WO2017190571A1 - 一种通过研磨制备有机石墨烯的方法及有机石墨烯 - Google Patents

一种通过研磨制备有机石墨烯的方法及有机石墨烯 Download PDF

Info

Publication number
WO2017190571A1
WO2017190571A1 PCT/CN2017/079196 CN2017079196W WO2017190571A1 WO 2017190571 A1 WO2017190571 A1 WO 2017190571A1 CN 2017079196 W CN2017079196 W CN 2017079196W WO 2017190571 A1 WO2017190571 A1 WO 2017190571A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
organic
composite
ball mill
graphite
Prior art date
Application number
PCT/CN2017/079196
Other languages
English (en)
French (fr)
Inventor
陈庆
曾军堂
廖大应
陈兵
Original Assignee
成都新柯力化工科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都新柯力化工科技有限公司 filed Critical 成都新柯力化工科技有限公司
Publication of WO2017190571A1 publication Critical patent/WO2017190571A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area

Definitions

  • the present invention relates to a method for preparing graphene, and in particular to a method for preparing graphene by grinding and graphene.
  • Graphene is a planar carbon nanomaterial composed of a layer of carbon atoms. It is the thinnest two-dimensional material known at present, and its thickness is only 0.335 nm. It consists of a hexagonal lattice. The carbon atoms in the graphene are bonded by a bond, giving the graphene extremely excellent mechanical properties and structural rigidity. Moreover, in graphene, each carbon atom has an unbonded electron that can move freely in the crystal and move at a speed of up to 1/300 of the speed of light, giving graphene good conductivity. In terms of optics, graphene is almost completely transparent, absorbing only 2.3% of light. Graphene has peculiar mechanical, optical and electrical properties, and graphene has broad development prospects.
  • the preparation method of graphene includes a mechanical stripping method, an epitaxial growth method, a redox method, an organic synthesis method, a solvothermal method, a chemical vapor deposition method, and the like.
  • the preparation method of the mechanical peeling method is simple, the preparation process is environmentally friendly and pollution-free, and the production cost is relatively low, which is favored in industrial production.
  • graphite is usually pretreated before mechanically stripping graphite to additionally prepare graphene properties, such as improving the conductivity of graphene.
  • the method for obtaining graphene by first intercalating graphite and mechanically stripping is simple, can effectively protect the integrity of graphene structure, and improve the quality of graphene products, and is one of the options for large-scale industrial production of graphene.
  • Chinese Patent Application No. 2011104471293 discloses a method for preparing graphene by disposing lithium metal and lithium in an electrolyte solution formed by dissolving lithium metal and graphite in an electrolyte solution in an organic solvent. Solvent molecules are co-inserted between the graphite layers to form a graphite intercalation compound, and then graphene sheets are peeled off from the graphite intercalation compound. In the solution of the invention, it is necessary to add a chemically active and active metal lithium as an intercalation agent, and the storage and use conditions thereof are relatively harsh, and the preparation process is difficult to control and cannot be applied to industrial production. [0005] Chinese Patent Application No.
  • 2012103080545 discloses a method for preparing graphene by dispersing graphite in an ionic liquid to form a mixture of graphite and an ionic liquid, placing the mixture in a ball mill vessel, and performing ball milling to obtain a slurry. The ball mill balls and graphene are then separated to obtain graphene.
  • the scheme directly performs ball milling on the mixture of graphite and ionic liquid, and treats the mixed slurry to prepare graphene by the mechanical force of the ball mill, and the stripping efficiency is low.
  • Chinese Patent Application No. 2012105934969 discloses a method for efficiently preparing graphene, heating expanded graphite with a soluble inorganic salt and/or a soluble organic solution, and placing it in a dry box until all moisture is volatilized. Then, the obtained expanded graphite and a mixture of inorganic salts and/or organic substances are placed in a ball mill tank and ball-milled to obtain graphene.
  • graphene itself is prone to agglomeration, and it is necessary to select a suitable storage medium or post-treat graphene to improve the dispersibility of graphene, and the dispersibility of graphene to be prepared needs to be improved.
