WO2017041315A1 - 箱体消能式泥石流排导槽的箱体消能段设计方法及应用 - Google Patents

箱体消能式泥石流排导槽的箱体消能段设计方法及应用 Download PDF

Info

Publication number
WO2017041315A1
WO2017041315A1 PCT/CN2015/089589 CN2015089589W WO2017041315A1 WO 2017041315 A1 WO2017041315 A1 WO 2017041315A1 CN 2015089589 W CN2015089589 W CN 2015089589W WO 2017041315 A1 WO2017041315 A1 WO 2017041315A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
energy dissipation
drainage channel
dissipation section
flow
Prior art date
Application number
PCT/CN2015/089589
Other languages
English (en)
French (fr)
Inventor
陈剑刚
陈晓清
游勇
赵万玉
王涛
邹玉华
钟卫
苏凤环
栗帅
Original Assignee
中国科学院 水利部成都山地灾害与环境研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院 水利部成都山地灾害与环境研究所 filed Critical 中国科学院 水利部成都山地灾害与环境研究所
Priority to US15/757,855 priority Critical patent/US10329726B2/en
Publication of WO2017041315A1 publication Critical patent/WO2017041315A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/06Spillways; Devices for dissipation of energy, e.g. for reducing eddies also for lock or dry-dock gates
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • E02B5/08Details, e.g. gates, screens
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B5/00Artificial water canals, e.g. irrigation canals
    • E02B5/08Details, e.g. gates, screens
    • E02B5/085Arresting devices for waterborne materials, e.g. gratings
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B8/00Details of barrages or weirs ; Energy dissipating devices carried by lock or dry-dock gates
    • E02B8/02Sediment base gates; Sand sluices; Structures for retaining arresting waterborne material

