WO2017190485A1 - 基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统 - Google Patents

基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统 Download PDF

Info

Publication number
WO2017190485A1
WO2017190485A1 PCT/CN2016/105528 CN2016105528W WO2017190485A1 WO 2017190485 A1 WO2017190485 A1 WO 2017190485A1 CN 2016105528 W CN2016105528 W CN 2016105528W WO 2017190485 A1 WO2017190485 A1 WO 2017190485A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sensor
electrode layer
friction
disposed
Prior art date
Application number
PCT/CN2016/105528
Other languages
English (en)
French (fr)
Inventor
徐传毅
王珊
孙利佳
Original Assignee
纳智源科技(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610297098.0A external-priority patent/CN105991063B/zh
Priority claimed from CN201610297099.5A external-priority patent/CN105991064B/zh
Application filed by 纳智源科技(唐山)有限责任公司 filed Critical 纳智源科技(唐山)有限责任公司
Publication of WO2017190485A1 publication Critical patent/WO2017190485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the invention relates to a sensor based on friction generation, a human physiological signal acquisition device and a robot tactile perception system.
  • the human physiological signal acquisition device can comprehensively record the user's sleep information all night, including heart rate, respiration rate, turning over, leaving the bed, deep and light sleep, falling into sleep, and sleeping cycle.
  • PVDF piezoelectric film is often used as a transducing device, and the physiological signal of the human body is converted into an electrical signal for subsequent circuit module processing.
  • Another more advanced and more stable transducing device is a friction-based power generation sensor.
  • the principle of the sensor is to generate an electrical signal by utilizing the pressure-contact contact between the two layers of power generation membranes for subsequent circuit module processing.
  • a problem with the friction-based power generation sensor is that when the human physiological signal is collected, the sensitivity to relatively small signals such as the heartbeat signal is poor, and the relatively strong signal output such as breathing is large, which causes the heartbeat.
  • the output of the small signal is not proportional to the value of the signal output such as breathing, which brings great problems to the subsequent signal processing.
  • robots have been widely used in industrial production and have gradually entered people's daily lives.
  • the development and application of sensor technology has made robots increasingly intelligent, gradually becoming visual, tactile and listening. Awareness.
  • the tactile sensation enables the robot to accurately know the shape, size, and the like of the object, thereby determining the appropriate picking force, ensuring that the picked object is not damaged, and ensuring the safety of the robot itself.
  • An object of the present invention is to provide a sensor based on friction power generation, a human body physiological signal collection device, and a robot haptic sensing system, which solve the problems of complicated structure, low sensitivity, low precision, and the like in the prior art.
  • a friction generating power generation sensor wherein a friction interface is formed inside the sensor, and the friction interface can be contacted and separated and rubbed against each other to generate an electrical signal under an external force;
  • the fretting reinforcement layer and the fretting reinforcement layer can accelerate the separation speed of the friction interface inside the sensor under the action of a small external force to enhance the electrical signal output of the sensor to a small external force.
  • a human physiological signal acquisition device including the sensor described in any of the above.
  • the friction generating power generation sensor and the human physiological signal collecting device of the invention have the advantages that: by adding a fretting reinforcing layer, the local deformation of the sensor is reduced, the separation speed between the friction layers is accelerated, thereby strengthening the sensor to the heartbeat and the like. Signal output of the action.
  • a robot haptic sensing system characterized in that the sensor of any of the above, further comprising: a signal acquisition module, a central control module and a power module; wherein the sensor is used for sensing External force, outputting a pressure electrical signal corresponding to the external force; the signal acquisition module is connected to the sensor for collecting and processing a pressure electrical signal output by the sensor; and the central control module is connected to the signal acquisition module And configured to adjust system operation according to the pressure electrical signal output by the signal acquisition module; the power module is connected to the signal acquisition module, and is used to supply power to the signal acquisition module.
  • the friction generator is deformed by an external force, and outputs a corresponding pressure electric signal. Further, the central control module of the robot haptic sensing system performs strength and/or according to the processed pressure electric signal. Adjustment of the direction angle.
  • the robotic tactile sensing system has a simple structure, high sensitivity and high precision.
  • FIG. 1 is a schematic structural view of a first embodiment of a friction power generation based sensor of the present invention
  • FIG. 2 is a schematic structural view of a second embodiment of a friction power generation sensor according to the present invention.
  • FIG. 3 is a schematic structural view of a third embodiment of a friction power generation sensor according to the present invention.
  • FIG. 4 is a schematic structural view of a fourth embodiment of a friction power generation sensor according to the present invention.
  • FIG. 5 is a schematic structural view of a fifth embodiment of a friction power generation sensor according to the present invention.
  • FIG. 6 is a schematic structural view of a first embodiment of a fretting reinforcement layer in a friction-generator-based sensor of the present invention
  • FIG. 7 is a schematic structural view of a second embodiment of a fretting reinforcing layer in a friction power generating sensor according to the present invention.
  • FIG. 8 is a schematic structural view of a third embodiment of a fretting reinforcement layer in a friction power generation based sensor of the present invention.
  • FIG. 9 is a schematic structural view of a fourth embodiment of a fretting reinforcing layer in a friction power generating sensor according to the present invention.
  • FIG. 10 is a schematic external view of a human physiological signal acquisition device of the present invention.
  • FIG. 11 is a comparative test diagram of a human physiological signal acquisition device of the present invention.
  • 12a is a functional block diagram of an embodiment of a robot haptic sensing system provided by the present invention.
  • 12b is a functional block diagram of another embodiment of a robot haptic sensing system provided by the present invention.
  • Figure 13 is a functional block diagram of the signal acquisition module of Figures 12a and 12b;
  • 14a-14b are schematic structural diagrams of a tactile sensor setting in a robot haptic sensing system embodiment
  • Figure 15 is a block diagram showing the arrangement of the tactile sensor array of Figure 14b. .
  • the friction generator-based sensor comprises: at least one friction generator, wherein the opposite surfaces of the friction generator constitute a friction interface, and when an external force acts on the friction generator, the friction interfaces rub against each other, and the friction generator outputs A pressure electrical signal corresponding to an external force.
  • the friction generator-based sensor may include a friction generator, and may also include a plurality of friction generators, which can be selected by a person skilled in the art as needed, which is not limited herein.
  • the friction generator-based sensor comprises a plurality of friction generators
  • the plurality of friction generators can be connected in parallel and/or in series, and the plurality of parallel and/or series-connected friction generators can also be tiled And / or stacked to increase the strength of the pressure electrical signal output by the friction generator, so that the sensitivity of the sensor based on the friction generator is higher.
  • FIG. 1 it is a schematic structural view of a first embodiment of a friction-generator-based sensor of the present invention.
  • the sensor includes a friction generator, and an insulating layer 130 disposed on the outer side of the friction generator and a shielding layer 120 are sequentially laminated, and the fretting reinforcing layer 110 is disposed outside the shielding layer 120.
  • the friction generator adopts a four-layer structure friction generator, and includes a first electrode layer 141, a first polymer layer 142, a second polymer layer 143, and a second electrode layer 144 which are sequentially stacked, wherein A polymer layer 142 and a second polymer layer 143 rub against each other to form a friction interface, and the first electrode layer 141 and the second electrode layer 144 constitute an output end of the friction generator. Therefore, the friction generator senses the external force and deforms under the action of the external force, so that the layers of the friction generator are separated from each other and rubbed against each other, so that the two outputs end generate an induced charge, and the friction generator and the external circuit After being connected, the AC electrical pressure signal is output.
  • a three-layer structure and a five-layer structure friction generator may be used according to actual implementation conditions, and is not specifically limited herein.
  • the shielding layer 120 is mostly made of a metal material such as copper or aluminum, when it is in direct contact with the first electrode layer 141 and the second electrode layer 144 of the friction generator, the pressure electric signal outputted by the friction generator is shielded.
  • Layer 120 shields a portion of the pressure telecommunications generated by the friction generator
  • the output of the number is such that an insulating layer 130 is disposed between the friction generator and the shielding layer 120 to integrally cover the friction generator to prevent the first electrode layer 141 and the second electrode layer 144 of the friction generator from being shielded
  • the 120 contacts each other to reduce the loss of the AC electrical pressure signal output by the friction generator.
  • the insulating layer can be made of high molecular polymer materials, such as polyethylene terephthalate (PET), polyvinylidene fluoride (PVDF), fluorinated ethylene propylene copolymer (FEP), soluble polytetrafluoroethylene. (PFA), polychlorotrifluoroethylene (PCTFE), polypropylene (PP), polyethylene (PE), and the like.
  • PET polyethylene terephthalate
  • PVDF polyvinylidene fluoride
  • FEP fluorinated ethylene propylene copolymer
  • PFA polychlorotrifluoroethylene
  • PP polypropylene
  • PE polyethylene
  • the shielding layer 120 is disposed on the outer side of the insulating layer 130 for shielding external electromagnetic interference to protect the alternating pressure electric signal output by the friction generator.
  • the fretting reinforcing layer 110 is disposed outside the shielding layer 120, and the fretting reinforcing layer 110 can reduce the local deformation of the sensor and accelerate the separation speed between the friction interfaces, thereby enhancing the signal output of the sensor to small movements such as heartbeat.
  • the two surfaces constituting the friction interface inside the friction generator must be unfixed, and the other layers may be fixedly connected, and preferably fixedly connected, such as bonding.