  • the current intercalation method fails to effectively improve the mechanical stripping efficiency, and the yield is low, which is not suitable for large-scale industrial production. Further, the graphene material obtained by mechanical stripping has poor dispersibility, and it is necessary to post-process graphene to improve its Dispersibility in the storage medium, which leads to complicated processing, increased production cycle and increased costs.
  • the present invention provides a method for preparing organic graphene by grinding and organic graphene, and the composite intercalation agent and the flake graphite are mixed and intercalated, and then evaporated to dryness.
  • the ionic group in the organic active agent forms a mutual bond with the bond due to the electrostatic force, so that the ionic group is grafted on the surface of the graphite layer, and the soluble inorganic salt crystallizes between the flake graphite layers, the ruthenium graphite
  • the layer spacing improves the graphene stripping efficiency.
  • the ionic group-grafted organic graphene material is then obtained by grinding and washing by a ball mill. Further, the problem of improving the peeling efficiency of graphene and solving the problem of poor dispersibility of graphene is solved simultaneously, and the mass production of graphene is promoted.
  • a method for preparing an organic graphene by grinding wherein a composite intercalant is intercalated and grafted, and a mechanical shearing force is provided by a ball mill to prepare an organic graphene.
  • the specific method is as follows:
  • the scale graphite and the composite intercalant are taken out at a mass ratio of 1: (5-20), wherein the composite intercalant is an organic active agent, a polar wax, a soluble inorganic salt according to the quality.
  • a composition obtained by mixing a ratio of 1:2: (2-5) wherein the organic active agent is an alkyltrimethylammonium salt type, an alkyldimethylammonium salt type, a nitrogen-containing imidazoline, One or a mixture of morpholine and triazine derivatives, the polar wax being one or a mixture of oxidized polyethylene wax, oxidized polypropylene wax, EVA wax, and the solubility
  • the inorganic salt is one or a mixture of soluble hydrochloride, nitrate, sulfate, carbonate, chromate, sulfonate, phosphate;
  • the ratio of the mass of the distilled water to the flake graphite is (5-20):1.
  • step (2) the composite intercalant is added to distilled water at a heating temperature of 40-80 °C.
  • the ultrasound time is 2-24h.
  • the ball mill is a planetary ball mill
  • the ball mill tank is made of polytetrafluoroethylene, stainless steel or ceramic
  • the ball mill medium used is made of zirconia balls, ceramics, steel balls, glass or agate balls.
  • an organic graphene is provided, which is prepared by a method of preparing an organic graphene by grinding, and the surface of the organic graphene is grafted with an ionic group.
  • the present invention provides a method for preparing an organic graphene by grinding and an organic graphene. Compared with the prior art, the outstanding features and excellent effects are as follows:
  • the graphene prepared by the invention is graphene grafted with ionic groups on the surface, and the electron space overlap between the ionic active agent and the graphene is high, the bond energy formed, and the bond energy dissolved in the water are used. , so that the ionic group can be stabilized on the graphene surface, preventing the agglomeration of graphene and increasing the dispersibility of graphene.
  • the method for preparing graphene according to the present invention the graphite is processed by the composite intercalating agent, and the subsequent ball milling technology is adopted, the stripping efficiency is high, the continuous preparation yield is large, the preparation period is short, and the production efficiency of graphene is improved. , can be applied to large-scale industrial production.
  • the preparation process of the graphene according to the present invention overcomes the destruction of the graphene sheet structure by a chemical preparation method such as a graphite oxide reduction method, and can obtain a graphene having good conductivity.
  • the soluble inorganic salt selected by the invention has low cost, wide source, can be recycled and reused, has less environmental pollution, and the preparation process is environmentally friendly.
  • the scale graphite and the composite intercalant are taken out at a mass ratio of 1:5, wherein the composite intercalant is alkyltrimethylammonium chloride, oxidized polyethylene wax, and soluble inorganic salt chlorinated.
  • the intercalated scale graphite is placed in a planetary ball mill tank and stirred for 5 hours.