Definitions

  • the invention relates to a debris flow prevention and control technology, in particular to a design method and a application method of a box energy dissipation section of a tank energy dissipation type mud flow drainage channel.
  • the box depletion type debris flow channel guide groove is a groove type designed for the longitudinal ratio drop of the larger groove bed.
  • the longitudinal ratio of the groove bed is greatly reduced, the strong erosion and erosion of the debris flow often cause serious damage to the bottom of the drainage groove, which cannot be used normally, and the maintenance cost is high in the later stage; the tank depletion type debris flow drainage channel passes through the setting box.
  • the energy dissipation of the body structure increases the roughness of the drainage channel by the interaction of the debris flow with the packed rock in the tank, and effectively regulates the flow velocity of the debris flow in the drainage channel, thereby achieving safe drainage of the debris flow in the tank.
  • the roughness coefficient is reasonably selected according to the actual situation, which is of great significance to the design of the drainage channel.
  • the design flow rate through which the discharge trough passes is known, if the roughness value is small, the flow velocity is too large, and when the flow rate is constant, the cross-sectional cross-sectional area is small, which does not satisfy the over-current capability, and easily causes the debris to fill the trough and It may overflow outside the tank; if the roughness is too large, the flow rate is reduced, and when the flow rate is constant, the cross-sectional area of the flow is too large, which may result in investment waste due to the large size of the flow cross section, and may also be due to actual flow rate.
  • the roughness can be selected according to the type and type of material, and then the flow velocity of the debris flow in the drainage channel can be calculated; and for the tank depletion debris flow drainage channel, due to its The bottom of the tank is provided with a box structure, and the boundary conditions at the bottom have been changed. Therefore, the roughness cannot be completely determined according to the material type of the drainage channel, and it is impossible to provide support for the optimal design of the tank-dissipating debris flow channel.
  • the object of the present invention is to provide a design method for the energy dissipation section of the tank dissipative debris flow guiding trough box based on the comprehensive roughness coefficient of the drainage trough according to the deficiencies of the prior art, and the method comprehensively considers the row Factors such as the longitudinal ratio of the guide groove, the length of the energy dissipation section of the box, the width of the energy dissipation section of the box and the average diameter of the packed block stone, combined with the characteristics of the tank energy dissipation type debris flow drainage channel, can reasonably determine the different design conditions.
  • the comprehensive roughness coefficient of the drainage channel can realize the rational optimization design of the energy dissipation section of the box of the depletion-type debris flow drainage channel, and the design method is simple and effective, and the required parameters are few.
  • the invention provides a design method for a box energy dissipation section of a tank depletion type mud flow drainage channel.
  • the tank depleting mud flow drainage channel comprises a fully lined trough bottom and side walls on both sides thereof, and a box body energy dissipation section is arranged in a middle part of the full lined trough bottom; the box energy dissipation section comprises a certain interval
  • the transverse penetrating ribs (for the protection of energy dissipation ⁇ safety) and the several stages of energy dissipation enthalpy which are arranged in a stepped manner between the upstream and downstream ribs, the energy dissipation ⁇ is arranged along the lateral direction through the drainage channel, each
  • the level energy dissipation ⁇ is composed of at least one prefabricated reinforced concrete rectangular box, the top surface of the rectangular box is open, the other five sides are closed, and the inside is filled with stone.
  • step (2) According to the design flow rate of the drainage channel and the longitudinal ratio drop J of the drainage channel obtained in step (1), set the length L of the energy dissipation section of the box body, the width b of the energy dissipation section of the box body, and the average diameter D of the loaded block stone. , the unit is m.
  • n 0 the roughness coefficient of the fully lined groove bottom, determined by step (1);
  • step (2)-step (5) comparing the flow velocity of the debris flow obtained in the step (4) with the flow rate of the non-rushing flow and the flow rate of the non-cracking obtained in the step (1); if the flow velocity of the debris flow obtained in the step (4) is greater than that obtained in the step (1) If the flow rate is less than or less than the flow rate of the non-collapse obtained in the step (1), the step (2)-step (5) is repeated; if the flow rate of the debris flow obtained in the step (4) is greater than or equal to that obtained in the step (1) If the flow rate is less than or equal to the non-flushing flow rate obtained in step (1), the length L of the energy dissipation section of the box set in step (2), the width b of the energy dissipation section of the box, and the average diameter D of the loaded block stone are used as the flow rate.
  • the design value of the energy dissipation section of the box is used as the flow rate.
  • the ratio of the width b of the energy dissipation section of the casing to the width B of the drainage groove is 0.5-1.0.
  • the ratio of the length L of the energy dissipation section of the box to the total length of the drainage channel is 0.10-0.25.
  • the ratio of the mudflow depth h upstream of the energy dissipation section of the tank to the average diameter D of the loaded rock is 1.0-4.0.
  • the design method of the energy dissipation section of the box is suitable for the longitudinal ratio drop J of the drainage channel is 0.15-0.35, and the bulk density is 16-22kN/m 3 for the debris flow.
  • the design method of the energy dissipation section of the box body of the depletion type debris flow drainage channel proposed by the invention is the determination of the comprehensive roughness coefficient of the drainage channel.
  • the calculation formula of the comprehensive roughness coefficient of the tank dissipative debris flow guide trough is based on more than 160 sets of drainage trough model tests. Through the data fitting of the model test results, the box dissipative debris flow drainage trough is comprehensively considered.
  • the longitudinal ratio is reduced, the length and width of the energy dissipation section of the box, and the average diameter of the block rock in the energy dissipation structure and the roughness coefficient of the fully lined groove bottom.
  • the design method of the energy dissipation section of the box can achieve the purpose of effectively regulating the flow velocity of the debris flow in the drainage channel by changing the length and width of the energy dissipation section of the box and the average diameter of the loaded rock.
