WO2017193422A1 - 一种非对称式泥石流排导槽及其设计方法和应用 - Google Patents

一种非对称式泥石流排导槽及其设计方法和应用 Download PDF

Info

Publication number
WO2017193422A1
WO2017193422A1 PCT/CN2016/083443 CN2016083443W WO2017193422A1 WO 2017193422 A1 WO2017193422 A1 WO 2017193422A1 CN 2016083443 W CN2016083443 W CN 2016083443W WO 2017193422 A1 WO2017193422 A1 WO 2017193422A1
Authority
WO
WIPO (PCT)
Prior art keywords
drainage channel
side wall
flow
main
auxiliary
Prior art date
Application number
PCT/CN2016/083443
Other languages
English (en)
French (fr)
Inventor
陈剑刚
陈晓清
赵万玉
游勇
胡凯
王道正
Original Assignee
中国科学院 水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院 水利部成都山地灾害与环境研究所 filed Critical 中国科学院 水利部成都山地灾害与环境研究所
Priority to US16/098,272 priority Critical patent/US10738429B2/en
Publication of WO2017193422A1 publication Critical patent/WO2017193422A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • E02B5/02Making or lining canals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/02Stream regulation, e.g. breaking up subaqueous rock, cleaning the beds of waterways, directing the water flow
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F1/00Methods, systems, or installations for draining-off sewage or storm water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B11/00Drainage of soil, e.g. for agricultural purposes
    • E02B11/005Drainage conduits

