的,所述二维纳米材料分散体包含10mg/mL以下的二维纳米材料。
亦即可以认为,进一步的,通过与所述二维纳米材料分散剂的物理结合,使得所述二维纳米材料在分散介质(例如水或有机溶剂)中的最大分散度可达到10mg/mL。需要说明的是,此处所述的“最大分散度”对应于采用最低有效量的二维纳米材料分散剂的情况。
本发明的一些实施方案还提供了一种二维纳米材料分散体的制备方法,其包括:将二维纳米材料及分散剂在分散介质中均匀混合形成稳定分散体;所述分散剂选自前述的任一种二维纳米材料分散剂。
进一步的,所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
本发明的一些实施方案还提供了一种可再分散二维纳米材料粉体,它是通过去除前述的任一种二维纳米材料分散体中的分散介质(优选为水、有机溶剂等挥发性的分散介质)而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。
本发明的一些实施方案还提供了一种基于物理方法实现的二维纳米材料分散和再分散方法,其包括:
将二维纳米材料与分散剂在分散介质中均匀混合形成稳定分散体,所述分散剂选自前述的任一种二维纳米材料分散剂;
去除所述稳定分散体中的分散介质而获得二维纳米材料与分散剂的复合物,
以及,将所述复合物再次分散于分散介质中,再次形成稳定分散体。
进一步的,所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
进一步的,所述的基于物理方法的实现氮化硼分散和再分散方法包括:将二维纳米材料与分散剂于水/和有机溶剂中均匀混合形成稳定分散液,之后对所述稳定分散液进行干燥处理而形成呈粉体状的所述复合物。
前述干燥处理的方式至少可选自喷雾干燥、旋转蒸发和真空干燥中的任意一种,但不限于此。
前述苯胺低聚物亦称苯胺齐聚物,其包含的苯胺共轭链段短于聚苯胺,电活性与聚苯胺相似,但分子中不存在缺陷,且具有更好的溶解性。适用于本发明的苯胺低聚物可优选自苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体中的任意一种或多种的组合,但不限于此。
前述苯胺低聚物衍生物主要是基于苯胺低聚物形成的,所述苯胺低聚物的释义如前文所述。
优选的,前述苯胺低聚物衍生物可选自苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体中的任意一种的衍生物或多种衍生物的组合,但不限于此。
进一步的,前述苯胺低聚物衍生物包括羧酸封端苯胺低聚物衍生物,连接有功能化基团的苯胺低聚物或者含苯胺低聚物的小分子化合物。优选的,所述功能化基团包括烷氧基、羧基、磺酸基、磷酸基中的任意一种或两种以上的组合,但不限于此。
优选的,所述苯胺低聚物衍生物选自含苯胺低聚物接枝或嵌段的聚合物。
优选的,所述苯胺低聚物衍生物具有下列化学式中的任意一种:
Figure PCTCN2016101469-appb-000002
Figure PCTCN2016101469-appb-000003
其中M包括Na+、K+、钾或季铵盐阳离子,但不限于此。
前述苯胺低聚物或苯胺低聚物衍生物可以从商购途径获取,也可以参考文献(例如,《CHEM.COMMUN.》,2003年,第2768-2769页;《Synthetic Metals》,2001年,第122卷第237-242页;CN101811997A;CN 1369478A、CN 1204655A等)自制。
前述聚苯胺类导电高分子包括本征态聚苯胺、掺杂态聚苯胺、取代聚苯胺、油溶性聚苯胺和水溶性聚苯胺中的任意一种或两种以上的组合,且不限于此。
优选的,前述聚苯胺类导电高分子包括具有化学式(1)~(3)中任一者所示结构单元的聚苯胺类导电高分子:
Figure PCTCN2016101469-appb-000004
其中,n=3~500。
适用于本发明的聚苯胺类导电高分子可以从商购途径获取,也可以参考文献(例如,Journal of Polymer Science,2000,38:194-195,203;材料导报,2001,15(3):42;Journal of Solid State Chemistry,2006,179(1):308-314;Chem.Commun.,1977,16:578-580.)等自制。
前述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合,但不限于此。
例如,在一些实施方案中,所述分散介质选自低沸点溶剂和/或高沸点极性有机溶剂,例如可选自乙醇、四氢呋喃、N,N-二甲基甲酰胺、二甲基亚砜、氯仿和N-甲基吡咯烷酮中的任意一种或两种以上的组合,但不限于此。
例如,在另外一些实施方案中,所述分散介质可选自水、水溶液,例如含碱性物质的碱性水溶液等。
或者,在另外一些实施方案中,所述分散介质可以选自高分子树脂,例如聚乙二醇、聚丙二醇等,但不限于此。
优选的,前述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
在一些更为具体的实施方案中,可以采用苯胺低聚物作为二维纳米材料分散剂,通过采用超声、搅拌、振荡等物理方式中的任意一种或多种将苯胺低聚物与氮化硼在分散介质中充分混合,使得苯胺低聚物通过物理作用与氮化硼(特别是二维氮化硼纳米材料)结合,从而使氮化硼(特别是二维氮化硼纳米材料)在分散介质(特别是前述的有机溶剂)中的最大分散度达到10mg/mL(优选为0.01mg/mL~5mg/mL,尤其优选为0.1mg/mL~5mg/mL)。
在一些更为具体的实施方案中,一种二维氮化硼纳米材料分散体可以包含:分散介质(优选为前述的有机溶剂);以及,分散于所述分散介质中的、二维氮化硼纳米材料与苯胺低聚物的复合物。
在一些更为具体的实施方案中,一种可再分散二维氮化硼纳米材料粉体可以是通过去除如前所述的任一种氮化硼分散体中的分散介质(优选为前述的有机溶剂)而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。其中,所述分散介质可以循环利用。
在一些更为具体的实施方案中,可以将二维氮化硼纳米材料及苯胺低聚物于有机溶剂中均匀混合形成稳定分散液,之后采用前述的任一种干燥方式对所述稳定分散液进行干燥处理(即移除有机溶剂)而形成呈粉体状的二维氮化硼纳米材料与苯胺低聚物的复合物。
在前述的这些具体实施方案中,所述分散介质可优选为有机溶剂,尤其优选自低沸点溶剂和/或高沸点极性有机溶剂,例如可优选自乙醇、四氢呋喃、二甲基甲酰胺、二甲基亚砜、氯仿和N-甲基吡咯烷酮中的任意一种或多种,且不限于此。
在前述的这些具体实施方案中,借助苯胺类低聚物和氮化硼之间的物理相互作用,可以实现二维氮化硼纳米材料在分散介质(优选为有机溶剂)中的剥离和良好分散,整个剥离过程操作简单,不要需要苛刻的反应条件(如高温、高压、强酸和强碱等反应条件),利于规模化生产和开展其下游产品的应用。
在一些更为具体的实施方案中,可以采用苯胺低聚物衍生物作为二维纳米材料分散剂,通过采用超声、搅拌、振荡等物理方式中的任意一种或多种将苯胺低聚物衍生物与氮化硼在分散介质中充分混合,使得苯胺低聚物通过物理作用与氮化硼(特别是二维氮化硼纳米材料)结合,从而使氮化硼(特别是二维氮化硼纳米材料)在分散介质(例如水,特别是碱性水溶液)中的最大分散度达到10mg/mL(优选在5mg/mL以下),尤其优选在分散度为0.1mg/mL~5mg/mL时可长期稳定存在。
在一些更为具体的实施方案中,一种液相剥离制备二维氮化硼纳米材料的方法可以包括:选用超声、搅拌、振荡等物理方式中的至少一种将苯胺低聚物衍生物、可选择性添加或不添加的碱与氮化硼粉体在分散介质中充分混合,形成二维氮化硼纳米材料的稳定分散液。