  • the beneficial effects of the invention are: comprehensively considering the vertical ratio drop of the drainage channel, the length of the energy dissipation section of the box body, the width of the energy dissipation section of the box body, the average diameter of the loaded block stone and the roughness of the full lining groove bottom. Coefficients and other factors, combined with the characteristics of the box-type energy-dissipating debris flow channel guide groove, by fitting a large number of indoor model test results, the calculation formula of the comprehensive roughness coefficient of the tank-dissipating debris flow channel guide groove can be obtained, which can be reasonably determined.
  • the comprehensive roughness coefficient of the drainage channel under different design conditions can realize the rational optimization design of the energy dissipation section of the tank depletion mud flow drainage channel, and the design method is simple and effective, and the required parameters are few.
  • FIG. 1 is a schematic longitudinal cross-sectional view of a tank-dissipating debris flow guiding channel.
  • FIG. 2 is a top plan view of a tank depletion type debris flow drainage channel.
  • a mudslide ditch is located on the left bank of the Mianyuan River.
  • the drainage area is about 1.36km 2 .
  • the topography of the mountain in the upper main ditch is steep.
  • the highest point is on the east side of the basin, with an elevation of 1987m.
  • the lowest point is at the Mizoguchi, with an elevation of 810m and a relative height difference of 1177m.
  • the length of the main channel of the debris flow ditch is 2.59km.
  • the planar shape of the basin is peach-shaped, which is conducive to the convergence of debris flow. After the earthquake, there were many debris flows, the channel was severely cut, the cutting depth was about 30m, the channel shape was "V" type, and the average width was about 3 ⁇ 5m.
  • the steep terrain conditions provide good conditions for the collection of storm floods.
  • the better air conditions provide favorable conditions for the development of unfavorable geological phenomena in the ditch and the collection of loose solid sources of debris flow.
  • the longitudinal slope of the valley is large, which provides extremely favorable topography for the handling of loose solid materials and the formation of debris flows.
  • the tank depleting mud flow drainage channel comprises a full lining tank bottom 1 and side walls on both sides thereof, and a box body energy dissipation section is arranged in the middle of the full lining tank bottom 1 , and the box energy dissipation section comprises 5 m a transverse through-type rib 2 (width: 1 m) provided at a pitch and a five-stage energy dissipation ⁇ 3 which is filled in a stepped manner between each of the two upstream and downstream ribs 2, and the energy dissipation ⁇ 3 is transversely penetrated through the discharge guide groove Set, each level of energy dissipation ⁇ 3 is composed of at least one prefabricated reinforced concrete rectangular box, the top of the rectangular box is open, the other five sides are closed, the internal filling stone
  • the longitudinal ratio J of the discharge channel is 0.35
  • the volume of the debris flow is 22kN/m 3
  • the total length of the drainage channel is 105m
  • the cross section of the drainage is designed as a rectangle
  • the width B of the drainage channel is 6m
  • the height of the drainage channel is 3.5m.
  • the length L of the energy dissipation section of the box is set to 15 m
  • the width b of the energy dissipation section of the box is 3 m
  • the block stone is loaded.
  • the average diameter D is 0.4 m.
  • the third step through the formula It is determined that the integrated roughness coefficient n of the drainage channel is 0.038.
  • the flow rate of the debris flow was calculated to be 12.67 m/s.
  • the flow velocity of the debris flow obtained in the fourth step is compared with the non-rushing flow rate and the non-silting flow rate obtained in the first step; the flow velocity of the debris flow obtained in the fourth step is 12.67 m/s, which is larger than that obtained in the first step.
  • the rushing flow rate of 8m/s indicates that the design parameters of the energy dissipation section of the box are unreasonable, so the second step to the fifth step are repeated.
  • a mudslide ditch is located in the north of Qingpingchang Town in the northwestern part of Mianzhu City, Sichuan province. It is a ditch on the left bank of the Mianyuan River in the upper reaches of the Lancang River system in the Yangtze River Basin. The coordinates of the ditch are N31.5°, E104.1°. In the topographical erosion of the topography, the steep and low-Zhongshan landforms and slope gully terrain are cut.
  • the basin extends east-west in an east-west direction with a catchment area of 7.81km 2 and a main ditch length of 3.25km. The lowest point in the basin is located at an elevation of 883m at the Mizoguchi.
  • the highest peak is located at the top of the Jiuding Mountain in the eastern part of the water, at an altitude of 2,402m. 1519m.
  • the ditch repeatedly explodes large-scale debris flows, posing a great threat to the towns and towns of Qingping.
  • the tank depleting mud flow drainage channel comprises a full lining tank bottom 1 and side walls on both sides thereof, and a box body energy dissipation section is arranged in the middle of the full lining tank bottom 1 , and the box energy dissipation section comprises 6 m
  • a transverse through-type rib 2 width: 1.2 m
  • a 6-stage energy dissipation ⁇ 3 which is stepped between each of the two upstream and downstream ribs 2 are disposed at intervals, and the energy dissipation ⁇ 3 is inserted through the horizontal guide groove in the lateral direction.
  • each level of energy dissipation ⁇ 3 is composed of at least one prefabricated reinforced concrete rectangular box, the top of the rectangular box is open, the other five sides are closed, the inside is filled with stone, the stone filling height and the rectangular
  • the ratio of the height of the cabinet is 0.5.
  • the longitudinal ratio drop J of the row guide groove is determined to be 0.15 by the measurement of the large scale topographic map.
  • the debris flow density of the channel is 16kN/m 3 .
  • the topographic measurement it is determined that the total length of the drainage channel is 150m, the cross section of the water passage is designed to be rectangular, the width B of the drainage channel is 8m, and the height of the drainage channel is 4m.
  • the material of the fully lining groove bottom 1 was selected as the concrete bottom plus cement block stone surface. According to the selected full lining groove bottom material 1, the roughness coefficient n 0 of the fully lined groove bottom 1 was determined to be 0.02.
  • the allowable non-rushing flow rate of the drainage channel is 8m/s, and the non-deposition flow rate is 2.7m/s.
  • the length L of the energy dissipation section of the box is set to 30 m
  • the width b of the energy dissipation section of the box is 8 m
  • the block stone is loaded.
  • the average diameter D is 0.4 m.
  • the third step through the formula It is determined that the integrated roughness coefficient n of the row guide groove is 0.074.
  • the flow rate of the debris flow was calculated to be 5.06 m/s.
  • the flow velocity of the debris flow obtained in the fourth step is compared with the non-rushing flow rate and the non-slurry flow rate obtained in the first step; the flow velocity of the debris flow obtained in the fourth step is 5.06 m/s, which satisfies the first step or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)
  • Road Paving Structures (AREA)
  • Steps, Ramps, And Handrails (AREA)
  • Sewage (AREA)