  • the fretting reinforcing layer may adopt a flat plate structure as shown in FIG. 6.
  • the fretting reinforcing layer may also adopt a hollow structure in which the array is provided with geometric through holes, wherein the geometric shape may be a rectangular or elliptical shape, as shown in FIGS. 7 to 9.
  • the outer dimension of the fretting reinforcing layer is preferably equivalent to the outer dimension of the sensor, and generally can be finely adjusted according to the specific position of the setting, and the thickness can be set between 0.01 and 2.0 mm. It should be noted that the above are all examples. In actual implementation, the settings may be made according to specific conditions, and are not specifically limited herein.
  • the material of the fretting reinforcing layer may be plastic or rubber.
  • plastic materials such as PE (polyethylene), PP (polypropylene), PVC (polyvinyl chloride), PET (polyester), EPS (expanded polystyrene), ABS (acrylonitrile-butadiene) Ethylene-styrene copolymer), PC (polycarbonate), PA (nylon), etc.; rubber materials such as nitrile rubber (NBR), hydrogenated nitrile rubber (HNBR), ethylene propylene rubber (EPM ⁇ EPDM) ), silicone rubber (Q), fluororubber (FPM), natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), neoprene (CR), butyl Rubber (IIR), etc.
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polyyester
  • FIG. 2 it is a schematic structural view of a second embodiment of the friction power generation based sensor of the present invention.
  • the sensor includes a friction generator, and
  • the sub-layer covers the insulating layer 230 disposed outside the friction generator and the shielding layer 220.
  • the fretting reinforcing layer 210 is disposed between the insulating layer 230 and the shielding layer 220. It should be noted that the fretting reinforcing layer 210 may be disposed in the insulation.
  • One side surface of the layer 230 is disposed between the shielding layer 220 or between the both side surfaces of the insulating layer 230 and the shielding layer 220.
  • the remaining structures and principles in this embodiment are similar to those in the first embodiment and will not be described in detail.
  • FIG. 3 it is a schematic structural view of a third embodiment of the friction power generation based sensor of the present invention.
  • the sensor comprises a friction generator, and an insulating layer 330 and a shielding layer 320 disposed on the outer side of the friction generator are sequentially laminated, and the fretting reinforcing layer 310 is disposed on the friction generator and Between the insulating layers 330, it should be noted that the fretting reinforcing layer 310 may be disposed between one side surface of the friction generator and the insulating layer 330, or between both side surfaces of the friction generator and the insulating layer 330.
  • the fretting reinforcement layer 310 may be disposed between one side surface of the friction generator and the insulating layer 330, or between both side surfaces of the friction generator and the insulating layer 330.
  • the fretting reinforcement layer 310 In addition, the remaining structures and principles in this embodiment are similar to those in the first embodiment and will not be described in detail.
  • FIG. 4 it is a schematic structural view of a fourth embodiment of the friction power generation based sensor of the present invention.
  • the sensor includes a friction generator, and an insulating layer 430 and a shielding layer 420 that are disposed on the outside of the friction generator in this order, as compared with the first embodiment.
  • the friction generator adopts a four-layer structure friction generator, and includes a first electrode layer 441, a first polymer layer 442, a second polymer layer 443, and a second electrode layer 444 which are sequentially stacked, wherein A polymer layer 442 and a second polymer layer 443 rub against each other to form a friction interface, the first electrode layer 441 and the second electrode layer 444 constitute an output end of the friction generator, and the fretting reinforcement layer 410 is disposed on the first electrode layer 441 Between the first polymer layers 442.
  • the fretting reinforcing layer 410 may be disposed between the second polymer layer 443 and the second electrode layer 444 as needed, or the fretting reinforcing layer 410 may be disposed at each of the above positions, that is, the fretting reinforcing layer may be It is disposed between two surfaces of the friction generator that do not constitute a friction interface.
  • the remaining structures and principles in this embodiment are similar to those in the first embodiment and will not be described in detail.
  • a three-layer structure, five-layer structure friction generator can be used according to the actual implementation, and the micro-motion reinforcement layer can be set in the three-layer structure, five.
  • the interior of the layered friction generator does not form between the two surfaces of the friction interface.
  • the friction generator is a three-layer structure friction generator, and the friction generator includes: a first electrode layer, a first polymer layer, and a second electrode layer, which are sequentially stacked, wherein the first electrode layer and the first electrode layer The polymer layers rub against each other to form a friction interface, and the first electrode layer and the second electrode layer constitute an output end of the friction generator.
  • the fretting reinforcing layer is disposed between the first polymer layer and the second electrode layer.
  • the friction generator is a five-layer structure friction generator, and the friction generator includes: a first electrode layer, a first polymer layer, an intermediate film layer, a second polymer layer, and a second electrode layer, which are sequentially stacked, wherein The first polymer layer and the intervening film layer, and/or the intervening film layer and the second polymer layer rub against each other to form a friction interface.
  • the fretting reinforcing layer may be disposed between the first electrode layer and the first polymer layer, or disposed in the intervening film layer and the second polymer layer.
  • a fretting reinforcing layer may be provided at each of the above positions.
  • the fretting reinforcing layer may be disposed between the first electrode layer and the first polymer layer, or disposed in the first polymer layer and the intervening film layer.
  • a fretting reinforcing layer may be provided at each of the above positions.
  • the friction generator is a five-layer friction generator, and the friction generator includes: a first electrode layer, a first polymer layer, an intervening electrode layer, a second polymer layer, and a second electrode layer which are sequentially stacked. Wherein, the first polymer layer and the intervening electrode layer, and/or the intervening electrode layer and the second polymer layer rub against each other to form a friction interface.
  • the fretting reinforcing layer may be disposed between the first electrode layer and the first polymer layer, or disposed between the intervening electrode layer and the second polymer layer Alternatively, or between the second polymer layer and the second electrode layer, a fretting reinforcing layer may be provided at each of the above positions.
  • the fretting reinforcing layer may be disposed between the first electrode layer and the first polymer layer, or disposed in the first polymer layer and the intervening electrode layer Alternatively, or between the second polymer layer and the second electrode layer, a fretting reinforcing layer may be provided at each of the above positions.
  • At least one of the two faces constituting the friction interface in the above-mentioned friction generator is provided with a micro/nano structure.
  • FIG. 5 it is a schematic structural view of a fifth embodiment of the friction power generation based sensor of the present invention.
  • the sensor includes a friction generator, and an insulating layer 530, a shielding layer 520, and a protective layer 550 which are disposed on the outside of the friction generator in this order, in comparison with the first embodiment.
  • the protective layer 550 is disposed on the outermost layer of the sensor, and is disposed on the outer side of the shielding layer 520 for sealing and protecting the friction generator, preventing the friction generator from being damaged by external force, and also protecting against dust and moisture. , anti-corrosion effect, to reduce the aging speed of the friction generator.
  • the fretting reinforcing layer 510 is disposed between the two surfaces of the friction generator that do not constitute the friction interface (the fretting reinforcing layer 510 is disposed between the first electrode layer 541 and the first polymer layer 542).
  • the fretting reinforcing layer 510 may also be disposed between the shielding layer 520 and the protective layer 550, wherein the fretting reinforcing layer 510 may be disposed between one side surface of the shielding layer 520 and the protective layer 550. Or disposed between both side surfaces of the shielding layer 520 and the protective layer 550.
  • each layer mentioned in the friction generator is a flexible material, that is, a first electrode layer, a first polymer insulating layer, a second polymer insulating layer, and a second electrode layer.
  • the intermediate film layer and the intervening electrode layer are all flexible materials.
  • At least one of the two surfaces constituting the friction interface in the friction generator may be provided with a convex array.
  • the raised array is preferably a micron- or nano-scale raised structure and can be arranged in a diamond arrangement.
  • the bump array can effectively increase the friction contact area, increase the frictional resistance, and improve the output efficiency of the pressure electrical signal.
  • the outer dimension of the fretting reinforcing layer is equivalent to the outer dimension of the sensor, and generally can be finely adjusted according to the specific position of the setting, and the thickness can be set between 0.1 and 2.0 mm.
  • the fretting reinforcement layer may be of a flat plate structure or a hollow structure in which the array is provided with geometric through holes. Most of the materials of the fretting reinforcement layer are made of plastic or rubber.
  • the friction generator-based sensor provided by the present invention, by adding the fretting reinforcement layer, the perception of the force caused by the micro motion can be more sensitive, and the sensitivity of the sensor can be improved.
  • FIG. 10 is a schematic diagram showing the outline of a human physiological signal acquisition device of the present invention.
  • the shape of the human physiological signal acquisition device of the present invention is preferably a strip suitable for horizontally laying on a bed. structure.
  • the human body physiological signal acquisition device has an outer dimension of 40*820 mm; the first electrode layer is a conductive tape; the first polymer layer is a PDMS film, and has a bump structure on one side of the second polymer layer; the second polymer layer For the aluminized PET, one side of the PET is opposite to the PDMS film as the second polymer layer; the second electrode layer is aluminized PET, wherein the aluminum plated side is used as the second electrode layer; the insulating layer is made of double-sided adhesive PET film, half Surrounded by a friction generator, the aluminized PET is exposed on one side; the micro-motion reinforcement layer is made of PDMS silicone rubber film with a thickness of 0.6 mm, disposed between the first electrode layer and the first polymer layer; the shielding layer is a conductive tape, which is completely surrounded Covering the friction generator, one side is bonded to the double-sided adhesive PET film, and one side is bonded to the aluminized surface of the aluminized PET
