WO2017191676A1 - 熱供給システム - Google Patents

熱供給システム Download PDF

Info

Publication number
WO2017191676A1
WO2017191676A1 PCT/JP2016/063586 JP2016063586W WO2017191676A1 WO 2017191676 A1 WO2017191676 A1 WO 2017191676A1 JP 2016063586 W JP2016063586 W JP 2016063586W WO 2017191676 A1 WO2017191676 A1 WO 2017191676A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
supply system
path
heat exchanger
gas
Prior art date
Application number
PCT/JP2016/063586
Other languages
English (en)
French (fr)
Inventor
知義 瀧口
Original Assignee
株式会社マリタイムイノベーションジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マリタイムイノベーションジャパン filed Critical 株式会社マリタイムイノベーションジャパン
Priority to PCT/JP2016/063586 priority Critical patent/WO2017191676A1/ja
Publication of WO2017191676A1 publication Critical patent/WO2017191676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/14Use of propulsion power plant or units on vessels the vessels being motor-driven relating to internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a technique for using the heat recovered from the exhaust gas of the prime mover of the moving body.
  • a moving body such as a ship is equipped with a prime mover that generates a driving force for movement. Since the exhaust gas of the prime mover mounted on the moving body usually has more heat energy than the atmosphere, the moving body is heated with a heat medium (for example, water) by a heat exchanger called an exhaust gas economizer (or economizer). However, some have a mechanism for supplying a heat medium that has become a gas (for example, water vapor) by heating to a heat utilization device in the moving body.
  • the heat utilization device in the moving body is, for example, a heating device that heats fuel or lubricating oil of a prime mover, a heating device that heats the moving body, or the like.
  • the amount of heat energy of the exhaust gas from the motor mounted on the moving body is decreasing year by year as the thermal efficiency of the motor is improved. Therefore, in the above-described mechanism, there may be a case where the necessary steam amount cannot be supplied to the heat utilization device even in the planned normal use state of the prime mover.
  • the amount of heat energy of the exhaust gas of the prime mover mounted on the moving body differs greatly depending on the moving state of the moving body, unlike the prime mover used in a non-moving body such as a plant. For example, if the moving body is moving at a low speed or moving in a cold region, the prime mover is discharged compared to the case where the moving body is moving at a high speed or moving in the tropical region. There is a problem that the amount of heat energy of the gas is reduced and the shortage of the amount of heat energy for the heat utilization device is promoted.
  • the inventor of the present application invented the heat supply system described in Patent Document 1 as a technique for reducing the above problems.
  • the heat supply system described in Patent Literature 1 when the amount of heat energy supplied to the heat utilization device is insufficient, the heat medium is compressed by the compressor and then supplied to the heat utilization device.
  • Low temperature corrosion may occur in heat exchangers that exchange heat between the exhaust gas of the prime mover and the heat medium.
  • the likelihood of low-temperature corrosion varies depending on various factors such as the content of sulfur and water in the exhaust gas and the pH of the exhaust gas, but generally the prime mover operates at a low load, and the amount of exhaust gas and It tends to occur when the temperature drops.
  • the heat utilization device cannot use the heat energy of the exhaust gas from the prime mover. . As a result, energy savings as a whole are reduced.
  • the present invention has been made in view of the above-described background, and in a mechanism for recovering the heat energy of the exhaust gas of the moving body prime mover to the low load region of the prime mover by the heat exchanger, the failure of the heat exchanger for the energy saving amount
  • the purpose is to reduce the influence of.
  • the present invention provides a first heat exchanger that performs heat exchange between an exhaust gas of a prime mover that imparts a propulsive force to a moving body and a heat medium, and the first heat exchanger.
  • a second heat exchanger that performs heat exchange between the exhaust gas that has passed through the heat medium and the heat medium, a heat medium that is heated in the first heat exchanger, and a heat that is heated in the second heat exchanger
  • a heat supply system for supplying a medium to a heat utilization device mounted on the moving body, and a heat medium moving path from the second heat exchanger in the heat supply system to the heat utilization device.
  • a compressor that compresses the heat medium to a predetermined pressure, a path that guides exhaust gas that has passed through the first heat exchanger to pass through the second heat exchanger, and the second Gas discharge system with switchable path leading to bypass the heat exchanger Suggest heat supply system comprising a.
  • the gas-liquid separator which isolate
  • a third heat exchanger that exchanges heat between the exhaust gas that has passed through the second heat exchanger and the liquid phase heat medium that is replenished to the gas-liquid separator. It may be adopted.
  • a configuration may be adopted in which a fourth heat exchanger that performs heat exchange is provided.
  • an electric motor that drives the compressor is provided, the compressor is a positive displacement compressor that is driven by the electric motor, and the compressor includes the first compressor.
  • the surplus that is not supplied to the heat utilization device is pumped in the direction opposite to that during compression, thereby functioning as a turbine, and the electric motor is driven by the compressor functioning as a turbine.
  • a configuration of functioning as a generator that is driven to generate power may be employed.
  • the exhaust gas when a failure due to low temperature corrosion occurs in the second heat exchanger where the exhaust gas of the motor of the moving body touches at a low temperature, the exhaust gas is exhausted through a path that bypasses the second heat exchanger. Thus, heat exchange between the exhaust gas and the heat medium by the first heat exchanger is continued. As a result, the impact of heat exchanger failures on energy savings is reduced.
  • FIG. 1 shows the configuration of the heat supply system 1 during operation in the normal mode
  • FIG. 2 shows the configuration of the heat supply system 1 during operation in the bypass mode.
  • the heat supply system 1 is mounted on a moving body such as a ship, a train, an aircraft, or an automobile, and moves as the moving body moves.
  • the heat supply system 1 includes a prime mover 11 that provides a propulsive force to a moving body, an economizer 12 that recovers heat from exhaust gas from the prime mover 11, and steam from the gas-liquid mixed water heated by the heat collected by the economizer 12.
  • a gas-liquid separator 13 to be separated, a pump 14 that circulates water between the economizer 12 and the gas-liquid separator 13, and water vapor separated by the gas-liquid separator 13 is supplied to use the heat of the water vapor.
  • One or more heat utilization devices 15-1 to 15-i i is an arbitrary natural number).
  • the economizer 12 includes a container 121 that forms an exhaust gas flow path, and a heat exchange tube group 122 (an example of a first heat exchanger) that is accommodated in the container 121 and performs heat exchange between the exhaust gas and water. Prepare.
  • the heat supply system 1 includes a pressure adjustment valve 16 that supplies the water vapor separated in the gas-liquid separator 13 to the heat utilization device 15 at a predetermined pressure, and guides excess water vapor to a drain cooler 18 (described later).
  • a safety valve 17 that opens when the pressure of the surplus steam exceeds a predetermined pressure and reduces the surplus pressure, and surplus other than steam supplied to the heat utilization device 15 among the steam separated in the gas-liquid separator 13
  • a drain cooler 18 is provided for receiving and cooling the water and the drain from the heat utilization device 15. The water vapor that has passed through the safety valve 17 is directed to the drain cooler 18.
  • the heat supply system 1 includes a cascade tank 19 that receives water that has been converted to liquid by the drain cooler 18, and a heat exchange tube group 223 (described later) of the gas-liquid separator 13 and the economizer 22 that receives the water received in the cascade tank 19. ) And a boiler 21 that heats water that is input to the gas-liquid separator 13 by the combustion heat of the fuel when the amount of thermal energy of the exhaust gas of the prime mover 11 is insufficient.
  • the heat supply system 1 also includes an economizer 22 that recovers heat from the exhaust gas of the prime mover 11 that has passed through the economizer 12.
  • the economizer 22 includes a container 221 that forms an exhaust gas flow path, and a heat exchange tube group 222 that is housed in the container 221 and performs heat exchange between the exhaust gas and water (an example of a second heat exchanger). And a heat exchange tube group 223 (an example of a third heat exchanger).
  • the heat exchange tube group 222 and the heat exchange tube group 223 are disposed in the container 221 on the upstream side and the downstream side of the exhaust gas flow, respectively.
  • the heat supply system 1 includes a gas-liquid separator 23 that separates water vapor from water in a gas-liquid mixed state heated by heat recovered by the heat exchange tube group 222 of the economizer 22, a heat exchange tube group 222, and a gas-liquid
  • the pump 24 that circulates water between the separator 23, the compression device 25 that compresses the water vapor separated by the gas-liquid separator 23, and the pressure of the water vapor separated in the gas-liquid separator 23 has a predetermined pressure.
  • a safety valve 26 is provided that opens to reduce excess pressure when exceeded.
  • the water vapor compressed to a predetermined pressure by the compression device 25 merges with the water vapor separated by the gas-liquid separator 13 and is supplied to the heat utilization device 15.
