CN111664875A - 一种带表面微织构的变接触面积结构自供能滑觉传感器 - Google Patents

一种带表面微织构的变接触面积结构自供能滑觉传感器 Download PDF

Info

Publication number
CN111664875A
CN111664875A CN202010459055.4A CN202010459055A CN111664875A CN 111664875 A CN111664875 A CN 111664875A CN 202010459055 A CN202010459055 A CN 202010459055A CN 111664875 A CN111664875 A CN 111664875A
Authority
CN
China
Prior art keywords
self
sensor
contact area
sliding
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010459055.4A
Other languages
English (en)
Other versions
CN111664875B (zh
Inventor
程广贵
顾伟光
丁建宁
张忠强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010459055.4A priority Critical patent/CN111664875B/zh
Publication of CN111664875A publication Critical patent/CN111664875A/zh
Application granted granted Critical
Publication of CN111664875B publication Critical patent/CN111664875B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/242Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by carrying output of an electrodynamic device, e.g. a tachodynamo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/027Electromagnetic sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/005Measuring force or stress, in general by electrical means and not provided for in G01L1/06 - G01L1/22
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明属于传感器领域,具体涉及一种基于摩擦发电技术的带表面微织构的变接触面积结构自供能滑觉传感器装置。所述自供能滑觉传感器包括底座,位于所述底座上的多级表面支承结构,所述多级表面支承结构与所述底座之间通过弹性柱体联接,所述弹性柱体上设置有弹簧,所述多级表面支承结构上表面设有摩擦发电装置,底座两侧表面上也设有摩擦发电装置;能够将待测物体的滑动转化为电能,并以电信号形式输出。