  • Test sample an acquisition device without a micro-motion reinforcement layer; a collection device with a micro-motion reinforcement layer; the other structures of the two devices are identical.
  • Test method Two measuring devices were placed on the bed at the same time, and the real person was lying on it for signal test. Experimental results: As shown in Figure 11, before the addition of the fretting reinforcement layer, the test results mainly show the respiratory signal, while the heartbeat signal is very weak. After the micro-motion enhancement layer is added, the heartbeat signal collected by the acquisition device is obvious. The amplitude of the heartbeat signal collected by the acquisition device without the reinforcement layer can be increased by 1.5 to 2 times, and the respiratory signal is substantially unchanged.
  • the friction generating power generation sensor and the human physiological signal collecting device of the invention further add a fretting reinforcing layer on the basis of the prior art, reduce the local deformation of the sensor, accelerate the separation speed between the friction layers, and thereby strengthen the sensor to the heartbeat, etc. Signal output for small movements.
  • the robot haptic sensing system includes a sensor 10, a signal acquisition module 20, a central control module 30, and a power module 40.
  • the sensor 10 can employ the friction generator-based sensor in the various embodiments described above, see the description of the friction generator-based sensor in the above embodiment, and details are not described herein again.
  • the signal acquisition module 20 is connected to the sensor 10, that is, the input end of the signal acquisition module 20 is connected to the output end of the sensor 10 for collecting the pressure electrical signal output by the processing sensor.
  • the signal acquisition module 20 includes an amplification circuit 21, a rectifier circuit 22, a filter circuit 23, and an analog-to-digital conversion circuit 24.
  • the input of the amplifying circuit 21 i.e., the input of the signal acquisition module 20
  • the input end of the rectifier circuit 22 is connected to the output end of the amplifying circuit 21 for performing rectification processing on the amplified pressure electric signal output from the amplifying circuit 21.
  • the input end of the filter circuit 23 is connected to the output terminal of the rectifier circuit 22 for filtering out interference noise in the pressure electrical signal output from the rectifier circuit 22.
  • the input end of the analog-to-digital conversion circuit 24 is connected to the output end of the filter circuit 23 for converting the analog pressure electric signal output from the filter circuit 23 into a digital pressure electric signal and outputting it to the central control module 30.
  • the power input terminals of the amplifying circuit 21, the rectifying circuit 22, the filtering circuit 23, and the analog-to-digital converting circuit 24 (that is, the power input end of the signal collecting module 20) are connected to the output end of the power module 40 (not shown), and further The electrical energy in the power module 40 is used.
  • the central control module 30 is connected to the signal acquisition module 20, that is, the input end of the central control module 30 is connected to the output end of the signal acquisition module 20 for adjusting the system operation according to the pressure electrical signal output by the signal acquisition module 20. Based on the pressure electrical signals output by the signal acquisition module 20, the central control module 30 can adjust the velocity and/or direction angle.
  • the sensor is placed on the robot's robot. When the robot picks up the object, after touching the object, the sensor of the robot is forced to output a pressure electric signal due to the external force of the object to the robot, and the signal acquisition module 20 is outputted. After the acquisition process, the output is output to the central control module 30.
  • the central control module 30 determines after receiving the processed pressure electrical signal.
  • the central control module can judge that the object does not have a continuous external force acting on the robot, that is, the object is not picked up.
  • the central control module further determines the position of the mechanical force according to the pressure electric signal. When the force position is the entire palm, it can be judged that the robot touches the entire object, but the force is small, and it is not enough to pick up the object.
  • the central control module automatically adjusts the picking force of the robot to enable the object to be picked up.
  • the central control module determines the position of the mechanical force according to the pressure electrical signal. When the force position is only a single finger, it can be judged that the robot only touches the object part.
  • the central control module automatically adjusts the angle at which the robot picks up the object, so that the robot can touch the entire object, thereby being able to pick up the object.
  • This is only an example. In actual implementation, it needs to be set according to the specific situation.
  • the power module 40 is connected to the signal acquisition module 20, that is, the input end and the signal of the power module 40.
  • the power input of the acquisition module 20 is connected to supply power to the signal acquisition module 20.
  • the power module 40 can be provided with a detachable energy storage component, such as a battery, a super capacitor, or the like, or an external power source, connected to an external power source through a cable, and the power of the external power source is supplied to the signal acquisition module 20 and
  • the central control module 30 is used. It should be understood that although the central control module 30 is not shown connected to the power module 40 in FIG. 12a, it uses the power in the power module 40 indirectly through the signal acquisition module 20.
  • the robot haptic sensing system may further include: a switch module 50 connected to the signal acquisition module 20 and the power module 40, respectively, that is, the input end of the switch module 50 and the output end of the power module 40.
  • the output of the switch module 50 is connected to the power input end of the signal acquisition module 20 for controlling the power module 40 to supply power to the signal acquisition module 20.
  • the power module 40 can be provided with a detachable energy storage component, such as a battery, a super capacitor, or the like, or an external power source, connected to an external power source through a cable, and the power of the external power source is supplied to the signal acquisition module 20 and
  • the central control module 30 is used. It should be understood that although the central control module 30 is not shown connected to the power module 40 through the switch module 50 in FIG. 12b, it uses the power in the power module 40 indirectly through the signal acquisition module 20.
  • the signal acquisition module 20 includes an amplification circuit 21, a rectifier circuit 22, a filter circuit 23, and an analog-to-digital conversion circuit 24.
  • the input of the amplifying circuit 21 i.e., the input of the signal acquisition module 20
  • the input end of the rectifier circuit 22 is connected to the output end of the amplifying circuit 21 for performing rectification processing on the amplified pressure electric signal output from the amplifying circuit 21.
  • the input end of the filter circuit 23 is connected to the output terminal of the rectifier circuit 22 for filtering out interference noise in the pressure electrical signal output from the rectifier circuit 22.
  • the input end of the analog-to-digital conversion circuit 24 is connected to the output end of the filter circuit 23 for converting the analog pressure electric signal output from the filter circuit 23 into a digital pressure electric signal and outputting it to the central control module 30.
  • the power input terminals of the amplifying circuit 21, the rectifying circuit 22, the filtering circuit 23, and the analog-to-digital converting circuit 24 ie, the power input end of the signal collecting module 20
  • the switch module 50 not shown
  • the electrical energy in the power module 40 is used by the switch module 50.
  • FIG. 14a and 14b are schematic diagrams showing two different arrangement configurations of sensors in the embodiment of the robot haptic sensing system.
  • the sensor is placed entirely on the surface of the palm of the hand.
  • a plurality of sensors are arranged in an array as a sensor array.
  • Figure 15 shows the sensor array arrangement Schematic diagram of the structure. As shown in FIG. 15, a plurality of sensors are arranged in an array to form a sensor array of M rows and N columns, and an output end of the friction generator included in each row of sensors is connected to each other to obtain a first row output terminal M1.
  • the two-line output terminal M2 and the third row output terminal M3 form a line output terminal.
  • the other output end of the friction generator included in each column of sensors is connected to each other to obtain a first column output terminal N1, a second column output terminal N2, and a third column output terminal N3 to form a column output terminal.
  • the line output end and the column output end are connected to the signal acquisition module through the interface, when an external force acts on the sensor, the pressure electric signal is output.
  • the position of the sensor generating the pressure electrical signal is identified by the signal acquisition module based on the output of the pressure electrical signal.
  • the number of sensors included in the sensor array can be determined according to the measurement accuracy requirement and the installation area, which is not limited herein.
  • the sensor can also be placed on the body surface where the robot is in direct contact with the object.
  • the sensor can be placed on the arm of the robot.
  • the external force of the object acting on the arm senses the strength and/or angle to ensure that the object can be transported smoothly without dropping the object.
  • the part that can directly contact the ball such as the foot, the leg, the head, the chest, etc., after the contact with the ball, can flexibly adjust the force point of each part according to the external force of the ball acting on the sensor. And then control the direction of the ball.
  • the above are examples.
  • the specific implementation may be set according to actual conditions, and is not specifically limited herein.
  • the central control module automatically adjusts the strength and/or angle of the haptic sensing system of the robot according to the pressure electric signal, and can realize an operation of automatically picking up an object or the like.
  • the robot tactile sensing system has a simple structure and high sensitivity. When the sensor is set in an array mode, the measurement accuracy of the system can be made higher.
  • the various modules and circuits mentioned in the present invention are circuits implemented by hardware. Although some of the modules and circuits integrate software, the present invention protects the hardware circuits of the functions corresponding to the integrated software, not just the hardware circuits. It is the software itself.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种基于摩擦发电的传感器(10)和一种人体生理信号采集装置,所述传感器(10)内部形成有摩擦界面,在外力作用下,所述摩擦界面可接触分离并相互摩擦,以产生电信号;所述传感器(10)内设置有微动加强层(110,210,310,410,510),微动加强层(110,210,310,410,510)可加快传感器(10)内部的摩擦界面在微小外力作用下的分离速度,以增强传感器(10)对微小外力的电信号输出。