Abstract

一种箱体消能式泥石流排导槽的箱体消能段设计方法,首先确定排导槽纵比降J和全衬砌槽底(1)的糙率系数n 0,然后设定箱体消能段参数,将相关参数代入公式计算得到排导槽综合糙率系数n,再通过曼宁公式计算得到泥石流流速,最后将泥石流流速与排导槽允许不冲不淤流速进行对比,最终优化得到箱体消能段设计值。该方法考虑了排导槽纵比降J、箱体消能段长度L、箱体消能段宽度b和装填块石平均直径D,能够合理确定不同设计条件下的排导槽综合糙率系数n,进而实现箱体消能式泥石流排导槽的箱体消能段的优化设计。还提供了一种箱体消能式泥石流排导槽的箱体消能段设计方法的应用。

Description

箱体消能式泥石流排导槽的箱体消能段设计方法及应用 技术领域
本发明涉及一种泥石流防治技术,特别是涉及一种箱体消能式泥石流排导槽的箱体消能段设计方法及其应用。
背景技术
箱体消能式泥石流排导槽是一种针对较大沟床纵比降设计的槽型。在沟床纵比降较大的情况下,泥石流强烈的磨蚀和冲刷作用常造成排导槽槽底严重破坏、无法正常使用、后期维护费用高昂;箱体消能式泥石流排导槽通过设置箱体结构的消能槛,通过泥石流与箱体中充填块石的相互作用增加排导槽糙率,有效调控排导槽中泥石流流速,从而实现泥石流在槽中的安全排泄。
在排导槽设计过程中,根据实际情况合理选择糙率系数,对排导槽的设计具有重要意义。在已知排导槽通过的设计流量时,如果糙率取值偏小,流速就偏大,流量一定时,过流断面面积就偏小,则满足不了过流能力,易导致泥石流满槽并可能溢出槽外;如果糙率取值偏大,流速减小,流量一定时,过流断面面积就偏大,则会因过流断面的尺寸偏大而造成投资浪费,还会因实际流速过大而对槽底产生磨蚀。针对利用混凝土和浆砌石修建的排导槽,其糙率可根据材料类型和种类来选取,进而计算得到排导槽中泥石流的流速;而对于箱体消能式泥石流排导槽,由于其槽底设置了箱体结构,底部边界条件发生了改变,因此,无法完全根据排导槽的材料类型确定其糙率,也就无法为箱体消能式泥石流排导槽的优化设计提供支撑。
发明内容
本发明的目的就是针对现有技术的不足,提供一种以确定排导槽综合糙率系数为基础的箱体消能式泥石流排导槽箱体消能段设计方法,该方法综合考虑了排导槽纵比降、箱体消能段长度、箱体消能段宽度和装填块石平均直径等因素,并结合箱体消能式泥石流排导槽的特点,能够合理确定不同设计条件下的排导槽综合糙率系数,进而能够实现箱体消能式泥石流排导槽的箱体消能段的合理优化设计,且设计方法简便有效,所需参数少。
为实现上述目的,本发明的技术方案是:
本发明提出一种箱体消能式泥石流排导槽的箱体消能段设计方法。所述箱体消能式泥石流排导槽包括全衬砌槽底及其两侧的侧墙,全衬砌槽底的中部设有箱体消能段;所述箱体消能段包括按一定间距设置的横向贯穿型肋槛(用于保护消能槛安全)和充填于上下游肋槛之间、呈阶梯状分布的若干级消能槛,消能槛沿横向贯穿排导槽方向设置,每一级消能槛由至少一个预制好的钢筋混凝土长方箱体构成,长方箱体顶面开敞、其余五面封闭、内部装填块石。长方箱体内的块石装填高度与长方箱体高度之比为0.5-0.8。所述箱体消能段的设计方法步骤如下:
(一)通过大比例尺地形图测量计算或现场调查实测,确定排导槽纵比降J;通过现场调查,选定全衬砌槽底的材质,根据选定的全衬砌槽底材质,确定全衬砌槽底的糙率系数n0;通过现场调查,获得泥石流物源和颗粒级配资料以及排导槽建筑材料性质,确定排导槽允许的不冲流速和不淤流速,单位m/s。
(二)根据排导槽设计流量和步骤(一)中得到的排导槽纵比降J,设定箱体消能段长度L、箱体消能段宽度b、装填块石的平均直径D,单位均为m。
(三)通过以下公式确定排导槽综合糙率系数n
Figure PCTCN2015089589-appb-000001
式中,n—排导槽综合糙率系数;
n0—全衬砌槽底的糙率系数,由步骤(一)确定;
b—箱体消能段宽度,单位m,由步骤(二)确定;
L—箱体消能段长度,单位m,由步骤(二)确定;
D—装填块石的平均直径,单位m,由步骤(二)确定;
J—排导槽纵比降,由步骤(一)确定;
π—圆周率,取值3.14。
(四)将步骤(三)中得到的排导槽综合糙率系数n代入曼宁公式
Figure PCTCN2015089589-appb-000002