Definitions

  • the invention relates to a debris flow prevention and control project, in particular to an asymmetric mud flow drainage channel with different design protection standards for cross-strait protection objects, and a design method and application thereof.
  • Debris flow disaster is one of the main types of geological disasters in China. With the development of the mountainous economy, the deepening of the development of the western region, and the continuous advancement of the construction of the “Belt and Road”, the demand for debris flow prevention and control projects is growing. As one of the main types of debris flow prevention and control projects, the drainage channel is widely used in the treatment of debris flow.
  • the existing debris flow drainage channels are completely symmetrical from the structural design type or the material structure, and there is no protection design standard that can fully consider the protection objects on both sides of the drainage channel.
  • the design protection standards of the protection objects on both sides of the drainage channel are different, it is easy to cause the material and labor waste to construct the symmetrical mud-flow channel guide groove; at the same time, it is easy to lead to the discharge of low-frequency, large-scale and seriously harmful debris flow.
  • the mudslide mud depth exceeds the height of the side wall of the drainage channel and overflows the drainage channel, which is harmful to the protection objects on both sides of the drainage channel.
  • the object of the present invention is to provide an asymmetric type debris flow guiding channel based on the design standard of the protection object, and a design method and application thereof, which can effectively solve the protection standard of the protection objects on both sides of the drainage channel on the stacked fan.
  • Different problems, construction investment, high safety performance, and late maintenance fees It is less suitable for the protection of villages and towns with economic backwardness and limited investment and solves the problem of debris flow drainage.
  • the invention provides an asymmetric mud flow drainage channel, comprising a drainage channel main groove for draining the debris flow under the design standard, and a drainage channel auxiliary groove disposed above the main groove of the drainage channel.
  • the main groove of the drainage channel may be a full lining type, or a rib groove type, or a step-deep pool structure type, or a step-double tank structure type.
  • Auxiliary groove sidewall spacer is integral with the main grooves (i.e., guide grooves auxiliary exhaust groove width B 2 is equal to the discharge guide groove main groove width B 1), or the auxiliary channel above the main groove located outside sidewall spacers (i.e., Exhaust
  • the groove auxiliary groove width B 2 is larger than the row guide groove main groove width B 1 ).
  • the section of the auxiliary tank side wall on the lower side of the protection object design protection standard is the fracture section, and the top width b 0 of the fracture section is equal to the top width b of the auxiliary tank side wall; the auxiliary groove side wall material is different from the fracture section material, and the auxiliary groove side is different.
  • the building materials of the wall are made of reinforced concrete or high-grade concrete, the masonry stone material is used in the fracture section, or the steel cage is used, or the concrete with the lower side of the auxiliary channel side wall is adopted (that is, according to the protection standard of the protection object on both sides of the drainage channel)
  • a section of the side wall of the auxiliary slot on the lower side of the protection standard is used as the collapse section, and the material of the fracture section is different from the material of the side wall of the other auxiliary slot, so that the fracture section can be broken by itself when needed, to drain the super design.
  • Standard mudstone fluid in material, except for the fracture section, all other auxiliary tank side walls are made of reinforced concrete or high-grade concrete, and the fracture section is made of masonry or reinforced stone cage or low-grade concrete (ie, the collapse section is adopted).
  • the concrete markings are lower than the concrete markings used for all auxiliary channel side walls except the fracture section)).
  • the fracture section adopts a rectangular section type (ie, a straight wall structure); the auxiliary tank side wall adopts a trapezoidal or rectangular section type.
  • the top width b 0 of the collapse section is 0.5-1.5 m, and the top width b of the side wall of the auxiliary slot is 0.5-1.5 m.
  • the building material of the main groove side wall is made of reinforced concrete or concrete, and the side wall of the main groove is 0.5-1.5m thick.
  • the asymmetry of the asymmetric rock flow drainage channel refers to the asymmetry of the building materials of the side walls of the auxiliary grooves on both sides and the asymmetry of the protection functions of the two sides of the row guiding channel.
  • the main groove of the drainage channel can safely guide the design scale
  • the auxiliary channel side wall allows it to automatically break (ie, the automatic segmentation of the collapse segment), and the debris flow will exceed the discharge scale. To the silt yard or farmland on the lower side of the protection standard, thus effectively ensuring the safety of people's lives and property and a large number of infrastructure in the villages and towns with higher protection standards, and fully reducing the harm caused by mudslides.
  • the steps of the design method of the asymmetric mud flow drainage channel (mainly the design method of the fracture segment) are as follows:
  • L 0 is the length of the segment, in m
  • G gravitational acceleration, value 9.81 m/s 2 ;
  • h mud depth the depth of the mud depth in the auxiliary channel of the drainage channel when the debris flows under the design standard to the main river, in m, determined by step (3);
  • h 0 is the height of the segment, in m
  • h mud depth the depth of the mud depth in the auxiliary channel of the drainage channel when the debris flows under the design standard to the main river, in m, determined by step (3);
  • ⁇ debris flow the severity of debris flow, in kN/m 3 , determined by step (1);
  • the asymmetric mud flow drainage channel is suitable for constructing the drainage channel on both sides of the protection object with different design protection standards; applicable to the debris flow drainage with a channel longitudinal ratio drop of 0.05-0.30; suitable for the debris flow gravity of 15-21 kN
  • the mudstone flow of /m 3 is discharged.
  • the invention has the beneficial effects that: considering the difference in the protection design standard of the protection objects on both sides of the drainage channel, the drainage channel structure type of the invention is adopted, and the building material is passed on the side with the lower protection standard.
  • the choice of setting allows the length of the side wall to be broken (ie, the breakout section), and the corresponding silt stop facility can be set downstream of the breakout; because the material of the breakout section is different from the material of the side wall of the auxiliary slot, it can not only save manpower, material and financial costs, but also Effectively dispose of the ultra-designed debris flow, in the case of less loss, more effectively protect the protective objects on the debris flow accumulation fan; at the same time, it is easy to recover after the collapse of the collapse segment, which can effectively reduce the investment in the later maintenance and reduce the entire drainage. The cost during the operation of the tank.
  • FIG. 1 is a schematic plan view showing the structure of the present invention in the first embodiment.
  • Fig. 2 is a schematic cross-sectional view showing the structure of A-A' in Fig. 1.
  • Fig. 3 is a schematic cross-sectional view showing the structure of B-B' in Fig. 1.
  • FIG. 4 is a schematic top plan view of the present invention in the second embodiment.
  • Fig. 5 is a schematic cross-sectional view showing the structure of A-A' in Fig. 4.
  • Fig. 6 is a schematic sectional view showing the structure of B-B' in Fig. 4.
  • Fig. 7 is a schematic plan view showing the structure of the present invention in the third embodiment.
  • Fig. 8 is a schematic sectional view showing the structure of A-A' in Fig. 7.
  • Fig. 9 is a schematic sectional view showing the structure of B-B' in Fig. 7.
  • the drainage area of a debris flow channel is about 14km 2 , and the longitudinal ratio of the channel is reduced to 0.05.
  • Symmetrical debris flow drainage channels are used to discharge the debris flow in the basin.
  • the debris flow prevention and control measures are adopted by adopting asymmetric drainage engineering measures.
  • the asymmetric debris flow drainage channel includes a drainage channel main tank 1 for draining a debris flow under design standards, and a drainage channel auxiliary tank 2 disposed above the main channel 1 of the drainage channel.
  • the auxiliary groove side wall 4 on both sides is located outside the main groove side wall 3; the main groove height h 1 is 2.5 m, the main groove width B 1 is 3.0 m, the main groove side wall 3 is made of reinforced concrete, and the main groove side wall 3 is thick.