进一步的,可以将苯胺低聚物衍生物、碱与氮化硼粉体在水中充分混合形成二维氮化硼 纳米材料的稳定分散液,之后对所述稳定分散液进行离心处理,收集获得二维氮化硼纳米材料与苯胺低聚物衍生物的复合物。
在一些更为具体的实施方案中,一种二维氮化硼纳米材料分散体可以包含:分散介质(优选为水或水溶液等水相体系,尤其优选为碱性水溶液);以及,分散于所述分散介质中的、二维氮化硼纳米材料与苯胺低聚物衍生物的复合物。
在一些更为具体的实施方案中,一种可再分散二维氮化硼纳米材料粉体可以是通过去除如前所述的任一种氮化硼分散体中的分散介质(优选为水或水溶液)而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。其中,所述分散介质可以循环利用。
在一些更为具体的实施方案中,可以将二维氮化硼纳米材料及苯胺低聚物衍生物于水或碱性水溶液中均匀混合形成稳定分散液,之后采用前述的任一种干燥方式对所述稳定分散液进行干燥处理(即移除水或碱性水溶液)而形成呈粉体状的二维氮化硼纳米材料与苯胺低聚物衍生物的复合物。
前述分散介质可以选自水、前述的有机溶剂及前述的高分子树脂等,但优选自水或水溶液,尤其优选为碱性水溶液。
前述的碱包括NaOH,KOH或氨水等,且不限于此。
在这些具体实施方案中,所述苯胺低聚物衍生物可优选自羧酸封端苯胺低聚物衍生物或者连接有功能化基团(如烷氧基、羧基、磺酸基、磷酸基等)的苯胺低聚物,例如所述苯胺低聚物衍生物具有下列化学式中的任意一种:
Figure PCTCN2016101469-appb-000005
其中M包括Na+、K+、钾或季铵盐阳离子。
在前述的具体实施方案中,借助苯胺类低聚物衍生物和二维氮化硼纳米材料之间的物理相互作用,可以实现二维氮化硼纳米材料在分散介质(优选为水或水溶液,尤其优选为碱性水溶液)中的剥离和良好分散,整个剥离过程操作简单,不要需要苛刻的反应条件(如高温、高压、强酸和强碱等反应条件),利于规模化生产和开展其下游产品的应用。
在一些更为具体的实施方案中,可以采用聚苯胺类导电高分子作为二维纳米材料分散剂, 通过采用超声、搅拌、振荡等物理方式中的任意一种或多种将聚苯胺类导电高分子与氮化硼在分散介质中充分混合,使得聚苯胺类导电高分子通过物理作用与氮化硼(特别是二维氮化硼纳米材料)结合,从而使氮化硼(特别是二维氮化硼纳米材料)在分散介质(例如水和/或前述的有机溶剂)中的最大分散度达到10mg/mL(优选在5mg/mL以下),尤其优选在分散度为0.1mg/mL~5mg/mL时可长期稳定存在。
在一些更为具体的实施方案中,一种液相剥离制备二维氮化硼纳米材料的方法可以包括:选用超声、搅拌、振荡等物理方式中的至少一种将聚苯胺类导电高分子与氮化硼粉体在分散介质中充分混合,形成二维氮化硼纳米材料的稳定分散液。
进一步的,可以将对所述稳定分散液进行离心处理,收集获得二维氮化硼纳米材料与聚苯胺类导电高分子的复合物。
在一些更为具体的实施方案中,一种二维氮化硼纳米材料分散体可以包含:分散介质(例如水和/或前述的有机溶剂);以及,分散于所述分散介质中的、二维氮化硼纳米材料与聚苯胺类导电高分子的复合物。此处的二维氮化硼纳米材料分散体优选为液态分散体或浆料等。
在一些更为具体的实施方案中,一种可再分散二维氮化硼纳米材料粉体可以是通过去除如前所述的任一种氮化硼分散体中的分散介质(例如水和/或前述的有机溶剂)而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。其中,所述分散介质可以循环利用。
在一些更为具体的实施方案中,可以将二维氮化硼纳米材料及聚苯胺类导电高分子于水和/或前述的有机溶剂中均匀混合形成稳定分散液,之后采用前述的任一种干燥方式对所述稳定分散液进行干燥处理(即移除水和/或前述的有机溶剂)而形成呈粉体状的二维氮化硼纳米材料与聚苯胺类导电高分子的复合物。
前述分散介质包括水、前述有机溶剂、前述高分子树脂中的任意一种或两种以上的组合,优选自有机溶剂,例如前文所列举的多种有机溶剂。
本发明的液相剥离氮化硼的方法借助聚苯胺类导电高分子和二维氮化硼纳米材料之间的物理相互作用,可以实现二维氮化硼纳米材料在水和/或有机溶剂等分散介质中的剥离和良好分散,整个剥离过程操作简单,不要需要苛刻的反应条件(如高温、高压、强酸和强碱等反应条件),利于规模化生产和开展其下游产品的应用。
藉由前述实施方案,可以简便,低成本廉,规模化的实现二维氮化硼纳米材料的液相剥离法制备、分散和再分散,特别是所获的可再分散的氮化硼复合粉末(主要由二维氮化硼纳米材料与前述二维纳米材料分散剂的复合物组成)在功能性涂料、导热和复合材料增强等领域具有广阔的应用前景。
在一些更为具体的实施方案中,可以采用前述的苯胺低聚物或其衍生物作为二维纳米材 料分散剂,通过采用超声、搅拌、振荡等物理方式中的任意一种或多种将苯胺低聚物或其衍生物与二硫化钼在分散介质(如水、水溶液和/或前述的有机溶剂等)中充分混合,使得苯胺低聚物或其衍生物通过物理作用与二硫化钼(特别是二维二硫化钼纳米材料)结合,从而使二硫化钼(特别是二维二硫化钼纳米材料)在分散介质(如水、水溶液和/或前述的有机溶剂等)中的最大分散度达到10mg/mL(优选为0.1mg/mL~10mg/mL,尤其优选为0.1mg/mL~2.5mg/mL)。
在一些更为具体的实施方案中,一种二维二硫化钼纳米材料分散体可以包含:分散介质(如水、水溶液和/或前述的有机溶剂等);以及,分散于所述分散介质中的、二维二硫化钼纳米材料与苯胺低聚物或其衍生物的复合物。
在一些更为具体的实施方案中,一种可再分散二维二硫化钼纳米材料粉体可以是通过去除如前所述的任一种二维二硫化钼纳米材料分散体中的分散介质(如水、水溶液和/或前述的有机溶剂等)而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。其中,所述分散介质可以循环利用。
在一些更为具体的实施方案中,可以将将苯胺低聚物和/或苯胺低聚物衍生物、碱(例如NaOH、KOH等)与二硫化钼粉体在水中充分混合形成二维二硫化钼纳米材料的稳定分散液,之后对所述稳定分散液进行离心处理,收集获得二维二硫化钼纳米材料与苯胺低聚物和/或苯胺低聚物衍生物的复合物。
在前述的这些具体实施方案中,所述分散介质可以选自水、前述的有机溶剂及前述的高分子树脂等,但优选自水或水溶液,尤其优选为碱性水溶液。
在前述的这些具体实施方案中,所述苯胺低聚物衍生物包括含苯胺低聚物的小分子化合物,特别是羧基封端的苯胺低聚物衍生物,烷基取代的苯胺低聚物衍生物等。例如羧基封端的苯胺三聚体,四聚体,五聚体,或长链烷基或烷氧基封端的苯胺三聚体、四聚体或五聚体等。优选的,所述苯胺低聚物衍生物可选自含苯胺低聚物接枝或嵌段的聚合物。例如聚乙二醇封端苯胺低聚物(聚乙二醇封端的苯胺三聚体,四聚体和五聚体等);聚乳酸封端苯胺低聚物(聚乳酸封端的苯胺三聚体、四聚体和五聚体等)。更为具体的,所述苯胺低聚物衍生物可优选自具有下列任一化学式的化合物:
Figure PCTCN2016101469-appb-000006
其中,M包括H+、Na+、K+或季铵盐阳离子。
在前述的这些具体实施方案中,借助苯胺低聚物和/或苯胺低聚物衍生物和二维二硫化钼纳米材料之间的物理相互作用,可以实现二维二硫化钼纳米材料在水和/或有机溶剂等分散介质中的剥离和良好分散,整个剥离过程清洁高效且操作简单,不要需要苛刻的反应条件(如高温、高压、强酸和强碱等反应条件),利于规模化生产和开展其下游产品的应用。
在一些更为具体的实施方案中,可以采用聚苯胺类导电高分子作为二维纳米材料分散剂,通过采用超声、搅拌、振荡等物理方式中的任意一种或多种将聚苯胺类导电高分子与二硫化钼在分散介质中充分混合,使得聚苯胺类导电高分子通过物理作用与二硫化钼(特别是二维二硫化钼纳米材料)结合,从而使二硫化钼(特别是二维二硫化钼纳米材料)在分散介质(例如水和/或前述的有机溶剂)中的最大分散度达到5mg/mL,尤其优选在分散度为0.1mg/mL~3mg/mL时可长期稳定存在。