计算得到泥石流流速、单位m/s。曼宁公式中,V为计算得到的泥石流流速、单位m/s,n为步骤(三)中得到的排导槽综合糙率系数,R为水力半径、单位m、根据泥石流泥深h和排导槽宽度B确定,J为步骤(一)中得到的排导槽纵比降。
(五)将步骤(四)中得到的泥石流流速与步骤(一)中得到的不冲流速和不淤流速进行对比;如果步骤(四)中得到的泥石流流速大于步骤(一)中得到的不冲流速、或小于步骤(一)中得到的不淤流速,则重复进行步骤(二)-步骤(五);如果步骤(四)中得到的泥石流流速大于等于步骤(一)中得到的不淤流速、同时小于等于步骤(一)中得到的不冲流速,则采用步骤(二)中设定的箱体消能段长度L、箱体消能段宽度b、装填块石的平均直径D作为箱体消能段设计值。
箱体消能段宽度b与排导槽宽度B之比为0.5-1.0。箱体消能段长度L与排导槽总长度之比为0.10-0.25。箱体消能段上游的泥石流泥深h与装填块石的平 均直径D之比为1.0-4.0。所述箱体消能段设计方法适用于排导槽纵比降J为0.15-0.35,适用于泥石流容重为16-22kN/m3
本发明提出的箱体消能式泥石流排导槽的箱体消能段设计方法,其关键核心是排导槽综合糙率系数的确定。箱体消能式泥石流排导槽综合糙率系数的计算公式是基于160余组排导槽模型试验,通过对模型试验结果的数据拟合,综合考虑了箱体消能式泥石流排导槽的纵比降,箱体消能段的长度、宽度,以及消能结构中装填块石的平均直径和全衬砌槽底的糙率系数等因素。箱体消能段设计方法可通过改变箱体消能段的长度和宽度、以及装填块石的平均直径,实现有效调控排导槽中泥石流流速的目的。
与现有技术相比,本发明的有益效果是:综合考虑了排导槽纵比降、箱体消能段长度、箱体消能段宽度、装填块石平均直径和全衬砌槽底糙率系数等因素,并结合箱体消能式泥石流排导槽的特点,通过将大量室内模型试验结果进行拟合,得到箱体消能式泥石流排导槽综合糙率系数的计算公式,能够合理确定不同设计条件下的排导槽综合糙率系数,进而能够实现箱体消能式泥石流排导槽的箱体消能段的合理优化设计,且设计方法简便有效,所需参数少。
附图说明
图1是箱体消能式泥石流排导槽的纵剖面示意图。
图2是箱体消能式泥石流排导槽的俯视示意图。
图中标号如下:
1  全衬砌槽底             2  肋槛
3  消能槛
J  排导槽纵比降           L  箱体消能段长度
b  箱体消能段宽度         B  排导槽宽度
h  泥石流泥深
具体实施方式
下面对本发明的优选实施例作进一步的描述。
实施例一
如图1、图2所示。某泥石流沟位于绵远河左岸,流域面积约为1.36km2,主沟上游山体地形陡峻,最高点位于流域东侧,海拔1987m;最低点位于沟口,海拔810m,相对高差达1177m;该泥石流沟主沟长度2.59km。该流域平面形态呈桃叶形,有利于泥石流体汇流。地震后发生多次泥石流,沟道下切严重,切割深度约30m,沟道形态呈“V”型,平均宽度约3~5m。陡峻的地形条件为暴雨洪水的汇集提供了良好的条件,同时较好的临空条件为沟域内不良地质现象的发育以及泥石流松散固体物源的汇集提供了有利的条件。加之沟谷纵坡大,为松散固体物质的搬运和泥石流的形成提供了极为有利的地形。
为了减轻泥石流灾害对沟口公路安全畅通的影响,拟在泥石流沟口修建箱体消能式泥石流排导槽跨越公路。所述箱体消能式泥石流排导槽包括全衬砌槽底1及其两侧的侧墙,全衬砌槽底1的中部设有箱体消能段,所述箱体消能段包括按5m间距设置的横向贯穿型肋槛2(宽度1m)和充填于每两个上下游肋槛2之间、呈阶梯状分布的5级消能槛3,消能槛3沿横向贯穿排导槽方向设置,每一级消能槛3由至少一个预制好的钢筋混凝土长方箱体构成,长方箱体顶面开敞、其余五面封闭、内部装填块石,块石装填高度与长方箱体高度之比为0.8。所述箱体消能段的设计方法步骤如下:
第一步,通过现场调查实测,确定排导槽纵比降J为0.35,爆发泥石流容 重为22kN/m3,排导槽总长度为105m,过水断面设计为矩形,排导槽宽度B为6m,排导槽高度为3.5m。通过现场调查,选定全衬砌槽底1的材质为混凝土底加水泥砌块石抹面,根据选定的全衬砌槽底1材质,确定全衬砌槽底1的糙率系数n0为0.02。通过现场调查,根据钢筋混凝土材料的抗冲流速特性建议,确定排导槽允许的不冲流速为8m/s,不淤流速为2.7m/s。