  • the water vapor that has passed through the safety valve 26 is directed to the drain cooler 18.
  • the water 24 in the gas-liquid mixed state having a high liquid phase ratio after the water vapor supplied to the heat utilization device 15 is separated by the gas-liquid separator 23 is introduced into the heat exchange tube group 222 of the economizer 22 by the pump 24. It is burned.
  • the water guided to the heat exchange tube group 222 is heated in the heat exchange tube group 222, becomes water in a gas-liquid mixed state with a high gas phase ratio, and goes to the gas-liquid separator 23.
  • a part of the water received in the cascade tank 19 is guided to the heat exchange tube group 223 of the economizer 22 by the pump 20.
  • the water guided to the heat exchange tube group 223 is heated in the heat exchange tube group 223 and then introduced into the gas-liquid separator 23.
  • the water supplied from the heat exchange tube group 223 to the gas-liquid separator 23 is liquid phase water.
  • the heat supply system 1 includes a heat exchanger 27 (fourth heat exchanger) that performs heat exchange between water from the heat exchange tube group 223 toward the gas-liquid separator 23 and water from the cascade tank 19 toward the heat exchange tube group 223.
  • a heat exchanger plays a role of reducing the progress of low temperature corrosion of the heat exchange tube group 223 by raising the temperature of the water passing through the heat exchange tube group 223 higher than the temperature of the water in the cascade tank 19.
  • exhaust gas discharged from the prime mover 11 flows to the economizer 12 via the path 31, passes through the economizer 12, then flows to the economizer 22 via the path 32, and passes through the economizer 22. For example, it is discharged to the outside of the moving body via the path 33.
  • a path 34 that bypasses the economizer 22 is connected to the path 32 and the path 33.
  • exhaust gas discharged from the prime mover 11 flows to the economizer 12 via the path 31, passes through the economizer 12, and then passes through the path 34 that branches from the path 32 without passing through the economizer 22. Then, it flows into the path 33 and is discharged outside the moving body, for example.
  • the path 31, the path 32, the path 33, and the path 34 constitute an exhaust system together with the economizer 12 and the economizer 22.
  • the water heated in the economizer 12 flows to the gas-liquid separator 13 via the path 41, and is supplied to the gas-liquid separator 13 from the water after the water vapor is separated in the gas-liquid separator 13 from the cascade tank 19.
  • the water flows through the path 42 to the economizer 12.
  • the pump 14 is disposed on the path 42.
  • the economizer 12, the path 41, the gas-liquid separator 13, the path 42, and the pump 14 constitute a first heat recovery system.
  • the water heated in the heat exchange tube group 222 of the economizer 22 flows to the gas-liquid separator 23 via the path 51, from the water after the water vapor is separated in the gas-liquid separator 23, and from the cascade tank 19.
  • the water introduced to the gas-liquid separator 23 after passing through the heat exchanger 27 and the heat exchange tube group 223 flows to the heat exchange tube group 222 via the path 52.
  • the pump 24 is disposed on the path 52.
  • the heat exchange tube group 222, the path 51, the gas-liquid separator 23, the path 52, and the pump 24 of the economizer 22 constitute a second heat recovery system.
  • the water vapor separated in the gas-liquid separator 13 flows to the heat utilization device 15 via the path 61, the path 62, and the path 63.
  • the pressure regulating valve 16 is disposed on the path 62.
  • the gas-liquid separator 13, the path 61, the path 62, and the path 63 constitute a first heat supply system.
  • the water vapor separated in the gas-liquid separator 23 flows to the compression device 25 via the path 71 and the path 72.
  • the water vapor compressed in the compression device 25 passes through the path 73, joins the water vapor separated in the gas-liquid separator 13, and flows to the heat utilization device 15 through the path 63.
  • the gas-liquid separator 23, the path 71, the path 72, the compression device 25, the path 73, and the path 63 constitute a second heat supply system.
  • Water (drain) after heat utilization is performed in the heat utilization device 15 flows into the drain cooler 18 via the path 81.
  • the excess water vapor separated in the gas-liquid separator 13 flows into the drain cooler 18 via the path 61, the path 82, and the path 83.
  • the safety valve 17 is disposed on the path 82.
  • the excess water vapor separated in the gas-liquid separator 23 passes through the path 71 and the path 84 and then merges with the excess water vapor separated in the gas-liquid separator 13.
  • the drain cooler 18 passes through the path 83. Flow into.
  • the safety valve 26 is disposed on the path 84.
  • the path 81, the path 83, the path 84, and the drain cooler 18 constitute a drain recovery system.
  • the water cooled in the drain cooler 18 flows into the cascade tank 19 via the path 91.
  • a part of the water flows to the heat utilization apparatus 15-1 via the path 93 and is heated in the heat utilization apparatus 15, and then passes through the path 94. It flows into the gas-liquid separator 13 via.
  • the pump 20 is disposed on the path 92.
  • a configuration in which the water in the cascade tank 19 flows directly into the gas-liquid separator 13 without passing through the heat utilization device 15-1 may be employed.
  • water other than the water flowing to the gas-liquid separator 13 flows to the heat exchanger 27 via the path 95 and passes through the heat exchanger 27. After that, it flows to the heat exchange tube group 223 of the economizer 22 via the path 96, passes through the heat exchange tube group 223, and then flows to the heat exchanger 27 again via the path 97. After passing, it flows into the gas-liquid separator 23 via the path 98.
  • Cascade tank 19, path 92, pump 20, path 93, heat utilization device 15-1, path 94, path 95, heat exchanger 27, path 96, heat exchange tube group 223, path 97, and path 98 are water supply systems. Constitute.
  • the on-off valve 101 is arranged on the path 32 (on the section on the economizer 22 side from the branch point with the path 34).
  • An on-off valve 102 is disposed on the path 33 (on the section closer to the economizer 22 than the junction with the path 34).
  • An on-off valve 103 is disposed on the path 34.
  • An on-off valve 104 is disposed on the path 95, and an on-off valve 105 is disposed on the path 73.
  • the prime mover 11 is, for example, a diesel engine equipped with a supercharger, but the type of the prime mover is not limited, such as a gasoline engine or a motor not equipped with a supercharger.
  • the heat utilization device 15 is, for example, a heating device that heats fuel or lubricating oil or a heating device that heats the inside of the moving body, but the type of the heat utilization device is not limited thereto.
  • the on-off valve 101, the on-off valve 102, the on-off valve 104, and the on-off valve 105 are opened, and the on-off valve 103 is closed (FIG. 1).
  • the normal mode all operations of the pump 20, the gas-liquid separator 13, the pump 14, the gas-liquid separator 23, the pump 24, and the compression device 25 are performed.
  • water vapor heated by the heat recovered from the exhaust gas of the prime mover 11 in the economizer 12 is supplied to the heat utilization device 15 by the first heat supply system, and recovered from the exhaust gas in the economizer 22.
  • the water vapor heated by the thermal energy and then compressed by the compression device 25 is supplied to the heat utilization device 15 by the second heat supply system.
  • the on-off valve 101, the on-off valve 102, the on-off valve 104, and the on-off valve 105 are closed, and the on-off valve 103 is opened (FIG. 2).
  • the pump 20, the gas-liquid separator 13, and the pump 14 are operated, and the gas-liquid separator 23, the pump 24, and the compressor 25 are not operated. That is, the second heat supply system is disconnected from the heat supply system 1 and its operation is stopped.
  • the steam is not supplied to the heat utilization device 15 by the second heat supply system, and only the steam heated by the heat recovered from the exhaust gas of the prime mover 11 in the economizer 12 is the first heat supply system. Is supplied to the heat utilization device 15.
  • the amount of thermal energy recovered from the exhaust gas of the prime mover 11 by the economizer 12 is equal to or greater than the amount of thermal energy required by the heat utilization device 15, and the economizer 22
  • the pump 24, the path 51, and the path 52 are in an operating state, the pressure in the gas-liquid separator 23 is kept constant by the safety valve 26, and the heat recovery by the heat exchange tube group 222 is suppressed. . Therefore, the temperature of the exhaust gas passing through the economizer 22 is prevented from being lowered, and the low temperature corrosion of the economizer 22 does not proceed unnecessarily.
  • the heat supply system 1 when the economizer 22 is malfunctioning due to low-temperature corrosion or the like, the heat supply system 1 is operated in the bypass mode, so that the heat recovery by the economizer 12 is continued. Therefore, the influence that the malfunction of the economizer 22 has on the reduction in the amount of energy saved by the heat supply system 1 is limited.
  • the above-described heat supply system 1 includes a multistage economizer, and when a downstream economizer where low-temperature corrosion is likely to proceed is broken down, the downstream economizer is disconnected from the heat supply system, and the upstream economizer is separated. Can continue driving.
  • the heat supply system 1 has two heat supply systems, and thus requires many devices such as a gas-liquid separator and a pump, while the compression device 25 has a capacity. A small and inexpensive one can be used.
  • the temperature of water passing through the heat exchange tube group 223 on the downstream side of the economizer 22 is raised by the heat exchanger 27, so that the low temperature corrosion in the region on the downstream side of the economizer 22 is achieved. Progression is reduced.