在一些更为具体的实施方案中,一种液相剥离制备二维二硫化钼纳米材料的方法可以包括:选用超声、搅拌、振荡等物理方式中的至少一种将聚苯胺类导电高分子与二硫化钼粉体在分散介质中充分混合,形成二维二硫化钼纳米材料的稳定分散液。
进一步的,可以将对所述稳定分散液进行离心处理,收集获得二维二硫化钼纳米材料与聚苯胺类导电高分子的复合物。
在一些更为具体的实施方案中,一种二维二硫化钼纳米材料分散体可以包含:分散介质(例如水和/或前述的有机溶剂);以及,分散于所述分散介质中的、二维二硫化钼纳米材料与聚苯胺类导电高分子的复合物。此处的二维二硫化钼纳米材料分散体优选为液态分散体或浆料等。
在一些更为具体的实施方案中,一种可再分散二维二硫化钼纳米材料粉体可以是通过去 除如前所述的任一种二维二硫化钼纳米材料分散体中的分散介质(例如水和/或前述的有机溶剂)而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。其中,所述分散介质可以循环利用。
在一些更为具体的实施方案中,可以将二维二硫化钼纳米材料及聚苯胺类导电高分子于水和/或前述的有机溶剂中均匀混合形成稳定分散液,之后采用前述的任一种干燥方式对所述稳定分散液进行干燥处理(即移除水和/或前述的有机溶剂)而形成呈粉体状的二维二硫化钼纳米材料与聚苯胺类导电高分子的复合物。
前述分散介质包括水、前述有机溶剂、前述高分子树脂中的任意一种或两种以上的组合,优选自水、有机溶剂,例如前文所列举的多种有机溶剂。
本发明的液相剥离氮化硼的方法借助聚苯胺类导电高分子和二维二维二硫化钼纳米材料纳米材料之间的物理相互作用,可以实现二维二维二硫化钼纳米材料纳米材料在水和/或有机溶剂等分散介质中的剥离和良好分散,整个剥离过程操作简单,不要需要苛刻的反应条件(如高温、高压、强酸和强碱等反应条件),利于规模化生产和开展其下游产品的应用。
藉由前述实施方案,可以简便,低成本廉,规模化的实现二维二硫化钼纳米材料的液相剥离法制备、分散和再分散,特别是所获的可再分散的二硫化钼复合粉末(主要由二维二硫化钼纳米材料与前述二维纳米材料分散剂的复合物组成)在功能性涂料、导热和复合材料增强等领域具有广阔的应用前景。特别是剥离的二硫化钼二维纳米片有望在半导体、能源、耐磨润滑涂料、复合材料等领域具有广阔的应用前景。
下面将结合若干实施例及附图对本发明实施例中的技术方案进行详细地描述。显然,所描述的实施例仅是本发明一部分实施例,而并非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1苯胺三聚体的合成及其用于氮化硼二维纳米片在有机溶剂中的剥离
1、苯胺三聚体的合成:对苯二胺硫酸盐(8.87g),苯胺(5.56g)加入到1M的盐酸溶液(500mL)的三颈烧瓶中,冷却至-5℃。150mL过硫酸铵(13.62g)的盐酸(1M)溶液通过滴液漏斗缓慢滴加至上述反应瓶中,待滴加完毕之后,继续搅拌反应1h,将反应产物进行抽滤,用大量去离子水清洗,得到墨绿色的固体产物。然后用10%的氨水溶液清洗产物,再用去离子水清洗两次,最后将产物置于40℃的真空干燥箱中干燥待用。
2、将获得的苯胺三聚体和氮化硼粉末按一定比例混合,并分别溶于乙醇(EtOH)和四氢呋喃(THF)中,超声分散10分钟,检验氮化硼在苯胺低聚物的作用下的分散效果,如表1和表2所示。
参阅图2中的A所示,未添加苯胺三聚体的氮化硼粉末在四氢呋喃(THF)和乙醇(EtOH)等常规有机溶剂中极易发生聚集。再请参阅图2中的B所示,氮化硼在苯胺低聚物作用下剥离,且苯胺三聚体-氮化硼复合物在乙醇和四氢呋喃等有机溶剂中能形成稳定分散液(氮化硼含量可达5mg/mL),且无明显沉淀。又请参阅图2中的C所示系分散剂功能化的氮化硼粉体(氮化硼二维纳米片),而其中D所示是该功能化的氮化硼粉体在苯胺低聚物分散剂的作用下可再次稳定分散到有机溶剂中,且30天内无明显沉淀发生。
另外,请参阅图3a-图3b所示为本实施例所获剥离后的典型氮化硼二维纳米片(六方氮化硼纳米片)的TEM照片。
表1氮化硼二维纳米片在乙醇中的分散能力(苯胺三聚体-氮化硼质量比1:2)
5mg/10mL 10mg/10mL 25mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
表2氮化硼二维纳米片在THF中的分散能力(苯胺三聚体-氮化硼质量比1:2)
5mg/10mL 10mg/10mL 25mg/10mL 50mg/10mL 100mg/10mL
良好 良好 良好 良好 有沉淀
实施例2苯胺四聚体的合成及其用于氮化硼油性分散液
1、向500mL的圆底烧瓶中依次加入N-苯基对苯二胺(11.08g,60mmol),丙酮(300mL),盐酸(1M,75mL)溶液,去离子水(300mL),搅拌至完全溶解。然后将过硫酸铵(13.6g,60mmol)的盐酸溶液中(1M,150mL)逐渐滴加到上述溶液中,滴加完毕后,在-5℃下反应3小时,反应结束,用布氏漏斗进行抽滤,之后再用10wt%的氨水清洗,再用大量去离子水清洗两次,最后,放在40℃的真空干燥箱中干燥待用。
2、将获得的苯胺四聚体和氮化硼粉体按一定比例溶于THF或DMF中,超声分散10分钟,检验其在溶剂中的分散效果,如表3和表4所示,苯胺四聚体-氮化硼复合物浓度在5mg/mL以下时,在四氢呋喃中能形成稳定分散液,且30天内无明显沉淀发生。
表3苯胺四聚体-氮化硼在THF分散效果(本实验重量比为1:2)
5mg/10mL 10mg/10mL 25mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
表4苯胺四聚体-氮化硼的在DMF中的分散效果(本实验重量比为1:2)
5mg/10mL 10mg/10mL 25mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
实施例3羧酸封端苯胺三聚体的合成及其用于水性氮化硼纳米片分散液的制备
本实施例所用苯胺三聚体按文献合成(Chem.Eur.J.2008,14,2909)。其过程包括:将苯胺三聚体(2.92g)溶于50mL THF中,然后加入马来酸酐(2.46g),40℃下反应3小时,反应产物用石油醚沉淀,得到羧基封端苯胺三聚体(4.81g)。
称取羧基化苯胺三聚体、2倍摩尔当量的NaOH以及六方氮化硼粉体(六方氮化硼粉体与羧基化苯胺三聚体的重量比为1:1)配置不同浓度的水溶液,超声分散10分钟,分散效果如图4及表5所示,当氮化硼纳米片浓度在3mg/mL以下时能形成稳定的分散液,在室温放置30天无明显沉淀发生(形貌可参阅图5),浓度在5mg/mL时,氮化硼纳米片在水中趋于饱和,在室温放置1天后有部分沉淀发生。
表5不同浓度氮化硼纳米片羧基化苯胺三聚体作用下在水中的分散效果
5mg/10mL 15mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,有部分沉淀
实施例4羧酸封端苯胺四聚体的合成及其用于水性氮化硼纳米片分散液的制备
本实施例所用苯胺四聚体按文献合成(化学学报,2001,69,41)。其过程包括:苯胺四聚体(2.1g)加入50mL THF中,然后加入马来酸酐(0.68g),40℃下反应3小时,用石油醚沉淀,得到苯胺四聚体羧基衍生物。
将所获苯胺四聚体羧基衍生物、2倍摩尔当量的NaOH及六方氮化硼粉体配成一定浓度 的水溶液,超声10分钟,分散效果如表6所示,当氮化硼纳米片浓度在2.5mg/mL以下时能够形成均匀分散液,浓度在5mg/mL时,氮化硼纳米片在水中趋于饱和,有部分沉淀发生。
表6不同浓度氮化硼纳米片羧基化苯胺四聚体作用下在水中的分散效果