第二步,根据排导槽设计流量和第一步中得到的排导槽纵比降J,设定箱体消能段长度L为15m、箱体消能段宽度b为3m、装填块石的平均直径D为0.4m。
第三步,通过公式
Figure PCTCN2015089589-appb-000003
Figure PCTCN2015089589-appb-000004
确定排导槽综合糙率系数n为0.038。
第四步,箱体消能段上游的设计泥石流泥深h取4D、即h=1.6m,将第三步中得到的排导槽综合糙率系数n为0.038代入曼宁公式
Figure PCTCN2015089589-appb-000005
计算得到泥石流流速为12.67m/s。
第五步,将第四步中得到的泥石流流速与第一步中得到的不冲流速和不淤流速进行对比;第四步中得到的泥石流流速12.67m/s大于第一步中得到的不冲流速8m/s,表明箱体消能段的设计参数不合理,因此重复进行第二步-第五步。
第2次设计过程:设定箱体消能段长度L为20m、箱体消能段宽度b为4m、装填块石的平均直径D为0.4m;计算得到排导槽综合糙率系数n为0.049,设计泥石流泥深h=4D=1.6m,泥石流流速为10.12m/s。10.12m/s大于第一步中得到的不冲流速8m/s,因此重复进行第二步-第五步。
第3次设计过程:设定箱体消能段长度L为25m、箱体消能段宽度b为6m、装填块石的平均直径D为0.3m;计算得到排导槽综合糙率系数n为0.109,设 计泥石流泥深h=4D=1.2m,泥石流流速为4.89m/s。4.89m/s满足大于等于第一步中得到的不淤流速、同时小于等于第一步中得到的不冲流速,因此采用L=25m、b=6m、D=0.3m作为箱体消能段设计值。
实施例二
如图1、图2所示。某泥石流沟位于四川省绵竹市西北部山区的清平场镇北,属长江流域的沱江水系上游绵远河左岸一支沟,沟口坐标N31.5°,E104.1°。在地貌上属构造侵蚀中切割陡峻低-中山地貌、斜坡冲沟地形。该流域总体东西向伸展,汇水面积7.81km2,主沟全长3.25km,流域内最低点位于沟口海拔883m,最高峰位于东部分水岭九顶山的顶子崖,海拔2402m,相对高差1519m。该沟多次暴发超大规模泥石流,对清平乡场镇构成极大威胁。
为了保护该泥石流沟沟口道路的安全运行,拟在泥石流沟下游修建箱体消能式泥石流排导槽跨越公路。所述箱体消能式泥石流排导槽包括全衬砌槽底1及其两侧的侧墙,全衬砌槽底1的中部设有箱体消能段,所述箱体消能段包括按6m间距设置的横向贯穿型肋槛2(宽度1.2m)和充填于每两个上下游肋槛2之间、呈阶梯状分布的6级消能槛3,消能槛3沿横向贯穿排导槽方向设置,每一级消能槛3由至少一个预制好的钢筋混凝土长方箱体构成,长方箱体顶面开敞、其余五面封闭、内部装填块石,块石装填高度与长方箱体高度之比为0.5。所述箱体消能段的设计方法步骤如下:
第一步,通过大比例尺地形图测量计算,确定排导槽纵比降J为0.15。通过现场调查,确定该沟道爆发泥石流容重为16kN/m3。通过地形测量,确定排导槽总长度为150m,过水断面设计为矩形,排导槽宽度B为8m,排导槽高度为4m。通过现场调查,选定全衬砌槽底1的材质为混凝土底加水泥砌块石抹面,根据选定的全衬砌槽底1材质,确定全衬砌槽底1的糙率系数n0为0.02。通过 现场调查,根据钢筋混凝土材料的抗冲流速特性建议,确定排导槽允许的不冲流速为8m/s,不淤流速为2.7m/s。
第二步,根据排导槽设计流量和第一步中得到的排导槽纵比降J,设定箱体消能段长度L为30m、箱体消能段宽度b为8m、装填块石的平均直径D为0.4m。
第三步,通过公式
Figure PCTCN2015089589-appb-000006
Figure PCTCN2015089589-appb-000007
确定排导槽综合糙率系数n为0.074。
第四步,箱体消能段上游的设计泥石流泥深h取为D、即h=0.4m,将第三步中得到的排导槽综合糙率系数n代入曼宁公式
Figure PCTCN2015089589-appb-000008
计算得到泥石流流速为5.06m/s。
第五步,将第四步中得到的泥石流流速与第一步中得到的不冲流速和不淤流速进行对比;第四步中得到的泥石流流速5.06m/s满足大于等于第一步中得到的不淤流速、同时小于等于第一步中得到的不冲流速,因此采用L=30m、b=8m、D=0.4m作为箱体消能段设计值。