Description

基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统
相关申请的交叉参考
本申请要求于2016年5月6日提交中国专利局、申请号为201610297098.0、名称为“基于摩擦发电的传感器及人体生理信号采集装置”的中国专利申请以及于2016年5月6日提交中国专利局、申请号为201610297099.5、名称为“基于摩擦发电机的触觉传感器及机器人触觉感知系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统。
背景技术
人体生理信号采集装置能全面记录使用者整夜的睡眠信息,包括心率、呼吸率、翻身、离床、深中浅睡眠、入睡时长、睡眠周期等。
现有技术中多采用PVDF压电薄膜作为换能器件,将人体的生理信号转变成电信号,供后续电路模块处理。
另外一种更为先进、更为稳定的换能器件为基于摩擦发电的传感器,该传感器的原理为利用两层发电膜之间的受压接触分离摩擦产生电信号,供后续电路模块处理。
但是基于摩擦发电的传感器存在一个较为突出的问题是在人体生理信号采集时,对心跳信号等相对微小的信号的敏感度较差,而对呼吸等相对强烈的信号输出较大,这就造成心跳等微小信号的输出与呼吸等信号输出的数值不成比例,给后续信号处理带来很大的难题。
另外,机器人已广泛应用于工业生产并逐渐进入了人们的日常生活。传感器技术的发展和应用使机器人日趋智能化,逐渐具备了视觉、触觉和听 觉能力。触觉能够使机器人准确获知物体的形状,大小等情况,从而确定适当的拾取力度,保证被拾取物体不被损坏,也确保机器人自身的安全。
现有技术的机器人大多基于压力传感器、压电元件、接触电极等实现触觉感知,但这些传感器存在结构复杂,灵敏度低,精确度低等不足,对于外力改变时有较大的非线性、输出的信号也较弱。因此,基于此类压力传感器、压电元件、接触电极的机器人在触觉反应方面会存在反应慢、判断失误等情况。
发明内容
本发明的目的在于提供一种基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统,以解决现有技术中的传感器结构复杂、灵敏度低、精确度低等问题。
为实现上述目的,提供一种基于摩擦发电的传感器,所述传感器内部形成有摩擦界面,在外力作用下,所述摩擦界面可接触分离并相互摩擦,以产生电信号;所述传感器内设置有微动加强层,微动加强层可加快传感器内部的摩擦界面在微小外力作用下的分离速度,以增强传感器对微小外力的电信号输出。
另外,还提供一种人体生理信号采集装置,包括上述任一所述的传感器。
本发明的基于摩擦发电的传感器及人体生理信号采集装置的优点在于:通过增设微动加强层,减小了传感器的局部形变,加快了摩擦层间的分离速度,从而加强了传感器对心跳等微小动作的信号输出。
另外,还提供一种机器人触觉感知系统,其特征在于,包括上述任一所述的传感器,还包括:信号采集模块、中央控制模块和电源模块;其中,所述传感器用于感应作用在其上的外力,输出与所述外力对应的压力电信号;所述信号采集模块与所述传感器相连,用于采集处理所述传感器输出的压力电信号;所述中央控制模块与所述信号采集模块相连,用于根据所述信号采集模块输出的压力电信号,调节系统操作;所述电源模块与所述信号采集模块相连,用于为信号采集模块供电。
根据本发明提供的机器人触觉感知系统,摩擦发电机在外力作用下发生形变,输出对应的压力电信号,进一步,机器人触觉感知系统的中央控制模块根据处理后的压力电信号,进行力度和/或方向角度的调节。该机器人触觉感知系统结构简单、灵敏度及精确度高。
附图说明
图1为本发明的基于摩擦发电的传感器的第一实施例的结构示意图;
图2为本发明的基于摩擦发电的传感器的第二实施例的结构示意图;
图3为本发明的基于摩擦发电的传感器的第三实施例的结构示意图;
图4为本发明的基于摩擦发电的传感器的第四实施例的结构示意图;
图5为本发明的基于摩擦发电的传感器的第五实施例的结构示意图;
图6为本发明的基于摩擦发电的传感器中的微动加强层的第一实施例的结构示意图;
图7为本发明的基于摩擦发电的传感器中的微动加强层的第二实施例的结构示意图;
图8为本发明的基于摩擦发电的传感器中的微动加强层的第三实施例的结构示意图;
图9为本发明的基于摩擦发电的传感器中的微动加强层的第四实施例的结构示意图;
图10为本发明的人体生理信号采集装置的外形示意图;
图11为本发明的人体生理信号采集装置的对比测试图;
图12a为本发明提供的机器人触觉感知系统一实施例的功能框图;
图12b为本发明提供的机器人触觉感知系统另一实施例的功能框图;
图13为图12a和图12b中信号采集模块的功能框图;
图14a-图14b为机器人触觉感知系统实施例中触觉传感器设置的结构示意图;
图15为图14b中触觉传感器阵列排布的结构示意图。。
具体实施方式
为了更好的了解本发明的目的、结构及功能,下面结合附图,对本发明做进一步详细的描述。
本发明提供的基于摩擦发电机的传感器包括:至少一个摩擦发电机,其中,摩擦发电机相对的两个表面构成摩擦界面,当外力作用于摩擦发电机上时,摩擦界面相互摩擦,摩擦发电机输出与外力对应的压力电信号。其中,基于摩擦发电机的传感器可以包括一个摩擦发电机,也可以包括多个摩擦发电机,本领域技术人员可以根据需要进行选择,此处不做限定。若基于摩擦发电机的传感器包括多个摩擦发电机时,多个摩擦发电机可以并联和/或串联的方式连接,并且多个并联和/或串联方式连接的摩擦发电机还可通过平铺方式和/或层叠方式设置,从而增加摩擦发电机输出的压力电信号的强度,进而使基于摩擦发电机的传感器的灵敏度更高。
具体来说,如图1所示,其为本发明的基于摩擦发电的传感器的第一实施例的结构示意图。该实施例中,传感器包括摩擦发电机、以及依次层叠包覆设置在摩擦发电机外侧的绝缘层130和屏蔽层120,微动加强层110设置在屏蔽层120的外侧。
进一步,摩擦发电机采用了四层结构的摩擦发电机,包括了依次层叠设置的第一电极层141、第一聚合物层142、第二聚合物层143以及第二电极层144,其中,第一聚合物层142与第二聚合物层143相互摩擦构成摩擦界面,第一电极层141和第二电极层144构成摩擦发电机的输出端。由此,摩擦发电机感应外力作用,在外力作用下发生形变,使摩擦发电机的各层间发生分离接触、互相摩擦,从而使其两个输出端发生感应电荷,在摩擦发电机与外电路连通后,输出交流的压力电信号。此外,应注意的是,除如图1所示的四层结构的摩擦发电机外,还可以根据实际实施情况,采用三层结构、五层结构的摩擦发电机,此处不做具体限定。
由于屏蔽层120大多数情况下采用铜或铝等金属材质,在其与摩擦发电机的第一电极层141和第二电极层144直接接触时,使得摩擦发电机输出的压力电信号会被屏蔽层120屏蔽掉一部分,影响摩擦发电机产生的压力电信 号的输出,故在摩擦发电机和屏蔽层120之间设置有绝缘层130,将摩擦发电机整体包覆住,以防止摩擦发电机的第一电极层141和第二电极层144与屏蔽层120相互接触,减少摩擦发电机输出的交流的压力电信号的损耗。其中,绝缘层可采用高分子聚合物材质,如聚对苯二甲酸乙二醇酯(PET)、聚偏氟乙烯(PVDF)、氟化乙丙稀共聚物(FEP)、可溶性聚四氟乙烯(PFA)、聚三氟氯乙烯(PCTFE)、聚丙烯(PP)、聚乙烯(PE)等。
进一步,屏蔽层120包覆设置在绝缘层130的外侧,用于屏蔽外界电磁干扰以保护摩擦发电机输出的交流的压力电信号。其中,微动加强层110设置在屏蔽层120的外侧,微动加强层110可以减小传感器的局部形变,加快摩擦界面间的分离速度,从而加强传感器对心跳等微小动作的信号输出。
进一步,除摩擦发电机内部的构成摩擦界面的两个表面必须为不固定连接外,其它各层之间均可以为固定连接,并且优选为固定连接,如粘接等。