  • FIG. 3 and 4 both show the configuration of the heat supply system 2 during operation in the normal mode. However, in FIG. 3, in the normal mode, when the amount of heat energy recovered from the exhaust gas of the prime mover 11 by the economizer 12 is less than the amount of heat energy required by the heat utilization device 15 (hereinafter referred to as “insufficient heat energy”).
  • FIG. 4 shows the configuration of the heat supply system 2 in the “state”, and FIG.
  • thermal energy surplus state shows the amount of heat energy recovered from the exhaust gas of the prime mover 11 by the economizer 12 in the normal mode.
  • FIG. 5 and 6 both show the configuration of the heat supply system 2 during operation in the bypass mode.
  • FIG. 5 shows the configuration of the heat supply system 2 when the thermal energy is insufficient in the bypass mode
  • FIG. 6 shows the configuration of the heat supply system 2 when the thermal energy is surplus in the bypass mode.
  • 3, 4, 5, and 6, the same reference numerals as those used in the heat supply system 1 are used for components that the heat supply system 2 includes in common with the heat supply system 1.
  • the heat supply system 2 includes a compression / power generation device 28 instead of the compression device 25 included in the heat supply system 1.
  • the compression / power generation device 28 is a device having both a function as a compression device and a function as a power generation device.
  • the compression / power generation device 28 includes a compressor / turbine 281 and a motor / generator 282.
  • the compression / power generation device 28 functions as a compression device when the thermal energy is insufficient.
  • the compression / power generation device 28 is a positive displacement compression device driven by a motor.
  • the compression / power generation device 28 drives the compressor / turbine 281 (functioning as a compressor) by the motor / generator 282 (functioning as a motor), and the water vapor flowing from the first opening 283 becomes a predetermined pressure. And then discharged from the second opening 284.
  • the compression method of the compression / power generation device 28 (functioning as a compressor) is, for example, a screw type, but the compression method is not limited to the screw type as long as it is a volume type.
  • the compression / power generation device 28 functions as a power generation device in a thermal energy surplus state.
  • the compression / power generation device 28 is a power generation device driven by a turbine rotated by steam. That is, the compression / power generation device 28 is driven by a compressor / turbine 281 (functioning as a turbine) that is rotated by water vapor that is pumped into the compression / power generation device 28 from the second opening 284. Function) to generate electricity.
  • the water vapor that has passed through the compressor / turbine 281 is discharged from the first opening 283.
  • the compression / power generation device 28 includes a control unit such as an inverter or a converter for frequency control or conversion between AC and DC as necessary. 3, 4, 5, and 6, a power supply device that supplies power to the compression / power generation device 28 that functions as a compression device, and power generated by the compression / power generation device 28 that functions as a power generation device.
  • a power utilization device for example, a storage battery that uses the battery is not shown.
  • the heat supply system 2 includes a path 85 branched from the path 61 and directed to the second opening 284 of the compression / power generation device 28. Since the path 85 is branched from the path 62 on the gas-liquid separator 13 side of the pressure regulating valve 16, the surplus water vapor is guided to the compression / power generation device 28. An on-off valve 107 is disposed on the path 85.
  • the heat supply system 2 includes a path 86 that joins the water vapor discharged from the first opening 283 of the compression / power generation device 28 to the path 84.
  • An on-off valve 108 is disposed on the path 86.
  • An on-off valve 109 is disposed on the path 72.
  • the water vapor heated by the heat recovered from the exhaust gas of the prime mover 11 in the economizer 12 is transferred to the heat utilization device 15 by the first heat supply system.
  • the water vapor that is supplied and heated by the heat energy recovered from the exhaust gas in the economizer 22 and then compressed by the compression device 25 is supplied to the heat utilization device 15 by the second heat supply system.
  • the thermal energy when the thermal energy is surplus, a part of the water vapor separated by the gas-liquid separator 13 is supplied to the heat utilization device 15 via the path 61, the path 62, and the path 63.
  • the excess water vapor separated by the gas-liquid separator 13 flows from the second opening 284 to the compression / power generation device 28 operating as a power generator via the path 61 and the path 85, and the compression / power generation apparatus.
  • the pressure is discharged from the first opening 283, and is guided to the drain cooler 18 via the path 86, the path 84, and the path 83.
  • the excess water vapor separated by the gas-liquid separator 13 operates as a generator from the second opening 284 via the path 61 and the path 85, as in the case of the thermal energy surplus state in the normal mode. It flows into the compression / power generation device 28 and is used for power generation.
  • the heat supply system 2 when the heat energy of the exhaust gas of the prime mover is excessive, the surplus heat energy of the steam that is normally led to the drain cooler 18 and is not used by heat radiation is used for power generation and effectively used. .
  • the compression device that compresses the heat medium when the heat energy is insufficient and the power generation device that generates power using the heat energy of the heat medium when the heat energy is surplus are used by the same compression / power generation device 28.
  • the space in the body is effectively used, and the equipment cost is generally low compared with the configuration in which the power generation device and the compression device are separately provided.
  • the heat medium used is assumed to be water, but a heat medium other than water (including those in which additives are added to water) is employed. May be.
  • the arrangement of the on-off valves and paths shown in the heat supply system 1 and the heat supply system 2 described above is merely an example, and other configurations may be adopted.
  • a three-way valve that also functions as these may be employed.
  • the path 86 is connected to the path 73 instead of the path 84, and the steam discharged from the compression / power generation device 28 functioning as a generator is not directly returned to the drain cooler 18, but the heat utilization device
  • the path may be configured to be reused as 15 heated steam.
  • the economizer 12 and the gas-liquid separator 13 are each provided as an independent separation type, but each may be a plurality of units or a combination type. Also good.
  • the combined type there is a composite boiler. In this case, the pump 14, the path 41, and the path 42 are not equipped.
  • the method for switching the operation mode is not particularly limited.
  • an operator manually performs operations such as opening / closing of an on-off valve, ON / OFF of a pump or the like, and switching of a function (compressor or generator) of a compression / power generation device 28 (in the case of the heat supply system 2).
  • a measuring device such as a pressure sensor or a temperature sensor is arranged on the path 62, and the pressure or temperature of water vapor supplied to the heat utilization device 15 by the first heat supply system based on the measurement result by the measuring device is insufficient.
  • the compression / power generation device 28 (of the heat supply system 2)
  • a configuration may be employed in which the operation mode is automatically switched regardless of the operation of the operator by providing the heat supply system 1 or the heat supply system 2 with a control device that controls the switching of the function in the case.
  • the heat exchange tube group 222 and the heat exchange tube group 223 are both accommodated in the container 221 and integrated into one economizer 22.
  • an economizer having a container for housing the heat exchange tube group 222 and the heat exchange tube group 222 and a heat exchanger having a container for housing the heat exchange tube group 223 and the heat exchange tube group 223 are independently provided. It may be configured.
  • the heat exchanger 27 is water heated by the heat exchange tube group 223 as a heating source for increasing the inlet temperature of water flowing into the heat exchange tube group 223. Is used.
  • a configuration in which the heat exchanger 27 raises the inlet temperature of the water flowing into the heat exchange tube group 223 by a heating source different from the water heated by the heat exchange tube group 223 may be employed.
  • a configuration in which the heat exchanger 27 is omitted may be employed. If the water led from the cascade tank 19 to the heat exchange tube group 223 is sufficiently hot, the heat exchanger 27 is not necessary.
  • a configuration in which the heat exchange tube group 223 is omitted may be employed. In this case, water is supplied directly from the cascade tank 19 to the gas-liquid separator 23. If the water led from the cascade tank 19 to the gas-liquid separator 23 is sufficiently hot, the heat exchange tube group 223 is not necessary.
  • the excess water vapor in the gas-liquid separator 13 is guided to the path 85 by the pressure regulating valve 16, and the second opening of the compression / power generation device 28 via the path 85. Head to 284.
  • the heat supply system 2 is not equipped with the path 85, the pressure regulating valve 16, the on-off valve 107, and the on-off valve 105, and excess water vapor in the gas-liquid separator 13 is compressed and generated via the path 73.
  • a configuration toward the second opening 284 of the device 28 may be employed. In this modification, the additional cooking start pressure of the boiler 21 needs to be adjusted automatically or manually.