  • the planetary ball mill is made of polytetrafluoroethylene, and the ball mill medium is made of zirconia balls.
  • the ball-milled product obtained in the step (3) is washed three times with distilled water at normal temperature, suction-filtered, and dried to obtain an organic graphene material having a surface-grafted ionic group.
  • the scale graphite and the composite intercalant are taken out at a mass ratio of 1:5, wherein the composite intercalant is alkyl trimethyl ammonium chloride, oxidized polypropylene wax, and soluble inorganic salt sodium sulfate. a composition obtained by mixing in a ratio of mass ratio of 1:2:2;
  • the intercalated scale graphite is placed in a planetary ball mill tank and stirred for 5 hours.
  • the planetary ball mill is made of polytetrafluoroethylene.
  • the ball mill medium is made of zirconia balls.
  • the ball-milled product obtained in the step (3) is washed three times with distilled water at normal temperature, suction-filtered, and dried to obtain an organic graphene material having a surface-grafted ionic group.
  • the scale graphite and the composite intercalating agent are taken out at a mass ratio of 1:5, wherein the composite intercalating agent is imidazoline, EVA wax, and soluble inorganic salt sodium nitrate according to a mass ratio of 1:2:2. a mixture of ratios;
  • the ball-milled product obtained in the step (3) is washed three times with distilled water at normal temperature, suction-filtered, and dried to obtain an organic graphene material having a surface-grafted ionic group.
  • the scale graphite and the composite intercalant are taken out at a mass ratio of 1:15, wherein the composite intercalant is a triazine derivative, an oxidized polypropylene wax, and a soluble inorganic salt sodium nitrate according to a mass ratio. a composition in which a ratio of 1:2:3 is mixed;
  • the formulated composite intercalant is added to distilled water at a heating temperature of 80 ° C, and uniformly mixed until the soluble inorganic salt sodium nitrate is completely dissolved to obtain a mixed solution, and the amount of distilled water is the mass ratio to the flake graphite.
  • the ultrasonic solution is ultrasonically treated, the ultrasonic power is set to 500 KW, ultrasonic for 14 h, the composite intercalation agent is fully infiltrated into the flake graphite layer, and then placed in a dry box for 6 h until the water is completely volatilized, organic
  • the ionic group in the active agent forms a mutual bond with the bond due to the electrostatic force, so that the ionic group is grafted on the surface of the graphite layer, and the soluble inorganic salt sodium nitrate crystallizes between the flake graphite layers.
  • the graphite layer spacing is obtained, and the flake graphite with the soluble inorganic salt and the ionic group intercalated is obtained;
  • the intercalated scale graphite is placed in a planetary ball mill tank and stirred for 10 hours.
  • the planetary ball mill is made of polytetrafluoroethylene.
  • the ball mill medium is made of zirconia balls.
  • the ball mill product obtained in the step (3) is washed 5 times with distilled water at a normal temperature, suction-filtered, and dried to obtain an organic graphene material having a surface-grafted ionic group.
  • the scale graphite and the composite intercalation agent are taken out at a mass ratio of 1:20, wherein the composite intercalation agent is an imidazoline, an oxidized polyethylene wax, and a soluble inorganic salt sodium nitrate according to a mass ratio of 1:2. a composition in which a ratio of 5 is mixed;
  • the intercalated scale graphite is placed in a planetary ball mill tank and stirred for 20 hours.
  • the planetary ball mill is made of stainless steel, and the ball mill medium is made of steel balls;
  • the ball-milled product obtained in the step (3) is washed 5 times with distilled water at a normal temperature, suction-filtered, and dried to obtain an organic graphene material having a surface-grafted ionic group.
  • the method for preparing graphene of the invention has the advantages of high stripping efficiency, high continuous yield, short preparation period, improved production efficiency of graphene, and can be applied to scale due to the use of a composite intercalation agent for graphite treatment, followed by a ball milling technique. Chemical industry production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供一种通过研磨制备有机石墨烯的方法及由此获得的有机石墨烯。该方法包括如下步骤:(1)将鳞片石墨与复合插层剂按比例取出备用,其中复合插层剂是有机活性剂、极性蜡和可溶性无机盐按比例混合而成的组合物;(2)将复合插层剂加入到蒸馏水中,加热混合均匀至可溶性无机盐完全溶解得到混合溶液,加入鳞片石墨,对该混合溶液进行超声处理,使复合插层剂充分渗入鳞片石墨的层间,置于干燥箱中干燥至水分全部挥发,得到复合插层剂插层的鳞片石墨;(3)将其放入球磨机中搅拌球磨;(4)将球磨产物用蒸馏水常温洗涤,抽滤,烘干,得到表面接枝离子基团的有机石墨烯。实现了提高石墨烯的剥离效率和分散性的效果。