Claims (7)

  1. 一种箱体消能式泥石流排导槽的箱体消能段设计方法,所述箱体消能式泥石流排导槽包括全衬砌槽底(1)及其两侧的侧墙,全衬砌槽底(1)的中部设有箱体消能段,所述箱体消能段包括按一定间距设置的横向贯穿型肋槛(2)和充填于上下游肋槛(2)之间、呈阶梯状分布的若干级消能槛(3),消能槛(3)沿横向贯穿排导槽方向设置,每一级消能槛(3)由至少一个预制好的钢筋混凝土长方箱体构成,长方箱体顶面开敞、其余五面封闭、内部装填块石,其特征在于:所述箱体消能段的设计方法步骤如下:
    (一)通过大比例尺地形图测量计算或现场调查实测,确定排导槽纵比降J;通过现场调查,选定全衬砌槽底(1)的材质,根据选定的全衬砌槽底(1)材质,确定全衬砌槽底(1)的糙率系数n0;通过现场调查,确定排导槽允许的不冲流速和不淤流速,单位m/s;
    (二)根据排导槽设计流量和步骤(一)中得到的排导槽纵比降J,设定箱体消能段长度L、箱体消能段宽度b、装填块石的平均直径D,单位均为m;
    (三)通过以下公式确定排导槽综合糙率系数n
    Figure PCTCN2015089589-appb-100001
    式中,n—排导槽综合糙率系数;
    n0—全衬砌槽底(1)的糙率系数,由步骤(一)确定;
    b—箱体消能段宽度,单位m,由步骤(二)确定;
    L—箱体消能段长度,单位m,由步骤(二)确定;
    D—装填块石的平均直径,单位m,由步骤(二)确定;
    J—排导槽纵比降,由步骤(一)确定;
    π—圆周率,取值3.14;
    (四)将步骤(三)中得到的排导槽综合糙率系数n代入曼宁公式,计算得到 泥石流流速、单位m/s;
    (五)将步骤(四)中得到的泥石流流速与步骤(一)中得到的不冲流速和不淤流速进行对比;如果步骤(四)中得到的泥石流流速大于步骤(一)中得到的不冲流速、或小于步骤(一)中得到的不淤流速,则重复进行步骤(二)-步骤(五);如果步骤(四)中得到的泥石流流速大于等于步骤(一)中得到的不淤流速、同时小于等于步骤(一)中得到的不冲流速,则采用步骤(二)中设定的箱体消能段长度L、箱体消能段宽度b、装填块石的平均直径D作为箱体消能段设计值。
  2. 根据权利要求1所述箱体消能式泥石流排导槽的箱体消能段设计方法,其特征在于:箱体消能段宽度b与排导槽宽度B之比为0.5-1.0。
  3. 根据权利要求1所述箱体消能式泥石流排导槽的箱体消能段设计方法,其特征在于:箱体消能段长度L与排导槽总长度之比为0.10-0.25。
  4. 根据权利要求1所述箱体消能式泥石流排导槽的箱体消能段设计方法,其特征在于:长方箱体内的块石装填高度与长方箱体高度之比为0.5-0.8。
  5. 根据权利要求1所述箱体消能式泥石流排导槽的箱体消能段设计方法,其特征在于:箱体消能段上游的泥石流泥深h与装填块石的平均直径D之比为1.0-4.0。
  6. 如权利要求1所述箱体消能式泥石流排导槽箱体消能段设计方法的应用,其特征在于:适用于排导槽纵比降J为0.15-0.35。
  7. 如权利要求1所述箱体消能式泥石流排导槽箱体消能段设计方法的应用,其特征在于:适用于泥石流容重为16-22kN/m3
PCT/CN2015/089589 2015-09-09 2015-09-15 箱体消能式泥石流排导槽的箱体消能段设计方法及应用 WO2017041315A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/757,855 US10329726B2 (en) 2015-09-09 2015-09-15 Method of designing box-type energy-dissipating section of box-type energy-dissipating mudflow diversion flume, and application

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510568281.5A CN105256768B (zh) 2015-09-09 2015-09-09 箱体消能式泥石流排导槽的箱体消能段设计方法
CN2015105682815 2015-09-09

Publications (1)

Publication Number Publication Date
WO2017041315A1 true WO2017041315A1 (zh) 2017-03-16

Family

ID=55096684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089589 WO2017041315A1 (zh) 2015-09-09 2015-09-15 箱体消能式泥石流排导槽的箱体消能段设计方法及应用

Country Status (3)