Abstract

本発明は、移動体の原動機の排出ガスの熱エネルギーを熱交換器により回収する仕組みにおいて、エネルギー節減量に対する熱交換器の故障の影響を低減することを目的としている。本発明にかかる熱供給システム1は、移動体の原動機11の排出ガスから熱回収を行うエコノマイザ12と、エコノマイザ12を通過した排出ガスから熱回収を行うエコノマイザ22を備える。エコノマイザ22により回収された熱で加熱された水蒸気は圧縮装置25により圧縮された後、エコノマイザ22により回収された熱で加熱された水蒸気と合流して、熱利用装置15に供給される。エコノマイザ22が低温腐食等により機能不全に陥っている場合、排出ガスはエコノマイザ22をバイパスする経路34を経由して移動体の外へと排出される。

Description

熱供給システム
 本発明は、移動体の原動機の排出ガスから回収した熱を利用するための技術に関する。
 船舶等の移動体は移動のための推進力を発生する原動機を搭載している。移動体に搭載される原動機の排出ガスは通常、大気よりも熱エネルギー量が多いため、移動体には、排ガスエコノマイザ(または節炭器)と呼ばれる熱交換器により熱媒体(例えば水)を加熱し、加熱により気体(例えば水蒸気)となった熱媒体を移動体内の熱利用装置へ供給する仕組みを備えるものがある。なお、移動体内の熱利用装置とは、例えば、原動機の燃料や潤滑油を加熱する加熱装置、移動体内を暖房する暖房装置等である。
 移動体に搭載される原動機の排出ガスの熱エネルギー量は、原動機の熱効率の向上に伴って年々減少傾向にある。従って、上述の仕組みにおいて、原動機の計画された常用使用状態においても熱利用装置に必要な蒸気量を供給できない場合がある。また、移動体に搭載される原動機の排出ガスの熱エネルギー量は、プラント等の非移動体において利用される原動機と異なり、移動体の移動状態によって大きく異なる。例えば、移動体が低速で移動をしている場合や、寒冷地帯を移動している場合は、移動体が高速で移動をしている場合や熱帯地域を移動している場合と比べ原動機の排出ガスの熱エネルギー量が少なくなり、熱利用装置に対する熱エネルギー量の不足が助長される、という問題がある。
 本願発明者は、上記の問題を低減するための技術として、特許文献1に記載の熱供給システムを発明した。特許文献1に記載の熱供給システムによれば、熱利用装置に供給される熱エネルギー量が不足する場合、熱媒体が圧縮機で圧縮された後に熱利用装置に供給される。
国際公開第2015/198656号
 原動機の排出ガスと熱媒体との間の熱交換を行う熱交換器において低温腐食が生じる場合がある。低温腐食の生じやすさは、排出ガス中の硫黄、水等の含有率、排出ガスのpH等の様々な要因により変化するが、一般的に原動機が低負荷で運転し、排出ガスの量および温度が低下した場合に生じやすい。
 特許文献1に記載の熱供給システムは、原動機が低負荷で運転されて排出ガスの熱エネルギー量が相対的に少ない場合や、原動機が計画負域で運転されているが排出ガスの熱エネルギー量が不十分な場合であっても、圧縮機により熱媒体を圧縮することにより、熱利用装置に対し必要な熱エネルギー量の熱媒体を供給することを可能としている。従って、特許文献1に記載の熱供給システムが備える熱交換器においては、通常の熱供給システムが備える熱交換器と比較し、低温腐食が生じやすい。
 低温腐食により熱交換器の本体壁面や熱媒体の移動経路等に孔が開く等の故障により熱交換器が使用できなくなれば、熱利用装置は原動機の排出ガスの熱エネルギーを利用することができない。そのため、全体としてエネルギー節減量が低下する。
 本発明は上述の背景に鑑みてなされたものであり、移動体の原動機の排出ガスの熱エネルギーを熱交換器により原動機の低負荷域まで回収する仕組みにおいて、エネルギー節減量に対する熱交換器の故障の影響を低減することを目的とする。
 上述した課題を解決するために、本発明は、移動体に推進力を与える原動機の排出ガスと熱媒体との間の熱交換を行う第1の熱交換器と、前記第1の熱交換器を通過した排出ガスと熱媒体との間の熱交換を行う第2の熱交換器と、前記第1の熱交換器において加熱された熱媒体と前記第2の熱交換器において加熱された熱媒体を前記移動体に搭載された熱利用装置へと供給する熱供給系統と、前記熱供給系統内の前記第2の熱交換器から前記熱利用装置へと向かう熱媒体の移動経路上に配置され、熱媒体を所定の圧力となるまで圧縮する圧縮機と、前記第1の熱交換器を通過した排出ガスを、前記第2の熱交換器を通過させるように導く経路と、前記第2の熱交換器をバイパスさせるように導く経路とを切り替え可能に備えるガス排出系統とを備える熱供給システムを提案する。
 上記の熱供給システムの一態様において、前記第2の熱交換器において加熱された気液混合状態の熱媒体から前記熱利用装置へと供給される気相の熱媒体を分離する気液分離器と、前記第2の熱交換器を通過した排出ガスと前記気液分離器に補給される液相の熱媒体との間で熱交換を行う第3の熱交換器とを備える、という構成が採用されてもよい。
 また、上記の熱供給システムの一態様において、前記第3の熱交換器を通過する前の液相の熱媒体と前記第3の熱交換器を通過した後の液相の熱媒体との間の熱交換を行う第4の熱交換器を備える、という構成が採用されてもよい。
 また、上記の熱供給システムの一態様において、前記圧縮機を駆動する電動モータを備え、前記圧縮機は前記電動モータにより駆動される容積型圧縮機であり、前記圧縮機は、前記第1の熱交換器において加熱された熱媒体のうち前記熱利用装置へ供給されない余剰分が圧縮時と逆方向に圧送されることによりタービンとして機能し、前記電動モータは、タービンとして機能する前記圧縮機により駆動されて発電を行う発電機として機能する、という構成が採用されてもよい。
 本発明によれば、移動体の原動機の排出ガスが低温で触れる第2の熱交換器において低温腐食による故障が生じた場合、第2の熱交換器をバイパスする経路で排出ガスを排気することで、第1の熱交換器による排出ガスと熱媒体との間の熱交換が継続される。その結果、熱交換器の故障がエネルギー節減量に対し与える影響が低減される。
第1実施形態にかかる熱供給システム(通常モード)の構成を示した図。 第1実施形態にかかる熱供給システム(バイパスモード)の構成を示した図。 第2実施形態にかかる熱供給システム(通常モード、熱エネルギー不足状態)の構成を示した図。 第2実施形態にかかる熱供給システム(通常モード、熱エネルギー余剰状態)の構成を示した図。 第2実施形態にかかる熱供給システム(バイパスモード、熱エネルギー不足状態)の構成を示した図。 第2実施形態にかかる熱供給システム(バイパスモード、熱エネルギー余剰状態)の構成を示した図。
[第1実施形態]
 以下、本発明の第1実施形態にかかる熱供給システム1を説明する。熱供給システム1は、通常モードとバイパスモードという2つの運転モードのいずれかで運転される。図1は通常モードで運転時の熱供給システム1の構成を示し、図2はバイパスモードで運転時の熱供給システム1の構成を示す。
 熱供給システム1は、例えば船舶、列車、航空機、自動車等の移動体に搭載され、移動体の移動に伴い移動する。熱供給システム1は、移動体に推進力を与える原動機11と、原動機11の排出ガスから熱回収を行うエコノマイザ12と、エコノマイザ12が回収した熱により加熱された気液混合状態の水から水蒸気を分離する気液分離器13と、エコノマイザ12と気液分離器13との間で水を循環させるポンプ14と、気液分離器13により分離された水蒸気の供給を受けて当該水蒸気の熱を利用する1以上の熱利用装置15-1~15-i(iは任意の自然数)を備える。以下、熱利用装置15-1~15-iを総称して「熱利用装置15」という。エコノマイザ12は、排出ガスの流路を形成する容器121と、容器121に収容されて排出ガスと水との間の熱交換を行う熱交換チューブ群122(第1の熱交換器の一例)を備える。
 また、熱供給システム1は、気液分離器13において分離された水蒸気が所定の圧力で熱利用装置15へと供給され、余剰の水蒸気をドレンクーラー18(後述)へと導く圧力調整弁16と、余剰の水蒸気の圧力が所定の圧力を超える場合に開いて過剰な圧力を低下させる安全弁17と、気液分離器13において分離された水蒸気のうち熱利用装置15へ供給される水蒸気以外の剰余分と熱利用装置15からのドレンとを受容して冷却するドレンクーラー18を備える。安全弁17を通過した水蒸気はドレンクーラー18へと向かう。