  • the section of the auxiliary tank side wall 4 on the lower side of the protection object design protection standard is the fracture section 5, the fracture section 5 adopts the rectangular section type, the auxiliary groove side wall 4 adopts the trapezoidal section type, the fracture section 5 top width b 0 and the auxiliary slot
  • the top wall 4 has a top width b of 0.5 m; the auxiliary groove side wall 4 material is different from the fracture section 5 material, the auxiliary groove side wall 4 is made of reinforced concrete, and the fracture section 5 is made of M7.5 masonry material.
  • the first step by measurement field investigation, determining ⁇ severe landslides debris flow of 17kN / m 3;
  • the small watershed hydrology calculation methods to determine the peak flow of debris flow in case of a 20-year design criteria Q always 480m 3 / s;
  • the small watershed The hydrological calculation method determines the flood peak flow of the main river under the design standard, and then determines the critical peak flow of the debris flow leading to the river through the drainage channel to the main river according to the flood peak flow of the main river according to the design standard.
  • the main river is 300m. 3 / s.
  • the material selected for the fracture segment 5 is M7.5 masonry material, and according to the selected material, the 5 severe ⁇ fracture segment of the fracture segment is determined to be 22kN/m 3 ; according to the actual situation on the site, the determination is determined.
  • the top width b 0 of the segment 5 is 0.5 m, and the height h 2 of the auxiliary groove is 2.5 m.
  • 2 mud drainage canal height h of the auxiliary groove depth is 1.5m deep mud third step, the calculated flow rate according Compound Channels superposition section, determined in the debris flow to the main design criteria Exhaust river.
  • the fourth step when the peak flow of the debris flow exceeds the maximum peak flow allowed by the entire drainage channel (ie, the total Q), a section of the side wall 4 of the one-sided auxiliary tank (ie, the collapse section 5) is automatically broken, which exceeds the design standard.
  • the debris flow leads to the lower side of the fortification standard. Determine the length of the segment 5 by the following formula L 0
  • the length L 0 of the fracture segment 5 in the actual engineering design is finally rounded to 61 m.
  • the segment 5 is automatically broken. Determine the height of the segment 5 by the following formula h 0
  • the auxiliary tank height h 2 that is, the value of h 0 satisfies 1.5 m ⁇ h 0 ⁇ 2.5 m, so the actual height of the collapse section 5 height h 0 in the actual engineering design is 2 m. .
  • the asymmetric debris flow drainage channel includes a drainage channel main tank 1 for draining a debris flow under design standards, and a drainage channel auxiliary tank 2 disposed above the main channel 1 of the drainage channel.
  • the auxiliary groove side wall 4 on the higher side of the protection object design protection standard is integrated with the main groove side wall 3, and the auxiliary groove side wall 4 on the lower side of the protection object design protection standard is located outside the main groove side wall 3;
  • the main groove height h 1 is 5.0 m
  • the main groove width B 1 is 8.0 m
  • the main groove side wall 3 is made of reinforced concrete
  • the main groove side wall 3 is 1.0 m thick
  • the auxiliary groove height h 2 is 3.5 m
  • the auxiliary groove width B is 2 is 16.0 m.
  • the section of the auxiliary tank side wall 4 on the lower side of the protection object design protection standard is the fracture section 5, the fracture section 5 adopts the rectangular section type, and the side auxiliary groove side wall 4 integrally connected with the main groove side wall 3 adopts a rectangular section.
  • the type, the auxiliary tank side wall 4 located on the outer side of the main tank side wall 3 adopts a trapezoidal section type, the top section width b 0 of the fracture section 5 and the top width b of the auxiliary tank side wall 4 are 1.0 m;
  • the first step by on-site investigation found, determining landslides severe ⁇ debris flow of 21kN / m 3; according to the small flow domain Calculation Method of determining landslides peak flow rate at 50 years design criteria Q total of 1245m 3 / s;
  • the small watershed The hydrological calculation method determines the flood peak flow of the main river under the design standard, and then determines the critical peak flow of the debris flow leading to the river through the drainage channel to the main river according to the flood peak flow of the main river according to the design standard.
  • Q main river is 834m. 3 / s.
  • the material selected for the fracture segment 5 is a reinforced stone cage, and the 5 grading segment of the dam segment is determined to be 20 kN/m 3 according to the selected material.
  • the top width of the collapse segment is determined.
  • b 0 is 1.0 m and the auxiliary groove height h 2 is 3.5 m.
  • 2 mud drainage canal height h of the auxiliary groove depth is 2.0m deep mud third step, the calculated flow rate according Compound Channels superposition section, determined in the debris flow to the main design criteria Exhaust river.
  • the fourth step when the peak flow of the debris flow exceeds the maximum peak flow allowed by the entire drainage channel (ie, the total Q), a section of the side wall 4 of the one-sided auxiliary tank (ie, the collapse section 5) is automatically broken, which exceeds the design standard.
  • the debris flow leads to the lower side of the fortification standard. Determine the length of the segment 5 by the following formula L 0
  • the length L 0 of the fracture segment 5 in the actual engineering design is finally rounded to 180 m.
  • the segment 5 is automatically broken. Determine the height of the segment 5 by the following formula h 0
  • the auxiliary tank height h 2 that is, the value of h 0 satisfies 2.0 m ⁇ h 0 ⁇ 2.8 m, so the actual height of the collapse section 5 height h 0 in the actual engineering design is 2.2. m.
  • the drainage area of a debris flow channel is about 16km 2 , and the longitudinal ratio of the channel is reduced to 0.30.
  • Symmetrical debris flow drainage channels are used to discharge the debris flow in the basin, and the debris flow prevention and control measures are carried out by adopting asymmetric drainage engineering measures.
  • the asymmetric debris flow drainage channel includes a drainage channel main tank 1 for draining a debris flow under design standards, and a drainage channel auxiliary tank 2 disposed above the main channel 1 of the drainage channel.
  • the auxiliary trough side walls 4 on both sides are integrated with the main trough side wall 3; the main trough height h 1 is 1.0 m, the main trough width B 1 is 8.0 m, and the main trough side wall 3 is made of high-grade C30 concrete.
  • the groove side wall 3 has a thickness of 1.5 m; the auxiliary groove height h 2 is 6.0 m, and the auxiliary groove width B 2 is 8.0 m.
  • the section of the auxiliary tank side wall 4 on the lower side of the protection object design protection standard is the fracture section 5, the fracture section 5 adopts the rectangular section type, the auxiliary groove side wall 4 adopts the rectangular section type, the fracture section 5 top width b 0 and the auxiliary slot
  • the top wall 4 has a top width b of 1.5 m; the auxiliary groove side wall 4 material is different from the crushing section 5 material, the auxiliary groove side wall 4 is made of high-grade C30 concrete, and the broken section 5 is made of low-grade C20 concrete.
  • the first step by measurement field investigation, debris flow is determined as ⁇ severe landslides 15kN / m 3;
  • the small watershed hydrology calculation methods to determine the peak flow landslides at 50 years of design criteria Q total 975m 3 / s;
  • the small watershed The hydrological calculation method determines the flood peak flow of the main river under the design standard, and then determines the critical peak flow of the debris flow leading to the river through the drainage channel to the main river according to the flood peak flow of the main river according to the design standard.
  • the main river is 360m. 3 / s.
  • the material selected for the fracture segment 5 is C20 concrete, and according to the selected material, the 5 severe ⁇ fracture segment of the fracture segment is 23kN/m 3 ; according to the actual situation on the site, the top width b of the collapse segment is determined. 0 is 1.5 m, and the auxiliary groove height h 2 is 6.0 m.
  • the design flow rate of the drainage channel is 8m/s, then the mudflow to the main river can be obtained according to the calculation formula of the debris flow in the drainage channel.
  • the depth of the mud in the guide groove auxiliary groove 2 is 4.5 m.
  • the fourth step when the peak flow of the debris flow exceeds the maximum peak flow allowed by the entire drainage channel (ie, the total Q), a section of the side wall 4 of the one-sided auxiliary tank (ie, the collapse section 5) is automatically broken, which exceeds the design standard.
  • the debris flow leads to the lower side of the fortification standard. Determine the length of the segment 5 by the following formula L 0
  • the length L 0 of the fracture segment 5 in the actual engineering design is finally rounded to 32 m.
  • the segment 5 is automatically broken. Determine the height of the segment 5 by the following formula h 0
  • the actual height of the collapse section 5 height h 0 in the actual engineering design is 5.0. m.