进一步,微动加强层可采用平板结构,如图6所示。此外,根据需要,微动加强层也可采用阵列开设有几何形状通孔的镂空结构,其中,几何形状可以为长方形或椭圆形等形状,如图7至图9所示。同时,微动加强层的外形尺寸优选与传感器的外形尺寸相当,一般可根据其设置的具体位置进行微调,厚度可设置在0.01-2.0mm之间。应注意的是,以上均为举例说明,实际实施时,可根据具体情况进行设置,此处不做具体限定。通过微动加强层110,可以减小摩擦发电机在感应外力作用时所发生的局部形变,加快各层间的分离速度,从而加强摩擦发电机对微小外力的压力电信号的输出。
进一步,微动加强层的材料可选用塑料或橡胶。其中,塑料类的材料可选择如PE(聚乙烯)、PP(聚丙烯)、PVC(聚氯乙烯)、PET(聚酯)、EPS(发泡聚苯乙烯)、ABS(丙烯腈-丁二烯-苯乙烯共聚物)、PC(聚碳酸酯)、PA(尼龙)等;橡胶类的材料可选择如丁晴橡胶(NBR)、氢化丁晴橡胶(HNBR)、乙丙橡胶(EPM\EPDM)、硅橡胶(Q)、氟橡胶(FPM)、天然橡胶(NR)、丁苯橡胶(SBR)、顺丁橡胶(BR)、异戊橡胶(IR)、氯丁橡胶(CR)、丁基橡胶(IIR)等。
如图2所示,其为本发明的基于摩擦发电的传感器的第二实施例的结构示意图。与第一实施例相比,该实施例中,传感器包括摩擦发电机、以及依 次层叠包覆设置在摩擦发电机外侧的绝缘层230和屏蔽层220,微动加强层210设置在绝缘层230和屏蔽层220之间,应注意的是,微动加强层210可以设置在绝缘层230的一侧表面与屏蔽层220之间,或者设置在绝缘层230的两侧表面与屏蔽层220之间。此外,本实施例中的其余结构及原理与第一实施例中类似,不再详述。
如图3所示,其为本发明的基于摩擦发电的传感器的第三实施例的结构示意图。与第一实施例相比,该实施例中,传感器包括摩擦发电机、以及依次层叠包覆设置在摩擦发电机外侧的绝缘层330和屏蔽层320,微动加强层310设置在摩擦发电机和绝缘层330之间,应注意的是,微动加强层310可以设置在摩擦发电机的一侧表面与绝缘层330之间,或者在摩擦发电机的两侧表面与绝缘层330之间均设置微动加强层310。此外,本实施例中的其余结构及原理与第一实施例中类似,不再详述。
如图4所示,其为本发明的基于摩擦发电的传感器的第四实施例的结构示意图。与第一实施例相比,该实施例中,传感器包括摩擦发电机、以及依次层叠包覆设置在摩擦发电机外侧的绝缘层430和屏蔽层420。
进一步,摩擦发电机采用了四层结构的摩擦发电机,包括了依次层叠设置的第一电极层441、第一聚合物层442、第二聚合物层443以及第二电极层444,其中,第一聚合物层442与第二聚合物层443相互摩擦构成摩擦界面,第一电极层441和第二电极层444构成摩擦发电机的输出端,微动加强层410设置在第一电极层441与第一聚合物层442之间。当然,根据需要微动加强层410也可以设置在第二聚合物层443与第二电极层444之间,或者可以在上述各个位置均设置有微动加强层410,也就是微动加强层只要设置在摩擦发电机内部不构成摩擦界面的两个表面之间即可。此外,本实施例中的其余结构及原理与第一实施例中类似,不再详述。
此外,应注意的是,除上述四层结构的摩擦发电机外,还可以根据实际实施情况,采用三层结构、五层结构的摩擦发电机,微动加强层可以设置在三层结构、五层结构的摩擦发电机内部不构成摩擦界面的两个表面之间。
如摩擦发电机为三层结构的摩擦发电机,该摩擦发电机包括:依次层叠设置的第一电极层、第一聚合物层、第二电极层,其中,第一电极层与第一 聚合物层相互摩擦构成摩擦界面,第一电极层和第二电极层构成摩擦发电机的输出端。此时,微动加强层设置在第一聚合物层和第二电极层之间。
如摩擦发电机为五层结构的摩擦发电机,该摩擦发电机包括:依次层叠设置的第一电极层、第一聚合物层、居间薄膜层、第二聚合物层、第二电极层,其中,第一聚合物层与居间薄膜层、和/或居间薄膜层与第二聚合物层相互摩擦构成摩擦界面。
当第一聚合物层与居间薄膜层相互摩擦构成摩擦界面时,微动加强层可以设置在第一电极层与第一聚合物层之间,或者设置在居间薄膜层与第二聚合物层之间,或者设置在第二聚合物层与第二电极层之间,也可以设置在上述各个位置均设置有微动加强层。
当居间薄膜层与第二聚合物层相互摩擦构成摩擦界面时,微动加强层可以设置在第一电极层与第一聚合物层之间,或者设置在第一聚合物层与居间薄膜层之间,或者设置在第二聚合物层与第二电极层之间,也可以设置在上述各个位置均设置有微动加强层。
又如摩擦发电机为五层结构的摩擦发电机,该摩擦发电机包括:依次层叠设置的第一电极层、第一聚合物层、居间电极层、第二聚合物层、第二电极层,其中,第一聚合物层与居间电极层、和/或居间电极层与第二聚合物层相互摩擦构成摩擦界面。
当第一聚合物层与居间电极层相互摩擦构成摩擦界面时,微动加强层可以设置在第一电极层与第一聚合物层之间,或者设置在居间电极层与第二聚合物层之间,或者设置在第二聚合物层与第二电极层之间,也可以设置在上述各个位置均设置有微动加强层。
当居间电极层与第二聚合物层相互摩擦构成摩擦界面时,微动加强层可以设置在第一电极层与第一聚合物层之间,或者设置在第一聚合物层与居间电极层之间,或者设置在第二聚合物层与第二电极层之间,也可以设置在上述各个位置均设置有微动加强层。
应注意的是,上述提及的摩擦发电机中构成摩擦界面的两个面中的至少一个面上设有微纳结构。
如图5所示,其为本发明的基于摩擦发电的传感器的第五实施例的结构示意图。与第一实施例相比,该实施例中,传感器包括摩擦发电机、以及依次层叠包覆设置在摩擦发电机外侧的绝缘层530、屏蔽层520和保护层550。
进一步,保护层550设置在传感器的最外层,包覆设置在屏蔽层520的外侧,用于密封保护摩擦发电机,防止摩擦发电机在外力作用下受到损伤,同时也起到防尘、防潮、防腐蚀的效果,以降低摩擦发电机的老化速度。
进一步,微动加强层510设置在摩擦发电机内部不构成摩擦界面的两个表面之间(图中为微动加强层510设置在第一电极层541与第一聚合物层542之间)。此外,应注意的是,微动加强层510还可以设置在屏蔽层520与保护层550之间,其中,微动加强层510可以设置在屏蔽层520的一侧表面与保护层550之间,或者设置在屏蔽层520的两侧表面与保护层550之间。
在上述各个实施例中,摩擦发电机中所提及的各层均为柔性材料,即第一电极层、第一高分子聚合物绝缘层、第二高分子聚合物绝缘层、第二电极层、居间薄膜层、居间电极层均为柔性材料。
在上述各个实施例中,摩擦发电机中构成摩擦界面的两个表面中的至少一个面上可以设有凸起阵列。该凸起阵列优选微米级或纳米级的凸起结构,可采用菱形排布的方式进行排布。该凸起阵列能够有效的增加摩擦接触面积,增大摩擦阻力,提高压力电信号的输出效率。
在上述各个实施例中,微动加强层的外形尺寸与传感器的外形尺寸相当,一般可根据其设置的具体位置进行微调,厚度可设置在0.1-2.0mm之间。微动加强层可采用平板结构,或采用阵列开设有几何形状通孔的镂空结构。微动加强层的材料大多选用塑料或橡胶。
以上具体设置均为举例说明,实际实施时,可根据具体情况进行设置,此处不做具体限定。
根据本发明提供的基于摩擦发电机的传感器,通过加设微动加强层,可以对微小动作引起的受力的感知更加灵敏,提高传感器的灵敏度。
如图10所示,其为本发明的人体生理信号采集装置的外形示意图。本发明的人体生理信号采集装置的外形优选为适合于横向铺设在床上的带状 结构。
实施例:
人体生理信号采集装置的外形尺寸为40*820mm;第一电极层为导电胶带;第一聚合物层为PDMS薄膜,相对于第二聚合物层的一侧具有凸点结构;第二聚合物层为镀铝PET,其中PET的一面作为第二聚合物层与PDMS薄膜相对;第二电极层为镀铝PET,其中镀铝的一面作为第二电极层;绝缘层选用双面胶PET膜,半包围覆盖摩擦发电机,镀铝PET一面裸露;微动加强层选用PDMS硅橡胶膜,厚度为0.6mm,设置在第一电极层和第一聚合物层之间;屏蔽层为导电胶带,全包围覆盖摩擦发电机,一面与双面胶PET膜粘接,一面与镀铝PET的镀铝面粘接;第一聚合物层与第二聚合物层之间接触但不固定连接,其他相邻各层之间均采用粘接的方式固定连接。