Description

一种通过研磨制备有机石墨烯的方法及有机石墨烯 技术领域
[0001] 本发明涉及一种石墨烯的制备方法, 具体涉及一种通过研磨制备石墨烯的方法 及石墨烯。
背景技术
[0002] 2004年石墨烯材料被成功制备, 自此引发了新一波碳素材料研究的热潮。 石墨 烯是由一层碳原子组成的平面碳纳米材料, 是目前已知最薄的二维材料, 其厚 度仅为 0.335nm, 它由六方的晶格组成。 石墨烯中的碳原子之间由键连接, 赋予 了石墨烯极其优异的力学性质和结构刚性。 而且, 在石墨烯中, 每个碳原子都 有一个未成键的电子, 这些电子可以在晶体中自由移动, 且运动速度高达光速 的 1/300, 赋予了石墨烯良好的导电性。 在光学方面, 石墨烯几乎是完全透明的 , 只吸收 2.3%的光。 石墨烯具有奇特的力学、 光学和电学性质, 石墨烯拥有十 分广阔的发展前景。
[0003] 目前石墨烯的制备方法有机械剥离法、 外延生长法、 氧化还原法、 有机合成法 、 溶剂热法、 化学气相沉积法等。 在这些方法中, 由于机械剥离法制备方法简 单, 制备过程环保无污染, 生产成本较为低廉, 在工业生产中备受青睐。 为了 获得理想的石墨烯产品, 通常在机械剥离石墨前对石墨进行预处理以附加制备 出石墨烯的性能, 如提高石墨烯的导电性等。 通过先插层石墨后机械剥离获得 石墨烯的方法处理过程简单, 能够有效保护了石墨烯结构的完整性, 提高石墨 烯产品的质量, 是石墨烯大规模工业化生产的选择方案之一。
[0004] 中国发明专利申请号 2011104471293公幵了一种石墨烯的制备方法, 通过将金 属锂及石墨放入电解质锂盐溶解于有机溶剂形成的电解质溶液中, 使电解质溶 液中的锂离子与有机溶剂分子共同插入所述石墨层间, 以形成石墨插层化合物 , 接着从该石墨插层化合物中剥离出石墨烯片。 该发明方案中需要加入化学活 性很活泼的金属锂作为插层剂, 其贮存和使用条件较为苛刻, 制备过程难以控 制, 无法适用于工业化生产。 [0005] 中国发明专利申请号 2012103080545公幵了一种石墨烯的制备方法, 将石墨分 散在离子液体中, 形成石墨与离子液体混合物, 将该混合物置于球磨容器中, 进行球磨得到浆料, 接着分离球磨球和石墨烯, 获得石墨烯。 该方案直接对石 墨与离子液体混合物进行球磨, 利用球磨的机械力处理混合浆料制备石墨烯, 剥离效率较低。
[0006] 中国发明专利申请号 2012105934969公幵了一种高效制备石墨烯的方法, 将膨 胀石墨与可溶性无机盐和 /或可溶性有机物水溶液中加热, 再将其置于干燥箱 中至水分全部挥发, 然后将得到的膨胀石墨与无机盐和 /或有机物的混合物放入 球磨罐中球磨, 获得石墨烯。 但是, 石墨烯自身容易发生团聚, 需要选择合适 的保存介质或者对石墨烯进行后处理提高石墨烯的分散性, 制备获得石墨烯分 散性有待提高。
[0007] 根据上述, 上述方案中通过对石墨进行预处理而后进行机械剥离制备石墨烯的 技术方案中, 尽管对石墨材料进行预处理过程都涉及到对石墨进行插层处理, 但使用的插层方式未能有效提高机械剥离效率, 产量低, 不适合大规模工业化 生产, 进一步, 机械剥离获得的石墨烯材料分散性较差, 需要对石墨烯进行后 处理来提高其在保存介质中的分散性, 进而导致处理过程复杂, 生产周期及成 本增加等问题。
技术问题
[0008] 目前的插层方式未能有效提高机械剥离效率, 产量低, 不适合大规模工业化生 产, 进一步, 机械剥离获得的石墨烯材料分散性较差, 需要对石墨烯进行后处 理来提高其在保存介质中的分散性, 进而导致处理过程复杂, 生产周期及成本 增加等问题。
问题的解决方案
技术解决方案
[0009] 针对目前石墨烯分散储存不稳定的缺陷, 本发明提出一种通过研磨制备有机石 墨烯的方法及有机石墨烯, 将复合插层剂与鳞片石墨混均进行插层, 然后蒸干 , 有机活性剂中的离子基团由于静电力作用与键之间形成相互键接, 从而使离 子基团接枝在石墨层表面, 可溶性无机盐在鳞片石墨层间发生结晶, 撑幵石墨 层间距, 提高了石墨烯剥离效率。 然后通过球磨机研磨、 清洗得到经过离子基 团接枝的有机石墨烯材料。 进一步, 将提高石墨烯的剥离效率以及解决石墨烯 分散性差的问题同吋解决, 推动了石墨烯的量产化生产。
[0010] 为解决上述问题, 本发明采用以下技术方案:
[0011] 一方面提供一种通过研磨制备有机石墨烯的方法, 其特征在于, 采用复合插层 剂插层接枝, 通过球磨机提供机械剪切力制备有机石墨烯, 具体方法如下:
[0012] (1) 将鳞片石墨与复合插层剂按质量比为 1: (5-20) 取出备用, 其中, 所述复 合插层剂为有机活性剂、 极性蜡、 可溶性无机盐按照质量比 1 : 2: (2-5) 的比 例混合而成的组合物, 所述的有机活性剂为烷基三甲基铵盐型、 烷基二甲基铵 盐型、 含氮的咪唑啉、 吗啉类、 三嗪类衍生物中的一种或几种混合物, 所述的 极性蜡为氧化聚乙烯蜡、 氧化聚丙烯蜡、 EVA蜡中的一种或几种混合物, 所述 的可溶性无机盐为可溶性盐酸盐、 硝酸盐、 硫酸盐、 碳酸盐、 铬酸盐、 磺酸盐 、 磷酸盐中的一种或几种混合物;