5mg/10mL 15mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,有部分沉淀
实施例5羧酸封端苯胺五聚体的合成及其用于水性氮化硼纳米片分散液的制备
本实施例所用羧基封端苯胺五聚体按文献合成(高等学校化学学报,2004,9,1768)。其过程包括:将所获苯胺五聚体羧基衍生物和2倍摩尔当量的NaOH及氮化硼配置成一定浓度的水溶液,超声10分钟,分散效果如表7所示,当氮化硼纳米片浓度在2.5mg/mL以下时能够形成均匀分散液,浓度在5mg/mL时,氮化硼纳米片在水中趋于饱和,有部分沉淀发生。
表7不同浓度氮化硼纳米片羧基化苯胺四聚体作用下在水中的分散效果
5mg/10mL 15mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,有部分沉淀
将实施例3-实施例5所获的稳定氮化硼纳米片分散液通过真空干燥方式处理形成氮化硼粉体,当将这些粉体再次分散于水中之后,通过剧烈搅拌或超声,即可形成稳定分散的分散体系,该分散体系在室温下静置30天以上而基本无沉降现象发生。
实施例6本征态聚苯胺的合成及其用于氮化硼二维纳米片在有机溶剂中的剥离
200mL的圆底烧瓶中加入100mL 1M盐酸,苯胺(7g),搅拌溶解并冷却至零度。然后将17g过硫酸铵溶于50mL 1M盐酸溶液中并缓慢滴加入圆底烧瓶中,滴加完毕后,反应12小时,将反应液过滤,用蒸馏水洗涤2次得到墨绿色掺杂态聚苯胺。将得到的墨绿色聚苯胺用10%氨水浸泡12小时,过滤,并用蒸馏水洗涤至滤液呈中性,65℃下真空干燥24小时,得到本征态聚苯胺(5.2g)备用。该本征态聚苯胺在强极性溶剂中如DMF、NMP等中具有良好的溶解性。
将本实施例制备的本征态聚苯胺、氮化硼粉末和DMF按一定比例混合,超声分散10分钟,检验氮化硼在聚苯胺的作用下的分散效果,氮化硼纳米片在聚苯胺的作用下发生剥离(剥离后的形貌可参阅图7),当氮化硼纳米片浓度在5mg/mL以下能够形成稳定分散液,其静置30天无明显沉淀发生,而当氮化硼纳米片浓度达到10mg/mL时会发生一定程度的沉淀(参阅图6a及表8)。
表8氮化硼二维纳米片DMF中的分散能力(聚苯胺和氮化硼质量比1:1)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
实施例7烷基取代聚苯胺的合成及其用于氮化硼二维纳米片在有机溶剂中的剥离
200mL的圆底烧瓶中加入100mL 1M盐酸,邻异丙基苯胺(6.0g),搅拌溶解并冷却至零度。然后将11.44g过硫酸铵溶于50mL 1M盐酸溶液中并缓慢滴加入圆底烧瓶中,滴加完毕后,反应12小时,将反应液过滤,用蒸馏水洗涤2次得到墨绿色掺杂态异丙基聚苯胺。将得到的墨绿色聚苯胺用10%氨水浸泡12小时,过滤,并用蒸馏水洗涤至滤液呈中性,65℃下真空干燥24小时,得到本征态异丙基取代聚苯胺(4.6g)备用。该本征态异丙基聚苯胺在极性溶剂如THF、CHCl3、DMF、NMP等中具有良好的溶解性。
将本实施例制备的本征态异丙基聚苯胺、氮化硼粉末和THF按一定比例混合,超声分散10分钟,检验氮化硼在异丙基取代聚苯胺的作用下的分散效果,氮化硼纳米片在异丙基取代聚苯胺的作用下剥离,当氮化硼纳米片浓度在5mg/mL以下形成稳定分散液,当氮化硼纳米片浓度达到10mg/mL时会因纳米片的浓度过高而发生一定程度的沉淀(参阅表9)。
表9氮化硼二维纳米片DMF中的分散能力(聚苯胺和氮化硼质量比1:1)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
实施例8磺酸基取代聚苯胺的合成及其用于氮化硼二维纳米片的剥离
200mL的圆底烧瓶中加入250mL 1M盐酸,邻苯胺磺酸(4.3g),苯胺(2.3g),搅拌溶解 并冷却至零度。然后将11.39g过硫酸铵溶于150mL 1M盐酸溶液中并缓慢滴加入圆底烧瓶中,滴加完毕后,反应12小时,将反应液离心,沉淀物用蒸馏水洗涤2次并离心,干燥得到墨绿色磺酸化苯胺共聚物备用。该磺酸化苯胺共聚物在H2O、EtOH、THF、DMF、NMP等溶剂中具有良好的溶解性。
将本实施例制备的磺酸化苯胺共聚物、氮化硼粉末和水(或乙醇)按一定比例混合,超声分散10分钟,检验氮化硼纳米片的分散效果,氮化硼纳米片在磺酸化聚苯胺的作用下剥离,当氮化硼纳米片浓度在5mg/mL以下能够形成稳定分散液,当氮化硼纳米片浓度达到10mg/mL时会因纳米片的浓度过高而发生沉淀(参阅表10-表11)。
表10氮化硼二维纳米片水中的分散能力(磺酸化聚苯胺和氮化硼质量比1:1)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
表11氮化硼二维纳米片乙醇中的分散能力(磺酸化聚苯胺和氮化硼质量比1:2)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL 100mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有沉淀物
将实施例6-实施例8所获的稳定氮化硼纳米片分散液通过真空干燥方式处理形成氮化硼粉体,当将这些粉体再次分散于前述有机溶剂中之后,通过剧烈搅拌或超声,即可形成稳定分散的分散体系,该分散体系在室温下静置30天以上而无明显沉降现象发生。
实施例9苯胺三聚体的合成及其用于二硫化钼纳米片的剥离
苯胺三聚体的合成:将对苯二胺硫酸盐(8.87g)、苯胺(5.56g)加入到含盛有盐酸溶液(1M,500mL)的三颈烧瓶中,冷却至-5℃。将150mL过硫酸铵(13.62g)的盐酸(1M)溶液通过滴液漏斗缓慢滴加至上述反应瓶中,待滴加完毕之后,继续搅拌反应1h,将反应产物进行抽滤,用大量去离子水清洗,得到墨绿色的固体产物。然后用10wt%的氨水溶液清洗产物,再 用去离子水清洗两次,最后将产物置于40℃的真空干燥箱中干燥待用。所获苯胺三聚体在乙醇、乙酸乙酯、四氢呋喃、氯仿、二甲基甲酰胺等溶剂中具有良好的溶解性。
将本实施例获得的苯胺三聚体与二硫化钼粉末按一定比例混合,并分别溶于乙醇(EtOH)和四氢呋喃(THF)中,超声分散10分钟,检验二硫化钼在苯胺低聚物作用下的分散效果,如表12和表13所示,当二硫化钼纳米片浓度在2.5mg/mL以下时(剥离的二硫化钼纳米片的形貌可参阅图9),苯胺三聚体-二硫化钼复合物在乙醇和四氢呋喃中能形成稳定的分散液,无明显沉淀发生;而当二硫化钼纳米片浓度达到5mg/mL时静置1小时后会发生部分片层的聚集沉淀(参阅图8)。
表12二硫化钼在苯胺三聚体作用下在乙醇中的分散效果(二硫化钼:苯胺三聚体=1:1)
5mg/10mL 15mg/10mL 25mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 良好,有部分沉淀
表13二硫化钼在苯胺三聚体作用下在四氢呋喃中的分散效果(二硫化钼:苯胺三聚体=1:1)
5mg/10mL 15mg/10mL 25mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有部分沉淀
实施例10苯胺四聚体的合成及其用于二硫化钼纳米片的剥离
在500mL的圆底烧瓶中依次加入N-苯基对苯二胺(11.08g,60mmol),丙酮(300mL),盐酸(1M,75mL)溶液,去离子水(300mL),搅拌至完全溶解。然后将过硫酸铵(13.6g,60mmol)的盐酸溶液(1M,150mL)逐渐滴加到上述溶液中,滴加完毕后,在-5℃的下反应3小时,反应结束,用布氏漏斗进行抽滤,之后再用10wt%的氨水清洗,再用大量去离子水清洗两次,最后,放在40℃的真空干燥箱中干燥待用。获得的苯胺四聚体在四氢呋喃、乙酸乙酯、氮、氮-二甲基甲酰胺中具有良好的溶解性。