针对上述实施例的试验,具体试验数据如下:
试验样本:不加设微动加强层的采集装置;加设微动加强层的采集装置;两装置其他结构完全相同。试验方法:将两测量装置同时放置在床上,真人躺在其上进行信号测试试验。实验结果:如图11所示,加设微动加强层前,测试结果主要显示呼吸信号,而心跳信号显示很微弱,加设微动加强层后,该采集装置采集的心跳信号明显,相对于不加设加强层的采集装置采集的心跳信号的幅值可以提高1.5~2倍,呼吸信号基本不变。
本发明的基于摩擦发电的传感器及人体生理信号采集装置在现有技术的基础上,进一步增设微动加强层,减小传感器的局部形变,加快摩擦层间的分离速度,从而加强传感器对心跳等微小动作的信号输出。
图12a为本发明提供的机器人触觉感知系统一实施例的功能框图,如图12a所示,机器人触觉感知系统,包括传感器10、信号采集模块20、中央控制模块30和电源模块40。传感器10可采用上述各个实施例中的基于摩擦发电机的传感器,参见上述实施例中的基于摩擦发电机的传感器的描述,在此不再赘述。
信号采集模块20与传感器10相连,即信号采集模块20的输入端与传感器10的输出端相连,用于采集处理传感器输出的压力电信号。如图13所 示,信号采集模块20包括:放大电路21、整流电路22、滤波电路23和模数转换电路24。放大电路21的输入端(即信号采集模块20的输入端)与传感器10的输出端相连,用于放大传感器10输出的压力电信号。整流电路22的输入端与放大电路21的输出端相连,用于将放大电路21输出的放大后的压力电信号进行整流处理。滤波电路23的输入端与整流电路22的输出端相连,用于滤除整流电路22输出的压力电信号中的干扰杂波。模数转换电路24的输入端与滤波电路23的输出端相连,用于将滤波电路23输出的模拟压力电信号转换为数字压力电信号,输出至中央控制模块30。放大电路21、整流电路22、滤波电路23和模数转换电路24的电源输入端(即信号采集模块20的电源输入端)都与电源模块40的输出端相连(图中未示出),进而使用电源模块40中的电能。
中央控制模块30与信号采集模块20相连,即中央控制模块30的输入端与信号采集模块20的输出端相连,用于根据信号采集模块20输出的压力电信号,调节系统操作。根据信号采集模块20输出的压力电信号,中央控制模块30可以对力度和/或方向角度调节。例如,将传感器设置于机器人的机械手上,当该机械手拾取物体时,碰触到物体后,由于物体给机械手的外力作用,使机械手上的传感器受力,输出压力电信号,经信号采集模块20采集处理后,输出至中央控制模块30。中央控制模块30在接收到处理后的压力电信号后,进行判断。若当该压力电信号没有持续输出,中央控制模块可以判断该物体没有持续外力作用于机械手,即该物体没有被拾起。中央控制模块进一步根据压力电信号,判断机械手受力位置,当受力位置为整个手掌时,可判断出机械手碰触到整个物体,但力度较小,不足以将物体拾取。中央控制模块自动调节机械手拾取力度,使该物体能够被拾取。当中央控制模块根据压力电信号,判断机械手受力位置。当受力位置只是单只手指时,可判断出机械手只是碰触到物体局部,此时,中央控制模块自动调节机械手拾取物体的角度,使机械手能够碰触到整个物体,从而能够拾取物体。此处仅为举例说明,实际实施时,需要根据具体情况进行设置。
电源模块40与信号采集模块20相连,即电源模块40的输入端与信号 采集模块20的电源输入端相连,用于为信号采集模块20供电。该电源模块40可采用可拆卸的储能元件,如蓄电池、超级电容等,或采用外部电源,使用有线供电的方式,通过电缆与外部电源连接,将外部电源的电能提供给信号采集模块20和中央控制模块30使用。应当理解的是,图12a中虽然未示出中央控制模块30与电源模块40相连,但是,其通过信号采集模块20间接使用电源模块40中的电能。
如图12b所示,本发明提供的机器人触觉感知系统还可以进一步包括:开关模块50,其分别与信号采集模块20和电源模块40相连,即开关模块50的输入端与电源模块40的输出端相连,开关模块50的输出端与信号采集模块20的电源输入端相连,用于控制电源模块40为信号采集模块20供电。该电源模块40可采用可拆卸的储能元件,如蓄电池、超级电容等,或采用外部电源,使用有线供电的方式,通过电缆与外部电源连接,将外部电源的电能提供给信号采集模块20和中央控制模块30使用。应当理解的是,图12b中虽然未示出中央控制模块30通过开关模块50与电源模块40相连,但是,其通过信号采集模块20间接使用电源模块40中的电能。
如图13所示,信号采集模块20包括:放大电路21、整流电路22、滤波电路23和模数转换电路24。放大电路21的输入端(即信号采集模块20的输入端)与传感器10的输出端相连,用于放大传感器10输出的压力电信号。整流电路22的输入端与放大电路21的输出端相连,用于将放大电路21输出的放大后的压力电信号进行整流处理。滤波电路23的输入端与整流电路22的输出端相连,用于滤除整流电路22输出的压力电信号中的干扰杂波。模数转换电路24的输入端与滤波电路23的输出端相连,用于将滤波电路23输出的模拟压力电信号转换为数字压力电信号,输出至中央控制模块30。放大电路21、整流电路22、滤波电路23和模数转换电路24的电源输入端(即信号采集模块20的电源输入端)都与开关模块50的输出端相连(图中未示出),进而通过开关模块50使用电源模块40中的电能。
图14a和图14b为机器人触觉感知系统实施例中传感器不同的两种设置结构的示意图。图14a中,将传感器整个设置在机械手掌的表面。图14b中,将多个传感器以阵列形式排列为传感器阵列。图15为传感器阵列排布 的结构示意图。如图15所示,多个传感器以阵列形式排列,形成M行N列的传感器阵列,每行的传感器所包括的摩擦发电机的一个输出端彼此相互连接,得到第一行输出端M1、第二行输出端M2和第三行输出端M3,组成行输出端。每列的传感器所包括的摩擦发电机的另一个输出端彼此相互连接,得到第一列输出端N1、第二列输出端N2和第三列输出端N3,组成列输出端。将行输出端和列输出端通过接口与信号采集模块相连后,当外力作用在传感器上时,输出压力电信号。由信号采集模块根据压力电信号的输出端识别产生压力电信号的传感器的位置。传感器阵列所包括的传感器数量可以根据测量精度要求和设置面积来确定,此处不做限定。
除图14a和图14b所示将传感器设置在机械手掌外,传感器还可以设置在机器人与物体直接接触的身体表面,如还可以将传感器设置在机器人的手臂上,当机器人搬运物体时,可以通过物体对手臂作用的外力感知调节力度和/或角度,以保证能够平稳的搬运物体,不使物体掉落。或还可以将传感器设置在脚部、腿部、头部、胸部、背部等部位,当机器人碰触到如障碍物时,可以灵活的调节方向,以躲避障碍物等情况。或如机器人踢球时,脚部、腿部、头部、胸部等可与球直接接触的部位,在与球接触后,根据球作用于传感器的外力,可以灵活的调整各部位的受力点,进而控制球的走向。以上均为举例说明,具体实施时可根据实际情况进行设置,此处不做具体限定。
根据本发明提供的机器人触觉感知系统,中央控制模块根据压力电信号,自动调节机器人触觉感知系统的力度和/或角度,可以实现自动拾取物体等操作。该机器人触觉感知系统结构简单、灵敏度高。采用阵列方式设置传感器时,可使系统的测量精度更高。
本发明中所提到的各种模块、电路均为由硬件实现的电路,虽然其中某些模块、电路集成了软件,但本发明所要保护的是集成软件对应的功能的硬件电路,而不仅仅是软件本身。
本领域技术人员应该理解,附图或实施例中所示的装置结构仅仅是示意性的,表示逻辑结构。其中作为分离部件显示的模块可能是或者可能不是物理上分开的,作为模块显示的部件可能是或者可能不是物理模块。
以上借助具体实施例对本发明做了进一步描述,但是应该理解的是,这里具体的描述,不应理解为对本发明的实质和范围的限定,本领域内的普通技术人员在阅读本说明书后对上述实施例做出的各种修改,都属于本发明所保护的范围。