[0013] (2) 将所述复合插层剂加入到蒸馏水中加热混合均匀至可溶性无机盐完全溶 解得到混合溶液, 对所述混合溶液进行超声处理, 设置超声功率为 100-500KW , 使所述复合插层剂充分渗入所述鳞片石墨层间, 然后置于干燥箱中干燥 2-10h 至水分全部挥发, 得到复合插层剂插层的鳞片石墨;
[0014] (3) 再将复合插层剂插层的鳞片石墨放入球磨机中搅拌球磨 5-20小吋;
[0015] (4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 3-5次, 抽滤, 烘干, 得 到表面接枝离子基团的有机石墨烯。
[0016] 优选地, 所述的蒸馏水与鳞片石墨的质量之比为 (5-20) :1。
[0017] 优选地, 步骤 (2) 中将所述复合插层剂加入到蒸馏水中加热温度为 40-80°C。
[0018] 优选地, 步骤 (2) 中超声吋间为 2-24h。
[0019] 优选地, 所述球磨机为行星式球磨机, 球磨罐的材质为聚四氟乙烯、 不锈钢或 陶瓷, 所使用的球磨介质的材质为氧化锆球、 陶瓷、 钢珠、 玻璃或玛瑙球。
[0020] 另一方面, 提供一种有机石墨烯, 所述有机石墨烯通过研磨制备有机石墨烯的 方法制备, 所述有机石墨烯表面接枝了离子基团。
[0021] 将本发明所制有机备石墨烯性能与普通球磨法制备的石墨烯相比, 测试如表 1 [0022]
Figure imgf000005_0001
发明的有益效果
有益效果
[0023] 本发明一种通过研磨制备有机石墨烯的方法及有机石墨烯, 与现有技术相比, 其突出的特点和优异的效果在于:
[0024] 1、 本发明制备的石墨烯为表面经过离子基团接枝的石墨烯, 利用了离子活性 剂与石墨烯的电子空间重叠度较高, 形成的键能, 溶解于水中的键能, 使得离 子基团能够稳定在石墨烯表面, 防止了石墨烯的团聚, 增加了石墨烯的分散性
[0025] 2、 本发明制备石墨烯的方法, 由于将石墨利用复合插层剂处理, 后续采用球 磨技术工艺, 剥离效率高, 连续制备产量大, 制备周期较短, 提高了石墨烯的 生产效率, 可以适用于规模化工业生产。
[0026] 3、 本发明所涉及到石墨烯的制备工艺克服了氧化石墨还原法等化学制备方法 对石墨烯片层结构的破坏, 可以制得导电性较好的石墨烯。
[0027] 4、 本发明所选用的可溶性无机盐, 成本低廉, 来源广泛, 可以回收再利用, 对环境污染较小, 制备工艺具有环境友好性。
本发明的实施方式
[0028] 以下通过具体实施方式对本发明作进一步的详细说明, 但不应将此理解为本发 明的范围仅限于以下的实例。 在不脱离本发明上述方法思想的情况下,根据本领 域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内 [0029] 实施例 1
[0030] (1) 将鳞片石墨与复合插层剂按质量比为 1:5取出备用, 其中, 复合插层剂为 烷基三甲基氯化铵、 氧化聚乙烯蜡、 可溶性无机盐氯化钾按照质量比 1 : 2: 2的 比例混合而成的组合物;
[0031] (2) 将配制的复合插层剂加入到蒸馏水中加热温度为 40°C, 混合均匀至可溶 性无机盐氯化钾完全溶解得到混合溶液, 蒸馏水用量为与鳞片石墨的质量之比 为 5:1, 接着对所述混合溶液进行超声处理, 设置超声功率为 100KW, 超声 24h, 使复合插层剂充分渗入鳞片石墨层间, 然后置于干燥箱中干燥 2h至水分全部挥 发, 有机活性剂中的离子基团由于静电力作用与键之间形成相互键接, 从而使 离子基团接枝在石墨层表面, 同吋, 可溶性无机盐氯化钾在鳞片石墨层间发生 结晶, 撑幵石墨层间距, 得到可溶性无机盐氯化钾与离子基团插层的鳞片石墨
[0032] (3) 再将插层处理后的鳞片石墨放入行星式球磨罐中搅拌球磨 5小吋, 行星式 球磨罐的材质为聚四氟乙烯, 球磨介质的材质为氧化锆球;
[0033] (4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 3次, 抽滤, 烘干, 得到 表面接枝离子基团的有机石墨烯材料。
[0034] 对实施例 1中制备获得的石墨烯进行性能测试后, 获得数据如表 2所示。
[0035] 实施例 2
[0036] (1) 将鳞片石墨与复合插层剂按质量比为 1:5取出备用, 其中, 复合插层剂为 烷基三甲基氯化铵、 氧化聚丙烯蜡、 可溶性无机盐硫酸钠按照质量比 1:2:2的比 例混合而成的组合物;
[0037] (2) 将配制的复合插层剂加入到蒸馏水中加热温度为 40°C, 混合均匀至可溶 性无机盐硫酸钠完全溶解得到混合溶液, 蒸馏水用量为与鳞片石墨的质量之比 为 5:1, 接着对所述混合溶液进行超声处理, 设置超声功率为 100KW, 超声 24h, 使复合插层剂充分渗入鳞片石墨层间, 然后置于干燥箱中干燥 2h至水分全部挥 发, 有机活性剂中的离子基团由于静电力作用与键之间形成相互键接, 从而使 离子基团接枝在石墨层表面, 同吋, 可溶性无机盐硫酸钠在鳞片石墨层间发生 结晶, 撑幵石墨层间距, 得到可溶性无机盐与离子基团插层的鳞片石墨;