Description

一种带表面微织构的变接触面积结构自供能滑觉传感器
技术领域
本发明属于传感器领域,具体涉及一种基于摩擦发电技术的变接触面积结构的自供能滑觉传感器装置。
背景技术
滑觉传感器是一种用来检测机器人与抓握对象间滑移程度的传感器,在农业采摘机器人、康复医疗、生命探测、抢险救灾等领域具有广阔的应用前景;如应用于果蔬的自动化采摘领域,可以根据果蔬的大小灵活调整夹持力,实现柔性的无损采摘;应用于仿生手、人工假肢等领域,通过进一步与肌电信号相连能够实现对易碎物体的软抓取功能;目前常用的滑觉传感器有PVDF压电薄膜传感器、压电陶瓷双压电晶片传感器、阵列式触觉传感器和压敏电阻传感器等;其中,PVDF压电薄膜传感器对力的灵敏度低,PVDF产生的电荷在传输过程中易受电磁干扰;压电陶瓷双压电晶片传感器对噪声干扰敏感,滑动速度较小时,不易检测到滑动信号;阵列式触觉传感器在传感过程中对分辨率和扫描率要求较高,且结构复杂,线路多;压敏电阻传感器作为滑觉传感器时不易区分正压力的变化和滑动两种信号;更为重要的是以上传感器都需要外界提供能源、制造成本高;本发明提出基于摩擦纳米发电机工作原理的变接触面积结构的自供能滑觉传感器,可实现对被测物体滑动的检测和所受法向力范围区间的判定。
发明内容
本发明所要解决的技术问题是提供一种具有多级表面结构的静电式自供能滑觉传感器,能够用于滑觉的检测,并且无需提供额外能源,能够将待测物体的滑动转化为电能并以电信号的形式输出,同时还具备精度高、易加工和操作简便等特点。
本发明解决上述技术问题所采用的技术方案是:一种变接触面积结构的自供能滑觉传感器,用于检测待测物体的滑动;所述自供能滑觉传感器包括底座,位于所述底座上的多级表面支承结构,所述多级表面支承结构与所述底座之间通过弹性柱体联接,所述弹性柱体上设置有弹簧,所述多级表面支承结构上表面设有摩擦发电装置,底座两侧表面上也设有摩擦发电装置;能够将待测物体的滑动转化为电能,并以电信号形式输出。
所述多级表面支承结构沿底座中心线向两侧呈阶梯状对称分布,高度依次下降,至少包括3块表面支承结构,与底座两侧表面构成3级表面支承结构。
进一步地,摩擦发电装置包括设置在多级表面支承结构上表面和底座两侧表面上的电极层和摩擦层。若待测物体材料为束缚电子能力较弱的金属导电材料,则电极层选用束缚电子能力较弱的金属导电材料,如Cu、Al或其合金,摩擦层选用束缚电子能力较强的非金属绝缘材料,如PTFE、PVDF等材料;若待测物体材料为束缚电子能力较强的非金属绝缘材料,则电极层同时作为摩擦层,选用束缚电子能力较弱的金属导电材料,如Cu、Al或其合金。摩擦层表面设置有指纹表面微织构,用于增强摩擦发电装置的电学输出性能并进一步提高自供能滑觉传感器的灵敏度。多级表面支承结构底面设置有屏蔽层。
进一步地,被测物体有滑动时,与摩擦层之间发生摩擦,且接触面积变化,电极层通过所接地线与参考地之间会发生电子交换,以平衡电极上的电势变化,当滑动开始发生时,即被测物体与摩擦层之间由静摩擦转入动摩擦时,设置在多级表面支承结构下的弹性柱体切向的变形量快速且反复变化,导致电极层与参考地之间的电势差发生波动,由此滑觉传感器输出电信号中产生高频成分。
进一步地,该滑觉传感器还包括电信号测量装置,电信号测量装置分别与电极层和参考地相连,电信号测量装置获得电极层和参考地之间的电势差信号。
进一步地,所述电信号测量装置集成在底座内部。
进一步地,采用离散小波变换技术对自供能滑觉传感器输出的信号进行收集、处理,并提取电信号中的高频分量,在滤除杂波干扰后,将滑动发生时离散小波变换后得到的细节系数临界值设定为阈值,实际应用中通过比较细节系数和阈值的关系,判断物体是否发生初始滑动。
进一步地,本发明应用在夹持装置上时,若要使被测物体停止滑移,可根据对于夹持装置灵敏度的要求设置一定的控制周期,灵敏度要求越高,控制周期的设置越短。在出现滑动迹象时,控制系统检测到滑觉传感器输出的信号,迅速增加夹持被测物体的法向力并继续检测滑觉传感器的输出信号,直到其细节系数低于阈值。
进一步地,本发明采用多级表面结构,其应用在夹持装置上时,当被施加的法向力大于一定值,上级阶梯下陷至与下级阶梯同一表面。阶梯下陷使得传感器与被测物体接触面积增加,被测物体滑动时电极层和参考地之间的产生电势差也随之增加,根据单位时间内电压信号变化的幅度能够识别出夹持法向力的区间范围,根据夹持法向力所在区间调整控制周期内所增加的夹持力。
进一步地,在不同的夹持力区间中的控制周期内所增加的法向力不同,工作区域处于多级表面结构的越下级的表面时,夹持力的大小和区间范围越大,每次增加的法向力也越大。据此可以有效地提高滑觉传感器的工作范围。