将本实施例的苯胺四聚体和二硫化钼粉体按一定比例溶于THF,超声分散10分钟,检验其在溶剂中的分散效果,如表14所示,当二硫化钼纳米片浓度在2.5mg/mL以下时,苯胺四聚体-二硫化钼复合物在四氢呋喃中能形成稳定分散液,无明显沉淀发生,当二硫化钼纳米片 浓度达到5mg/mL时,则会发生部分聚集沉淀。
表14二硫化钼在苯胺四聚体作用下在四氢呋喃中的分散效果(二硫化钼:苯胺四聚体=1:1)
5mg/10mL 15mg/10mL 25mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有部分沉淀
实施例11羧基封端苯胺三聚体的合成及其用于二硫化钼纳米片的剥离
将苯胺三聚体(2.92g)溶于50mL THF中,然后加入马来酸酐(2.46g),40℃下反应3小时,反应产物用石油醚沉淀,得到羧基封端苯胺三聚体(4.8g)。称取羧基化苯胺三聚体和2倍摩尔当量的NaOH以及与二硫化钼纳米片粉体(和羧基化苯胺三聚体的重量比为1:1),配置不同浓度的水溶液,超声分散10分钟。分散效果如表15所示,当二硫化钼纳米片浓度在2.5mg/mL以下时能形成稳定的分散液,浓度在5mg/mL时,二硫化钼纳米片在水中趋于饱和,静置1小时后有部分沉淀发生有部分沉淀发生。
表15二硫化钼在羧基封端苯胺三聚体作用下在水中的分散效果(二硫化钼:羧基封端苯胺三聚体=1:1)
5mg/10mL 15mg/10mL 25mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有部分沉淀
实施例12羧酸封端苯胺四聚体的合成及其用于二硫化钼纳米片的剥离
苯胺四聚体(2.1g)加入50mL THF中,然后加入马来酸酐(0.68g),40℃下反应3小时,用石油醚沉淀,得到苯胺四聚体羧基衍生物。将所获苯胺四聚体羧基衍生物和2倍摩尔当量的NaOH及二硫化钼粉体配成一定浓度的水溶液,超声10分钟,分散效果如表16所示,二硫化钼纳米片浓度在3mg/mL以下时能够形成均匀分散液,浓度在5mg/mL时,二硫化钼纳米片在水中趋于饱和,静置1小时后有部分沉淀发生有部分沉淀发生。
表16二硫化钼在羧酸封端苯胺四聚体作用下在水中的分散效果(二硫化钼:羧酸封端苯胺四 聚体=1:1)
5mg/10mL 15mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有部分沉淀
实施例13羧基封端苯胺五聚体的合成及其用于二硫化钼纳米片的剥离
本实施例所用羧基封端苯胺五聚体按文献合成(高等学校化学学报,2004,9,1768)。将所获苯胺五聚体羧基衍生物和2倍摩尔当量的NaOH及二硫化钼粉体配置成一定浓度的水溶液,超声10分钟,分散效果如表17所示,当二硫化钼纳米片浓度在2.5mg/mL以下时能够形成均匀分散液,浓度在5mg/mL时,二硫化钼纳米片在水中趋于饱和,静置1小时后有部分沉淀发生。
表17二硫化钼在羧基封端苯胺五聚体作用下在水中的分散效果(二硫化钼:羧基封端苯胺五聚体=1:1)
5mg/10mL 15mg/10mL 25mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有部分沉淀
将实施例9-实施例13所获的稳定二硫化钼二维纳米片分散液通过真空干燥方式处理形成粉体(参阅图9),当将这些粉体再次分散于前述常规溶剂中之后,通过剧烈搅拌或超声,即可形成稳定分散的分散体系(例如参阅图8),该分散体系在室温下静置10天以上而基本无沉降现象发生。
实施例14本征态聚苯胺的合成及其用于二硫化钼二维纳米片在有机溶剂中的剥离
在200mL的圆底烧瓶中加入100mL 1M盐酸,苯胺(7g),搅拌溶解并冷却至0℃。然后将17g过硫酸铵溶于50mL 1M盐酸溶液中并缓慢滴加入圆底烧瓶中,滴加完毕后,反应12小时,将反应液过滤,用蒸馏水洗涤2次得到墨绿色掺杂态聚苯胺。将得到的墨绿色聚苯胺用10wt%氨水浸泡12小时,过滤,并用蒸馏水洗涤至滤液呈中性,65℃下真空干燥24小时,得到本征态聚苯胺(5.2g)备用。该本征态聚苯胺在DMF、NMP等强极性溶剂中具有 良好的溶解性。
将本实施例制备的本征态聚苯胺、二硫化钼粉末和DMF按一定比例混合,超声分散10分钟,检验二硫化钼在聚苯胺作用下的分散效果,二硫化钼纳米片在聚苯胺的作用下发生剥离(剥离的二硫化钼纳米片的形貌可参阅图11),当二硫化钼纳米片浓度在3mg/mL以下时能够形成稳定分散液,在常温静置1天无明显沉淀发生,而当二硫化钼纳米片浓度达到5mg/mL时会发生部分沉淀(参阅表18)。
表18二硫化钼二维纳米片在DMF中的分散能力(聚苯胺和二硫化钼质量比1:1)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有少量沉淀
实施例15烷基取代聚苯胺的合成及其用于二硫化钼二维纳米片的剥离
在200mL的圆底烧瓶中加入100mL 1M盐酸,邻异丙基苯胺(6.0g),搅拌溶解并冷却至0℃。然后将11.44g过硫酸铵溶于50mL 1M盐酸溶液中并缓慢滴加入圆底烧瓶中,滴加完毕后,反应12小时,将反应液过滤,用蒸馏水洗涤2次得到墨绿色掺杂异丙基取代聚苯胺。将得到的墨绿色聚苯胺用10wt%氨水浸泡12小时,过滤,并用蒸馏水洗涤至滤液呈中性,65℃下真空干燥24小时,得到本征态异丙基取代聚苯胺(4.6g)备用。该本征态异丙基聚苯胺在极性溶剂如THF、CHCl3、DMF、NMP等中具有良好的溶解性。
将本实施例制备的异丙基聚苯胺,二硫化钼粉末和THF按一定比例混合,超声分散10分钟,检验二硫化钼在异丙基取代聚苯胺的作用下的分散效果,二硫化钼纳米片在异丙基取代聚苯胺作用下剥离,当二硫化钼纳米片浓度在3mg/mL以下时能形成稳定分散液,而当二硫化钼纳米片浓度达到5mg/mL时会发生部分沉淀(参阅表19)。
表19二硫化钼二维纳米片DMF中的分散能力(聚苯胺和二硫化钼质量比1:1)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有少量沉淀
实施例16磺酸基取代聚苯胺的合成及其用于二硫化钼二维纳米片的剥离
在200mL的圆底烧瓶中加入250mL 1M盐酸、邻苯胺磺酸(4.3g)、苯胺(2.3g)搅拌溶解并冷却至0℃。然后将11.39g过硫酸铵溶于150mL 1M盐酸溶液中并缓慢滴加入圆底烧瓶中,滴加完毕后,反应12小时,将反应液离心,沉淀物用蒸馏水洗涤2次并离心,干燥得到墨绿色磺酸化苯胺共聚物备用。该磺酸化苯胺共聚物在H2O、EtOH、THF、DMF、NMP等溶剂中具有良好的溶解性。
将本实施例制备的磺酸化聚苯胺,二硫化钼粉末和水(或乙醇)按一定比例混合,超声分散10分钟,检验二硫化钼纳米片的剥离和分散效果,二硫化钼纳米片在磺酸化聚苯胺作用下剥离,当二硫化钼纳米片浓度在3mg/mL以下能够形成稳定分散液,而当二硫化钼纳米片浓度达到5mg/mL时静置1小时会发生部分沉淀(参阅表20-表21)。
表20二硫化钼二维纳米片水中的分散能力(磺酸化聚苯胺和二硫化钼质量比1:1)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有少量沉淀
表21二硫化钼二维纳米片乙醇中的分散能力(磺酸化聚苯胺和二硫化钼质量比1:2)
5mg/10mL 10mg/10mL 30mg/10mL 50mg/10mL
良好,无明显沉淀 良好,无明显沉淀 良好,无明显沉淀 有少量沉淀
将实施例14-实施例16所获的稳定二硫化钼二维纳米片分散液通过真空干燥方式处理形成二硫化钼粉体,当将这些粉体再次分散于前述常规溶剂中之后,通过剧烈搅拌或超声,即可形成稳定分散的分散体系,该分散体系在室温下静置10天以上而基本无沉降现象发生。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或是还包括为这种过程、方法、物品或设备所固有的要素。