Abstract

一种非对称式泥石流排导槽,包括用于排泄设计标准下泥石流的主槽(1)和设于主槽(1)上方的辅助槽(2),辅助槽侧墙(4)与主槽侧墙(3)连为一体,或辅助槽侧墙(4)位于主槽侧墙(3)上方的外侧,位于设防标准较低一侧的一段辅助槽侧墙(4)为溃决段(5),溃决段(5)与其他的辅助槽侧墙(4)材质不同。

Description

一种非对称式泥石流排导槽及其设计方法和应用 技术领域
本发明涉及一种泥石流防治工程,特别是涉及一种针对两岸保护对象具有不同设计防护标准的非对称式泥石流排导槽及其设计方法和应用。
背景技术
泥石流灾害是我国地质灾害的主要类型之一。随着山区经济的发展、西部大开发的不断深化、“一带一路”建设工作的持续推进,对泥石流防治工程的需求越来越旺盛。排导槽作为泥石流防治工程的主要类型之一,在泥石流治理中大量使用。
目前,现有的泥石流排导槽无论是从结构设计体型还是从材料结构方面都是完全对称型式,没有能够充分考虑排导槽两岸的保护对象的防护设计标准。在排导槽两岸保护对象设计防护标准不同的条件下,修建对称式的泥石流排导槽易造成材料和人工的浪费;同时,在排导低频率、大规模、危害严重的泥石流时,易导致泥石流泥深超过排导槽侧墙高度而溢流出排导槽,对排导槽两岸的保护对象造成危害。
发明内容
本发明的目的就是针对现有技术的不足,提供一种基于防护对象设计标准的非对称式泥石流排导槽及其设计方法和应用,能有效解决堆积扇上排导槽两岸保护对象的防护标准不同的问题,且修建投资抵、安全性能高、后期维护费 用少,特别适用于经济落后、投资受限的村镇防护并解决其面临的泥石流排导问题。
为实现上述目的,本发明的技术方案是:
本发明提出一种非对称式泥石流排导槽,包括用于排泄设计标准下泥石流的排导槽主槽,和设于排导槽主槽上方的排导槽辅助槽。排导槽主槽可以是全衬砌型式、或肋槛槽型式、或阶梯-深潭结构型式、或阶梯-双潭结构型式等。辅助槽侧墙与主槽侧墙连为一体(即排导槽辅助槽宽度B2等于排导槽主槽宽度B1),或辅助槽侧墙位于主槽侧墙上方的外侧(即排导槽辅助槽宽度B2大于排导槽主槽宽度B1)。保护对象设计防护标准较低一侧的辅助槽侧墙的一段为溃决段,溃决段顶宽b0与辅助槽侧墙顶宽b相等;辅助槽侧墙材质与溃决段材质不同,辅助槽侧墙的建筑材料采用钢筋混凝土或高标号混凝土,溃决段采用浆砌石材料、或采用钢筋石笼、或采用较辅助槽侧墙低标号的混凝土(即根据排导槽两岸保护对象设计防护标准的不同,将防护标准较低一侧的辅助槽侧墙的一段作为溃决段,溃决段的材质与其他辅助槽侧墙的材质不同,以使溃决段在需要的时候能够自行溃决,以排泄超设计标准的泥石流体;在材质上,除溃决段外,其他所有的辅助槽侧墙全部采用钢筋混凝土或高标号混凝土,而溃决段采用浆砌石或钢筋石笼或低标号混凝土(即溃决段采用的混凝土标号低于除溃决段外的其他所有辅助槽侧墙采用的混凝土标号))。
溃决段采用矩形断面型式(即直墙结构);辅助槽侧墙采用梯形或矩形断面型式。溃决段顶宽b0为0.5-1.5m,辅助槽侧墙顶宽b为0.5-1.5m。主槽侧墙的建筑材料采用钢筋混凝土或混凝土,主槽侧墙厚度为0.5-1.5m。
所述非对称式泥石流排导槽的非对称是指两侧辅助槽侧墙建筑材料的不对称和排导槽两岸防护功能的不对称。所述排导槽主槽能够安全排导设计规模下 的泥石流,而当流域暴发泥石流超过设计规模时,保护对象设计防护标准较低一侧的排导槽辅助槽侧墙允许其自动溃决(即溃决段自动溃决),将超过排泄规模的泥石流排导至防护标准较低一侧的停淤场或农田等,从而有效保证设计防护标准较高一侧村镇的人民生命财产和大量基础设施的安全,充分降低泥石流带来的危害。
所述非对称式泥石流排导槽的设计方法(主要是溃决段设计方法)步骤如下:
(一)通过现场调查实测,确定泥石流重度γ泥石流、单位kN/m3;根据小流域水文计算方法,确定设计标准下的泥石流峰值流量Q、单位m3/s;根据小流域水文计算方法,确定设计标准下主河的洪水洪峰流量,然后根据设计标准下主河的洪水洪峰流量确定通过排导槽排导至主河的导致堵江的泥石流临界峰值流量Q主河、单位m3/s。Q、Q主河的确定方法可参见名称为“一种主河输移控制型泥石流防治方法”、专利号为ZL201010617466.8的发明专利中QTotal和QDrainage的确定方法。
(二)根据现场实际情况,确定溃决段选用的材质,并根据选用材质确定溃决段重度γ溃决段、单位kN/m3;根据现场实际情况,确定溃决段顶宽b0和辅助槽高度h2、单位均为m。
(三)根据复式河槽水流流量计算的断面叠加法、或根据排导槽中泥石流流量计算公式,确定排导设计标准下的泥石流至主河时排导槽辅助槽中泥深高度h泥深、单位m。当排导槽辅助槽中的泥深达到设计值h泥深之后,允许溃决段自动溃决。
(四)通过以下公式确定溃决段长度L0
Figure PCTCN2016083443-appb-000001
式中,L0—溃决段长度,单位m;
Q—设计标准下的泥石流峰值流量,单位m3/s,由步骤(一)确定;
Q主河—通过排导槽排导至主河的导致堵江的泥石流临界峰值流量,单位m3/s,由步骤(一)确定;
Figure PCTCN2016083443-appb-000002
—考虑泥石流性质的综合系数,其值随泥石流重度的增大而减小,取值范围0.2-0.5;
g—重力加速度,取值9.81m/s2
h泥深—排导设计标准下的泥石流至主河时排导槽辅助槽中泥深高度,单位m,由步骤(三)确定;
(五)通过以下公式确定溃决段高度h0,同时还需要满足溃决段高度h0<辅助槽高度h2(h2由步骤(二)确定)