本发明的有益效果是:本发明可以根据其机械能-电能转换特性,将被检测物体在传感器表面的滑动转换为电信号,经过该装置中的信号处理和输出装置将数据输出,采用离散小波变换的方法提取信号中的高频成分,通过比对细节系数与所设置阈值之间的关系,可以判断出被测物体是否滑动。相比其它的滑觉检测装置来说,多级表面结构的静电式自供能滑觉传感器具有结构简单、应用范围广、测量精度高、输出电压高、工作范围大和无需额外提供电源等优点。
附图说明
图1(a)-(c)是变接触面积结构的自供能滑觉传感器在不同的负载区间下的状态图,其中图1(a)为空载状态下变接触面积结构的自供能滑觉传感器的结构示意图,图1(b)和(c)为变接触面积结构的自供能滑觉传感器受到一定负载时多级表面下陷的示意图;
图2是摩擦层表面指纹微织构形貌图;
图3(a)-(b)是本发明摩擦发电装置的工作原理图;
图4是本发明的整流电路示意图。
图中标号:1、摩擦层 2、电极层 3、多级表面支承结构 4、弹性柱体 5、弹簧 6、底座。
具体实施方法
以下结合附图对本发明的具体实施方案做进一步的详细说明。
参见图1(a),本发明提供一种变接触面积结构的自供能滑觉传感器,用于检测待测物体的滑动,包括底座6,多级表面支承结构3,多级表面支承结构3沿底座中心线向两侧呈阶梯状对称分布,与底座6表面构成3级表面支承结构。多级表面支承结构3与底座6之间使用弹性柱体4联接,弹性柱体4上设置有弹簧5,多级表面支承结构3上表面和底座6表面两侧设置有摩擦层1和电极层2,其中电极层2选用束缚电子能力较弱的金属导电材料,如Cu、Al或其合金;摩擦层1材料根据待测物体电性选择,若待测物体材料为束缚电子能力较弱的金属导电材料,则摩擦层1选用束缚电子能力较强的非金属绝缘材料,如PTFE、PVDF等材料;若待测物体材料为束缚电子能力较强的非金属绝缘材料,则电极层2同时作为摩擦层。摩擦层1表面设置有表面微织构,其原理是利用转印法将手指指纹复制在摩擦层表面形成微观结构,目的是增强摩擦发电装置电学输出性能进而提高自供能滑觉传感器灵敏度。多级表面支承结构底面设置有屏蔽层(图中未示)。
参见图3(a)-(b),被测物体加载时,滑觉传感器表面与被测物体表面完全接触,由于接触起电效应的作用,两个相对表面出现等量异种电荷。当被测物体受力作用产生位移后,相对滑动的两个表面间接触面积发生变化,摩擦层产生的电荷不能被完全中和,根据静电感应原理,电极层2与参考地之间会发生电荷交换,以平衡电势变化。因此物体在本发明的摩擦层开始发生位移时,即由静摩擦转为动摩擦时,由于多级表面支承结构3下方的弹性柱体4在切向上的形变量会出现快速且反复的变化,导致摩擦层1与被测物体的接触面积以较高的频率发生变化,因此参考地与电极层2之间的电势差将出现反复快速波动,在输出信号上表现为出现高频成分。因此采用离散小波变化的方法提取出输出信号中的高频成分,根据高频成分的出现与否可对被测物体是否滑动进行判定并产生反馈。
本实施方式中,被测物体发生滑移时,对应的滑觉信号经短时傅里叶变换处理后可观察到其中有高频成分出现,因而可以通过检测高频成分来检测滑移。本发明中采用离散小波变化的方法来检测信号瞬间的高频成分,信号经过离散小波变换后,会输出细节系数(来自高通滤波器)和近似系数(来自低通滤波器),这里利用细节系数来表征滑觉信号,并以此对末端执行器进行抓取力调节控制。首先在滤除杂波影响后,将发生滑动时细节系数的临界值设定为阈值,在设定的控制周期内,若信号的离散小波变换的细节系数大于阈值,则认为有滑动发生,若想让被测物体停止滑移,则增大对被测物体的法向夹持力,并继续检测输出信号直到其细节系数小于阈值,即代表被测物体不会发生进一步滑移。
本实施方式中,滑觉传感器支承表面采用多级结构,应用于夹持装置时,当法向力大于一定值,第一层阶梯会下陷至第二层阶梯同一平面,并依此类推,且通过改变弹簧5的弹性系数,可以调节各级工作范围区间。阶梯下陷使得滑觉传感器与被测物体接触面积增加,电极层和参考地之间的电势差变化幅度也随之增加,根据单位时间内输出电压变化幅度的改变可以判断法向力所在区间范围。越下级的支承表面在检测滑动时所对应的被测物体受到的法向力越大,区间范围也越大,对应的控制周期内每次增加的法向力越大。因此该结构可以有效地提高滑觉传感器的工作范围。
综上所述,结合摩擦发电装置的电压输出信号,可以识别被检测物体的滑动。据此可以实时调整机械手臂的抓取力,实现使用最小抓力抓取物体的目的。本发明有结构简单、应用范围广、测量精度高、输出电压高、工作范围大和无需额外提供电源等优点,可应用于机械手臂对蔬果的无损采摘、仿生手和人工假肢的软抓取等领域。