 また、熱供給システム1は、ドレンクーラー18により液体となった水を受容するカスケードタンク19と、カスケードタンク19に受容された水を気液分離器13およびエコノマイザ22の熱交換チューブ群223(後述)へと導くポンプ20と、原動機11の排出ガスの熱エネルギー量が不足する場合に気液分離器13に投入される水を燃料の燃焼熱により加熱するボイラ21を備える。
 また、熱供給システム1は、エコノマイザ12を通過した原動機11の排出ガスから熱回収を行うエコノマイザ22を備える。エコノマイザ22は、排出ガスの流路を形成する容器221と、容器221内に収容されて排出ガスと水との間の熱交換を行う熱交換チューブ群222(第2の熱交換器の一例)および熱交換チューブ群223(第3の熱交換器の一例)を備える。熱交換チューブ群222と熱交換チューブ群223は容器221内において、各々、排出ガスの流れの上流側と下流側に配置されている。
 また、熱供給システム1は、エコノマイザ22の熱交換チューブ群222が回収した熱により加熱された気液混合状態の水から水蒸気を分離する気液分離器23と、熱交換チューブ群222と気液分離器23との間で水を循環させるポンプ24と、気液分離器23により分離された水蒸気を圧縮する圧縮装置25と、気液分離器23において分離された水蒸気の圧力が所定の圧力を超える場合に開いて過剰な圧力を低下させる安全弁26を備える。圧縮装置25により所定の圧力となるまで圧縮された水蒸気は、気液分離器13により分離された水蒸気と合流し、熱利用装置15に供給される。安全弁26を通過した水蒸気はドレンクーラー18へと向かう。
 エコノマイザ22の熱交換チューブ群222へは、気液分離器23により熱利用装置15へと供給される水蒸気が分離された後の液相の比率が高い気液混合状態の水がポンプ24により導かれる。熱交換チューブ群222へと導かれた水は熱交換チューブ群222において加熱され、気相の比率が高い気液混合状態の水となり気液分離器23へと向かう。
 一方、エコノマイザ22の熱交換チューブ群223へは、カスケードタンク19に受容された水の一部がポンプ20により導かれる。熱交換チューブ群223へと導かれた水は熱交換チューブ群223において加熱された後、気液分離器23に投入される。熱交換チューブ群223から気液分離器23へと投入される水は液相の水である。
 熱供給システム1は、熱交換チューブ群223から気液分離器23へ向かう水と、カスケードタンク19から熱交換チューブ群223へ向かう水との間の熱交換を行う熱交換器27(第4の熱交換器の一例)を備える。熱交換器27は熱交換チューブ群223を通過する水の温度をカスケードタンク19における水の温度よりも上昇させることにより、熱交換チューブ群223の低温腐食の進行を低減する役割を果たす。
 通常モードにおいて、原動機11から排出される排出ガスは、経路31を経由してエコノマイザ12へと流れ、エコノマイザ12を通過した後に経路32を経由してエコノマイザ22へと流れ、エコノマイザ22を通過した後に経路33を経由して、例えば移動体の外部へと排出される。経路32と経路33には、エコノマイザ22をバイパスする経路34が連結されている。バイパスモードにおいて、原動機11から排出される排出ガスは、経路31を経由してエコノマイザ12へと流れ、エコノマイザ12を通過した後に、エコノマイザ22を通過することなく、経路32から分岐する経路34を経由して経路33へと流れ込み、例えば移動体の外部へと排出される。経路31、経路32、経路33および経路34は、エコノマイザ12およびエコノマイザ22とともに、排気系統を構成する。
 エコノマイザ12において加熱された水は経路41を経由して気液分離器13へと流れ、気液分離器13において水蒸気が分離された後の水とカスケードタンク19から気液分離器13に投入された水は経路42を経由してエコノマイザ12へと流れる。ポンプ14は経路42上に配置されている。エコノマイザ12、経路41、気液分離器13、経路42、およびポンプ14は、第1の熱回収系統を構成する。
 エコノマイザ22の熱交換チューブ群222おいて加熱された水は経路51を経由して気液分離器23へと流れ、気液分離器23において水蒸気が分離された後の水と、カスケードタンク19から導かれ、熱交換器27および熱交換チューブ群223を通過した後に気液分離器23に投入された水は、経路52を経由して熱交換チューブ群222へと流れる。ポンプ24は経路52上に配置されている。エコノマイザ22の熱交換チューブ群222、経路51、気液分離器23、経路52、およびポンプ24は、第2の熱回収系統を構成する。
 気液分離器13において分離された水蒸気は、経路61、経路62、および経路63を経由して熱利用装置15へと流れる。圧力調整弁16は経路62上に配置されている。気液分離器13、経路61、経路62、および経路63は、第1の熱供給系統を構成する。
 気液分離器23において分離された水蒸気は、経路71および経路72を経由して圧縮装置25へと流れる。圧縮装置25において圧縮された水蒸気は、経路73を経由した後、気液分離器13において分離された水蒸気と合流し、経路63を経由して熱利用装置15へと流れる。気液分離器23、経路71、経路72、圧縮装置25、経路73、および経路63は、第2の熱供給系統を構成する。
 熱利用装置15において熱利用が行われた後の水(ドレン)は、経路81を経由してドレンクーラー18へと流れ込む。気液分離器13において分離された水蒸気の余剰分は経路61、経路82、および経路83を経由してドレンクーラー18へと流れ込む。安全弁17は経路82上に配置されている。
 気液分離器23において分離された水蒸気の余剰分は経路71、経路84を経由した後、気液分離器13において分離された水蒸気の余剰分と合流し、経路83を経由してドレンクーラー18へと流れ込む。安全弁26は経路84上に配置されている。
 経路81、経路83、経路84、およびドレンクーラー18はドレン回収系統を構成する。
 ドレンクーラー18において冷却された水は経路91を経由してカスケードタンク19へ流れ込む。カスケードタンク19内の水は経路92を経由して流れた後、その一部が経路93を経由して熱利用装置15-1へと流れ、熱利用装置15において加熱された後、経路94を経由して気液分離器13へと流れ込む。ポンプ20は経路92上に配置されている。なお、カスケードタンク19内の水が熱利用装置15-1を経由することなく直接、気液分離器13へと流れ込む構成が採用されてもよい。
 カスケードタンク19から経路92を経由して流れる水のうち、気液分離器13へと流れる水以外の水は、経路95を経由して熱交換器27へと流れ、熱交換器27を通過した後、経路96を経由してエコノマイザ22の熱交換チューブ群223へと流れ、熱交換チューブ群223を通過した後、経路97を経由して再び熱交換器27へと流れ、熱交換器27を通過した後、経路98を経由して気液分離器23へと流れ込む。
 カスケードタンク19、経路92、ポンプ20、経路93、熱利用装置15-1、経路94、経路95、熱交換器27、経路96、熱交換チューブ群223、経路97、および経路98は給水系統を構成する。
 経路32上(経路34との分岐点よりエコノマイザ22側の区間上)には開閉弁101が配置されている。経路33上(経路34との合流点よりエコノマイザ22側の区間上)には開閉弁102が配置されている。経路34上には開閉弁103が配置されている。また、経路95上には開閉弁104が配置され、経路73上には開閉弁105が配置されている。これらの開閉弁は、熱供給システム1のモードを通常モードとバイパスモードの間で切り替える役割を果たす。
 原動機11は、例えば過給器を備えるディーゼルエンジンであるが、過給器を備えないガソリンエンジンやモータなど、原動機の種別は限定されない。また、熱利用装置15は、例えば、燃料や潤滑油を加熱する加熱装置や、移動体の内部を暖房する暖房装置であるが、熱利用装置の種別はこれらに限定されない。
(通常モード)
 エコノマイザ22が機能不全に陥っていない場合、熱供給システム1は通常モードで運転される。