[0038] (3) 再将插层处理后的鳞片石墨放入行星式球磨罐中搅拌球磨 5小吋,行星式球 磨罐的材质为聚四氟乙烯,.球磨介质的材质为氧化锆球;
[0039] (4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 3次, 抽滤, 烘干, 得到 表面接枝离子基团的有机石墨烯材料。
[0040] 对实施例 2中制备获得的石墨烯进行性能测试后, 获得数据如表 2所示。
[0041] 实施例 3
[0042] ( 1) 将鳞片石墨与复合插层剂按质量比为 1:5取出备用, 其中, 复合插层剂为 咪唑啉、 EVA蜡、 可溶性无机盐硝酸钠按照质量比 1:2: 2的比例混合而成的组合 物;
[0043] (2) 将配制的复合插层剂加入到蒸馏水中加热温度为 50°C, 混合均匀至可溶 性无机盐硝酸钠完全溶解得到混合溶液, 蒸馏水用量为与鳞片石墨的质量之比 为 5: 1, 接着对所述混合溶液进行超声处理, 设置超声功率为 100KW, 超声 24h, 使复合插层剂充分渗入鳞片石墨层间, 然后置于干燥箱中干燥 2h至水分全部挥 发, 有机活性剂中的离子基团由于静电力作用与键之间形成相互键接, 从而使 离子基团接枝在石墨层表面, 同吋, 硝酸钠在鳞片石墨层间发生结晶, 撑幵石 墨层间距, 得到硝酸钠与离子基团插层的鳞片石墨;
[0044] (3) 再将插层处理后的鳞片石墨放入行星式球磨罐中搅拌球磨 5小吋,行星式球 磨罐的材质为聚四氟乙烯,.球磨介质的材质为氧化锆球;
[0045] (4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 3次, 抽滤, 烘干, 得到 表面接枝离子基团的有机石墨烯材料。
[0046] 对实施例 3中制备获得的石墨烯进行性能测试后, 获得数据如表 2所示。
[0047] 实施例 4
[0048] ( 1) 将鳞片石墨与复合插层剂按质量比为 1: 15取出备用, 其中, 复合插层剂 为三嗪类衍生物、 氧化聚丙烯蜡、 可溶性无机盐硝酸钠按照质量比 1:2: 3的比例 混合而成的组合物;
[0049] (2) 将配制的复合插层剂加入到蒸馏水中加热温度为 80°C, 混合均匀至可溶 性无机盐硝酸钠完全溶解得到混合溶液, 蒸馏水用量为与鳞片石墨的质量之比 为 15:1, 接着对所述混合溶液进行超声处理, 设置超声功率为 500KW, 超声 14h , 使复合插层剂充分渗入鳞片石墨层间, 然后置于干燥箱中干燥 6h至水分全部 挥发, 有机活性剂中的离子基团由于静电力作用与键之间形成相互键接, 从而 使离子基团接枝在石墨层表面, 同吋, 可溶性无机盐硝酸钠在鳞片石墨层间发 生结晶, 撑幵石墨层间距, 得到可溶性无机盐与离子基团插层的鳞片石墨;
[0050] (3) 再将插层处理后的鳞片石墨放入行星式球磨罐中搅拌球磨 10小吋,行星式 球磨罐的材质为聚四氟乙烯,.球磨介质的材质为氧化锆球;
[0051] (4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 5次, 抽滤, 烘干, 得到 表面接枝离子基团的有机石墨烯材料。
[0052] 对实施例 4中制备获得的石墨烯进行性能测试后, 获得数据如表 2所示。
[0053] 实施例 5
[0054] (1) 将鳞片石墨与复合插层剂按质量比为 1:20取出备用, 其中, 复合插层剂 为咪唑啉、 氧化聚乙烯蜡、 可溶性无机盐硝酸钠按照质量比 1:2: 5的比例混合而 成的组合物;
[0055] (2) 将配制的复合插层剂加入到蒸馏水中加热温度为 80°C, 混合均匀至可溶 性无机盐硝酸钠完全溶解得到混合溶液, 蒸馏水用量为与鳞片石墨的质量之比 为 20:1, 接着对所述混合溶液进行超声处理, 设置超声功率为 500KW, 超声 24h , 使复合插层剂充分渗入鳞片石墨层间, 然后置于干燥箱中干燥 10h至水分全部 挥发, 有机活性剂中的离子基团由于静电力作用与键之间形成相互键接, 从而 使离子基团接枝在石墨层表面, 同吋, 可溶性无机盐硝酸钠在鳞片石墨层间发 生结晶, 撑幵石墨层间距, 得到可溶性无机盐硝酸钠与离子基团插层的鳞片石 墨.
[0056] (3) 再将插层处理后的鳞片石墨放入行星式球磨罐中搅拌球磨 20小吋,行星式 球磨罐的材质为不锈钢, 球磨介质的材质为钢珠;
[0057] (4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 5次, 抽滤, 烘干, 得到 表面接枝离子基团的有机石墨烯材料。
[0058] 对实施例 5中制备获得的石墨烯进行性能测试后, 获得数据如表 2所示。
[0059] 表 2
Figure imgf000009_0001
工业实用性
本发明制备石墨烯的方法, 由于将石墨利用复合插层剂处理, 后续采用球磨技 术工艺, 剥离效率高, 连续制备产量大, 制备周期较短, 提高了石墨烯的生产 效率, 可以适用于规模化工业生产。