Claims (9)

1.一种带表面微织构的变接触面积结构自供能滑觉传感器,用于检测待测物体的滑动,其特征在于,所述自供能滑觉传感器包括底座,位于所述底座上的多级表面支承结构,所述多级表面支承结构与所述底座之间通过弹性柱体联接,所述弹性柱体上设置有弹簧,所述多级表面支承结构上表面设有摩擦发电装置,底座两侧表面上也设有摩擦发电装置;所述自供能滑觉传感器能够将待测物体的滑动转化为电能,并以电信号形式输出。
2.如权利要求1所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,所述多级表面支承结构沿底座中心线向两侧呈阶梯状对称分布,高度依次下降,至少包括3块表面支承结构,与底座两侧表面构成3级表面支承结构。
3.如权利要求1所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,所述摩擦发电装置包括设置在多级表面支承结构上表面和底座两侧表面上的电极层和摩擦层;若待测物体材料为束缚电子能力较弱的金属导电材料,则电极层选用束缚电子能力较弱的金属导电材料,摩擦层选用束缚电子能力较强的非金属绝缘材料;若待测物体材料为束缚电子能力较强的非金属绝缘材料,则电极层同时作为摩擦层,选用束缚电子能力较弱的金属导电材料,多级表面支承结构底面设置有屏蔽层。
4.如权利要求3所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,所述金属导电材料为Cu、Al或其合金,所述非金属绝缘材料为PTFE或PVDF材料。
5.如权利要求1所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,所述自供能滑觉传感器还包括电信号测量装置,电信号测量装置分别与电极层和参考地相连,电信号测量装置获得电极层和参考地之间的电势差信号;所述电信号测量装置集成在底座内部。
6.如权利要求1所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,被测物体有滑动时,与摩擦层之间发生摩擦,且接触面积变化,电极层通过所接地线与参考地之间会发生电子交换,以平衡电极上的电势变化,当滑动开始发生时,即被测物体与摩擦层之间由静摩擦转入动摩擦时,设置在多级表面支承结构下的弹性柱体切向的变形量快速且反复变化,导致电极层与参考地之间的电势差发生波动,由此滑觉传感器输出电信号中产生高频成分;采用离散小波变换技术对自供能滑觉传感器输出的信号进行收集、处理,并提取电信号中的高频分量,在滤除杂波干扰后,将滑动发生时离散小波变换后得到的细节系数临界值设定为阈值,实际应用中通过比较细节系数和阈值的关系,判断物体是否发生初始滑动。
7.如权利要求1所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,所述自供能滑觉传感器应用在夹持装置上时,若要使被测物体停止滑移,可根据对于夹持装置灵敏度的要求设置一定的控制周期,灵敏度要求越高,控制周期的设置越短;在出现滑动迹象时,控制系统检测到滑觉传感器输出的信号,迅速增加夹持被测物体的法向力并继续检测滑觉传感器的输出信号,直到其细节系数低于阈值。
8.如权利要求1所述的一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,采用多级表面结构的自供能滑觉传感器应用在夹持装置上时,当被施加的法向力大于一定值,上级阶梯下陷至与下级阶梯同一表面,阶梯下陷使得传感器与被测物体接触面积增加,被测物体滑动时电极层和参考地之间的产生电势差也随之增加,根据单位时间内电压信号变化的幅度能够识别出夹持法向力的区间范围,根据夹持法向力所在区间调整控制周期内所增加的夹持力;在不同的夹持力区间中的控制周期内所增加的法向力不同,工作区域处于多级表面结构的越下级的表面时,夹持力的大小和区间范围越大,每次增加的法向力也越大,据此可以有效地提高滑觉传感器的工作范围。
9.如权利要求1所述一种带表面微织构的变接触面积结构自供能滑觉传感器,其特征在于,采用转印方法将手指的指纹复制在传感器摩擦层表面,通过表面织构进一步提高传感器的触觉灵敏度;当某个方向出现滑动时,微织构的存在会提高该方向上的电输出值,进而起到输出增强的效果。
CN202010459055.4A 2020-05-27 2020-05-27 一种带表面微织构的变接触面积结构自供能滑觉传感器 Active CN111664875B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010459055.4A CN111664875B (zh) 2020-05-27 2020-05-27 一种带表面微织构的变接触面积结构自供能滑觉传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010459055.4A CN111664875B (zh) 2020-05-27 2020-05-27 一种带表面微织构的变接触面积结构自供能滑觉传感器