应当指出,以上所述仅是本发明的具体实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (40)

  1. 一种二维纳米材料分散剂,其特征在于,所述二维纳米材料分散剂包括苯胺低聚物、苯胺低聚物衍生物及聚苯胺类导电高分子中的任意一种或两种以上的组合,且所述二维纳米材料分散剂能够通过物理作用与二维纳米材料结合而使二维纳米材料稳定分散于分散介质内;所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
  2. 根据权利要求1所述的二维纳米材料分散剂,其特征在于:所述苯胺低聚物包括苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体中的任意一种或两种以上的组合。
  3. 根据权利要求1所述的二维纳米材料分散剂,其特征在于:所述苯胺低聚物衍生物包括苯胺三聚体、苯胺四聚体、苯胺五聚体、苯胺六聚体中任意一种的衍生物。
  4. 根据权利要求3所述的二维纳米材料分散剂,其特征在于:所述苯胺低聚物衍生物包括羧基封端的苯胺低聚物衍生物、烷基取代的苯胺低聚物衍生物或者连接有功能化基团的苯胺低聚物,或者含苯胺低聚物的小分子化合物;优选的,所述功能化基团包括烷氧基、羧基、磺酸基、磷酸基中的任意一种或两种以上的组合;优选的,所述苯胺低聚物衍生物选自含苯胺低聚物接枝或嵌段的聚合物;优选的,所述苯胺低聚物衍生物具有下列化学式中的任意一种:
    Figure PCTCN2016101469-appb-100001
    其中M包括H+、Na+、K+或季铵盐阳离子。
  5. 根据权利要求1所述的二维纳米材料分散剂,其特征在于:所述聚苯胺类导电高分子包括本征态聚苯胺、掺杂态聚苯胺、取代聚苯胺、油溶性聚苯胺和水溶性聚苯胺中的任意一 种或两种以上的组合;优选的,所述聚苯胺类导电高分子包括具有化学式(1)~(3)中任一者所示结构单元的聚苯胺类导电高分子:
    Figure PCTCN2016101469-appb-100002
    其中,n=3~500。
  6. 根据权利要求1所述的二维纳米材料分散剂,其特征在于:所述分散剂与二维纳米材料的重量比为0.1~10:1;优选的,所述分散剂与二维纳米材料的重量比为0.2~2:1。
  7. 根据权利要求1或6所述的二维纳米材料分散剂,其特征在于:所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
  8. 根据权利要求1所述的二维纳米材料分散剂,其特征在于:所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合。
  9. 根据权利要求8所述的二维纳米材料分散剂,其特征在于:所述分散介质选自有机溶剂;优选的,所述分散介质选自低沸点溶剂和/或高沸点极性有机溶剂;优选的,所述分散介质选自乙醇、四氢呋喃、N,N-二甲基甲酰胺、二甲基亚砜、氯仿和N-甲基吡咯烷酮中的任意一种或两种以上的组合。
  10. 根据权利要求1所述的二维纳米材料分散剂,其特征在于:所述分散介质选自水或水溶液。
  11. 根据权利要求10所述的二维纳米材料分散剂,其特征在于:所述分散介质选自碱性水溶液。
  12. 一种二维纳米材料的液相剥离制备方法,其特征在于包括:将氮化硼粉体或二硫化钼粉体与分散剂在分散介质中充分混合,形成二维纳米材料的稳定分散液;所述分散剂选自权利要求1-11中任一项所述的二维纳米材料分散剂;所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料;所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合。
  13. 根据权利要求12所述的液相剥离制备方法,其特征在于还包括:对所述二维纳米材料的稳定分散液进行离心处理,收集获得二维纳米材料与分散剂的复合物。
  14. 根据权利要求12或13所述的液相剥离制备方法,其特征在于,所述的方法包括:将苯胺低聚物与氮化硼粉体在分散介质中充分混合形成二维纳米材料的稳定分散液,所述分散介质选自有机溶剂;
    或者,所述的方法包括:将苯胺低聚物衍生物、可选择性添加或不添加的碱与氮化硼粉 体在分散介质中充分混合形成二维纳米材料的稳定分散液,所述分散介质选自水;
    优选的,所述方法包括:将苯胺低聚物衍生物、碱与氮化硼粉体在水中充分混合形成二维纳米材料的稳定分散液。
  15. 根据权利要求14所述的液相剥离制备方法,其特征在于:所述的碱包括NaOH,KOH或氨水。
  16. 根据权利要求12或13所述的液相剥离制备方法,其特征在于:将苯胺低聚物和/或苯胺低聚物衍生物与二硫化钼粉体在分散介质中充分混合形成二维纳米材料的稳定分散液;所述分散介质选自水和/或有机溶剂。
  17. 根据权利要求12或13所述的液相剥离制备方法,其特征在于包括:将聚苯胺类导电高分子与氮化硼粉体或二硫化钼粉体在分散介质中充分混合形成二维纳米材料的稳定分散液;所述分散介质选自水和/或有机溶剂。
  18. 根据权利要求12所述的液相剥离制备方法,其特征在于包括:选用超声、搅拌、振荡中的至少一种方式使所述分散剂与氮化硼粉体或二硫化钼粉体在分散介质中充分混合,形成二维纳米材料的稳定分散液。
  19. 根据权利要求12所述的液相剥离制备方法,其特征在于:所述分散介质选自有机溶剂;优选的,所述分散介质选自低沸点溶剂和/或高沸点极性有机溶剂;优选的,所述分散介质选自乙醇、四氢呋喃、N,N-二甲基甲酰胺、二甲基亚砜、氯仿和N-甲基吡咯烷酮中的任意一种或两种以上的组合。
  20. 根据权利要求12所述的液相剥离制备方法,其特征在于:所述分散介质选自水或水溶液。
  21. 根据权利要求20所述的液相剥离制备方法,其特征在于:所述分散介质选自碱性水溶液。
  22. 根据权利要求12所述的液相剥离制备方法,其特征在于:所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
  23. 二维纳米材料与分散剂的复合物,所述分散剂选自权利要求1-11中任一项所述的二维纳米材料分散剂,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
  24. 根据权利要求23所述的复合物,其特征在于:所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
  25. 根据权利要求23所述的复合物,其特征在于:所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
  26. 一种二维纳米材料分散体,其特征在于包含:分散介质;以及,分散于所述分散介 质中的如权利要求23-25中任一项所述的二维纳米材料与分散剂的复合物。
  27. 根据权利要求26所述的二维纳米材料分散体,其特征在于:所述二维纳米材料分散体为流体状分散体,优选为液态分散体或浆料。
  28. 根据权利要求26所述的二维纳米材料分散体,其特征在于:所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合。
  29. 根据权利要求26所述的二维纳米材料分散体,其特征在于:所述二维纳米材料分散体包含10mg/mL以下的二维纳米材料;优选的,所述二维纳米材料分散体包含0.1mg/mL~5mg/mL二维纳米材料;优选的,所述二维纳米材料分散体包含0.1mg/mL~3mg/mL二维纳米材料;优选的,所述二维纳米材料分散体包含0.1mg/mL~2.5mg/mL二维纳米材料。
  30. 根据权利要求26所述的二维纳米材料分散体,其特征在于:所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
  31. 一种二维纳米材料分散体的制备方法,其特征在于包括:将二维纳米材料及分散剂在分散介质中均匀混合形成稳定分散体;所述分散剂选自权利要求1-11中任一项所述的二维纳米材料分散剂,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料。
  32. 根据权利要求31所述的制备方法,其特征在于:所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
  33. 根据权利要求31所述的制备方法,其特征在于:所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合。
  34. 根据权利要求31所述的制备方法,其特征在于:所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
  35. 一种可再分散二维纳米材料粉体,其特征在于它是通过去除权利要求26-30中任一项所述的二维纳米材料分散体中的分散介质而获得的粉体,且所述粉体能够被再次直接分散于所述分散介质中。
  36. 一种基于物理方法实现的二维纳米材料分散和再分散方法,其特征在于包括:
    将二维纳米材料与分散剂在分散介质中均匀混合形成稳定分散体,所述分散剂选自权利要求1-11中任一项所述的二维纳米材料分散剂,所述二维纳米材料选自二维氮化硼纳米材料或二维二硫化钼纳米材料;
    去除所述稳定分散体中的分散介质而获得二维纳米材料与分散剂的复合物,
    以及,将所述复合物再次分散于分散介质中,再次形成稳定分散体。
  37. 根据权利要求36所述的基于物理方法实现的二维纳米材料分散和再分散方法,其特征在于:所述分散介质包括水、有机溶剂和高分子树脂中的任意一种或两种以上的组合;优 选的,所述分散介质包括水和/或有机溶剂。
  38. 根据权利要求36所述的基于物理方法实现的二维纳米材料分散和再分散方法,其特征在于:所述二维氮化硼纳米材料或二维二硫化钼纳米材料选自厚度为1~20nm的纳米片。
  39. 根据权利要求36所述的基于物理方法实现的二维纳米材料分散和再分散方法,其特征在于:所述分散剂与二维纳米材料的重量比为0.1~10:1,优选为0.2~2:1。
  40. 根据权利要求36所述的基于物理方法的实现氮化硼分散和再分散方法,其特征在于包括:将二维纳米材料与分散剂于水/和有机溶剂中均匀混合形成稳定分散液,之后对所述稳定分散液进行干燥处理而形成呈粉体状的所述复合物;所述干燥处理的方式选自喷雾干燥、旋转蒸发和真空干燥中的至少一种。
PCT/CN2016/101469 2016-05-11 2016-10-08 二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用 WO2017193532A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/300,273 US10843153B2 (en) 2016-05-11 2016-10-08 Two-dimensional nanomaterial dispersant, preparation method of two-dimensional nanomaterial by liquid phase exfoliation, and use thereof

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201610310453.3A CN107365261B (zh) 2016-05-11 2016-05-11 基于苯胺低聚物衍生物的氮化硼分散剂及其应用
CN201610310516.5A CN107365259B (zh) 2016-05-11 2016-05-11 二硫化钼分散剂、二硫化钼分散体、其制备方法及应用
CN201610312440.X 2016-05-11
CN201610312440.XA CN107364839B (zh) 2016-05-11 2016-05-11 氮化硼分散剂、液相剥离二维氮化硼纳米片的方法及其应用
CN201610310516.5 2016-05-11
CN201610311073.1A CN107364890B (zh) 2016-05-11 2016-05-11 二维二硫化钼纳米材料的液相剥离方法、二硫化钼分散方法及应用
CN201610311073.1 2016-05-11
CN201610310453.3 2016-05-11
CN201610315780.8 2016-05-11
CN201610315780.8A CN107364840B (zh) 2016-05-11 2016-05-11 二维b3n4纳米材料的剥离方法、分散剂、分散方法及其应用

Publications (1)

Publication Number Publication Date
WO2017193532A1 true WO2017193532A1 (zh) 2017-11-16

Family

ID=60266208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/101469 WO2017193532A1 (zh) 2016-05-11 2016-10-08 二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用

Country Status (2)

Country Link
US (1) US10843153B2 (zh)
WO (1) WO2017193532A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099657A (zh) * 2020-01-03 2020-05-05 青岛科技大学 一种超高浓度二硫化钼纳米膏及其制备方法
CN114031051A (zh) * 2021-12-08 2022-02-11 西安建筑科技大学 基于机械剥离法与强碱助剂的新型二维氮化硼材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368238B (zh) * 2021-06-07 2022-08-02 青岛科技大学 一种可实现靶向光热和化学协同治疗的h-BN/MoS2纳米探针及其制备方法和应用
CN113620261B (zh) * 2021-08-10 2022-12-30 中山大学 一种二维纳米片的制备方法
CN114395163A (zh) * 2021-08-27 2022-04-26 广西高而美节能科技有限公司 一种生物质氮化硼纳米片改性聚酰亚胺气凝胶的制备方法
CN113861205B (zh) * 2021-09-22 2023-07-04 同济大学 一种卟啉马来酰亚胺衍生物共价功能化二硫化钼纳米片非线性杂化材料及其制备与应用
CN113772732B (zh) * 2021-09-26 2022-05-06 江南大学 一种利用deet剥离制备二维材料纳米片的方法
CN114231028A (zh) * 2022-01-25 2022-03-25 深圳市绿蔓科技有限公司 一种氮化硼、聚苯胺复合材料的制备方法和应用
CN115321599A (zh) * 2022-06-22 2022-11-11 佛山(华南)新材料研究院 一种基于非牛顿流体的二维材料纳米片的制备方法