Country Link
US (1) US10329726B2 (zh)
CN (1) CN105256768B (zh)
WO (1) WO2017041315A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385603A (zh) * 2018-04-19 2018-08-10 长江水利委员会长江科学院 掺气水流窄缝消能工水力模型试验装置及方法
CN109934506A (zh) * 2019-03-21 2019-06-25 交通运输部天津水运工程科学研究所 一种基于定量化判断航道整治工程类型的选取方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926542B (zh) * 2016-05-13 2018-06-12 中国科学院水利部成都山地灾害与环境研究所 一种非对称式泥石流排导槽的设计方法和应用
CN111455943B (zh) * 2020-04-23 2021-04-30 水利部交通运输部国家能源局南京水利科学研究院 一种堰塞湖抗冲刷泄流槽的施工方法
CN112064600B (zh) * 2020-08-24 2022-07-05 中国电建集团华东勘测设计研究院有限公司 一种与导流洞结合的溢洪道排水系统
CN112281769B (zh) * 2020-10-21 2022-04-12 珠江水利委员会珠江水利科学研究院 一种适用于陡坡跌水的消能结构
CN114491747A (zh) * 2022-01-17 2022-05-13 杭州京杭运河二通道建设投资有限公司 一种新开挖梯形航道坡脚抛石粒径的估算方法
CN115387297B (zh) * 2022-08-11 2023-12-15 中铁第五勘察设计院集团有限公司 泥石流排导槽结构
CN117350202B (zh) * 2023-12-04 2024-03-26 成都理工大学 泥石流过流结构磨蚀计算方法及系统、介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2188892C2 (ru) * 2000-10-02 2002-09-10 Кабардино-Балкарская государственная сельскохозяйственная академия Селепропускной лоток
RU2006115861A (ru) * 2006-05-11 2007-11-27 Владимир Яковлевич Катюхин (RU) Селезащитное сооружение
CN103453944A (zh) * 2013-09-06 2013-12-18 中国科学院、水利部成都山地灾害与环境研究所 泥石流起动临界清水流量测算方法及起动监测方法
CN104794362A (zh) * 2015-05-06 2015-07-22 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流断面平均流速的测算方法及应用
CN104831679A (zh) * 2015-05-15 2015-08-12 中国科学院水利部成都山地灾害与环境研究所 软基消能型泥石流排导槽的肋槛间距测算方法及应用
CN104848825A (zh) * 2015-05-15 2015-08-19 中国科学院水利部成都山地灾害与环境研究所 泥石流排导槽肋槛后最大冲刷深度的测算方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433845A (en) * 1994-06-03 1995-07-18 Newberry Tanks & Equipment, Inc. Flow control bypass basin apparatus
US5757665A (en) * 1996-06-04 1998-05-26 The United States Of America As Represented By The Secretary Of The Army Riverine community habitat assessment and restoration methodlogy
US7349831B2 (en) * 2003-01-31 2008-03-25 Fmsm Engineers, Inc. River assessment, monitoring and design system
US7353113B2 (en) * 2004-12-07 2008-04-01 Sprague Michael C System, method and computer program product for aquatic environment assessment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2188892C2 (ru) * 2000-10-02 2002-09-10 Кабардино-Балкарская государственная сельскохозяйственная академия Селепропускной лоток
RU2006115861A (ru) * 2006-05-11 2007-11-27 Владимир Яковлевич Катюхин (RU) Селезащитное сооружение
CN103453944A (zh) * 2013-09-06 2013-12-18 中国科学院、水利部成都山地灾害与环境研究所 泥石流起动临界清水流量测算方法及起动监测方法
CN104794362A (zh) * 2015-05-06 2015-07-22 中国科学院、水利部成都山地灾害与环境研究所 一种泥石流断面平均流速的测算方法及应用
CN104831679A (zh) * 2015-05-15 2015-08-12 中国科学院水利部成都山地灾害与环境研究所 软基消能型泥石流排导槽的肋槛间距测算方法及应用
CN104848825A (zh) * 2015-05-15 2015-08-19 中国科学院水利部成都山地灾害与环境研究所 泥石流排导槽肋槛后最大冲刷深度的测算方法及应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108385603A (zh) * 2018-04-19 2018-08-10 长江水利委员会长江科学院 掺气水流窄缝消能工水力模型试验装置及方法
CN108385603B (zh) * 2018-04-19 2024-01-19 长江水利委员会长江科学院 掺气水流窄缝消能工水力模型试验装置及方法
CN109934506A (zh) * 2019-03-21 2019-06-25 交通运输部天津水运工程科学研究所 一种基于定量化判断航道整治工程类型的选取方法
CN109934506B (zh) * 2019-03-21 2023-02-14 交通运输部天津水运工程科学研究所 一种基于定量化判断航道整治工程类型的选取方法

Also Published As

Publication number Publication date
CN105256768A (zh) 2016-01-20
US10329726B2 (en) 2019-06-25
US20180327990A1 (en) 2018-11-15
CN105256768B (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2017041315A1 (zh) 箱体消能式泥石流排导槽的箱体消能段设计方法及应用
Peng et al. Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China
Hoffmans The influence of turbulence on soil erosion
Şentürk Hydraulics of dams and reservoirs
Ahmed et al. Effect of corrugated beds on characteristics of submerged hydraulic jump
CN104794362A (zh) 一种泥石流断面平均流速的测算方法及应用
CN106250635A (zh) 一种冰湖溃决型泥石流的防治方法及其应用
WO2021253635A1 (zh) 超大规模洪水泥石流防治方法
Swamee et al. Design of canals
CN110904915A (zh) 一种水库工程岩土体透水及防渗设计方法
CN106096203A (zh) 一种枢纽大坝的基底施工方法
Chen et al. Review of investigations on hazard chains triggered by river-blocking debris flows and dam-break floods
Sumi Designing and operating of flood retention dry dams in Japan and USA
Kobiyama et al. Debris flow occurrences in Rio dos Cedros, Southern Brazil: meteorological and geomorphic aspects
WO2017193422A1 (zh) 一种非对称式泥石流排导槽及其设计方法和应用
Liu et al. Strategies for gully stabilization and highland protection in Chinese Loess Plateau
CN106149631B (zh) 高山窄谷拱坝崩塌型边坡处理方法
CN107816031A (zh) 利用高含沙洪水的沉积物固定流动沙丘的方法
Du et al. Experimental study of the interaction between building clusters and flash floods
CN217104953U (zh) 就地采用天然淤积级配不良细砂构筑的砂坝
Kuspilić et al. Utjecaj vodotoka na sigurnost mostova
Izrailovich et al. Concrete Gravity and Arch Dams on Rock Foundation
CN113430962B (zh) 一种适用于山洪易发地区的自溃式过水桥涵
Hobi Analytical Study of Haditha Reservoir Sedimentation by CFD Model
Tanchev et al. Dam engineering in Republic of Macedonia: Recent practice and plans

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757855

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903419

Country of ref document: EP

Kind code of ref document: A1