Publications (2)

Publication Number Publication Date
CN111664875A true CN111664875A (zh) 2020-09-15
CN111664875B CN111664875B (zh) 2022-05-20

Family

ID=72384782

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010459055.4A Active CN111664875B (zh) 2020-05-27 2020-05-27 一种带表面微织构的变接触面积结构自供能滑觉传感器

Country Status (1)

Country Link
CN (1) CN111664875B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267292A (zh) * 2021-06-25 2021-08-17 中国科学院重庆绿色智能技术研究院 一种基于磁致效应的滑觉传感特性测试方法和装置

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297542A (ja) * 2005-04-20 2006-11-02 Toyota Motor Corp ロボットハンドの指表面の滑り検知装置
CN103368453A (zh) * 2013-03-12 2013-10-23 国家纳米科学中心 一种滑动摩擦纳米发电机及发电方法
CN104253561A (zh) * 2013-06-25 2014-12-31 国家纳米科学中心 滑动摩擦发电机、发电方法以及矢量位移传感器
CN104374498A (zh) * 2013-08-16 2015-02-25 纳米新能源(唐山)有限责任公司 基于摩擦发电的压力传感器及压力传感系统
CN104748769A (zh) * 2013-12-25 2015-07-01 北京纳米能源与系统研究所 一种基于静电感应的传感器以及传感方法
CN105991064A (zh) * 2016-05-06 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电机的触觉传感器及机器人触觉感知系统
CN205647295U (zh) * 2016-05-06 2016-10-12 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器及人体生理信号采集装置
CN106032980A (zh) * 2015-03-19 2016-10-19 北京纳米能源与系统研究所 触觉传感器及使用触觉传感器的感测方法
KR101706499B1 (ko) * 2016-02-18 2017-02-13 한양대학교 산학협력단 마찰 전기를 이용하는 웨어러블 디바이스
WO2017190485A1 (zh) * 2016-05-06 2017-11-09 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统
KR20170126547A (ko) * 2016-05-09 2017-11-20 성균관대학교산학협력단 미끄럼 감지 센서 및 미끄럼을 감지하는 로봇손
CN207198812U (zh) * 2017-05-24 2018-04-06 西华大学 一种基于全方向滑觉传感器的手套鼠标
CN108429483A (zh) * 2018-01-23 2018-08-21 江苏大学 一种螺旋折叠弹性结构的摩擦纳米发电机
CN110165930A (zh) * 2019-06-29 2019-08-23 河南大学 一种适用于收集常规人体运动机械能的摩擦纳米发电机
CN110247577A (zh) * 2018-03-07 2019-09-17 中国科学院物理研究所 摩擦纳米发电机摩擦层表面微结构的制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006297542A (ja) * 2005-04-20 2006-11-02 Toyota Motor Corp ロボットハンドの指表面の滑り検知装置
CN103368453A (zh) * 2013-03-12 2013-10-23 国家纳米科学中心 一种滑动摩擦纳米发电机及发电方法
CN104253561A (zh) * 2013-06-25 2014-12-31 国家纳米科学中心 滑动摩擦发电机、发电方法以及矢量位移传感器
CN104374498A (zh) * 2013-08-16 2015-02-25 纳米新能源(唐山)有限责任公司 基于摩擦发电的压力传感器及压力传感系统
CN104748769A (zh) * 2013-12-25 2015-07-01 北京纳米能源与系统研究所 一种基于静电感应的传感器以及传感方法
CN106032980A (zh) * 2015-03-19 2016-10-19 北京纳米能源与系统研究所 触觉传感器及使用触觉传感器的感测方法
KR101706499B1 (ko) * 2016-02-18 2017-02-13 한양대학교 산학협력단 마찰 전기를 이용하는 웨어러블 디바이스
CN205647295U (zh) * 2016-05-06 2016-10-12 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器及人体生理信号采集装置
CN105991064A (zh) * 2016-05-06 2016-10-05 纳智源科技(唐山)有限责任公司 基于摩擦发电机的触觉传感器及机器人触觉感知系统
WO2017190485A1 (zh) * 2016-05-06 2017-11-09 纳智源科技(唐山)有限责任公司 基于摩擦发电的传感器、人体生理信号采集装置以及机器人触觉感知系统
KR20170126547A (ko) * 2016-05-09 2017-11-20 성균관대학교산학협력단 미끄럼 감지 센서 및 미끄럼을 감지하는 로봇손
CN207198812U (zh) * 2017-05-24 2018-04-06 西华大学 一种基于全方向滑觉传感器的手套鼠标
CN108429483A (zh) * 2018-01-23 2018-08-21 江苏大学 一种螺旋折叠弹性结构的摩擦纳米发电机
CN110247577A (zh) * 2018-03-07 2019-09-17 中国科学院物理研究所 摩擦纳米发电机摩擦层表面微结构的制备方法
CN110165930A (zh) * 2019-06-29 2019-08-23 河南大学 一种适用于收集常规人体运动机械能的摩擦纳米发电机