Figure PCTCN2016083443-appb-000003
式中,h0—溃决段高度,单位m;
h泥深—排导设计标准下的泥石流至主河时排导槽辅助槽中泥深高度,单位m,由步骤(三)确定;
γ溃决段—溃决段重度,单位kN/m3,由步骤(二)确定;
γ泥石流—泥石流重度,单位kN/m3,由步骤(一)确定;
b0—溃决段顶宽,单位m,由步骤(二)确定。
所述非对称式泥石流排导槽适用于修建排导槽的两岸保护对象具有不同的设计防护标准;适用于沟道纵比降为0.05-0.30的泥石流排导;适用于泥石流重 度为15-21kN/m3的泥石流排导。
与现有技术相比,本发明的有益效果是:充分考虑排导槽两岸保护对象的防护设计标准的不同,采用本发明的排导槽结构型式,在防护标准较低的一侧通过建筑材料的选择设置允许溃决的侧墙长度(即溃决段),溃决口下游可设置相应的停淤设施;由于溃决段材质与辅助槽侧墙材质有所不同,不仅能节约人力物力财力成本,也能有效处置超设计规模的泥石流,在损失较小的情况下,更有效保护泥石流堆积扇上的防护对象;同时,在溃决段溃决后易于恢复重建,能有效减少后期维护的投资,降低整个排导槽运行期间的成本。
附图说明
图1是实施例一中本发明的俯视结构示意图。
图2是图1中A-A’的剖面结构示意图。
图3是图1中B-B’的剖面结构示意图。
图4是实施例二中本发明的俯视结构示意图。
图5是图4中A-A’的剖面结构示意图。
图6是图4中B-B’的剖面结构示意图。
图7是实施例三中本发明的俯视结构示意图。
图8是图7中A-A’的剖面结构示意图。
图9是图7中B-B’的剖面结构示意图。
图中标号如下:
1排导槽主槽    2排导槽辅助槽
3主槽侧墙      4辅助槽侧墙
5溃决段
h0溃决段高度    b0溃决段顶宽
L0溃决段长度    b辅助槽侧墙顶宽
B1主槽宽度      B2辅助槽宽度
h1主槽高度      h2辅助槽高度
h泥深排导设计标准下的泥石流至主河时排导槽辅助槽中泥深高度
具体实施方式
下面结合附图,对本发明的优选实施例作进一步的描述。
实施例一
如图1、图2、图3所示。某泥石流沟流域面积约14km2,沟道纵比降为0.05,根据沟口堆积扇上村镇分布型式(两岸保护对象具有不同设计防护标准),拟在该流域堆积扇上采用本发明提出的非对称式泥石流排导槽来排导流域内暴发的泥石流,在充分利用流域下游主河输移能力的基础上,通过采用非对称式的排导工程措施进行泥石流防治。
根据现场调查泥石流堆积扇的地形条件,堆积扇上村镇、农田的分布情况,确定拟建排导槽的总长度为480m。所述非对称式泥石流排导槽包括用于排泄设计标准下泥石流的排导槽主槽1,和设于排导槽主槽1上方的排导槽辅助槽2。两侧辅助槽侧墙4位于主槽侧墙3上方的外侧;主槽高度h1为2.5m、主槽宽度B1为3.0m,主槽侧墙3采用钢筋混凝土,主槽侧墙3厚度为0.5m;辅助槽高度h2为2.5m、辅助槽宽度B2为7.0m。保护对象设计防护标准较低一侧的辅助槽侧墙4的一段为溃决段5,溃决段5采用矩形断面型式,辅助槽侧墙4采用梯形断面型式,溃决段5顶宽b0与辅助槽侧墙4顶宽b均为0.5m;辅助槽侧墙4材质与溃决段5材质不同,辅助槽侧墙4采用钢筋混凝土,溃决段5采用M7.5浆砌 石材料。
所述非对称式泥石流排导槽的设计方法步骤如下:
第一步,通过现场调查实测,确定泥石流重度γ泥石流为17kN/m3;根据小流域水文计算方法,确定20年一遇设计标准下的泥石流峰值流量Q为480m3/s;根据小流域水文计算方法,确定设计标准下主河的洪水洪峰流量,然后根据设计标准下主河的洪水洪峰流量确定通过排导槽排导至主河的导致堵江的泥石流临界峰值流量Q主河为300m3/s。
第二步,根据现场实际情况,确定溃决段5选用的材质为M7.5浆砌石材料,并根据选用材质确定溃决段5重度γ溃决段为22kN/m3;根据现场实际情况,确定溃决段5顶宽b0为0.5m,辅助槽高度h2为2.5m。
第三步,根据复式河槽水流流量计算的断面叠加法,确定排导设计标准下的泥石流至主河时排导槽辅助槽2中泥深高度h泥深为1.5m。
第四步,当泥石流的峰值流量超过整个排导槽允许的最大峰值流量(即Q)后,允许单侧辅助槽侧墙4的一段(即溃决段5)自动溃决,将超过设计标准的泥石流导向设防标准较低的一侧。通过以下公式确定溃决段5长度L0
Figure PCTCN2016083443-appb-000004
考虑到溃决段5的安全系数为1.1,因此实际工程设计中溃决段5长度L0最终取整为61m。
第五步,当排导槽辅助槽2中的泥深达到设计值(即h泥深)之后,溃决段5自动溃决。通过以下公式确定溃决段5高度h0
Figure PCTCN2016083443-appb-000005
Figure PCTCN2016083443-appb-000006
考虑到需要同时满足溃决段5高度h0<辅助槽高度h2,即h0的取值满足1.5m<h0<2.5m,因此实际工程设计中溃决段5高度h0最终取值为2m。
实施例二
如图4、图5、图6所示。某泥石流沟流域面积约24km2,沟道纵比降为0.20,根据沟口堆积扇上村镇分布型式(两岸保护对象具有不同设计防护标准),拟在该流域堆积扇上采用本发明提出的非对称式泥石流排导槽来排导流域内暴发的泥石流,在充分利用流域下游主河输移能力的基础上,通过采用非对称式的排导工程措施进行泥石流防治。