Claims

权利要求书
[权利要求 1] 一种通过研磨制备有机石墨烯的方法, 其特征在于, 采用复合插层剂 插层接枝, 通过球磨机提供机械剪切力制备有机石墨烯, 具体方法如 下:
(1) 将鳞片石墨与复合插层剂按质量比为 1: (5-20) 取出备用, 其 中, 所述复合插层剂为有机活性剂、 极性蜡、 可溶性无机盐按照质量 比 1 : 2: (2-5) 的比例混合而成的组合物, 所述的有机活性剂为烷 基三甲基铵盐型、 烷基二甲基铵盐型、 含氮的咪唑啉、 吗啉类、 三嗪 类衍生物中的一种或几种混合物, 所述的极性蜡为氧化聚乙烯蜡、 氧 化聚丙烯蜡、 EVA蜡中的一种或几种混合物, 所述的可溶性无机盐为 可溶性盐酸盐、 硝酸盐、 硫酸盐、 碳酸盐、 铬酸盐、 磺酸盐、 磷酸盐 中的一种或几种混合物;
(2) 将所述复合插层剂加入到蒸馏水中加热混合均匀至可溶性无机 盐完全溶解得到混合溶液, 对所述混合溶液进行超声处理, 设置超声 功率为 100-500KW, 使所述复合插层剂充分渗入所述鳞片石墨层间, 然后置于干燥箱中干燥 2-10h至水分全部挥发, 得到复合插层剂插层 的鳞片石墨;
(3) 再将复合插层剂插层的鳞片石墨放入球磨机中搅拌球磨 5-20小 吋;
(4) 将步骤 (3) 得到的球磨产物用蒸馏水常温洗涤 3-5次, 抽滤, 烘干, 得到表面接枝离子基团的有机石墨烯。
2.根据权利要求 1所述的一种通过研磨制备有机石墨烯的方法, 其特 征在于: 所述的蒸馏水与鳞片石墨的质量之比为 (5-20) :1。
3.根据权利要求 1所述的一种通过行研磨制备有机石墨烯的方法, 其 特征在于: 步骤 (2) 中将所述复合插层剂加入到蒸馏水中加热温度 为 40-80。C。
4.根据权利要求 1所述的一种通过研磨制备有机石墨烯的方法, 其特 征在于: 步骤 (2) 中超声吋间为 2-24h。
5.根据权利要求 1所述的一种通过研磨制备有机石墨烯的方法, 其特 征在于: 所述球磨机为行星式球磨机, 球磨机罐的材质为聚四氟乙烯 、 不锈钢或陶瓷, 所使用的球磨介质的材质为氧化锆球、 陶瓷、 钢珠 、 玻璃或玛瑙球。
6.—种有机石墨烯, 其特征在于, 由权利要求 1-5任一项所述的通过 研磨制备有机石墨烯的方法制备得到的有机石墨烯, 所述有机石墨烯 表面接枝了离子基团。
PCT/CN2017/079196 2016-05-06 2017-04-01 一种通过研磨制备有机石墨烯的方法及有机石墨烯 WO2017190571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610296422.7A CN105967171A (zh) 2016-05-06 2016-05-06 一种通过研磨制备有机石墨烯的方法及有机石墨烯
CN201610296422.7 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017190571A1 true WO2017190571A1 (zh) 2017-11-09

Family

ID=56992639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079196 WO2017190571A1 (zh) 2016-05-06 2017-04-01 一种通过研磨制备有机石墨烯的方法及有机石墨烯

Country Status (2)