 通常モードにおいては、開閉弁101、開閉弁102、開閉弁104、および開閉弁105が開放され、開閉弁103が閉鎖される(図1)。また、通常モードにおいては、ポンプ20、気液分離器13、ポンプ14、気液分離器23、ポンプ24、圧縮装置25の全ての運転が行われる。
 通常モードにおいては、エコノマイザ12において原動機11の排出ガスから回収された熱により加熱された水蒸気が第1の熱供給系統により熱利用装置15に供給されるとともに、エコノマイザ22において排出ガスから回収された熱エネルギーにより加熱された後に圧縮装置25により圧縮された水蒸気が第2の熱供給系統により熱利用装置15に供給される。
(バイパスモード)
 エコノマイザ22が低温腐食等により機能不全に陥っている場合、熱供給システム1はバイパスモードで運転される。
 バイパスモードにおいては、開閉弁101、開閉弁102、開閉弁104、および開閉弁105が閉鎖され、開閉弁103が開放される(図2)。また、バイパスモードにおいては、ポンプ20、気液分離器13、およびポンプ14の運転が行われ、気液分離器23、ポンプ24、および圧縮装置25の運転は行われない。すなわち、第2の熱供給系統が熱供給システム1から切り離され、その運転が停止される。
 バイパスモードにおいては、第2の熱供給系統による熱利用装置15に対する水蒸気の供給は行われず、エコノマイザ12において原動機11の排出ガスから回収された熱により加熱された水蒸気のみが第1の熱供給系統により熱利用装置15に供給される。
 上述した熱供給システム1によれば、通常モードにおいて、エコノマイザ12により原動機11の排出ガスから回収される熱エネルギーの量が、熱利用装置15が必要とする熱エネルギーの量以上であり、エコノマイザ22による熱回収が不要である場合、ポンプ24、経路51および経路52は運転状態となり、安全弁26により気液分離器23内の圧力が一定に保たれ、熱交換チューブ群222による熱回収が抑えられる。そのため、エコノマイザ22内を通過する排ガス温度の低下が防止され、エコノマイザ22の低温腐食が無駄に進行することがない。
 また、上述した熱供給システム1によれば、エコノマイザ22が低温腐食等により機能不全に陥った場合、バイパスモードで熱供給システム1が運転されることで、エコノマイザ12による熱回収が継続される。そのため、エコノマイザ22の機能不全が熱供給システム1によるエネルギー節減量の低下に与える影響が限定的となる。
 原動機の排出ガスから熱回収を行うエコノマイザにおいては、一般的に、エコノマイザを通過する排出ガスの温度が低下する下流側の領域において低温腐食が進行する。従来技術にかかる熱供給システムにおいては、エコノマイザの下流側の領域において低温腐食が進行し、容器に穴が開く等の故障が生じた場合、熱回収を全く行うことができなくなる。一方、上述した熱供給システム1は、多段化されたエコノマイザを備え、低温腐食が進行しやすい下流側のエコノマイザに故障が生じた場合、下流側のエコノマイザを熱供給システムから切り離し、上流側のエコノマイザの運転を継続することができる。
 なお、特許文献1に記載の熱供給システムと比較し、熱供給システム1は熱供給系統が2系統となるため、気液分離器、ポンプ等の装置を多く要する一方で、圧縮装置25は容量が小さい小型かつ安価なものが利用可能である。
 また、上述した熱供給システム1によれば、エコノマイザ22の下流側の熱交換チューブ群223を通過する水の温度が熱交換器27によって上昇される結果、エコノマイザ22の下流側の領域における低温腐食の進行が低減される。
[第2実施形態]
 以下、本発明の第2実施形態にかかる熱供給システム2を説明する。熱供給システム2は多くの点で熱供給システム1と共通している。以下、熱供給システム2が熱供給システム1と異なる点を説明し、共通する点の説明は省略する。図3と図4はともに通常モードで運転時の熱供給システム2の構成を示す。ただし、図3は通常モードにおいて、エコノマイザ12により原動機11の排出ガスから回収される熱エネルギーの量が、熱利用装置15が必要とする熱エネルギーの量に満たない場合(以下、「熱エネルギー不足状態」という)の熱供給システム2の構成を示し、図4は通常モードにおいて、エコノマイザ12により原動機11の排出ガスから回収される熱エネルギーの量が、熱利用装置15が必要とする熱エネルギーの量以上である場合(以下、「熱エネルギー余剰状態」という)の熱供給システム2の構成を示す。
 また、図5と図6はともにバイパスモードで運転時の熱供給システム2の構成を示す。ただし、図5はバイパスモードにおいて、熱エネルギー不足状態の場合の熱供給システム2の構成を示し、図6はバイパスモードにおいて、熱エネルギー余剰状態の場合の熱供給システム2の構成を示す。図3、図4、図5、および図6において、熱供給システム2が熱供給システム1と共通して備える構成部には熱供給システム1において用いた符号と同じ符号が用いられている。
 熱供給システム2は、熱供給システム1が備える圧縮装置25に代えて、圧縮・発電装置28を備える。圧縮・発電装置28は、圧縮装置としての機能と発電装置としての機能を兼ね備える装置である。圧縮・発電装置28は、圧縮機兼タービン281と、モータ兼発電機282を備える。圧縮・発電装置28は、熱エネルギー不足状態において圧縮装置として機能する。圧縮装置として機能する場合、圧縮・発電装置28はモータにより駆動される容積型圧縮装置である。すなわち、圧縮・発電装置28は圧縮機兼タービン281(圧縮機として機能)をモータ兼発電機282(モータとして機能)により駆動して、第1開口部283から流入する水蒸気を所定の圧力となるまで圧縮した後、第2開口部284から排出する。圧縮・発電装置28(圧縮機として機能)の圧縮の方式は、例えばスクリュウ型であるが、容積型であれば圧縮の方式はスクリュウ型に限定されない。
 圧縮・発電装置28は、熱エネルギー余剰状態において発電装置として機能する。発電装置として機能する場合、圧縮・発電装置28は水蒸気により回転するタービンにより駆動される発電装置である。すなわち、圧縮・発電装置28は第2開口部284から圧縮・発電装置28の内部へと圧送される水蒸気により回転する圧縮機兼タービン281(タービンとして機能)によりモータ兼発電機282(発電機として機能)を駆動して、発電を行う。なお、圧縮機兼タービン281を通過した水蒸気は第1開口部283から排出される。
 圧縮・発電装置28は、発電装置として機能するために、必要に応じて周波数制御や交流・直流間の変換等のためのインバータやコンバータ等の制御部を備える。なお、図3、図4、図5、および図6において、圧縮装置として機能する圧縮・発電装置28に電力を供給する電源装置と、発電装置として機能する圧縮・発電装置28により発電された電力を利用する電力利用装置(例えば蓄電池)は図示を省略している。
 熱供給システム2は、経路61から分岐して圧縮・発電装置28の第2開口部284へと向かう経路85を備える。経路85は、圧力調整弁16より気液分離器13側で経路62から分岐しているため、余剰の水蒸気を圧縮・発電装置28へと導く。経路85上には開閉弁107が配置されている。
 また、熱供給システム2は、圧縮・発電装置28の第1開口部283から排出された水蒸気を経路84へと合流させる経路86を備える。経路86上には開閉弁108が配置されている。また、経路72上に開閉弁109が配置されている。
(通常モード、熱エネルギー不足状態)
 通常モードにおいて、熱エネルギー不足状態の場合、開閉弁101、開閉弁102、開閉弁104、開閉弁105、および開閉弁109が開放され、開閉弁103、開閉弁107、および開閉弁108が閉鎖される(図3)。また、ポンプ20、気液分離器13、ポンプ14、気液分離器23、ポンプ24の運転が行われ、圧縮・発電装置28が圧縮機として運転される。
 この場合、熱供給システム1にける通常モード(図1)と同様に、エコノマイザ12において原動機11の排出ガスから回収された熱により加熱された水蒸気が第1の熱供給系統により熱利用装置15に供給されるとともに、エコノマイザ22において排出ガスから回収された熱エネルギーにより加熱された後に圧縮装置25により圧縮された水蒸気が第2の熱供給系統により熱利用装置15に供給される。
(通常モード、熱エネルギー余剰状態)