根据现场调查泥石流堆积扇的地形条件,堆积扇上村镇、农田的分布情况,确定拟建排导槽的总长度为980m。所述非对称式泥石流排导槽包括用于排泄设计标准下泥石流的排导槽主槽1,和设于排导槽主槽1上方的排导槽辅助槽2。保护对象设计防护标准较高一侧的辅助槽侧墙4与主槽侧墙3连为一体,保护对象设计防护标准较低一侧的辅助槽侧墙4位于主槽侧墙3上方的外侧;主槽高度h1为5.0m、主槽宽度B1为8.0m,主槽侧墙3采用钢筋混凝土,主槽侧墙3厚度为1.0m;辅助槽高度h2为3.5m、辅助槽宽度B2为16.0m。保护对象设计防护标准较低一侧的辅助槽侧墙4的一段为溃决段5,溃决段5采用矩形断面型式,与主槽侧墙3连为一体的一侧辅助槽侧墙4采用矩形断面型式,位于主槽侧墙3上方外侧的一侧辅助槽侧墙4采用梯形断面型式,溃决段5顶宽b0与辅助槽侧墙4顶宽b均为1.0m;辅助槽侧墙4材质与溃决段5材质不同,辅助槽侧墙4采用钢筋混凝土,溃决段5采用钢筋石笼。
所述非对称式泥石流排导槽的设计方法步骤如下:
第一步,通过现场调查实测,确定泥石流重度γ泥石流为21kN/m3;根据小流 域水文计算方法,确定50年一遇设计标准下的泥石流峰值流量Q为1245m3/s;根据小流域水文计算方法,确定设计标准下主河的洪水洪峰流量,然后根据设计标准下主河的洪水洪峰流量确定通过排导槽排导至主河的导致堵江的泥石流临界峰值流量Q主河为834m3/s。
第二步,根据现场实际情况,确定溃决段5选用的材质为钢筋石笼,并根据选用材质确定溃决段5重度γ溃决段为20kN/m3;根据现场实际情况,确定溃决段5顶宽b0为1.0m,辅助槽高度h2为3.5m。
第三步,根据复式河槽水流流量计算的断面叠加法,确定排导设计标准下的泥石流至主河时排导槽辅助槽2中泥深高度h泥深为2.0m。
第四步,当泥石流的峰值流量超过整个排导槽允许的最大峰值流量(即Q)后,允许单侧辅助槽侧墙4的一段(即溃决段5)自动溃决,将超过设计标准的泥石流导向设防标准较低的一侧。通过以下公式确定溃决段5长度L0
Figure PCTCN2016083443-appb-000007
考虑到溃决段5的安全系数为1.1,因此实际工程设计中溃决段5长度L0最终取整为180m。
第五步,当排导槽辅助槽2中的泥深达到设计值(即h泥深)之后,溃决段5自动溃决。通过以下公式确定溃决段5高度h0
Figure PCTCN2016083443-appb-000008
Figure PCTCN2016083443-appb-000009
考虑到需要同时满足溃决段5高度h0<辅助槽高度h2,即h0的取值满足2.0m<h0<2.8m,因此实际工程设计中溃决段5高度h0最终取值为2.2m。
实施例三
如图7、图8、图9所示。某泥石流沟流域面积约16km2,沟道纵比降为0.30,根据沟口堆积扇上村镇分布型式(两岸保护对象具有不同设计防护标准),拟在该流域堆积扇上采用本发明提出的非对称式泥石流排导槽来排导流域内暴发的泥石流,通过采用非对称式的排导工程措施进行泥石流防治。
根据现场调查泥石流堆积扇的地形条件,堆积扇上村镇、农田的分布情况,确定拟建排导槽的总长度为580m。所述非对称式泥石流排导槽包括用于排泄设计标准下泥石流的排导槽主槽1,和设于排导槽主槽1上方的排导槽辅助槽2。两侧的辅助槽侧墙4均与主槽侧墙3连为一体;主槽高度h1为1.0m、主槽宽度B1为8.0m,主槽侧墙3采用高标号的C30混凝土,主槽侧墙3厚度为1.5m;辅助槽高度h2为6.0m、辅助槽宽度B2为8.0m。保护对象设计防护标准较低一侧的辅助槽侧墙4的一段为溃决段5,溃决段5采用矩形断面型式,辅助槽侧墙4采用矩形断面型式,溃决段5顶宽b0与辅助槽侧墙4顶宽b均为1.5m;辅助槽侧墙4材质与溃决段5材质不同,辅助槽侧墙4采用高标号的C30混凝土,溃决段5采用低标号的C20混凝土。
所述非对称式泥石流排导槽的设计方法步骤如下:
第一步,通过现场调查实测,确定泥石流重度γ泥石流为15kN/m3;根据小流域水文计算方法,确定50年一遇设计标准下的泥石流峰值流量Q为975m3/s;根据小流域水文计算方法,确定设计标准下主河的洪水洪峰流量,然后根据设计标准下主河的洪水洪峰流量确定通过排导槽排导至主河的导致堵江的泥石流临界峰值流量Q主河为360m3/s。
第二步,根据现场实际情况,确定溃决段5选用的材质为C20混凝土,并根据选用材质确定溃决段5重度γ溃决段为23kN/m3;根据现场实际情况,确定溃 决段5顶宽b0为1.5m,辅助槽高度h2为6.0m。
第三步,根据排导槽的冲淤流速限制,取排导槽的设计流速为8m/s,那么根据排导槽中泥石流流量计算公式可得排导设计标准下的泥石流至主河时排导槽辅助槽2中泥深高度h泥深为4.5m。
第四步,当泥石流的峰值流量超过整个排导槽允许的最大峰值流量(即Q)后,允许单侧辅助槽侧墙4的一段(即溃决段5)自动溃决,将超过设计标准的泥石流导向设防标准较低的一侧。通过以下公式确定溃决段5长度L0
Figure PCTCN2016083443-appb-000010
考虑到溃决段5的安全系数为1.1,因此实际工程设计中溃决段5长度L0最终取整为32m。
第五步,当排导槽辅助槽2中的泥深达到设计值(即h泥深)之后,溃决段5自动溃决。通过以下公式确定溃决段5高度h0
Figure PCTCN2016083443-appb-000011
Figure PCTCN2016083443-appb-000012
考虑到需要同时满足溃决段5高度h0<辅助槽高度h2,即h0的取值满足4.5m<h0<6.0m,因此实际工程设计中溃决段5高度h0最终取值为5.0m。