Claims (26)

  1. 一种基于摩擦发电的传感器,其特征在于,
    所述传感器内部形成有摩擦界面,在外力作用下,所述摩擦界面可接触分离并相互摩擦,以产生电信号;
    所述传感器内设置有微动加强层,微动加强层可加快传感器内部的摩擦界面在微小外力作用下的分离速度,以增强传感器对微小外力的电信号输出。
  2. 根据权利要求1所述的传感器,其特征在于,微动加强层设置在传感器中的不构成摩擦界面的两个表面之间。
  3. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机;
    摩擦发电机包括依次层叠设置的第一电极层、第一聚合物层、第二电极层,第一电极层与第一聚合物层构成摩擦界面,第一电极层和第二电极层构成摩擦发电机的信号输出端;
    微动加强层设置在第一聚合物层和第二电极层之间。
  4. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机;
    摩擦发电机包括依次层叠设置的第一电极层、第一聚合物层、第二聚合物层、第二电极层,第一聚合物层与第二聚合物层构成摩擦界面,第一电极层和第二电极层构成摩擦发电机的信号输出端;
    微动加强层设置在第一电极层与第一聚合物层之间,和/或设置在第二聚合物层与第二电极层之间。
  5. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机;
    摩擦发电机包括依次层叠设置的第一电极层、第一聚合物层、居间薄膜层、第二聚合物层、第二电极层,第一聚合物层与居间薄膜层、和/或居间薄膜层与第二聚合物层构成摩擦界面,第一电极层和第二电极层构成摩擦发电机的信号输出端;
    微动加强层设置在第一电极层与第一聚合物层之间,和/或设置在第一聚合物层与居间薄膜层之间,和/或设置在居间薄膜层与第二聚合物层之间,和/或设置在第二聚合物层与第二电极层之间。
  6. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机;
    摩擦发电机包括依次层叠设置的第一电极层、第一聚合物层、居间电极层、第二聚合物层、第二电极层,第一聚合物层与居间电极层、和/或居间电极层与第二聚合物层构成摩擦界面,第一电极层、第二电极层和居间电极层构成摩擦发电机的信号输出端;
    微动加强层设置在第一电极层与第一聚合物层之间,和/或设置在第一聚合物层与居间电极层之间,和/或设置在居间电极层与第二聚合物层之间,和/或设置在第二聚合物层与第二电极层之间。
  7. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机和绝缘层,绝缘层包覆设置在摩擦发电机的外侧,微动加强层设置在摩擦发电机与绝缘层之间。
  8. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机、绝缘层和屏蔽层,绝缘层和屏蔽层依次层叠包覆设置在摩擦发电机的外侧,微动加强层设置在绝缘层与屏蔽层之间。
  9. 根据权利要求2所述的传感器,其特征在于,传感器包括摩擦发电机、绝缘层、屏蔽层和保护层,绝缘层、屏蔽层和保护层依次层叠包覆设置在摩擦发电机的外侧,微动加强层设置在屏蔽层与保护层之间。
  10. 根据上述任一权利要求中所述的传感器,其特征在于,微动加 强层为平板结构或为阵列开设有几何形状通孔的镂空结构。
  11. 根据权利要求10所述的传感器,其特征在于,微动加强层上阵列开设的几何形状为长方形或椭圆形。
  12. 根据权利要求10所述的传感器,其特征在于,微动加强层的厚度为0.01-2.0mm。
  13. 根据权利要求10所述的传感器,其特征在于,微动加强层的材料为塑料或橡胶;
    塑料包括:聚乙烯、聚丙烯、聚氯乙烯、聚酯、发泡聚苯乙烯、丙烯腈-丁二烯-苯乙烯共聚物、聚碳酸酯或尼龙;
    橡胶包括:丁晴橡胶、氢化丁晴橡胶、乙丙橡胶、硅橡胶、氟橡胶、天然橡胶、丁苯橡胶、顺丁橡胶、异戊橡胶、氯丁橡胶或丁基橡胶。
  14. 根据权利要求1-13任一项所述的传感器,其特征在于,所述第一电极层、所述第一聚合物层、所述第二聚合物层、所述第二电极层、所述居间薄膜层、所述居间电极层均为柔性材料。
  15. 根据权利要求1-13任一项所述的传感器,其特征在于,构成所述摩擦界面的两个表面中的至少一个面上设有凸起阵列。
  16. 根据权利要求1-13所述的传感器,其特征在于,所述凸起阵列为菱形排布。
  17. 根据权利要求3所述的传感器,其特征在于,多个所述摩擦发电机以并联和/或串联的方式连接,其中,多个所述并联和/或串联方式连接的摩擦发电机通过平铺方式和/或层叠方式设置。
  18. 一种人体生理信号采集装置,其特征在于,包括上述1-17任一权利要求中所述的传感器。
  19. 一种机器人触觉感知系统,其特征在于,包括权利要求1-17任一权利要求中所述的传感器,还包括:信号采集模块、中央控制模块和电源 模块;其中,
    所述传感器用于感应作用在其上的外力,输出与所述外力对应的压力电信号;
    所述信号采集模块与所述传感器相连,用于采集处理所述传感器输出的压力电信号;
    所述中央控制模块与所述信号采集模块相连,用于根据所述信号采集模块输出的压力电信号,调节系统操作;
    所述电源模块与所述信号采集模块相连,用于为信号采集模块供电。
  20. 根据权利要求19所述的机器人触觉感知系统,其特征在于,还包括开关模块;其中,所述开关模块分别与所述信号采集模块和所述电源模块相连,用于控制所述电源模块为所述信号采集模块供电。
  21. 根据权利要求19或20所述的机器人触觉感知系统,其特征在于,所述信号采集模块包括:放大电路、整流电路、滤波电路和模数转换电路,
    所述放大电路的输入端与所述传感器的输出端相连,用于放大所述传感器输出的压力电信号;
    所述整流电路的输入端与所述放大电路的输出端相连,用于将所述放大电路输出的放大后的压力电信号进行整流处理;
    所述滤波电路的输入端与所述整流电路的输出端相连,用于滤除所述整流电路输出的压力电信号中的干扰杂波;
    所述模数转换电路的输入端与所述滤波电路的输出端相连,用于将所述滤波电路输出的模拟压力电信号转换为数字压力电信号。
  22. 根据权利要求19或20所述的机器人触觉感知系统,其特征在于,所述中央控制模块进一步用于:根据所述信号采集模块输出的压力电信号进行力度调节和/或方向角度调节。
  23. 根据权利要求19或20所述的机器人触觉感知系统,其特征在于,所述电源模块为储能元件或通过电缆与外部电源连接的电转换模块。
  24. 根据权利要求19或20所述的机器人触觉感知系统,其特征在于,所述机器人触觉感知系统包括多个所述传感器;多个所述传感器以阵列形式排列,形成M行N列的传感器阵列,每行的所述传感器所包括的摩擦发电机的一个输出端彼此相互连接,组成行输出端;每列的所述传感器所包括的摩擦发电机的另一个输出端彼此相互连接,组成列输出端;用于当外力作用与所述传感器时,输出压力电信号。
  25. 根据权利要求19-24任一项所述的机器人触觉感知系统,其特征在于,所述传感器设置在机器人与物体直接接触的表面。
  26. 根据权利要求25所述的机器人触觉感知系统,其特征在于,所述机器人与物体直接接触的表面为机器人的手、手臂、脚、腿部、头部、胸部、和/或背部。
PCT/CN2016/105528 2016-05-06 2016-11-11 基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统 WO2017190485A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610297098.0 2016-05-06
CN201610297098.0A CN105991063B (zh) 2016-05-06 2016-05-06 基于摩擦发电的传感器及人体生理信号采集装置
CN201610297099.5 2016-05-06
CN201610297099.5A CN105991064B (zh) 2016-05-06 2016-05-06 基于摩擦发电机的触觉传感器及机器人触觉感知系统