 通常モードにおいて、熱エネルギー余剰状態の場合、開閉弁101、開閉弁102、開閉弁104、開閉弁107、および開閉弁108が開放され、開閉弁103、開閉弁105、および開閉弁109が閉鎖される(図4)。また、ポンプ20、気液分離器13、ポンプ14、気液分離器23、ポンプ24の運転が行われ、圧縮・発電装置28が発電機として運転される。この場合、ポンプ24、経路51および経路52は運転状態となり、安全弁26により気液分離器23内の圧力が一定に保たれ、熱交換チューブ群222による熱回収が抑えられる。その結果、エコノマイザ22における排ガス温度の低下が防止される。
 通常モードにおいて、熱エネルギー余剰状態の場合、気液分離器13により分離された水蒸気の一部は経路61、経路62、経路63を経由して熱利用装置15に供給される。気液分離器13により分離された水蒸気の余剰分は、経路61および経路85を経由して第2開口部284から発電機として動作している圧縮・発電装置28に流入し、圧縮・発電装置28において発電を行いつつ降圧された後、第1開口部283から排出されて、経路86、経路84、経路83を経由してドレンクーラー18へと導かれる。
(バイパスモード、熱エネルギー不足状態)
 エコノマイザ22が低温腐食等により機能不全である場合、熱供給システム2はバイパスモードで運転される。バイパスモードにおいて、熱エネルギー不足状態の場合、開閉弁101、開閉弁102、開閉弁104、開閉弁105、開閉弁107、開閉弁108、および開閉弁109が閉鎖され、開閉弁103が開放される(図5)。また、ポンプ24、気液分離器23、および圧縮・発電装置28は停止される。この場合、熱供給システム2は、熱供給システム1におけるバイパスモード(図2)と同様に動作する。
(バイパスモード、熱エネルギー余剰状態)
 エコノマイザ22が低温腐食等により機能不全であり、熱供給システム2がバイパスモードで運転されており、熱エネルギー余剰状態である場合、開閉弁101、開閉弁102、開閉弁104、開閉弁105、および開閉弁109が閉鎖され、開閉弁103、開閉弁107、および開閉弁108が開放される(図6)。また、ポンプ24および気液分離器23は停止され、圧縮・発電装置28は発電機として運転される。この場合、気液分離器13により分離された水蒸気の余剰分は、通常モードにおける熱エネルギー余剰状態の場合と同様に、経路61および経路85を経由して第2開口部284から発電機として動作している圧縮・発電装置28に流入し、発電に用いられる。
 熱供給システム2によれば、原動機の排出ガスの熱エネルギーが過剰である場合、通常はドレンクーラー18に導かれ放熱により利用されない余剰分の水蒸気の熱エネルギーが発電に用いられ、有効利用される。また、熱エネルギー不足状態において熱媒体の圧縮を行う圧縮装置と、熱エネルギー余剰状態において熱媒体の熱エネルギーにより発電を行う発電装置は同じ圧縮・発電装置28がそれらを兼ねるため、制約のある移動体内の空間が有効利用されるとともに、発電装置と圧縮装置を個別に備える構成と比べて、一般的に設備コストが安価で済む。
[変形例]
 上述した実施形態は本発明の技術的思想の範囲内において様々に変形可能である。以下にそれらの変形の例を示す。なお、これらの変形例は適宜組み合わせられてもよい。
(1)上述した熱供給システム1および熱供給システム2において、用いられる熱媒体は水であるものとしたが、水以外の熱媒体(水に添加物の添加を行ったものを含む)が採用されてもよい。
(2)上述した熱供給システム1および熱供給システム2において示した開閉弁および経路の配置はあくまで例示であって、他の構成が採用されてもよい。例えば複数の開閉弁に代えて、それらの機能を兼ねる3方弁等が採用されてもよい。また、例えば、熱供給システム2において、経路86を経路84ではなく経路73に接続し、発電機として機能する圧縮・発電装置28から排出される水蒸気をドレンクーラー18に直接戻さず、熱利用装置15の加熱蒸気として再利用するように経路を構成してもよい。
(3)上述した熱供給システム1および熱供給システム2において、エコノマイザ12と気液分離器13は独立分離型で各1台装備したが、それぞれ複数台であっても、また合体型であってもよい。合体型の例として、コンポジットボイラがあり、その場合、ポンプ14、経路41、経路42は装備されない。
(4)上述した熱供給システム1および熱供給システム2において、運転モードの切り替えの方法は特に限定されない。例えば、開閉弁の開閉、ポンプ等の運転のON/OFF、圧縮・発電装置28(熱供給システム2の場合)の機能(圧縮機または発電機)の切り替え等の操作を作業員が手動で行うことが考えられる。また、例えば経路62上に圧力センサや温度センサ等の計測装置を配置するとともに、計測装置による計測結果に基づき第1の熱供給系統により熱利用装置15へ供給される水蒸気の圧力または温度が不足、十分、過剰のいずれであるかを判定する判定部と、当該判定部による判定結果に基づき、開閉弁の開閉、ポンプ等の運転のON/OFF、圧縮・発電装置28(熱供給システム2の場合)の機能の切り替えを制御する制御装置を熱供給システム1または熱供給システム2に設けることで、運転モードが作業員の操作によらずに自動的に切り替わる構成が採用されてもよい。
(5)上述した熱供給システム1および熱供給システム2において、熱交換チューブ群222と熱交換チューブ群223はともに容器221に収容され、1つのエコノマイザ22に統合されている。これに代えて、熱交換チューブ群222と熱交換チューブ群222を収容する容器を備えるエコノマイザと、熱交換チューブ群223と熱交換チューブ群223を収容する容器を備える熱交換器とが独立して構成されてもよい。
(6)上述した熱供給システム1および熱供給システム2において、熱交換器27は熱交換チューブ群223に流れ込む水の入口温度を高めるための加熱源として、熱交換チューブ群223によって加熱された水を用いる。熱交換器27が、熱交換チューブ群223によって加熱された水とは異なる加熱源により熱交換チューブ群223に流れ込む水の入口温度を上げる構成が採用されてもよい。
(7)上述した熱供給システム1および熱供給システム2において、熱交換器27が省略された構成が採用されてもよい。カスケードタンク19から熱交換チューブ群223へと導かれる水が十分に高温であれば、熱交換器27は不要である。また、上述した熱供給システム1および熱供給システム2において、熱交換チューブ群223が省略された構成が採用されてもよい。この場合、カスケードタンク19から直接、気液分離器23へと水が供給される。カスケードタンク19から気液分離器23へと導かれる水が十分に高温であれば、熱交換チューブ群223は不要である。
(8)上述した熱供給システム2において、気液分離器13において余剰した水蒸気は、圧力調整弁16により経路85へと導かれ、経路85を経由して圧縮・発電装置28の第2開口部284へと向かう。これに代えて、熱供給システム2が経路85、圧力調整弁16、開閉弁107、および開閉弁105を装備せず、気液分離器13において余剰した水蒸気が経路73を経由して圧縮・発電装置28の第2開口部284へと向かう構成が採用されてもよい。この変形例においては、ボイラ21の追炊き開始圧が自動または手動により調整される必要がある。
1…熱供給システム、2…熱供給システム、11…原動機、12…エコノマイザ、13…気液分離器、14…ポンプ、15…熱利用装置、16…圧力調整弁、17…安全弁、18…ドレンクーラー、19…カスケードタンク、20…ポンプ、21…ボイラ、22…エコノマイザ、23…気液分離器、24…ポンプ、25…圧縮装置、26…安全弁、27…熱交換器、28…圧縮・発電装置、31…経路、32…経路、33…経路、34…経路、41…経路、42…経路、51…経路、52…経路、61…経路、62…経路、63…経路、71…経路、72…経路、73…経路、81…経路、82…経路、83…経路、84…経路、85…経路、86…経路、91…経路、92…経路、93…経路、94…経路、95…経路、96…経路、97…経路、98…経路、101…開閉弁、102…開閉弁、103…開閉弁、104…開閉弁、105…開閉弁、107…開閉弁、108…開閉弁、109…開閉弁、121…容器、122…熱交換チューブ群、221…容器、222…熱交換チューブ群、223…熱交換チューブ群、281…圧縮機兼タービン、282…モータ兼発電機、283…第1開口部、284…第2開口部