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HAOTIAN CHEN ET.AL: "Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection", 《NANO ENERGY》 *
SMITHA ANKANAHALLI SHANKAREGOWDA ET.AL: "A Flexible and Transparent Graphene Based Triboelectric Nanogenerator", 《2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY》 *
周俊等: "农业机器人果蔬抓取中滑觉检测研究", 《农业机械学报》 *
程广贵等: "基于织构表面的摩擦静电发电机制备及其输出性能研究", 《物理学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267292A (zh) * 2021-06-25 2021-08-17 中国科学院重庆绿色智能技术研究院 一种基于磁致效应的滑觉传感特性测试方法和装置

Also Published As

Publication number Publication date
CN111664875B (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
Teshigawara et al. Highly sensitive sensor for detection of initial slip and its application in a multi-fingered robot hand
Teshigawara et al. High sensitivity initial slip sensor for dexterous grasp
Li et al. Design and output characteristics of magnetostrictive tactile sensor for detecting force and stiffness of manipulated objects
Speeter A tactile sensing system for robotic manipulation
CN107328497B (zh) 一种信号检测传感结构及其制作方法、信号检测方法
CN112649128B (zh) 一种测量三维接触应力的传感装置及方法
KR20130022544A (ko) 정전용량형 압력 감지 센서 및 그를 포함하는 입력 장치
Kimoto et al. A new multifunctional tactile sensor for detection of material hardness
CN104215363A (zh) 基于压敏导电橡胶的柔性触滑觉复合传感阵列
CN111664875B (zh) 一种带表面微织构的变接触面积结构自供能滑觉传感器
Chuang et al. Flexible tactile sensor for the grasping control of robot fingers
Chu et al. Silicon three-axial tactile sensor
CN1963734A (zh) 触摸式感应装置
Shan et al. A self-powered sensor for detecting slip state and pressure of underwater actuators based on triboelectric nanogenerator
CN207036311U (zh) 一种信号检测传感结构
CN113340479B (zh) 基于电涡流与压电原理耦合的三维力柔性触觉传感器
Teshigawara et al. High Speed and High Sensitivity Slip Sensor for Dexterous Grasping.
CN109100070A (zh) 一种传感器及检测触觉信号的方法
CN204154423U (zh) 一种基于压敏导电橡胶的柔性触滑觉复合传感阵列
Fang et al. A petal-array capacitive tactile sensor with micro-pin for robotic fingertip sensing
Siegel et al. A capacitive lased tactile sensor
Zhang et al. Slip detection by array-type pressure sensor for a grasp task
CN116952293A (zh) 一种pzt基柔性压电传感器的应用性能测试方法
Kim et al. A flexible fingertip tactile sensor
US11073434B2 (en) Manufacturing method for shear and normal force sensor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant