WO2015024369A1 - 一种基于皮肤的电信号输出装置和电信号输出方法 - Google Patents

一种基于皮肤的电信号输出装置和电信号输出方法 Download PDF

Info

Publication number
WO2015024369A1
WO2015024369A1 PCT/CN2014/071303 CN2014071303W WO2015024369A1 WO 2015024369 A1 WO2015024369 A1 WO 2015024369A1 CN 2014071303 W CN2014071303 W CN 2014071303W WO 2015024369 A1 WO2015024369 A1 WO 2015024369A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
friction
electrical signal
signal output
electrode
Prior art date
Application number
PCT/CN2014/071303
Other languages
English (en)
French (fr)
Inventor
王中林
杨亚
张虎林
Original Assignee
北京纳米能源与系统研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京纳米能源与系统研究所 filed Critical 北京纳米能源与系统研究所
Publication of WO2015024369A1 publication Critical patent/WO2015024369A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0285Nanoscale sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/164Details of sensor housings or probes; Details of structural supports for sensors the sensor is mounted in or on a conformable substrate or carrier

Definitions

  • the invention relates to an electrical signal output device and an electrical signal output method, and more particularly to a single-electrode electrical signal output device and electrical signal output based on skin construction. method.
  • monitoring devices In the field of medical and health monitoring, it is often necessary to monitor the small movements of the human body, and these monitoring devices must be powered by the power supply. As a result, such monitoring devices are bulky, inconvenient to carry and use, and the large use of batteries also has a great impact on the environment.
  • the present invention firstly provides a skin-based electrical signal output device, comprising: a friction layer, an electrode layer attached to a lower surface of the friction layer, and a resistor, wherein the electrode layer passes through the resistor and the like
  • the potential source is electrically connected; when the device is in operation, the upper surface of the friction layer is disposed face to face with the skin, and the electrical signal output ends are respectively taken out from both ends of the resistor.
  • contact and separation can occur between the friction layer and the skin; or, sliding friction can occur between the friction layer and the skin, and the skin layer is adhered to the lower surface The portion of the friction layer between the friction layers changes.
  • the device is not fixed to the skin or is secured to the surface of the skin by the corners of the device.
  • the material of the friction layer is selected from the group consisting of polymethyl methacrylate, polyvinyl alcohol, polyester, polyisobutylene, polyurethane elastic sponge, polyethylene terephthalate, polyvinyl condensate Aldehyde, polychloroprene, natural rubber, polyacrylonitrile, polybisphenol carbonate, polychloroether, polyvinylidene chloride, polystyrene, polyethylene, polypropylene, polyimide, polyvinyl chloride, Polydimethylsiloxane and polytetrafluoroethylene.
  • a micro/nano structure is provided in whole or in part on the upper surface of the friction layer.
  • the micro/nano structure is selected from the group consisting of nanowires, microwires, nanoparticles, nanorods, microrods, nanotubes, microtubes, nanoflowers, and arrays composed of these structures.
  • the micro/nano structure is a linear, cubic, or quadrangular pyramid-shaped array prepared by photolithography or the like, and each micro-nano structural unit in the array has a size on the order of nanometers to micrometers.
  • the micro-nano structure unit has a size of 10 ⁇ -50 ⁇ .
  • the electrode layer material is selected from the group consisting of a metal, an alloy, an indium tin oxide, an organic conductor, or a doped semiconductor.
  • the metal is gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or selenium; the alloy is two of gold, silver, platinum, aluminum, nickel, copper, titanium, chromium and selenium.
  • the conductive oxide is indium tin oxide; the organic conductor is self-polypyrrole, polyphenylene sulfide, polyphthalocyanine compound, polyaniline and/or polythiophene.
  • the electrode layer is composed of a plurality of discrete electrode units attached to the lower surface of the friction layer, and each of the electrode units is electrically connected to the equipotential source through a resistor.
  • each of the electrode units is a regular or irregular pattern, and each of the electrode units is the same or different in size and shape.
  • the area of the electrode unit and the friction layer bonding portion is greater than 1 mm 2 .
  • the friction layer is composed of a plurality of friction units, and the discrete electrode units are attached to a lower surface of the friction unit.
  • each of the friction units is in a discrete or partial connection to form a pattern, each of the friction units being the same or different.
  • the friction unit and the electrode unit have substantially the same shape and size, and the lower surface of each friction unit corresponds to one of the electrode units.
  • an isolation layer is further included for filling a gap between adjacent ones of said electrode units and/or adjacent ones of said friction units.
  • the barrier layer is a triboelectrically neutral substance.
  • the friction layer and the electrode layer are a hard material or a flexible material.
  • the equipotential source is provided by grounding or by an external compensation circuit.
  • the resistance of the resistor is 1 ⁇ ⁇ - 200 ⁇ ⁇ , and the number of the resistors is 1 or more.
  • an insulating spacer layer is attached to the lower surface of the electrode layer.
  • the insulating isolation layer is an insulating material.
  • the invention also provides a skin-based electrical signal output method, comprising the following steps:
  • step (1) is implemented by the following steps: (1-1) providing a friction layer;
  • the step (1) further comprises:
  • An insulating spacer is attached to the lower surface of the electrode layer.
  • the present invention also provides an electrical signal output device for a touch screen, comprising any of the foregoing electrical signal output devices, wherein the friction layer and the electrode layer are both transparent materials, and are attached to the lower surface of the electrode layer.
  • the upper surface of the touch screen is used to fix the device and the touch screen.
  • the friction layer is polydimethylsiloxane
  • the electrode layer is indium tin oxide ITO.
  • the friction layer and the electrode layer have the same or different thicknesses and are all in the range of 1 ⁇ m to 500 ⁇ m.
  • the electrode layer is composed of discrete electrode units, and a contact area of each of the electrode units with a lower surface of the friction layer is less than 0.1 mm 2 .
  • the present invention also provides an electrical signal output device for a keyboard, comprising any of the foregoing electrical signal output devices, wherein the device is implemented by attaching a lower surface of the electrode layer to an upper surface of the keyboard button The keyboard is fixed.
  • the friction layer and the electrode layer are both transparent.
  • the friction layer is polydimethylsiloxane
  • the electrode layer is indium tin oxide ITO.
  • the friction layer and the electrode layer are sized and shaped to match the size and shape of the button surface to which they are attached.
  • the shape of the friction layer and the electrode layer are the same or similar to the shape of the surface of the button to which they are attached, and the dimensions are the same or slightly smaller.
  • the skin-based electrical signal output device and electrical signal output method of the present invention have the following advantages:
  • the skin-based electrical signal output is realized by a single electrode for the first time, and an electrical signal output device and method with practical value are designed.
  • the electrical signal output can be formed between the electrode layer and the equipotential source by means of the contact-separation or sliding area change of the skin and the polymer material, thereby realizing the collection of electrical signals on the surface of the human body.
  • This technology has broad application prospects. It can not only meet the needs of monitoring the tiny movements of the human body in the medical and health fields, but also collect the mechanical energy generated by the daily activities of the human body, through the contact and separation of the friction layer and the skin or The process of sliding friction to achieve power generation.
  • the electric signal output device and method provided by the invention can not only be safely used in the human body, but also has the characteristics of self-driving, no external power supply, green, small size, convenient use, and can promote the Internet of Things and biosensing, etc. Wide application of technology.
  • FIG. 1 is a schematic structural view of an electrical signal output device of the present invention
  • FIG. 2 is a working principle diagram of an electrical signal output device of the present invention
  • FIG. 3 is a schematic view showing another typical structure of the electrical signal output device of the present invention.
  • FIG. 5 is a schematic diagram showing another typical structure of the electrical signal output device of the present invention.
  • FIG. 6 is another working principle diagram of the electrical signal output device of the present invention.
  • FIG. 7 is a schematic view showing another typical structure of an electrical signal output device of the present invention.
  • FIG. 9 is a physical photograph of an electrical signal output device for a touch screen according to Embodiment 3 of the present invention, and a corresponding electrical signal output spectrum;
  • FIG. 10 is a physical photograph of an electrical signal output device for a keyboard according to Embodiment 4 of the present invention, and a corresponding electrical signal output spectrum.
  • FIG. 1 is a typical structure of a skin-based electrical signal output device according to the present invention, comprising: a friction layer 10, an electrode layer 20 attached to a lower surface of the friction layer 10, and an insulating isolation layer 30 attached to a lower surface of the electrode layer 20. And a resistor 40, wherein the electrode layer 20 is electrically connected to the equipotential source 50 through the resistor 40; when the device is in operation, the upper surface of the friction layer 10 is disposed face to face with the skin 100, and the output end 60 of the electrical signal is respectively from the resistor 40. Both ends are connected.
  • the principle of the present invention, the selection principle of each component, and the material range will be described below in conjunction with the typical structure of FIG. 1, but it is obvious that the content is not limited to the embodiment shown in FIG. 1, but may be used. All the technical solutions disclosed in the present invention.
  • the skin 100 is placed face to face with the upper surface of the friction layer 10, and when the two surfaces are contacted and separated due to the activity of the human body or other reasons, due to the different triboelectric properties of the skin 100 and the friction layer 10, There is a difference in the ability of electrons between the two, and the skin 100 has a strong ability to lose electrons. For example, a slight tangential sliding occurs between the microstructures of the contact surfaces after contact, thereby forming a frictional surface charge, wherein the skin 100 The surface is positively charged and the surface of the friction layer 10 is negatively charged (see Figure 2-a).
  • the triboelectric property of the material referred to in the present invention refers to the ability of a material to lose electrons in the process of friction or contact with other materials, that is, one of two different materials is positively charged when contacted or rubbed, one band Negative electricity indicates that the two materials have different electron abilities, that is, the triboelectric properties of the two materials are different.
  • the polymer nylon is in contact with the aluminum foil, the surface thereof is positively charged, that is, the electron deprivation ability is strong
  • the polymer polytetrafluoroethylene is in contact with the aluminum foil, the surface thereof is negatively charged, that is, the electron power is strong.
  • polymeric materials can be used in the friction layer 10 of the present invention, and have increasingly stronger electron-accepting power in the order of alignment: polymethyl methacrylate, polyvinyl alcohol, polyester, polyisobutylene, polyurethane elastic sponge , polyethylene terephthalate, polyvinyl butyral, polychloroprene, natural rubber, polyacrylonitrile, polybisphenol carbonate, polychloroether, polyvinylidene chloride, polystyrene , polyethylene, polypropylene, polyimide, polyvinyl chloride, polydimethylsiloxane and polytetrafluoroethylene.
  • polymethyl methacrylate polyvinyl alcohol
  • polyester polyisobutylene
  • polyurethane elastic sponge polyethylene terephthalate
  • polyvinyl butyral polychloroprene
  • natural rubber polyacrylonitrile
  • polybisphenol carbonate polychloroether
  • polyvinylidene chloride polystyrene
  • Friction layer 10 for optimum electrical signal output performance.
  • a micro/nano structure in whole or in part on the upper surface of the friction layer 10, that is, the surface in contact with the skin 100, to increase the effective contact area of the friction layer 10 and the skin 100, and to improve the effective contact area.
  • the surface charge density of the nano-nano structure selected from the group consisting of nanowires, microwires, nanoparticles, nanorods, microrods, nanotubes, microtubes, nanoflowers, and arrays of these structures, especially by nanowires, A nano-array composed of nanotubes or nanorods.
  • the array may be a linear, cubic, or quadrangular pyramid-shaped array prepared by photolithography or the like, and the size of each micro-nano structural unit in the array is on the order of nanometers to micrometers, preferably 10 ⁇ -50 ⁇ , more preferably 50 ⁇ -10 ⁇ , more preferably 100 ⁇ -5 ⁇ ,
  • the cell size and shape of a particular pico nanostructure should not limit the scope of the invention.
  • the friction layer 10 is generally a single layer of a thin layer or film having a thickness of between 100 nm and 1 mm, preferably 500 ⁇ ⁇ - 800 ⁇ , more preferably 1 ⁇ - 500 ⁇ .
  • a commercially available film can be used, or it can be produced by a method such as spin coating.
  • the skin 100 of the human body may be insulated when dry and may be a conductor under wet conditions. However, in any state, the triboelectric properties of the non-skin friction layer 10 material are greatly different, so that when the contact and separation between the skin 100 and the friction layer 10 occurs, it is obvious. Signal output.
  • the electrode layer 20 is made of a conductive material, which may be selected from a metal, an indium tin oxide, an organic conductor or a doped semiconductor.
  • the electrode layer 20 may be a flat plate, a sheet or a film, wherein the thickness of the film may be selected from the range of 10 nm-5 mm, preferably 50 nm-lmm, preferably 100 ⁇ -500 ⁇ , preferably 1 ⁇ -500 ⁇ .
  • the electrode layer 20 is similar or identical in shape to the friction layer 10, and preferably its upper surface is completely covered by the friction layer 10, and the thicknesses of the two layers may be the same or different.
  • Common materials used in the field are: metal, including gold, silver, platinum, aluminum, nickel, copper, titanium, chromium or selenium; two kinds of gold, silver, platinum, aluminum, nickel, copper, titanium, chromium and selenium.
  • the electrode layer 20 can be attached to the lower surface of the friction layer 10 by a conventional method such as direct bonding or deposition to form a close contact. Common methods include magnetron sputtering, evaporation, and print printing techniques.
  • the present invention does not limit the friction layer 10 and the electrode layer 20 to be a hard material, and a flexible material may also be selected because the hardness of the material does not significantly affect the output effect of the electrical signal. If the friction surface is required to maintain the plane, it can also be realized by the support of other components. Therefore, those skilled in the art can select the material hardness of the friction layer 10 and the electrode layer 20 according to actual conditions. For signal output devices that need to be attached to the surface of the skin or to the inside of the garment, a flexible material is preferred to increase comfort during use.
  • the electrical connection of the electrode layer 20 to the equipotential source 50 is critical to the proper operation of the sensor of the present invention, which may be provided by ground or by an external compensation circuit.
  • Ground as used in the present invention means connecting to an object capable of providing or receiving a large amount of electric charge.
  • ground refers to earth or conductive substances whose potential is zero at any point, such as a metal casing of a ship, a vehicle or an electronic device.
  • the electrode layer 20 is electrically connected to the equipotential source 50 through the resistor 40, and the output terminals 60 of the electric signal are respectively taken out from both ends of the resistor 40.
  • the resistance of the resistor 40 has a significant effect on the output voltage. If the resistance value is large, the voltage distributed across the resistor 40 increases, and the output voltage signal is also increased accordingly. Generally, the resistance value is 1 ⁇ ⁇ - 200 ⁇ ⁇ , preferably 10 ⁇ ⁇ - 100 ⁇ ⁇ .
  • the number of the resistors 40 can be selected as needed, and may be one as shown in Fig. 1 or two or more.
  • the electrical signal output device provided by the present invention must be in contact with the skin 100 during operation.
  • the contact may be a contact-separation action actively applied by the human body through the skin 100, such as a palm or a finger click; or the human body is active.
  • the resulting contact and separation between the skin 100 and the device friction layer 10, such as placing the electrical signal output device on the inside of the garment or directly on the skin, the friction layer 10 of the device will be passive when the human body is active.
  • Skin 100 comes into contact and separates.
  • the electrical signal output device provided by the present invention works properly, but the manner of attachment between the device and the skin 100 and the skin may vary. If the contact-disengagement action is actively applied, the device and the skin 100 need not be fixed.
  • the human body applies contact and separation actions to the friction layer 10 of the device through the skin 100, and other times
  • the relative position of the two is not required, for example, by mounting the electrical signal output device of the present invention on the surface of a computer keyboard or a key.
  • the electrical signal output device of the present invention can be fixed to the skin 100 such that the friction layer 10 faces the skin 100. Set up so that you can collect the mechanical energy generated by human activities at any time.
  • the device is secured to the surface of the skin 100 by corners, either by direct bonding or by other attachments commonly used in the art.
  • 100 can be the skin of various parts of the human body, or the skin of other animals.
  • the insulating isolation layer 30 is used to isolate the electrode layer 20 from the external environment, which is advantageous for improving the electrical signal output performance of the device. It is generally composed of an insulating material, preferably a material having non-triboelectric properties, such as plexiglass, which is processed and cut by a laser to have a desired shape and size.
  • the thickness of the insulating spacer 30 can be adjusted by itself if strong mechanical strength is required. Supporting the entire device, it is possible to select plates and sheets of slightly larger thickness; if it is only for isolation and does not require hardness, a film-like material can be used.
  • the insulating isolation layer 30 may be a component of the electrical signal output device itself, or may be provided by other devices combined with the electrical signal output device. For example, when the electrical signal output device is attached to the keyboard, the upper surface of the keyboard may By the action of the insulating spacer 30, it is therefore no longer possible to separately provide the insulating spacer 30.
  • 3 is another typical structure of the electrical signal output device of the present invention, comprising: a friction layer 10, an electrode layer 20 attached to the lower surface of the friction layer 10, an insulating isolation layer 30 bonded to the lower surface of the electrode layer 20, and a resistor. 40, wherein the electrode layer 20 is composed of a plurality of discrete electrode units 201 attached to the lower surface of the friction layer 10, each electrode unit 201 is electrically connected to the equipotential source 50 through a resistor 40; The upper surface of the layer 10 is disposed face to face with the skin 100, and the output ends 60 of the electrical signals are respectively taken out from both ends of the resistor 40.
  • the selection principle of each component of the sensor is the same as that described in FIG. 1, and details are not described herein again.
  • the material selection and thickness are the same as those of the electrode layer 20 described above, preferably a film, preferably prepared by deposition on the lower surface of the friction layer 10.
  • Each of the electrode units 201 may be a regular figure or an irregular figure, and may be selected as needed.
  • the rule pattern, especially the center symmetry pattern, is preferred to facilitate the overall layout design, such as a regular polygon such as a triangle, a square, a diamond, a regular hexagon, a regular octagon, or a circle.
  • the size of the bonding portion of the electrode unit 201 and the friction layer 10 and the spacing between the adjacent electrode units 201 can be set by themselves. For the convenience of fabrication, it is preferable that the area of the bonding portion of the electrode unit 201 and the friction layer 10 is greater than 1 mm 2 . With special needs, the area can also be less than 1mm 2 or even smaller.
  • the number of resistors 40 shown in FIG. 3 is only one, but two or more may be used in actual use, or one between each electrode unit 201 and the equipotential source 50 may be connected, that is, the resistor 40 and the electrode unit.
  • the number of 201 is the same.
  • the resistance of each resistor 40 may be the same or different.
  • This embodiment is capable of collecting the mechanical energy generated by the touch action in addition to the contact-separation type operation output electric signal, similarly to the mode shown in FIG.
  • the principle is shown in Figure 4:
  • the skin 100 When the skin 100 is in contact with the friction layer 10, the skin 100 due to the contact friction effect A positive charge is generated, and a portion of the surface of the friction layer 10 corresponding thereto generates an equal amount of negative charge (see FIG. 4-a); when the skin 100 slides in the direction of the arrow on the upper surface of the friction layer 10, The change causes the surface charge of the friction layer 10 corresponding to the electrode unit 201 to be mismatched.
  • the negative charge flows from the electrode unit 201 to the equipotential source 50, thereby having an electrical signal output at the signal output terminal 60 (see Figure 4-b);
  • an equal amount of positive charge is induced on the electrode unit 201 to balance the corresponding friction layer 10
  • the surface charge is lowered, and the action of the previous step a is repeated between the skin 100 and the friction layer 10, that is, an equal amount of surface charge is formed by sliding friction at the contact surfaces of both (see Fig. 4-c).
  • the surface charge on the first electrode unit 201 on the left side and the corresponding friction layer 10 thereof, and the surface charge on the friction layer 10 corresponding to the electrode unit 201 are not slowly disappeared under ambient conditions, and finally recovered to In the initial state without friction, the weak current generated by the recovery process can be shielded as noise and does not have any effect on the normal operation of the sensor. It can be seen from this principle that the premise of outputting an electric signal by sliding friction is: the contact area between the skin 100 and the portion of the friction layer 10 to which the electrode layer 20 is bonded to the lower surface is changed, so as to form an effective charge output. .
  • FIG. 5 is another typical structure of the electrical signal output device of the present invention, comprising: a friction layer 10, an electrode layer 20 attached to the lower surface of the friction layer 10, an insulating isolation layer 30 attached to the lower surface of the electrode layer 20, and a resistor. 40, wherein the friction layer 10 is composed of a plurality of friction units 101, and the electrode layer 20 is composed of a plurality of discrete electrode units 201 attached to the lower surface of the touch unit 101, and each of the electrode units 201 is electrically connected to the equipotential source 50 through the resistor 40.
  • the upper surface of the friction layer 10 is disposed face to face with the skin 100, and the output ends 60 of the electrical signals are respectively taken out from both ends of the resistor 40.
  • the friction unit 101 may be discrete or partially connected to form a certain pattern. Meanwhile, each of the friction units 101 may be the same or different, and those skilled in the art may combine the materials, sizes, and shapes of the friction units 101 according to actual conditions.
  • the electrode unit 201 shown in FIG. 5 has substantially the same shape and size as the friction unit 101, and the lower surface of each friction unit 101 is correspondingly attached to one electrode unit 201, which is only a specific embodiment, and is actually used in the application process. There is no such restriction. Electrode unit 201 is The lower surface of each of the friction units 101 may be provided in one or a plurality of shapes; the shape may be similar to or different from the friction unit 101. As in the embodiment shown in FIG. 3, the number of the resistors 40 may be one or two or more.
  • the working principle of the structural electrical signal output device is as shown in Fig. 6:
  • the skin 100 comes into contact with the friction unit 101, the skin 100 generates a positive charge due to the contact friction effect, and the upper surface of the friction unit 101 produces an equal amount of negative Charge (see Fig. 6-a);
  • the surface charge of the friction unit 101 is mismatched due to the change in the friction area, and the negative charge flows from the electrode unit 201 in order to balance the potential difference thus generated.
  • the equipotential source 50 has an electrical signal output between the output terminals 60 (see Figure 6-b); the skin 100 continues to slide in the direction of the arrow and is completely separated from the first friction unit 101 on the left side, and the corresponding electrode An equal amount of positive charge is induced on the unit 201 to balance the surface charge remaining on the friction unit 101, and the skin 100 and the second friction unit 101 are gradually brought to the second friction unit 101 by sliding friction.
  • the surface is partially negatively charged (see Figure 6-c); after the skin 100 is in full contact with the second friction unit 101, in the second friction unit 101 Surface charge on the surface reaches a maximum (see FIG. 6-d), when the skin 100 continues to slide in the direction of the arrow, the operation is equivalent to repeating a-d ho of the step.
  • the embodiment shown in Fig. 7 is similar to that shown in Fig. 5 except that the spacer 70 is filled in the gap between the adjacent electrode units 201 and the adjacent friction unit 101.
  • the function of the barrier layer 70 is to keep the friction plane flat while increasing its mechanical strength and life. It is best to choose materials with a triboelectric property that is neutral, such as wood and plexiglass.
  • the isolation layer 70 may also be filled between adjacent electrode units 201. That is, the spacer layer 70 may be separately filled between the adjacent rubbing unit 101 or the electrode unit 201, or both of the voids may be simultaneously filled.
  • the present invention also provides a skin-based electrical signal output method, comprising the following steps:
  • the step (1) can be achieved by the following steps:
  • the electrode layer 20 is electrically connected to the equipotential source 50 through the resistor 40.
  • step (1) further includes: after the step (1-3):
  • the insulating spacer 30 is bonded to the lower surface of the electrode layer 20.
  • the electrical signal detecting means in step (3) is a current or voltage detecting means, and the electric signal collecting means is a chargeable element such as a rechargeable battery.
  • the present invention also provides an electrical signal output device for a touch screen, comprising a transparent friction layer 10, a transparent electrode layer 20 attached to the lower surface of the friction layer 10, and a resistor 40.
  • the electrode layer 20 passes through the resistor 40 and the equipotential source. 50 is electrically connected, and the lower surface of the electrode layer 20 is attached to the upper surface of the touch screen to fix the device and the touch screen.
  • the selection of the components of the device is the same as that of the aforementioned electrical signal output devices, and will not be described herein.
  • the friction layer 10 and the electrode layer 20 must be transparent materials.
  • the friction layer 10 is polydimethylsiloxane (PDMS)
  • the electrode layer 20 is indium tin oxide ITO. Since the device needs to be attached to the surface of the touch screen during use, the thickness of the friction layer 10 and the electrode layer 20 should be as thin as possible, preferably 1 ⁇ -500 ⁇ , in consideration of the influence on the transparency and touch sensitivity of the touch screen. Can be different.
  • the electrode layer 20 in the device is constituted by the discrete electrode unit 201, that is, the embodiment shown in Fig. 3 is employed.
  • the electrode unit 201 preferably has a small size to reduce the contact area of the single electrode unit 201 with the lower surface of the friction layer 10, thereby increasing the arrangement of the electrode unit 201 per unit area of the lower surface of the friction layer 10. Quantity. Although the contact area of the lower surface of each electrode unit 10 and the friction layer 201 as small as possible, but considering the cost and processing technology, preferably less than lmm 2, more preferably less than 0.1mm 2. Of course, if As processing techniques continue to increase the cost of preparation of small-sized electrodes, it is preferred to use smaller-sized electrode units.
  • the present invention also provides an electrical signal output device for a keyboard, comprising a friction layer 10, an electrode layer 20 attached to the lower surface of the friction layer 10, and a resistor 40.
  • the electrode layer 20 is electrically connected to the equipotential source 50 through the resistor 40.
  • the lower surface of the electrode layer 20 is attached to the upper surface of the keyboard button to fix the device and the keyboard.
  • the selection of the components of the device is the same as that of the foregoing electrical signal output devices, and will not be described herein.
  • the electrical signal output device for the keyboard prefers the structure shown in FIG.
  • the present embodiment is unique in that the lower surface of the electrode layer 20 is directly attached to the upper surface of the keyboard button for fixation.
  • the friction layer 10 and the electrode layer 20 are transparent materials, more preferably the friction layer 10 is polydimethylsiloxane (PDMS), and the electrode layer 20 is indium tin oxide ITO. Another way in which the information to be displayed on the button is printed directly onto the upper surface of the friction layer 10.
  • the thickness of the friction layer 10 and the electrode layer 20 should be as thin as possible, preferably 1 ⁇ -500 ⁇ , in consideration of the comfort of the keyboard touch and the influence on the printed information on the keyboard keys. ; size and shape of the size and shape of the friction layer 10 and the electrode layer 20 to which it is bonded to the surface of the key matches, the same or similar shape to which it is preferably friction layer 10 and the electrode layer 20 is bonded to the surface of the key, the size Same or slightly smaller.
  • the keyboard in this embodiment may be a keyboard of a computer, or may be a keyboard equipped with other instruments or devices, such as a keyboard, a typewriter keyboard, a telephone keypad, and the like.
  • A1 foil with a length of 10 cmX and a width of 10 cmX and a thickness of 25 ⁇ m was cut as an electrode layer, which was fixed on the separator of the plexiglass, and a layer of polymer polydimethylsiloxane was formed by spin coating on the electrode layer.
  • acts as a friction layer. Connect the A1 foil to a resistor with a copper wire and the other end of the resistor to ground. The copper wire is also connected to a voltmeter. When the polymer layer PDMS is touched by hand, the voltmeter has a corresponding electrical signal output, indicating that mechanical energy can be converted into electrical energy for power generation. When the hand and polymer layer PDMS are separated, an opposite electrical signal can be observed.
  • Example 2 Example 2:
  • a plexiglass 10 cm long and 10 cm thick 1.59 mm thick was cut by laser as an insulating barrier for the device.
  • Sixteen transparent electrode indium tin oxide (ITO) arrays were fabricated on the substrate by magnetron sputtering. The dimensions of the electrodes were 1 cmX long and 1 cm wide. 16 electrode units are connected by 16 copper wires, and connected to one resistor, and the other end of the resistor is grounded. The 16 copper wires were also connected to a voltage test system.
  • a layer of polymer material polyimide was formed on the electrodes to completely cover the entire electrode array.
  • Fig. 8 is a physical photograph of the prepared electrical signal output device. When the surface of the polymer material above the electrode unit is contacted with a finger, an electrical signal can be externally output due to the difference in friction properties of the skin and the polymer layer.
  • the indium tin oxide ITO transparent film was cut by micromachining method to prepare eight electrode units of 0.5 cm long and 0.5 cm thick and 127 ⁇ m thick, and adhered to the surface of the touch screen of the mobile phone with insulating glue, each electrode unit was made of Cu wire.
  • the lead is electrically connected to the equipotential source through a resistor, and a polydimethylsiloxane (PDMS) film is further laminated on the surface of the touch screen to which the electrode unit is attached, and the film can cover all the electrode units and pass through the double-sided adhesive
  • the edge of the PDMS film is fixed to the touch screen, as shown in the photo of Figure 9-a.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Push-Button Switches (AREA)

Abstract

一种利用人体皮肤和摩擦层材料具有不同摩擦电性质而构建出单电极的电信号输出装置和电信号输出方法,其中电信号输出装置包括摩擦层(10)、电阻(40)、贴合于摩擦层下表面的电极层(20),电极层通过电阻与等电位源(50)电连接。能够有效收集人体中所产生的机械能,并将机械能转化为电能储存,同时也能够通过电信号的收集来监测人体的微小活动,在医疗、健康等领域具有广泛的应用,兼具成本低、自驱动和结构简单等特点。

Description

一种基于皮肤的电信号输出装置和电信号输出方法 技术领域 本发明涉及一种电信号输出装置和电信号输出方法, 特别涉及一种 基于皮肤构建的单电极的电信号输出装置和电信号输出方法。
背景技术 现有摩擦电发电机的工作原理是基于两种不同摩擦电材料的相互 接触和分离后能产生表面接触电荷, 然后通过电极将该接触电荷输出。 但是, 所有已经报道的摩擦发电机都是将导电金属在摩擦电薄膜材料表 面进行沉积形成所需的电极层, 才能够实现对外输出电信号。 然而, 这 种方法直接导致器件的制作成本增加。 同时, 我们也很难在一些摩擦材 料上制作电极, 比如皮肤、 空气, 这些限制极大的妨碍了这种摩擦电发 电机的发展。
在日常生活中,人体皮肤表面和很多物体都有接触,比如床、沙发、 手机、 键盘等。 如果可以把摩擦发电机制作在这些物体的表面, 这将获 取巨大的生物机械能, 从而实现对某些电子设备的供电, 具有广泛的应 用前景。
在医疗和健康监测领域, 通常需要对人体的微小动作进行监控, 而 这些监控设备必须在有电源供电的情况下才能正常工作。 由此导致这类 监控设备的体积较大, 携带和使用起来不方便, 同时电池的大量使用也 对环境造成极大影响。
发明内容 为了克服现有摩擦发电机在应用过程中所显现的技术缺陷, 本发明 的目的在于提供一种基于皮肤的电信号输出装置和电信号输出方法。 为 了达到上述目的, 本发明首先提供一种基于皮肤的电信号输出装置, 包 括: 摩擦层、 贴合于所述摩擦层下表面的电极层和电阻, 其中所述电极 层通过所述电阻与等电位源电连接; 所述装置在工作时, 将所述摩擦层 的上表面与所述皮肤面对面设置, 电信号输出端分别从所述电阻的两端 接出。
优选地, 所述摩擦层与所述皮肤之间能够发生接触和分离; 或者, 所述摩擦层和所述皮肤之间能够发生滑动摩擦, 并且所述皮肤与下表面 贴合有所述电极层的那部分所述摩擦层之间的接触面积发生变化。
优选地, 所述装置与所述皮肤之间不固定在一起, 或者, 通过所述 装置的边角固定在所述皮肤的表面。
优选地, 所述摩擦层的材料选自以下物质: 聚甲基丙烯酸甲酯、 聚 乙烯醇、 聚酯、 聚异丁烯、 聚氨酯弹性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇缩丁醛、聚氯丁二烯、天然橡胶、聚丙烯腈、聚双苯酚碳酸酯、 聚氯醚、 聚偏二氯乙烯、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚酰亚胺、 聚氯 乙烯、 聚二甲基硅氧垸和聚四氟乙烯。
优选地, 在所述摩擦层的上表面全部或部分设置微纳结构。
优选地, 所述微纳结构选自纳米线、 微米线、 纳米颗粒、 纳米棒、 微米棒、 纳米管、 微米管、 纳米花, 以及由这些结构组成的阵列。
优选地, 所述微纳结构为通过光刻蚀等方法制备的线状、 立方体、 或者四棱锥形状的阵列, 阵列中每个微纳结构单元的尺寸在纳米到微米 量级。
优选地, 所述微纳结构单元的尺寸为 10ηπι-50μπι。
优选地, 所述电极层材料选自金属、 合金、 铟锡氧化物、 有机物导 体或掺杂的半导体。
优选地, 所述金属为金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒; 所述 合金为金、 银、 铂、 铝、 镍、 铜、 钛、 铬和硒中的 2种以上物质所形成 的合金,所述导电氧化物为氧化铟锡 ΙΤΟ;所述有机物导体为自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 /或聚噻吩。 优选地, 电极层由若干贴合在所述摩擦层下表面的分立的电极单元 构成, 每个所述电极单元均通过电阻与所述等电位源电连接。
优选地, 每个所述电极单元为规则或不规则图形, 并且各所述电极 单元的尺寸和形状相同或不同。
优选地, 所述电极单元与所述摩擦层贴合部分的面积大于 lmm2。 优选地, 所述摩擦层由若干摩擦单元构成, 所述分立的电极单元贴 合在所述摩擦单元的下表面。
优选地, 各所述摩擦单元为分立的或部分连接形成图形排列, 每个 所述摩擦单元相同或不同。
优选地, 所述摩擦单元与所述电极单元的形状和尺寸基本一致, 并 且每个摩擦单元的下表面对应贴合一个所述电极单元。
优选地, 还包括隔离层, 用于填充相邻的所述电极单元和 /或相邻的 所述摩擦单元之间的空隙。
优选地, 所述隔离层为摩擦电中性的物质。
优选地, 所述摩擦层和电极层为硬质材料或柔性材料。
优选地, 所述等电位源通过接地或由外部补偿电路提供。
优选地, 所述电阻的阻值为 1ΜΩ -200ΜΩ, 所述电阻的数量为 1个 或 2个以上。
优选地, 还包括贴合于所述电极层下表面的绝缘隔离层。
优选地, 所述绝缘隔离层为绝缘材料。
本发明还提供一种基于皮肤的电信号输出方法, 包括如下歩骤:
( 1 ) 提供前述任一款电信号输出装置;
(2) 将所述电信号输出装置的摩擦层面向皮肤放置;
(3 ) 将所述电信号输出装置的信号输出端与电信号检测装置或电 信号收集装置连接;
(4) 使所述摩擦层和所述皮肤之间接触并分离; 或者, 使所述摩 擦层和所述皮肤之间发生滑动摩擦, 并且所述皮肤与下表面贴合有所述 电极层的那部分摩擦层之间的接触面积发生变化。
优选地, 歩骤 (1 ) 通过如下歩骤实现: ( 1-1 ) 提供摩擦层;
( 1-2) 在所述摩擦层的下表面贴合电极层;
( 1-3 ) 将所述电极层通过电阻与等电位源电连接;
优选地, 当所述装置中还含有绝缘隔离层时, 歩骤 (1 ) 还包括:
( 1-5) 在所述电极层的下表面贴合绝缘隔离层。
本发明还提供一种用于触摸屏的电信号输出装置, 包括前述任一款 电信号输出装置, 所述摩擦层和电极层均为透明材料, 并且通过所述电 极层的下表面贴合在所述触摸屏的上表面, 实现所述装置与触摸屏的固 定。
优选地,所述摩擦层为聚二甲基硅氧垸,所述电极层为氧化铟锡 ITO。 优选地, 所述摩擦层和电极层的厚度相同或不同, 并且均处于 1μπι-500μπι范围内。
优选地, 所述电极层由分立的电极单元构成, 并且每个所述电极单 元与摩擦层下表面的接触面积小于 0.1mm2
本发明还提供一种用于键盘的电信号输出装置, 包括前述任一种电 信号输出装置, 通过所述电极层的下表面贴合在所述键盘按键的上表面, 已实现所述装置与键盘的固定。
优选地, 所述摩擦层和电极层均为透明的。
优选地,所述摩擦层为聚二甲基硅氧垸,所述电极层为氧化铟锡 ITO。 优选地, 所述摩擦层和电极层的尺寸和形状与其所贴合的按键表面 的尺寸和形状相匹配。
优选地, 所述摩擦层和电极层的形状与其所贴合的按键表面的形状 相同或相似, 尺寸相同或稍小。
与现有技术相比, 本发明基于皮肤的电信号输出装置和电信号输出 方法具有下列优点:
1、 首次通过单电极实现了基于皮肤的电信号输出, 并设计出具有 实用价值的电信号输出装置和方法。 只需借助皮肤和聚合物材料的接触 -分离或滑动面积的改变,即可在电极层和等电位源之间形成电信号输出, 从而在人体表面实现电信号的收集。 2、 该技术具有广泛的应用前景, 不仅可以实现医疗和健康领域中 对人体微小动作进行监控的需求, 还可以用来收集人体日常活动所产生 的机械能, 通过摩擦层和皮肤的接触和分离或滑动摩擦的过程, 来实现 发电。
3、 本发明提供的电信号输出装置和方法, 不仅能够安全的用于人 体, 还具有自驱动的特点, 无需外加电源, 绿色环保、 体积小、 方便使 用, 能够促进物联网和生物传感等技术的广泛应用。
附图说明 通过附图所示,本发明的上述及其它目的、特征和优势将更加清晰。 在全部附图中相同的附图标记指示相同的部分。 并未刻意按实际尺寸等 比例缩放绘制附图, 重点在于显示出本发明的主旨。
图 1为本发明电信号输出装置的典型结构示意图;
图 2为本发明电信号输出装置的一种工作原理图;
图 3为本发明电信号输出装置的另一种典型结构示意图;
图 4为本发明电信号输出装置的另一种工作原理图;
图 5为本发明电信号输出装置的另一种典型结构示意图;
图 6为本发明电信号输出装置的另一种工作原理图;
图 7为本发明电信号输出装置的另一种典型结构示意图;
图 8为本发明实施例 2电信号输出装置的实物照片;
图 9为本发明实施例 3用于触摸屏的电信号输出装置的实物照片, 以及相应的电信号输出谱图;
图 10为本发明实施例 4用于键盘的电信号输出装置的实物照片, 以及相应的电信号输出谱图。
具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案 进行清楚、 完整地描述。 显然, 所描述的实施例仅是本发明一部分实施 例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人 员在没有做出创造性劳动前提下所获得的所有其他实施例, 都属于本发 明保护的范围。
其次, 本发明结合示意图进行详细描述, 在详述本发明实施例时, 为便于说明,所述示意图只是示例,其在此不应限制本发明保护的范围。
图 1 为本发明基于皮肤的电信号输出装置的一种典型结构, 包括: 摩擦层 10、 贴合于摩擦层 10下表面的电极层 20、 贴合于电极层 20下 表面的绝缘隔离层 30和电阻 40, 其中电极层 20通过电阻 40与等电位 源 50电连接; 所述装置在工作时, 将摩擦层 10的上表面与皮肤 100面 对面设置, 电信号的输出端 60分别从电阻 40的两端接出。 为了方便说 明, 以下将结合图 1的典型结构来描述本发明的原理、 各部件的选择原 则以及材料范围, 但是很显然这些内容并不仅仅局限于图 1所示的实施 例, 而是可以用于本发明所公开的所有技术方案。
本发明的发电机工作原理参见图 2进行说明 (仅对二者实际发生接 触的部分表面进行描述)。 在实际工作时, 皮肤 100与摩擦层 10的上表 面呈面对面放置, 当二者由于人体的活动或其他原因发生表面的接触和 分离时, 由于皮肤 100与摩擦层 10的摩擦电性质不同, 二者之间存在 得电子能力的差异, 以皮肤 100失电子能力较强为例, 二者接触后接触 表面的微结构之间会产生微小的切向滑动, 从而形成摩擦产生表面电荷, 其中皮肤 100表面带有正电荷, 而摩擦层 10的表面则带负电荷 (参见 图 2-a)。 当二者分开后, 破坏了在皮肤 100和摩擦层 10之间表面电荷 的平衡, 电子会从电极层 20向等电位源 50流动, 电阻 40上有电流通 过,从其两端接出的输出端 60可以监测到相应的电信号(参见图 2-b)。 当皮肤 100与摩擦层 10完全分离后, 电荷达到平衡没有电子流动 (参 见图 2-c)。 当皮肤 100再次向摩擦层 10表面靠近时, 将导致电子从等 电位源 50向电极层 20流动, 向电阻 40输出相反方向的电流, 从输出 端 60能监测到相应的电信号 (参见图 2-d)。 当皮肤 100与摩擦层 10再 次完全接触后, 由于表面电荷呈平衡状态,并没有电子在外电路中流动, 观察不到电流输出 (参见图 2-a)。
本发明中涉及的材料摩擦电性质是指一种材料在与其他材料发生 摩擦或接触的过程中显示出来的得失电子能力, 即两种不同的材料相接 触或摩擦时一个带正电, 一个带负电, 说明这两种材料的得电子能力不 同,亦即二者的摩擦电性质不同。例如,聚合物尼龙与铝箔接触的时候, 其表面带正电, 即失电子能力较强, 聚合物聚四氟乙烯与铝箔接触的时 候, 其表面带负电, 即得电子能力较强。
以下聚合物材料均可用于本发明的摩擦层 10 中, 并且按照排列的 顺序具有越来越强的得电子能力:聚甲基丙烯酸甲酯、聚乙烯醇、聚酯、 聚异丁烯、聚氨酯弹性海绵、聚对苯二甲酸乙二醇酯、聚乙烯醇缩丁醛、 聚氯丁二烯、 天然橡胶、 聚丙烯腈、 聚双苯酚碳酸酯、 聚氯醚、 聚偏二 氯乙烯、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚酰亚胺、 聚氯乙烯、 聚二甲基 硅氧垸和聚四氟乙烯。 限于篇幅的原因, 并不能对所有可能的材料进行 穷举, 此处仅列出几种具体的聚合物材料从人们参考, 但是显然这些具 体的材料并不能成为本发明保护范围的限制性因素, 因为在发明的启示 下, 本领域的技术人员根据这些材料所具有的摩擦电特性很容易选择其 他类似的材料。
通过实验发现, 当摩擦层 10的材料与皮肤 100之间得电子能力相 差越大时, 摩擦电发电机输出的电信号越强, 所以, 可以根据上面列出 的顺序选择合适的聚合物材料作为摩擦层 10, 以获得最佳的电信号输出 性能。
为了提高电信号输出装置的输出性能,优选在摩擦层 10的上表面, 即与皮肤 100接触的表面, 全部或部分设置微纳结构, 以增加摩擦层 10 和皮肤 100的有效接触面积, 提高二者的表面电荷密度, 该微纳结构选 自纳米线、 微米线、 纳米颗粒、 纳米棒、 微米棒、 纳米管、 微米管、 纳 米花, 以及由这些结构组成的阵列, 特别是由纳米线、 纳米管或纳米棒 组成的纳米阵列。该阵列可以是通过光刻蚀等方法制备的线状、立方体、 或者四棱锥形状的阵列, 阵列中每个微纳结构单元的尺寸在纳米到微米 量级,优选为 10ηπι-50μπι,更优选为 50ηπι-10μπι,更优选为 100ηπι-5μπι, 具体微微纳结构的单元尺寸、 形状不应该限制本发明的范围。
摩擦层 10—般为单层的薄层或薄膜, 厚度在 100nm-lmm之间, 优 选 500ηπι-800μπι, 更优选 1μπι-500μπι。可以使用市售的薄膜, 也可以通 过旋涂等方法制备。
人体的皮肤 100在干燥时可能呈绝缘状态, 在潮湿的条件下可能为 导体。 但是, 无论在任何状态下, 与非皮肤的摩擦层 10 材料相比, 其 摩擦电特性都会具有较大差异, 因此当皮肤 100与摩擦层 10之间发生 接触和分离的动作时, 都会产生明显的信号输出。
电极层 20 由导电材料构成, 所述的导电材料可选自金属、 铟锡氧 化物、 有机物导体或掺杂的半导体, 电极层 20 可以为平板、 薄片或薄 膜, 其中薄膜厚度的可选范围为 10 nm-5 mm, 优选为 50nm-lmm, 优选 为 100ηπι-500μπι,优选为 1μπι-500μπι。 电极层 20与摩擦层 10的形状相 近或相同, 最好其上表面完全被摩擦层 10所覆盖, 二者的厚度可以相 同或不同。本领域常用的材料为: 金属, 包括金、 银、铂、铝、镍、铜、 钛、 铬或硒; 由金、 银、 铂、 铝、 镍、 铜、 钛、 铬和硒中的 2种以上物 质所形成的合金; 导电氧化物, 例如氧化铟锡 ΙΤΟ; 有机物导体一般为 导电高分子, 包括自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚苯胺和 / 或聚噻吩。 电极层 20 可通过直接贴合或沉积等常规方式贴合在摩擦层 10的下表面, 以形成紧密接触。 常用的方法包括磁控溅射、 蒸镀和印刷 打印技术。
本发明并不限定摩擦层 10和电极层 20必须是硬质材料, 也可以选 择柔性材料, 因为材料的硬度对电信号的输出效果并没有明显影响。 如 需摩擦面维持平面, 还可以通过其它部件的支撑来实现。 因此, 本领域 的技术人员可以根据实际情况来选择摩擦层 10和电极层 20的材料硬度。 对于需要固定在皮肤表面或者衣服内里上的信号输出装置, 则优选柔性 材料, 以提高使用时的舒适度。
电极层 20与等电位源 50形成电连接是本发明传感器正常工作的关 键, 该等电位源 50 可以通过接地提供, 也可以由外部的补偿电路来提 供。 本发明中所称的 "接地"是指连接到能提供或接受大量电荷的物体 上,其中的 "地"是指任何一点的电位按惯例取为零的大地或导电物质, 例如舰船、 运载工具或电子设备的金属外壳等。 所述的电连接通过电阻
40来实现, 即电极层 20通过电阻 40与等电位源 50实现电连接, 电信 号的输出端 60分别从电阻 40的两端接出。 电阻 40的阻值对输出电压 具有明显的影响,如果电阻值较大,则分配在电阻 40上的电压就增大, 可输出的电压信号也相应增强。 一般选择其电阻值为 1ΜΩ-200ΜΩ, 优 选 10ΜΩ-100ΜΩ。 电阻 40的数量可以根据需要进行选择, 既可以如图 1所示的 1个, 也可以使用 2个以上。
本发明提供的电信号输出装置在工作时必须与皮肤 100接触, 这种 接触可以是人体通过皮肤 100主动施加的接触 -分离动作,例如用手掌或 手指的点按; 也可以是人体在活动时导致的皮肤 100 与装置摩擦层 10 之间被动的接触和分离, 例如将电信号输出装置设置在衣服的内里上或 直接固定在皮肤上, 当人体活动时装置的摩擦层 10 就会被动的与皮肤 100发生接触和分离。 对于这两种情况, 本发明提供的电信号输出装置 均能正常工作, 只是装置与皮肤 100与皮肤之间的固定方式可能有所不 同。如果是主动施加接触-分离动作的, 装置与皮肤 100之间可以无需固 定, 当需要有电信号输出时, 人体通过皮肤 100向装置的摩擦层 10施 加接触和分离动作即可, 而其他时候对二者的相对位置则没有要求, 例 如在电脑键盘或琴键的表面安装本发明的电信号输出装置就可以实现 这种目的。 而对于将人体各种活动所产生的机械能转换为电信号这种被 动式电信号输出方式而言, 则可以将本发明的电信号输出装置固定在皮 肤 100上, 使摩擦层 10与皮肤 100呈面对面设置, 这样即可随时收集 人体活动所产生的机械能。 优选装置通过边角固定在皮肤 100 的表面, 固定方式可以为直接粘接或用本领域常用的其他连接件固定。 而皮肤
100既可以是人体各个部位的皮肤, 也可以是其他动物的皮肤。
绝缘隔离层 30用于将电极层 20与外界环境隔离, 有利于提高装置 的电信号输出性能。 一般由绝缘材料组成, 最好是具有非摩擦电特性的 材料, 例如有机玻璃, 通过激光进行加工和切割使其具有所需的形状和 尺寸。 绝缘隔离层 30 的厚度可以自行调整, 如果需要较强的机械强度 对整个装置进行支撑, 可以选择厚度稍大的板材、 片材; 如果仅仅起隔 离作用, 而对硬度没有要求, 则可以使用薄膜状材料。 绝缘隔离层 30 可以是电信号输出装置本身的一个组成部件, 也可以由与电信号输出装 置结合的其他设备提供, 例如将电信号输出装置贴合在键盘上时, 键盘 的上表面即可起到绝缘隔离层 30 的作用, 因此可以不再单独另设绝缘 隔离层 30。
图 3是本发明电信号输出装置的另一种典型结构,包括:摩擦层 10、 贴合于摩擦层 10下表面的电极层 20、贴合于电极层 20下表面的绝缘隔 离层 30和电阻 40, 其中电极层 20由若干贴合在摩擦层 10下表面的分 立的电极单元 201构成, 每个电极单元 201均通过电阻 40与等电位源 50电连接; 所述装置在工作时, 将摩擦层 10的上表面与皮肤 100面对 面设置, 电信号的输出端 60分别从电阻 40的两端接出。 该传感器各部 件的选择原则均与图 1所述的方式相同, 此处不再赘述。
对于电极单元 201, 其材料的选择和厚度与前述的电极层 20相同, 优选为薄膜, 最好通过沉积的方式在摩擦层 10 的下表面制备。 每个电 极单元 201可以是规则图形, 也可以是不规则图形, 具体可根据需要进 行选择。 优选规则图形, 特别是中心对称图形, 以利于整体布图设计, 例如三角形、 正方形、 菱形、 正六边形、 正八边形等规则多边形, 也可 以是圆形。 电极单元 201与摩擦层 10贴合部分的尺寸和相邻电极单元 201之间的间距均可自行设定, 为方便制作, 优选电极单元 201与摩擦 层 10贴合部分的面积大于 lmm2, 如果有特殊需要, 该面积也可以小于 lmm2, 甚至更小。
图 3中示出的电阻 40数目仅有 1个, 但在实际使用时可以使用 2 个以上, 也可以在每个电极单元 201与等电位源 50之间都连接一个, 即电阻 40与电极单元 201的数目相同。 每个电阻 40的阻值可以相同, 也可以不同。
本实施方式除了与图 1所示的方式类似,能够收集接触 -分离式的动 作输出电信号之外, 还能够收集触摸动作所产生的机械能。 其原理如图 4所示: 当皮肤 100与摩擦层 10接触后, 由于接触摩擦效应, 皮肤 100 产生正电荷, 而摩擦层 10 与之相应的部分表面产生等量的负电荷 (参 见图 4-a); 当皮肤 100在摩擦层 10的上表面沿箭头方向滑动时, 由于 二者接触面的变化而导致电极单元 201所对应的摩擦层 10表面电荷发 生失配, 为了平衡由此产生的电势差, 负电荷由电极单元 201流向等电 位源 50, 从而在信号输出端 60有电信号输出 (参见图 4-b); 皮肤 100 继续沿箭头方向滑动并完全与左侧第一个电极单元 201分离后, 该电极 单元 201上感应出等量的正电荷, 以平衡所对应的摩擦层 10上留下的 表面电荷,而皮肤 100与摩擦层 10之间则又重复之前歩骤 a的动作, 即 在二者的接触表面通过滑动摩擦形成等量的表面电荷 (参见图 4-c)。 对 于左侧第一个电极单元 201及其所对应的摩擦层 10上的表面电荷、 以 及没有电极单元 201对应的摩擦层 10上的表面电荷, 在环境条件下均 会慢慢消失, 最终恢复到没有摩擦的初始状态, 该恢复过程产生的微弱 电流可以作为噪音予以屏蔽, 对传感器的正常工作不会造成任何影响。 通过该原理可以看出, 通过滑动摩擦来输出电信号的前提是: 皮肤 100 与下表面贴合有电极层 20的那部分摩擦层 10之间的接触面积发生变化, 这样才能形成有效的电荷输出。
图 5是本发明电信号输出装置的另一种典型结构,包括:摩擦层 10、 贴合于摩擦层 10下表面的电极层 20、贴合于电极层 20下表面的绝缘隔 离层 30和电阻 40, 其中摩擦层 10 由若干摩擦单元 101构成, 电极层 20由若干贴合在触摸单元 101下表面的分立的电极单元 201构成,每个 电极单元 201均通过电阻 40与等电位源 50电连接;所述装置在工作时, 将摩擦层 10的上表面与皮肤 100面对面设置, 电信号的输出端 60分别 从电阻 40的两端接出。
其中, 摩擦单元 101可以是分立的, 也可以是部分连接形成一定图 形排列的。 同时, 每个摩擦单元 101可以相同也可以不同, 本领域的技 术人员可以根据实际情况对摩擦单元 101进行材料、尺寸和形状的组合。
图 5所示的电极单元 201与摩擦单元 101的形状和尺寸基本一致, 并且每个摩擦单元 101下表面对应贴合一个电极单元 201, 这只是一种 具体的实施方式, 实际在应用过程中并没有这种限制。 电极单元 201在 每个摩擦单元 101的下表面既可以设置 1个, 也可以设置多个; 其形状 既可以和摩擦单元 101类似, 也可以完全不同。 与图 3所示的实施方式 相同, 电阻 40可以是 1个也可以是 2个以上。
这种结构电信号输出装置的工作原理如图 6所示: 当皮肤 100与摩 擦单元 101接触后, 由于接触摩擦效应, 皮肤 100产生正电荷, 而摩擦 单元 101的上表面则产生等量的负电荷 (参见图 6-a); 当皮肤 100沿箭 头方向滑动时, 由于摩擦面积的变化而导致摩擦单元 101的表面电荷发 生失配, 为了平衡由此产生的电势差, 负电荷由电极单元 201流向等电 位源 50, 从而在输出端 60之间有电信号输出 (参见图 6-b); 皮肤 100 继续沿箭头方向滑动并与左侧第一个摩擦单元 101完全分离后, 与之相 应的电极单元 201上感应出等量的正电荷, 以平衡摩擦单元 101上留下 的表面电荷, 而皮肤 100与第二个摩擦单元 101之间则通过滑动摩擦又 逐渐使第二个摩擦单元 101 的上表面带上部分负电荷, (参见图 6-c); 当皮肤 100与第二个摩擦单元 101完全接触后, 在第二个摩擦单元 101 的上表面形成的表面电荷达到最多 (参见图 6-d), 当皮肤 100继续沿箭 头方向滑动时, 则相当于重复歩骤 a-d的动作。
图 7所示的实施方式与图 5所示的类似, 区别仅在于在相邻的电极 单元 201之间和相邻的摩擦单元 101之间的空隙处都填充了隔离层 70。 该隔离层 70 的作用是使摩擦平面保持平整, 同时增加其机械强度和寿 命。 最好选择摩擦电特性呈中性的材料制备, 例如木材和有机玻璃。 对 于图 2所示的实施方式中, 也可以在相邻的电极单元 201之间填充隔离 层 70。 亦即, 隔离层 70即可单独填充在相邻的摩擦单元 101或电极单 元 201之间, 也可以将这两种空隙同时填充。
为了实现本发明的目的, 本发明还提供一种基于皮肤的电信号输出 方法, 包括如下歩骤:
( 1 ) 提供本发明前述任一款电信号输出装置;
(2) 将所述电信号输出装置的摩擦层 10面向皮肤 100放置;
(3 )将所述电信号输出装置的信号输出端 60与电信号检测装置或 电信号收集装置连接; (4)使摩擦层 10和皮肤 100之间接触并分离; 或者, 使摩擦层 10 和皮肤 100之间发生滑动摩擦,并且皮肤 100与下表面贴合有电极层 20 的那部分摩擦层 10之间的接触面积发生变化。
其中歩骤 (1 ) 可以通过如下歩骤实现:
( 1-1 ) 提供摩擦层 10;
( 1-2) 在摩擦层 10的下表面贴合电极层 20;
( 1-3 ) 将电极层 20通过电阻 40与等电位源 50电连接。
当电信号输出装置中还包含绝缘隔离层时, 上述的歩骤 (1 ) 在歩 骤 (1-3 ) 之后还包括:
( 1-4) 在电极层 20的下表面贴合绝缘隔离层 30。
歩骤 (3 ) 中的电信号检测装置为电流或电压检测装置, 电信号收 集装置为可充电元件, 例如充电电池。
本发明还提供一种用于触摸屏的电信号输出装置, 包括透明的摩擦 层 10、 贴合于摩擦层 10下表面的透明的电极层 20和电阻 40, 电极层 20通过电阻 40与等电位源 50电连接, 电极层 20的下表面贴合在触摸 屏的上表面, 以实现该装置与触摸屏的固定。 该装置各组成部件的选择 与前述的各电信号输出装置相同, 在此不再赘述。
本实施方式的特殊之处在于摩擦层 10和电极层 20必须为透明材料, 优选摩擦层 10为聚二甲基硅氧垸 (PDMS),电极层 20为氧化铟锡 ITO。 因为该装置在使用时需要附着于触摸屏的表面, 考虑到对触摸屏透明度 和触摸敏感度的影响, 摩擦层 10和电极层 20的厚度要尽量薄一些, 优 选为 1μπι-500μπι, 二者可以相同也可以不同。
因为皮肤 100在触摸屏表面不仅有点按的动作, 还有滑动的动作, 因此优选该装置中的电极层 20由分立的电极单元 201构成,即采用图 3 所示的实施方式。 而且为了提高电流输出密度, 电极单元 201最好具有 较小的尺寸,以减少单个电极单元 201与摩擦层 10下表面的接触面积, 从而增加摩擦层 10下表面单位面积的电极单元 201 的排布数量。 虽然 每个电极单元 201与摩擦层 10下表面的接触面积越小越好, 但是考虑 到加工技术及成本, 优选小于 lmm2, 更优选小于 0.1mm2。 当然, 如果 加工技术不断进歩使得小尺寸电极的制备成本降低, 则优选使用尺寸更 小的电极单元。
本发明还提供一种用于键盘的电信号输出装置, 包括摩擦层 10、贴 合于摩擦层 10下表面的电极层 20和电阻 40, 电极层 20通过电阻 40与 等电位源 50电连接, 电极层 20的下表面贴合在键盘按键的上表面, 以 实现该装置与键盘的固定。 该装置各组成部件的选择与前述的各电信号 输出装置相同, 在此不再赘述。
由于手指在键盘按键上的主要活动是接触和分离式的点按动作, 因 此用于键盘的电信号输出装置首选图 1所示的结构。 本实施方式的特殊 之处在于直接将电极层 20的下表面贴合在键盘按键的上表面进行固定。 如果需要透过按键上的印刷信息, 优选摩擦层 10和电极层 20为透明材 料, 更优选摩擦层 10为聚二甲基硅氧垸(PDMS), 电极层 20为氧化铟 锡 ITO。 另一种可以使用的方式是, 将按键上需要显示的信息直接印刷 到摩擦层 10 的上表面。 因为该装置在使用时需要附着于键盘按键的表 面, 考虑到键盘触摸的舒适度和对键盘按键上印刷信息的影响, 摩擦层 10和电极层 20的厚度要尽量薄一些, 优选为 1μπι-500μπι; 摩擦层 10 和电极层 20的尺寸和形状要与其所贴合的按键表面的尺寸和形状匹配, 优选摩擦层 10和电极层 20的形状与其所贴合的按键表面的形状相同或 相似, 尺寸相同或稍小。
本实施方式中的键盘可以是计算机的键盘, 也可以是其他仪器或设 备所配备的键盘, 例如琴键、 打字机键盘、 电话键盘等等。
实施例 1 :
切割一个长 10 cmX宽 10 cmX厚 25 μπι的 A1箔作为电极层, 将其 固定在有机玻璃的隔离层上, 在电极层的上面通过旋涂的方法制作一层 聚合物聚二甲基硅氧垸(PDMS)作为摩擦层。 用铜导线将 A1箔和一个 电阻相连接, 电阻的另外一端接地。 铜线也和一个电压表相连接, 当用 手触摸聚合物层 PDMS时候, 电压表有相应的电信号输出, 说明能够将 机械能转化为电能进行发电。 当手和聚合物层 PDMS分离的时候, 有相 反的电信号可以被观察到。 实施例 2:
利用激光切割一个长 10 cmX宽 10 cmX厚 1.59 mm的有机玻璃作 为器件的绝缘隔离层。 利用磁控溅射的方法, 在基底上制作 16 个透明 的电极氧化铟锡 (ITO) 阵列, 电极的尺寸为长 1 cmX宽 1 cm。 用 16 根铜导线分别连接 16个电极单元, 并和一个电阻相连接, 电阻的另外 一端接地。 16根铜导线也和电压测试系统相连接, 在电极的上面制作一 层聚合物材料聚酰亚胺, 使其完全盖住整个电极阵列, 图 8为所制备的 电信号输出装置的实物照片。 当用手指接触电极单元上面的聚合物材料 表面时, 由于皮肤和聚合物层摩擦性质的不同,并可以对外输出电信号。
实施例 3
利用微加工的方法将氧化铟锡 ITO透明薄膜进行切割,制备 8个长 0.5cmX宽 0.5cmX厚 127μπι的电极单元, 并用绝缘胶将其贴合于手机 触摸屏的表面, 每个电极单元由 Cu导线引出通过电阻与等电位源电连 接,在贴合有电极单元的触摸屏表面再平铺一层聚二甲基硅氧垸(PDMS) 薄膜, 该薄膜能够覆盖所有的电极单元, 并通过双面胶将该 PDMS薄膜 的边缘与触摸屏固定, 具体见图 9-a的照片。
通过图 9-a可以看出, 将电信号输出装置贴合在手机屏幕上之后, 对于屏幕的透明度没有影响, 实验也证明手机对各种手势的响应灵敏度 也完全正常, 说明将本发明的电信号输出装置用在触摸屏上并不影响触 摸屏的正常工作。 当手指在触摸屏上做各种点按、 滑动的动作时, 从电 阻两端接出的电压和电流检测装置显示有电信号输出, 参见图 9-b。 如 果将该电信号收集, 即可实现发电功能。
实施例 4
制备多个 lcm X lcm 的 ITO 电极, 并将其与形状和尺寸相同的 PDMS薄膜正对面粘合在一起, 从每个 ITO电极的表面引出铜导线, 分 别通过电阻与等电位源电连接, 从而形成多个所需的电信号输出装置。 将组装好的电信号输出装置一对一固定在键盘按键的上表面, 使 ITO电 极层与键盘按键的上表面贴合, 从电阻的两端引出电信号监测装置, 具 体参见图 10-a的照片。 当用手指敲击键盘时, 电信号监测装置显示有脉冲式的电信号产生, 具体参见图 10-b。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形 式上的限制。 任何熟悉本领域的技术人员, 在不脱离本发明技术方案范 围情况下, 都可利用上述揭示的方法和技术内容对本发明技术方案作出 许多可能的变动和修饰, 或修改为等同变化的等效实施例。 因此, 凡是 未脱离本发明技术方案的内容, 依据本发明的技术实质对以上实施例所 做的任何简单修改、 等同变化及修饰, 均仍属于本发明技术方案保护的 范围内。

Claims

权 利 要 求
1、 一种基于皮肤的电信号输出装置, 包括: 摩擦层、 电阻、 贴合 于所述摩擦层下表面的电极层, 其中所述电极层通过所述电阻与等电位 源电连接; 所述电信号输出装置在工作时, 将所述摩擦层的上表面与所 述皮肤面对面设置, 电信号输出端分别从所述电阻的两端接出。
2、 如权利要求 1 所述的装置, 其特征在于, 所述摩擦层与所述皮 肤之间能够发生接触和分离; 或者, 所述摩擦层和所述皮肤之间能够发 生滑动摩擦, 并且所述皮肤与下表面贴合有所述电极层的那部分所述摩 擦层之间的接触面积发生变化。
3、 如权利要求 1或 2所述的装置, 其特征在于, 所述装置与所述 皮肤之间不固定在一起, 或者, 通过所述装置的边角固定在所述皮肤的 表面。
4、 如权利要求 1-3任一项所述的装置, 其特征在于, 所述摩擦层的 材料选自以下物质: 聚甲基丙烯酸甲酯、 聚乙烯醇、 聚酯、 聚异丁烯、 聚氨酯弹性海绵、 聚对苯二甲酸乙二醇酯、 聚乙烯醇缩丁醛、 聚氯丁二 烯、 天然橡胶、 聚丙烯腈、 聚双苯酚碳酸酯、 聚氯醚、 聚偏二氯乙烯、 聚苯乙烯、 聚乙烯、 聚丙烯、 聚酰亚胺、 聚氯乙烯、 聚二甲基硅氧垸和 聚四氟乙烯。
5、 如权利要求 1-4任一项所述的装置, 其特征在于, 在所述摩擦层 的上表面全部或部分设置微纳结构。
6、 如权利要求 5 所述的装置, 其特征在于, 所述微纳结构选自纳 米线、微米线、纳米颗粒、纳米棒、微米棒、纳米管、微米管、纳米花, 以及由这些结构组成的阵列。
7、 如权利要求 5 所述的装置, 其特征在于, 所述微纳结构为通过 光刻蚀方法制备的线状、 立方体、 或者四棱锥形状的阵列, 阵列中每个 微纳结构单元的尺寸在纳米到微米量级。
8、 如权利要求 7 所述的装置, 其特征在于, 所述微纳结构单元的 尺寸为 10ηπι-50μπι。
9、 如权利要求 1-8任一项所述的装置, 其特征在于, 所述电极层材 料选自金属、 合金、 铟锡氧化物、 有机物导体或掺杂的半导体。
10、 如权利要求 9 所述的装置, 其特征在于, 所述金属为金、 银、 铂、 铝、 镍、 铜、 钛、 铬或硒; 所述合金为金、 银、 铂、 铝、 镍、 铜、 钛、 铬和硒中的 2种以上物质所形成的合金, 所述导电氧化物为氧化铟 锡 ITO; 所述有机物导体为自聚吡咯、 聚苯硫醚、 聚酞菁类化合物、 聚 苯胺和 /或聚噻吩。
11、 如权利要求 1-10任一项所述的装置, 其特征在于, 所述电极层 由若干贴合在所述摩擦层下表面的分立的电极单元构成, 每个所述电极 单元均通过电阻与所述等电位源电连接。
12、 如权利要求 11 所述的装置, 其特征在于, 每个所述电极单元 为规则或不规则图形, 并且各所述电极单元的尺寸和形状相同或不同。
13、 如权利要求 12所述的装置, 其特征在于, 所述电极单元与所 述摩擦层贴合部分的面积大于 lmm2
14、 如权利要求 11-13任一项所述的装置, 其特征在于, 所述摩擦 层由若干摩擦单元构成, 所述分立的电极单元贴合在所述摩擦单元的下 表面。
15、 如权利要求 14所述的装置, 其特征在于, 各所述摩擦单元为 分立的或部分连接形成图形排列, 每个所述摩擦单元相同或不同。
16、 如权利要求 14或 15所述的装置, 其特征在于, 所述摩擦单元 与所述电极单元的形状和尺寸基本一致, 并且每个摩擦单元的下表面对 应贴合一个所述电极单元。
17、 如权利要求 1所述的装置, 其特征在于, 还包括隔离层, 用于 填充相邻的所述电极单元和 /或相邻的所述摩擦单元之间的空隙。
18、 如权利要求 17 所述的装置, 其特征在于, 所述隔离层为摩擦 电中性的物质。
19、 如权利要求 1-18任一项所述的装置, 其特征在于, 所述摩擦层 和电极层为硬质材料或柔性材料。
20、 如权利要求 1-19任一项所述的装置, 其特征在于, 所述等电位 源通过接地或由外部补偿电路提供。
21、 如权利要求 1-20任一项所述的装置, 其特征在于, 所述电阻的 阻值为 1ΜΩ-200ΜΩ, 所述电阻的数量为 1个或 2个以上。
22、 如权利要求 1-21任一项所述的装置, 其特征在于, 该装置还包 括贴合于所述电极层下表面的绝缘隔离层。
23、 如权利要求 1-22任一项所述的装置, 其特征在于, 所述绝缘隔 离层为绝缘材料。
24、 一种基于皮肤的电信号输出方法, 包括如下歩骤:
( 1 ) 提供权利要求 1-23任一项所述的电信号输出装置;
(2) 将所述电信号输出装置的摩擦层面向皮肤放置;
(3 ) 将所述电信号输出装置的信号输出端与电信号检测装置或电 信号收集装置连接;
(4) 使所述摩擦层和所述皮肤之间接触并分离; 或者, 使所述摩 擦层和所述皮肤之间发生滑动摩擦, 并且所述皮肤与下表面贴合有所述 电极层的那部分摩擦层之间的接触面积发生变化。
25、 如权利要求 24所述的方法, 其特征在于, 歩骤 (1 ) 通过如下 歩骤实现:
I. 提供摩擦层;
II. 在所述摩擦层的下表面贴合电极层;
III. 将所述电极层通过电阻与等电位源电连接。
26、一种用于触摸屏的电信号输出装置,包括权利要求 1-23任一项 所述的电信号输出装置, 其中所述摩擦层和电极层均为透明材料, 并且 通过所述电极层的下表面贴合在所述触摸屏的上表面, 实现所述装置与 触摸屏的固定。
27、 如权利要求 26所述的装置, 其特征在于, 所述摩擦层为聚二 甲基硅氧垸, 所述电极层为氧化铟锡 ITO。
28、 如权利要求 26或 27所述的装置, 其特征在于, 所述摩擦层和 电极层的厚度相同或不同, 并且均处于 1μπι-500μπι范围内。
29、 如权利要求 26-28任一项所述的装置, 其特征在于, 所述电极 层由分立的电极单元构成, 并且每个所述电极单元与摩擦层下表面的接 触面积小于 0.1mm2
30、一种用于键盘的电信号输出装置, 包括权利要求 1-23任一项所 述的电信号输出装置, 其中通过所述电极层的下表面贴合在所述键盘按 键的上表面, 以实现所述装置与键盘的固定。
31、 如权利要求 30所述的装置, 其特征在于所述摩擦层和电极层 均为透明的。
32、 如权利要求 31 所述的装置, 其特征在于, 所述摩擦层为聚二 甲基硅氧垸, 所述电极层为氧化铟锡 ITO。
33、 如权利要求 30-32任一项所述的装置, 其特征在于, 所述摩擦 层和电极层的尺寸和形状与其所贴合的按键表面的尺寸和形状相匹配。
34、 如权利要求 33 所述的装置, 其特征在于, 所述摩擦层和电极 层的形状与其所贴合的按键表面的形状相同或相似, 尺寸相同或稍小。
PCT/CN2014/071303 2013-08-20 2014-01-24 一种基于皮肤的电信号输出装置和电信号输出方法 WO2015024369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310364678.3 2013-08-20
CN201310364678.3A CN104426412B (zh) 2013-08-20 2013-08-20 一种基于皮肤的电信号输出装置和电信号输出方法

Publications (1)

Publication Number Publication Date
WO2015024369A1 true WO2015024369A1 (zh) 2015-02-26

Family

ID=52483016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071303 WO2015024369A1 (zh) 2013-08-20 2014-01-24 一种基于皮肤的电信号输出装置和电信号输出方法

Country Status (2)

Country Link
CN (1) CN104426412B (zh)
WO (1) WO2015024369A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106382997A (zh) * 2016-09-18 2017-02-08 北京科技大学 一种摩擦静电感应式电子皮肤
CN106655876A (zh) * 2016-12-06 2017-05-10 北京科技大学 自引发报警及指纹定位获取系统
CN109278050A (zh) * 2017-07-21 2019-01-29 北京纳米能源与系统研究所 自主感知的柔性机器人及其应用
CN111312201A (zh) * 2019-05-31 2020-06-19 北京纳米能源与系统研究所 基于摩擦纳米发电机的自驱动电子琴及其制作方法
CN114251999A (zh) * 2021-12-16 2022-03-29 重庆大学 基于大电阻率材料的摩擦电式位置传感器及其制备方法
US11848626B2 (en) * 2021-09-28 2023-12-19 Industry-Academic Cooperation Foundation, Chosun University Body attachable triboelectric generating device and manufacturing method thereof
WO2024110736A1 (fr) * 2022-11-25 2024-05-30 Gammao Matériau et système triboélectriques

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301062B (zh) * 2015-05-11 2019-04-30 北京纳米能源与系统研究所 可变形摩擦纳米发电机和发电方法、运动传感器和服装
CN105186600B (zh) * 2015-08-13 2017-11-24 北京大学 一种无线自供能充电服
CN105071517B (zh) * 2015-09-07 2017-09-15 京东方科技集团股份有限公司 可穿戴设备及其制造方法
CN106301063B (zh) * 2016-10-14 2019-06-04 中国科学院光电技术研究所 一种双面可穿戴的摩擦纳米发电机及其制备方法
CN107528497A (zh) * 2017-03-31 2017-12-29 王珏 一种收集低频行走能量的可穿戴自驱动供电系统
CN109077730B (zh) * 2017-06-13 2022-03-04 北京纳米能源与系统研究所 肌肉微动控制元件、开关装置、人机交互系统及前端装置
CN108988677B (zh) * 2018-07-20 2021-04-02 东华大学 一种单电极纳米结构摩擦发电海绵及其制备和应用
CN110794981A (zh) * 2018-08-03 2020-02-14 北京纳米能源与系统研究所 一种电子皮肤及其应用装置
CN112840552B (zh) 2018-10-15 2024-04-05 新加坡国立大学 摩擦电传感器和控制系统
CN109738105B (zh) * 2018-12-17 2022-06-03 浙江清华柔性电子技术研究院 监测冲击波强度的皮肤电子器件
TWI684905B (zh) * 2019-03-21 2020-02-11 國立中興大學 軟性感測裝置
CN111355402B (zh) * 2020-03-16 2021-06-25 北京理工大学 一种高输出自愈型单电极式摩擦纳米发电机及其制备方法
CN111537114A (zh) * 2020-04-24 2020-08-14 北京纳米能源与系统研究所 全纳米纤维电子皮肤及其应用装置
CN112187093A (zh) * 2020-09-28 2021-01-05 北京理工大学重庆创新中心 一种基于马术运动的发电装置
CN113197546B (zh) * 2021-04-22 2022-09-27 华中科技大学 一种高透性摩擦纳米传感器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153557A (ja) * 2001-11-12 2003-05-23 Sony Corp 発電装置、デバイス、動作機械、発電方法
JP2011015503A (ja) * 2009-06-30 2011-01-20 Toyota Boshoku Corp 発電マット
CN102342011A (zh) * 2009-12-03 2012-02-01 松下电器产业株式会社 振动发电器、振动发电装置、以及装载有该振动发电装置的电子设备与通信装置
CN102710166A (zh) * 2012-04-13 2012-10-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN202856656U (zh) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机以及摩擦发电机机组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203057022U (zh) * 2012-12-27 2013-07-10 纳米新能源(唐山)有限责任公司 纳米摩擦发电机
CN103777803B (zh) * 2013-08-12 2017-04-19 北京纳米能源与系统研究所 一种单电极触摸传感器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003153557A (ja) * 2001-11-12 2003-05-23 Sony Corp 発電装置、デバイス、動作機械、発電方法
JP2011015503A (ja) * 2009-06-30 2011-01-20 Toyota Boshoku Corp 発電マット
CN102342011A (zh) * 2009-12-03 2012-02-01 松下电器产业株式会社 振动发电器、振动发电装置、以及装载有该振动发电装置的电子设备与通信装置
CN102710166A (zh) * 2012-04-13 2012-10-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机
CN202856656U (zh) * 2012-05-15 2013-04-03 纳米新能源(唐山)有限责任公司 一种摩擦发电机以及摩擦发电机机组

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106382997A (zh) * 2016-09-18 2017-02-08 北京科技大学 一种摩擦静电感应式电子皮肤
CN106655876A (zh) * 2016-12-06 2017-05-10 北京科技大学 自引发报警及指纹定位获取系统
CN106655876B (zh) * 2016-12-06 2019-04-02 北京科技大学 自引发报警及指纹定位获取系统
CN109278050A (zh) * 2017-07-21 2019-01-29 北京纳米能源与系统研究所 自主感知的柔性机器人及其应用
CN113650023A (zh) * 2017-07-21 2021-11-16 北京纳米能源与系统研究所 自主感知的柔性机器人及其应用
CN111312201A (zh) * 2019-05-31 2020-06-19 北京纳米能源与系统研究所 基于摩擦纳米发电机的自驱动电子琴及其制作方法
US11848626B2 (en) * 2021-09-28 2023-12-19 Industry-Academic Cooperation Foundation, Chosun University Body attachable triboelectric generating device and manufacturing method thereof
CN114251999A (zh) * 2021-12-16 2022-03-29 重庆大学 基于大电阻率材料的摩擦电式位置传感器及其制备方法
CN114251999B (zh) * 2021-12-16 2023-10-20 重庆大学 基于大电阻率材料的摩擦电式位置传感器及其制备方法
WO2024110736A1 (fr) * 2022-11-25 2024-05-30 Gammao Matériau et système triboélectriques
FR3142637A1 (fr) * 2022-11-25 2024-05-31 Gammao Matériau et système triboélectriques

Also Published As

Publication number Publication date
CN104426412B (zh) 2019-02-05
CN104426412A (zh) 2015-03-18

Similar Documents

Publication Publication Date Title
WO2015024369A1 (zh) 一种基于皮肤的电信号输出装置和电信号输出方法
Tao et al. Hierarchical honeycomb-structured electret/triboelectric nanogenerator for biomechanical and morphing wing energy harvesting
EP3035398B1 (en) Single-electrode touch sensor and preparation method therefor
Mo et al. Piezoelectrets for wearable energy harvesters and sensors
Kang et al. Fingerprint‐inspired conducting hierarchical wrinkles for energy‐harvesting E‐skin
Chen et al. Flexible fiber-based hybrid nanogenerator for biomechanical energy harvesting and physiological monitoring
Wang et al. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices
CN102710166B (zh) 一种摩擦发电机
CN103411710B (zh) 一种压力传感器、电子皮肤和触屏设备
US9419544B2 (en) Energy harvesting device having self-powered touch sensor
US9887346B2 (en) Apparatus and associated methods
CN102684546B (zh) 一种摩擦发电机
JP6298155B2 (ja) 単電極摩擦式ナノ発電機、発電方法及び自己駆動の追跡装置
KR101696134B1 (ko) 위치 시그널링에 의한 압전 발생
CN103418081B (zh) 摩擦电电场驱动药物离子导入的系统
CN104253561A (zh) 滑动摩擦发电机、发电方法以及矢量位移传感器
WO2014206098A1 (zh) 包围式单电极摩擦纳米发电机、发电方法和追踪装置
WO2015158302A1 (zh) 基于静电感应的传感器、发电机、传感方法与发电方法
Rodrigues-Marinho et al. Transparent piezoelectric polymer-based materials for energy harvesting and multitouch detection devices
CN214621543U (zh) 一种带多级金字塔微结构的电容式柔性压力传感器
Takebe et al. Stretchable Electret Energy Harvester Using The Fringe Field
Nair et al. Simulation assisted flexibility improvement studies for flexible transparent printed touch sensors
Leelamani et al. Future Prospects of Electronic Skin
Heng et al. Large scale triboelectric Nanogenerator and self-powered pressure sensor Array Using Low Cost Roll-to-Roll UV embossing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838567

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838567

Country of ref document: EP

Kind code of ref document: A1