CN116554757B (zh) * 2023-05-24 2024-01-05 成都大学 一种有机固体酸改性氮化硼水性膨胀防火涂层的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120397A (ja) * 1988-10-28 1990-05-08 Kawasaki Steel Corp 潤滑離型剤
CN1204655A (zh) * 1998-06-19 1999-01-13 吉林大学 苯基封端聚苯胺齐聚物的合成
WO2003084484A2 (de) * 2002-04-09 2003-10-16 Basf Aktiengesellschaft Zusammensetzung mit uv-schutz
CN101811997A (zh) * 2010-04-29 2010-08-25 吉林大学 水溶性自掺杂苯胺齐聚物及其制备方法
CN103254429A (zh) * 2013-05-21 2013-08-21 合肥工业大学 一种聚苯胺和二硫化钼插层复合材料的制备方法
CN104466105A (zh) * 2014-11-12 2015-03-25 中国科学院深圳先进技术研究院 二硫化钼/聚苯胺复合材料、制备方法及锂离子电池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014144144A1 (en) * 2013-03-15 2014-09-18 Xolve, Inc. Polymer nanocomposites
GB201401715D0 (en) * 2014-01-31 2014-03-19 Univ Manchester Exfoliation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120397A (ja) * 1988-10-28 1990-05-08 Kawasaki Steel Corp 潤滑離型剤
CN1204655A (zh) * 1998-06-19 1999-01-13 吉林大学 苯基封端聚苯胺齐聚物的合成
WO2003084484A2 (de) * 2002-04-09 2003-10-16 Basf Aktiengesellschaft Zusammensetzung mit uv-schutz
CN101811997A (zh) * 2010-04-29 2010-08-25 吉林大学 水溶性自掺杂苯胺齐聚物及其制备方法
CN103254429A (zh) * 2013-05-21 2013-08-21 合肥工业大学 一种聚苯胺和二硫化钼插层复合材料的制备方法
CN104466105A (zh) * 2014-11-12 2015-03-25 中国科学院深圳先进技术研究院 二硫化钼/聚苯胺复合材料、制备方法及锂离子电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099657A (zh) * 2020-01-03 2020-05-05 青岛科技大学 一种超高浓度二硫化钼纳米膏及其制备方法
CN114031051A (zh) * 2021-12-08 2022-02-11 西安建筑科技大学 基于机械剥离法与强碱助剂的新型二维氮化硼材料及其制备方法

Also Published As

Publication number Publication date
US10843153B2 (en) 2020-11-24
US20190143286A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2017193532A1 (zh) 二维纳米材料分散剂、液相剥离制备二维纳米材料的方法及其应用
CN107365259B (zh) 二硫化钼分散剂、二硫化钼分散体、其制备方法及应用
Hu et al. Dispersant-assisted liquid-phase exfoliation of 2D materials beyond graphene
KR101666478B1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
Pham et al. One-step reduction of graphene oxide with L-glutathione
JP6162693B2 (ja) 導電性を改善した溶解性の高いカーボンナノチューブ
TWI543932B (zh) 石墨烯之製備方法
CN107364839B (zh) 氮化硼分散剂、液相剥离二维氮化硼纳米片的方法及其应用
Khan et al. Synthesizing polystyrene/carbon nanotube composites by emulsion polymerization with non-covalent and covalent functionalization
CN103937016A (zh) 一种制备石墨烯/高分子乳液复合薄膜材料的喷涂方法
CN101549864A (zh) 一种简单无毒制备单层石墨烯的方法
Sun et al. A facile gemini surfactant-improved dispersion of carbon nanotubes in polystyrene
Zhang et al. Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process
Zhang et al. Sulfonated graphene oxide: the new and effective material for synthesis of polystyrene-based nanocomposites
CN110028062B (zh) 一种表面修饰油溶性氧化石墨烯的制备方法
JP5800678B2 (ja) ナノカーボン水分散体及びその製造方法並びにナノカーボン含有構造体
CN107364890B (zh) 二维二硫化钼纳米材料的液相剥离方法、二硫化钼分散方法及应用
WO2015099378A1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
CN110229153B (zh) 一种插层分子及其制备方法、二维纳米复合材料
Yan et al. Rapid and effective functionalization of graphene oxide by ionic liquid
JP5725799B2 (ja) ナノカーボン水分散体及びその製造方法並びにナノカーボン含有構造体
CN102653396A (zh) 具有高分散性的金属纳米点规则修饰的石墨烯片复合材料及原位制备方法
Wang et al. Preparation, characterization, and chemical-induced hydrophobicity of thermostable amine-modified graphene oxide
JP2009023886A (ja) カーボンナノチューブ分散液およびその製造方法、並びにその利用
Yin et al. Rheological behavior and electrical properties of graphene oxide/polyaniline nanocomposites

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901487

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901487

Country of ref document: EP

Kind code of ref document: A1