Country Link
CN (1) CN105967171A (zh)
WO (1) WO2017190571A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039781A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 环烷烃氧化方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967171A (zh) * 2016-05-06 2016-09-28 成都新柯力化工科技有限公司 一种通过研磨制备有机石墨烯的方法及有机石墨烯
CN106672950B (zh) * 2016-12-06 2018-12-04 北京化工大学 一种有机化改性石墨烯的制备方法
CN113479866A (zh) * 2021-07-12 2021-10-08 丁民修 高效研磨体剥离制备石墨烯的方法
CN113816371B (zh) * 2021-09-25 2023-09-08 凯盛石墨碳材料有限公司 一种通过冻干制备可膨胀石墨的方法
CN116873912B (zh) * 2023-05-24 2024-05-07 国电投重庆能源研究院有限公司 一种水溶导电型石墨烯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225759A (zh) * 2011-04-14 2011-10-26 温州医学院 羟基功能化石墨烯的低温制备方法
US20130087446A1 (en) * 2011-10-11 2013-04-11 Aruna Zhamu One-step production of graphene materials
CN103058176A (zh) * 2012-12-29 2013-04-24 华侨大学 一种高效制备石墨烯的方法
CN103382026A (zh) * 2012-05-02 2013-11-06 中国科学院上海硅酸盐研究所 高质量石墨烯的低成本宏量制备方法
CN105967171A (zh) * 2016-05-06 2016-09-28 成都新柯力化工科技有限公司 一种通过研磨制备有机石墨烯的方法及有机石墨烯

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583351B (zh) * 2012-02-29 2014-05-07 中国科学院宁波材料技术与工程研究所 一种少层石墨烯的制备方法
CN102631922B (zh) * 2012-03-28 2015-04-08 长沙星城微晶石墨有限公司 制备金属插层膨胀石墨的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225759A (zh) * 2011-04-14 2011-10-26 温州医学院 羟基功能化石墨烯的低温制备方法
US20130087446A1 (en) * 2011-10-11 2013-04-11 Aruna Zhamu One-step production of graphene materials
CN103382026A (zh) * 2012-05-02 2013-11-06 中国科学院上海硅酸盐研究所 高质量石墨烯的低成本宏量制备方法
CN103058176A (zh) * 2012-12-29 2013-04-24 华侨大学 一种高效制备石墨烯的方法
CN105967171A (zh) * 2016-05-06 2016-09-28 成都新柯力化工科技有限公司 一种通过研磨制备有机石墨烯的方法及有机石墨烯

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111039781A (zh) * 2018-10-12 2020-04-21 中国石油化工股份有限公司 环烷烃氧化方法
CN111039781B (zh) * 2018-10-12 2022-09-27 中国石油化工股份有限公司 环烷烃氧化方法

Also Published As

Publication number Publication date
CN105967171A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2017190571A1 (zh) 一种通过研磨制备有机石墨烯的方法及有机石墨烯
US11167992B2 (en) Method for preparing graphene by liquid-phase ball milling exfoliation
CN108117065B (zh) 一种采用交替电流剥离制备石墨烯的方法
CN103408000B (zh) 大片氧化石墨烯的制备方法
CN104556018B (zh) 一种高质量石墨烯导电膜的制备方法
CN104386678B (zh) 一种石墨烯的制备方法
CN103864062A (zh) 一种石墨烯透明导电薄膜的制备方法
CN105236391B (zh) 木质素溶液制备石墨烯的方法
CN111717900B (zh) 一种功能化氮化硼纳米片的机械剥离方法
He et al. Integration of black phosphorene and MXene to improve fire safety and mechanical properties of waterborne polyurethane
CN103058176A (zh) 一种高效制备石墨烯的方法
CN104876213A (zh) 一种石墨烯材料及其电极材料制备方法
CN104174422A (zh) 高氮掺杂石墨烯与类富勒烯硒化钼空心球纳米复合材料及其制备方法
CN107416811A (zh) 一种高导电性石墨烯的制备方法
CN105621393A (zh) 一种官能化石墨烯材料及其制备和应用
CN102698666A (zh) 基于红外线辐照的石墨烯/纳米粒子复合材料的制备方法
CN103570010A (zh) 一种石墨烯粉体材料的制备方法
CN108640107B (zh) 一种用于高质量石墨烯量产的快速剥离石墨的插层剂
CN105314686A (zh) 一种FeS纳米片的制备方法
CN103058182A (zh) 一种溶液相制备石墨烯的方法
CN102544457B (zh) 原位法制备氧化石墨烯-三氧化二铁纳米管复合材料的方法
CN105110326A (zh) 一种利用液相剥离法制备石墨烯的方法及石墨烯
CN109110750A (zh) 利用膨胀石墨制备石墨烯的方法
CN104393275A (zh) 一种碳包覆钛酸锂电池材料的制备方法
CN102437334B (zh) 一种碳纳米管/LiFePO4锂离子电池正极材料的微波水热合成方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792398

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792398

Country of ref document: EP

Kind code of ref document: A1