Claims (4)

  1.  移動体に推進力を与える原動機の排出ガスと熱媒体との間の熱交換を行う第1の熱交換器と、
     前記第1の熱交換器を通過した排出ガスと熱媒体との間の熱交換を行う第2の熱交換器と、
     前記第1の熱交換器において加熱された熱媒体と前記第2の熱交換器において加熱された熱媒体を前記移動体に搭載された熱利用装置へと供給する熱供給系統と、
     前記熱供給系統内の前記第2の熱交換器から前記熱利用装置へと向かう熱媒体の移動経路上に配置され、熱媒体を所定の圧力となるまで圧縮する圧縮機と、
     前記第1の熱交換器を通過した排出ガスを、前記第2の熱交換器を通過させるように導く経路と、前記第2の熱交換器をバイパスさせるように導く経路とを切り替え可能に備えるガス排出系統と
     を備える熱供給システム。
  2.  前記第2の熱交換器において加熱された気液混合状態の熱媒体から前記熱利用装置へと供給される気相の熱媒体を分離する気液分離器と、
     前記第2の熱交換器を通過した排出ガスと前記気液分離器に補給される液相の熱媒体との間で熱交換を行う第3の熱交換器と
     を備える請求項1に記載の熱供給システム。
  3.  前記第3の熱交換器を通過する前の液相の熱媒体と前記第3の熱交換器を通過した後の液相の熱媒体との間の熱交換を行う第4の熱交換器を備える
     請求項2に記載の熱供給システム。
  4.  前記圧縮機を駆動する電動モータを備え、
     前記圧縮機は前記電動モータにより駆動される容積型圧縮機であり、
     前記圧縮機は、前記第1の熱交換器において加熱された熱媒体のうち前記熱利用装置へ供給されない余剰分が圧縮時と逆方向に圧送されることによりタービンとして機能し、
     前記電動モータは、タービンとして機能する前記圧縮機により駆動されて発電を行う発電機として機能する
     請求項1乃至3のいずれか1項に記載の熱供給システム。
PCT/JP2016/063586 2016-05-02 2016-05-02 熱供給システム WO2017191676A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063586 WO2017191676A1 (ja) 2016-05-02 2016-05-02 熱供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/063586 WO2017191676A1 (ja) 2016-05-02 2016-05-02 熱供給システム

Publications (1)

Publication Number Publication Date
WO2017191676A1 true WO2017191676A1 (ja) 2017-11-09

Family

ID=60203583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063586 WO2017191676A1 (ja) 2016-05-02 2016-05-02 熱供給システム

Country Status (1)

Country Link
WO (1) WO2017191676A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120979A (zh) * 2018-10-31 2020-05-08 南京圣卡孚科技有限公司 一种深度回收热能的蒸气发生装置及方法
JP2022030200A (ja) * 2020-08-06 2022-02-18 株式会社東芝 排熱回収ボイラ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001339A (ja) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd 船舶の推進装置における内燃機関廃熱回収プラント
JP2011237048A (ja) * 2010-05-06 2011-11-24 Takuma Co Ltd 廃棄物焼却処理施設の排ガス処理設備後段の排ガスからの低温熱回収システム
JP2012037089A (ja) * 2010-08-04 2012-02-23 Kawasaki Heavy Ind Ltd 熱回収ユニット、排ガスエコノマイザ及び廃熱回収システム
JP2012072984A (ja) * 2010-09-29 2012-04-12 Miura Co Ltd 蒸気温水生成システム
JP2014185550A (ja) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd 高温部品の冷却装置、ガスタービンコンバインドプラント、及び高温部品の冷却方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001339A (ja) * 2005-06-21 2007-01-11 Mitsubishi Heavy Ind Ltd 船舶の推進装置における内燃機関廃熱回収プラント
JP2011237048A (ja) * 2010-05-06 2011-11-24 Takuma Co Ltd 廃棄物焼却処理施設の排ガス処理設備後段の排ガスからの低温熱回収システム
JP2012037089A (ja) * 2010-08-04 2012-02-23 Kawasaki Heavy Ind Ltd 熱回収ユニット、排ガスエコノマイザ及び廃熱回収システム
JP2012072984A (ja) * 2010-09-29 2012-04-12 Miura Co Ltd 蒸気温水生成システム
JP2014185550A (ja) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd 高温部品の冷却装置、ガスタービンコンバインドプラント、及び高温部品の冷却方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111120979A (zh) * 2018-10-31 2020-05-08 南京圣卡孚科技有限公司 一种深度回收热能的蒸气发生装置及方法
JP2022030200A (ja) * 2020-08-06 2022-02-18 株式会社東芝 排熱回収ボイラ
JP7414663B2 (ja) 2020-08-06 2024-01-16 株式会社東芝 排熱回収ボイラ

Similar Documents

Publication Publication Date Title
US9926813B2 (en) Heat energy distribution systems and methods for power recovery
US20210348561A1 (en) Moderate pressure liquid hydrogen storage for hybrid-electric propulsion system
US20200248592A1 (en) System and method for converting electric energy into thermal energy and for storing thermal energy
KR101310964B1 (ko) 선박의 폐열을 이용한 에너지 절감 장치
US11149592B2 (en) Combined power generation apparatus
JP2012067683A (ja) ランキンサイクル装置
JP6122300B2 (ja) エンジンシステム及び船舶
KR101613228B1 (ko) 선박용 엔진의 폐열회수장치 및 방법
KR101660655B1 (ko) 내연기관 시스템 및 이를 구비한 선박 및 내연기관 시스템의 운전방법
WO2017191676A1 (ja) 熱供給システム
KR101496716B1 (ko) 폐열 회수 가능한 선박용 동력 장치
JP6858821B2 (ja) ガスタービンの吸気温調システムおよび発電プラント
WO2023226666A1 (zh) 一种与煤电机组耦合的二氧化碳储能系统及方法
WO2016038727A1 (ja) 舶用熱供給システム
CA2059894C (en) Gasification-type combined electric power generating plant
KR20190037919A (ko) 발전 및 히트펌프의 연계 시스템
KR101839643B1 (ko) 초임계 이산화탄소 발전시스템 및 이를 포함하는 선박
JP6591412B2 (ja) 熱供給システム
KR20180134578A (ko) 복합 발전장치
CN104279543A (zh) 锅炉系统
KR101928138B1 (ko) 초임계 이산화탄소 발전시스템이 설치된 선박
JP6854262B2 (ja) 排熱回収システム
JP6916061B2 (ja) 熱交換システム
KR20160017745A (ko) 초임계 이산화탄소 발전시스템이 설치된 선박
KR101367032B1 (ko) 단일 이코노마이저를 구비한 선박용 동력 장치

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901063

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/02/2019)

NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16901063

Country of ref document: EP

Kind code of ref document: A1