Claims (10)

  1. 一种非对称式泥石流排导槽,其特征在于:所述非对称式泥石流排导槽包括用于排泄设计标准下泥石流的排导槽主槽(1),和设于排导槽主槽(1)上方的排导槽辅助槽(2);辅助槽侧墙(4)与主槽侧墙(3)连为一体,或辅助槽侧墙(4)位于主槽侧墙(3)上方的外侧;保护对象设计防护标准较低一侧的辅助槽侧墙(4)的一段为溃决段(5),溃决段(5)顶宽b0与辅助槽侧墙(4)顶宽b相等;辅助槽侧墙(4)材质与溃决段(5)材质不同,溃决段(5)采用浆砌石材料、或钢筋石笼、或采用较辅助槽侧墙(4)低标号的混凝土。
  2. 根据权利要求1所述非对称式泥石流排导槽,其特征在于:溃决段(5)采用矩形断面型式。
  3. 根据权利要求1所述非对称式泥石流排导槽,其特征在于:辅助槽侧墙(4)采用梯形或矩形断面型式。
  4. 根据权利要求1-3任一所述非对称式泥石流排导槽,其特征在于:辅助槽侧墙(4)采用钢筋混凝土或混凝土。
  5. 根据权利要求1-3任一所述非对称式泥石流排导槽,其特征在于:溃决段(5)顶宽b0为0.5-1.5m,辅助槽侧墙(4)顶宽b为0.5-1.5m。
  6. 根据权利要求1-3任一所述非对称式泥石流排导槽,其特征在于:主槽侧墙(3)采用钢筋混凝土或混凝土,主槽侧墙(3)厚度为0.5-1.5m。
  7. 如权利要求1所述非对称式泥石流排导槽的设计方法,其特征在于:所述非对称式泥石流排导槽的设计方法步骤如下:
    (一)通过现场调查实测,确定泥石流重度γ泥石流、单位kN/m3;根据小流域水文计算方法,确定设计标准下的泥石流峰值流量Q、单位m3/s;根据小流域水文计算方法,确定设计标准下主河的洪水洪峰流量,然后根据 设计标准下主河的洪水洪峰流量确定通过排导槽排导至主河的导致堵江的泥石流临界峰值流量Q主河、单位m3/s;
    (二)根据现场实际情况,确定溃决段(5)选用的材质,并根据选用材质确定溃决段(5)重度γ溃决段、单位kN/m3;根据现场实际情况,确定溃决段(5)顶宽b0和辅助槽高度h2、单位均为m;
    (三)根据复式河槽水流流量计算的断面叠加法,确定排导设计标准下的泥石流至主河时排导槽辅助槽(2)中泥深高度h泥深、单位m;
    (四)通过以下公式确定溃决段(5)长度L0
    Figure PCTCN2016083443-appb-100001
    式中,L0—溃决段(5)长度,单位m;
    Q—设计标准下的泥石流峰值流量,单位m3/s,由步骤(一)确定;
    Q主河—通过排导槽排导至主河的导致堵江的泥石流临界峰值流量,单位m3/s,由步骤(一)确定;
    Figure PCTCN2016083443-appb-100002
    —考虑泥石流性质的综合系数,取值范围0.2-0.5;
    g—重力加速度,取值9.81m/s2
    h泥深—排导设计标准下的泥石流至主河时排导槽辅助槽(2)中泥深高度,单位m,由步骤(三)确定;
    (五)通过以下公式确定溃决段(5)高度h0,同时满足溃决段(5)高度h0<辅助槽高度h2
    Figure PCTCN2016083443-appb-100003
    式中,h0—溃决段(5)高度,单位m;
    h泥深—排导设计标准下的泥石流至主河时排导槽辅助槽(2)中泥深高度,单位m,由步骤(三)确定;
    γ溃决段—溃决段(5)重度,单位kN/m3,由步骤(二)确定;
    γ泥石流—泥石流重度,单位kN/m3,由步骤(一)确定;
    b0—溃决段(5)顶宽,单位m,由步骤(二)确定;
    h2—辅助槽高度,单位m,由步骤(二)确定。
  8. 如权利要求1所述非对称式泥石流排导槽的应用,其特征在于:适用于修建排导槽的两岸保护对象具有不同的设计防护标准。
  9. 如权利要求1所述非对称式泥石流排导槽的应用,其特征在于:适用于沟道纵比降为0.05-0.30的泥石流排导。
  10. 如权利要求1所述非对称式泥石流排导槽的应用,其特征在于:适用于泥石流重度为15-21kN/m3的泥石流排导。
PCT/CN2016/083443 2016-05-13 2016-05-26 一种非对称式泥石流排导槽及其设计方法和应用 WO2017193422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/098,272 US10738429B2 (en) 2016-05-13 2016-05-26 Asymmetric debris flow drainage trough and design method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610321178.5 2016-05-13
CN201610321178.5A CN105926542B (zh) 2016-05-13 2016-05-13 一种非对称式泥石流排导槽的设计方法和应用

Publications (1)

Publication Number Publication Date
WO2017193422A1 true WO2017193422A1 (zh) 2017-11-16

Family

ID=56834945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083443 WO2017193422A1 (zh) 2016-05-13 2016-05-26 一种非对称式泥石流排导槽及其设计方法和应用

Country Status (3)