Publications (1)

Publication Number Publication Date
WO2017190485A1 true WO2017190485A1 (zh) 2017-11-09

Family

ID=60202619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105528 WO2017190485A1 (zh) 2016-05-06 2016-11-11 基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统

Country Status (1)

Country Link
WO (1) WO2017190485A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726756A (zh) * 2019-11-13 2020-01-24 大连海事大学 基于摩擦纳米发电机的仿生触须传感器
CN111664875A (zh) * 2020-05-27 2020-09-15 江苏大学 一种带表面微织构的变接触面积结构自供能滑觉传感器
CN114887864A (zh) * 2022-03-08 2022-08-12 南京邮电大学 一种摩擦电空气耦合超声换能器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266303A (ja) * 2006-03-28 2007-10-11 Fujifilm Corp 機能性膜含有構造体及び圧電素子
CN203617931U (zh) * 2013-07-19 2014-05-28 纳米新能源(唐山)有限责任公司 一种摩擦发电机及其组成的摩擦发电机组
CN104374498A (zh) * 2013-08-16 2015-02-25 纳米新能源(唐山)有限责任公司 基于摩擦发电的压力传感器及压力传感系统
CN204207726U (zh) * 2014-09-19 2015-03-18 纳米新能源(唐山)有限责任公司 基于摩擦发电机的指尖脉搏检测装置
CN104571551A (zh) * 2013-10-18 2015-04-29 纳米新能源(唐山)有限责任公司 基于摩擦发电机的柔性薄膜键盘及电子产品
CN105991063A (zh) * 2016-05-06 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器及人体生理信号采集装置
CN105991064A (zh) * 2016-05-06 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电机的触觉传感器及机器人触觉感知系统
CN205647295U (zh) * 2016-05-06 2016-10-12 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器及人体生理信号采集装置
CN205647296U (zh) * 2016-05-06 2016-10-12 纳智源科技(唐山)有限责任公司 基于摩擦发电机的触觉传感器及机器人触觉感知系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266303A (ja) * 2006-03-28 2007-10-11 Fujifilm Corp 機能性膜含有構造体及び圧電素子
CN203617931U (zh) * 2013-07-19 2014-05-28 纳米新能源(唐山)有限责任公司 一种摩擦发电机及其组成的摩擦发电机组
CN104374498A (zh) * 2013-08-16 2015-02-25 纳米新能源(唐山)有限责任公司 基于摩擦发电的压力传感器及压力传感系统
CN104571551A (zh) * 2013-10-18 2015-04-29 纳米新能源(唐山)有限责任公司 基于摩擦发电机的柔性薄膜键盘及电子产品
CN204207726U (zh) * 2014-09-19 2015-03-18 纳米新能源(唐山)有限责任公司 基于摩擦发电机的指尖脉搏检测装置
CN105991063A (zh) * 2016-05-06 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器及人体生理信号采集装置
CN105991064A (zh) * 2016-05-06 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电机的触觉传感器及机器人触觉感知系统
CN205647295U (zh) * 2016-05-06 2016-10-12 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器及人体生理信号采集装置
CN205647296U (zh) * 2016-05-06 2016-10-12 纳智源科技(唐山)有限责任公司 基于摩擦发电机的触觉传感器及机器人触觉感知系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110726756A (zh) * 2019-11-13 2020-01-24 大连海事大学 基于摩擦纳米发电机的仿生触须传感器
CN111664875A (zh) * 2020-05-27 2020-09-15 江苏大学 一种带表面微织构的变接触面积结构自供能滑觉传感器
CN111664875B (zh) * 2020-05-27 2022-05-20 江苏大学 一种带表面微织构的变接触面积结构自供能滑觉传感器
CN114887864A (zh) * 2022-03-08 2022-08-12 南京邮电大学 一种摩擦电空气耦合超声换能器
CN114887864B (zh) * 2022-03-08 2024-02-20 南京邮电大学 一种摩擦电空气耦合超声换能器

Similar Documents

Publication Publication Date Title
CN105991064B (zh) 基于摩擦发电机的触觉传感器及机器人触觉感知系统
CN105991063B (zh) 基于摩擦发电的传感器及人体生理信号采集装置
WO2017190485A1 (zh) 基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统
US8421311B2 (en) Flexible piezoelectric tactile sensor
CN108489541B (zh) 一种人工皮肤及其检测压力、温度和湿度的方法
US9971441B2 (en) Touch sensitive system with haptic feedback
CN106525296A (zh) 一种用于触摸检测的电子皮肤
JP2011197991A (ja) センサ装置および表示装置
US20180188872A1 (en) Pressure sensor, haptic feedback device and related devices
WO2015024369A1 (zh) 一种基于皮肤的电信号输出装置和电信号输出方法
JP6601803B2 (ja) タッチセンサおよびブレスレット型デバイス
CN103900741A (zh) 可穿戴式智能测定系统及智能鞋
CN205647296U (zh) 基于摩擦发电机的触觉传感器及机器人触觉感知系统
TWI579756B (zh) 三維輸入模組
US11885695B2 (en) Sensor, stack-type sensor, and electronic device
WO2019024342A1 (zh) 信号检测传感结构及其制作方法、信号检测方法
TW201839578A (zh) 手持式電子裝置、觸控偵測器及其觸控偵測方法
CN112486360B (zh) 热释电传感结构、手势识别装置、显示装置及传感方法
Gruebele et al. A stretchable capacitive sensory skin for exploring cluttered environments
JP6257088B2 (ja) 静電容量式3次元センサ及びその製造方法
Gao et al. Touch-Based Human-Machine Interaction
CN207036311U (zh) 一种信号检测传感结构
US9261418B2 (en) Systems and methods for common mode signal cancellation in press detectors
CN205647295U (zh) 基于摩擦发电的传感器及人体生理信号采集装置
JPWO2018173429A1 (ja) 把持検知センサ

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16901007

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16901007

Country of ref document: EP

Kind code of ref document: A1