Country Link
US (1) US10738429B2 (zh)
CN (1) CN105926542B (zh)
WO (1) WO2017193422A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112651099A (zh) * 2019-11-11 2021-04-13 四川大学 一种基于gis的中小流域设计洪水模型

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108374386A (zh) * 2018-05-02 2018-08-07 中国电建集团华东勘测设计研究院有限公司 适应泥石流规模变化悬殊的复式排导结构及其施工方法
CN113944140B (zh) * 2021-10-27 2022-12-13 浙江华东工程建设管理有限公司 一种适用于高发泥石流灾害地区岸坡式码头的防冲撞引流装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2188892C2 (ru) * 2000-10-02 2002-09-10 Кабардино-Балкарская государственная сельскохозяйственная академия Селепропускной лоток
RU2006115861A (ru) * 2006-05-11 2007-11-27 Владимир Яковлевич Катюхин (RU) Селезащитное сооружение
CN102002927A (zh) * 2010-11-01 2011-04-06 中国科学院水利部成都山地灾害与环境研究所 一种复式泥石流排导槽
CN104794362A (zh) * 2015-05-06 2015-07-22 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流断面平均流速的测算方法及应用
CN104848825A (zh) * 2015-05-15 2015-08-19 中国科学院水利部成都山地灾害与环境研究所 泥石流排导槽肋槛后最大冲刷深度的测算方法及应用
CN105256768A (zh) * 2015-09-09 2016-01-20 中国科学院水利部成都山地灾害与环境研究所 箱体消能式泥石流排导槽的箱体消能段设计方法及应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6079903A (en) * 1998-04-01 2000-06-27 Wagner; Frank Drain channel system
JP3889753B2 (ja) * 2004-03-30 2007-03-07 明義 西野 U形側溝およびそのu形側溝の施行方法
CN102086635B (zh) 2010-12-31 2012-01-04 中国科学院水利部成都山地灾害与环境研究所 一种主河输移控制型泥石流防治方法
CN102174803B (zh) * 2011-04-01 2012-10-03 中国科学院水利部成都山地灾害与环境研究所 一种组装式泥石流排导槽及其施工方法
CN202390806U (zh) * 2011-12-12 2012-08-22 中国水电顾问集团华东勘测设计研究院 一种泥石流排导结构
CN105178255B (zh) * 2015-08-22 2016-10-26 中国科学院水利部成都山地灾害与环境研究所 阶梯-深潭型泥石流排导槽的深潭段长度测算方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2188892C2 (ru) * 2000-10-02 2002-09-10 Кабардино-Балкарская государственная сельскохозяйственная академия Селепропускной лоток
RU2006115861A (ru) * 2006-05-11 2007-11-27 Владимир Яковлевич Катюхин (RU) Селезащитное сооружение
CN102002927A (zh) * 2010-11-01 2011-04-06 中国科学院水利部成都山地灾害与环境研究所 一种复式泥石流排导槽
CN104794362A (zh) * 2015-05-06 2015-07-22 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流断面平均流速的测算方法及应用
CN104848825A (zh) * 2015-05-15 2015-08-19 中国科学院水利部成都山地灾害与环境研究所 泥石流排导槽肋槛后最大冲刷深度的测算方法及应用
CN105256768A (zh) * 2015-09-09 2016-01-20 中国科学院水利部成都山地灾害与环境研究所 箱体消能式泥石流排导槽的箱体消能段设计方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112651099A (zh) * 2019-11-11 2021-04-13 四川大学 一种基于gis的中小流域设计洪水模型
CN112651099B (zh) * 2019-11-11 2023-03-14 四川大学 一种基于gis的中小流域设计洪水模型

Also Published As

Publication number Publication date
CN105926542A (zh) 2016-09-07
US10738429B2 (en) 2020-08-11
CN105926542B (zh) 2018-06-12
US20190161929A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
WO2017041315A1 (zh) 箱体消能式泥石流排导槽的箱体消能段设计方法及应用
WO2014201742A1 (zh) 一种泥石流排导槽规划设计方法及其应用
WO2017193422A1 (zh) 一种非对称式泥石流排导槽及其设计方法和应用
CN103306242B (zh) 一种调节洪峰流量的泥石流控流坝及其设计方法和应用
CN103343526B (zh) 一种窗口坝拦截泥石流闭塞类型判别方法及其应用
CN106096216B (zh) 梁式格栅坝闭塞表现判别方法、应用
Petaccia et al. The collapse of the Sella Zerbino gravity dam
CN107169615A (zh) 一种基于沟道纵比降和沟道宽度的拦砂坝淤满条件下泥石流流速衰减值的计算方法
CN104141287B (zh) 内河工程引水施工方法
CN103195024B (zh) 自动分配排导量和停淤量的泥石流分流坝及其设计方法
CN104120690A (zh) 拦河闸下游一级消力池尾坎高度计算方法
CN107679355B (zh) 一种截水导流式锚拉桩板墙及其设计方法
CN108221842A (zh) 泥石流格子坝过坝流速、流量计算方法
CN203452049U (zh) 一种调节洪峰流量的泥石流控流坝
Kashiwai et al. Hydraulic examination of Koshibu dam’s intake facilities for sediment bypass
CN108330919B (zh) 阶梯-深潭型泥石流排导槽的深潭段深度测算方法
CN106013007B (zh) 适用于直线型陡槽溢洪道的水沙分离建筑物
CN109914568A (zh) 一种截洪沟与检查井衔接的结构
CN113255046B (zh) 泥石流拦砂坝护坦设计方法、应用
CN103614986A (zh) 一种适用于尾矿库排洪的无压流进水方法
CN208870637U (zh) 一种高水头富水隧道隧底构造
CN104452789A (zh) 一种均质粘土灰坝排渗系统
KR101262093B1 (ko) 정부도로 및 중개수로를 이용한 월류 파괴 방지형 필댐
CN109083681A (zh) 一种高水头富水隧道隧底构造及排水方法
CN108487415A (zh) 一种坡面排水沟槽的设计方法及应用、排水沟槽

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901377

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901377

Country of ref document: EP

Kind code of ref document: A1