WO2019024342A1 - 信号检测传感结构及其制作方法、信号检测方法 - Google Patents

信号检测传感结构及其制作方法、信号检测方法 Download PDF

Info

Publication number
WO2019024342A1
WO2019024342A1 PCT/CN2017/113418 CN2017113418W WO2019024342A1 WO 2019024342 A1 WO2019024342 A1 WO 2019024342A1 CN 2017113418 W CN2017113418 W CN 2017113418W WO 2019024342 A1 WO2019024342 A1 WO 2019024342A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
electret layer
piezoelectric electret
touch object
piezoelectric
Prior art date
Application number
PCT/CN2017/113418
Other languages
English (en)
French (fr)
Inventor
方鹏
田岚
李向新
李光林
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2019024342A1 publication Critical patent/WO2019024342A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices

Definitions

  • the present disclosure relates to signal detection techniques, for example, to a signal detection sensing structure, a method of fabricating the same, and a signal detection method.
  • the sensations associated with hand functions include contact, pressure, position, slip, and temperature.
  • the survey shows that contact, grasping, etc. are more important.
  • “contact” and “sliding” are the two most important types of sensory information for prosthetic hands. They exist in most prosthetic hand movements (“waving”, etc. Except) is the key to achieving safe and reliable grip.
  • the slip-slip signal can be obtained by analyzing the interaction force between the prosthetic hand and the object.
  • the "contact” signal is mainly a static force
  • the "sliding” signal is mainly a dynamic force.
  • Capacitive sensors measure pressure by measuring changes in capacitance between parallel plates, but the circuit is complex and subject to electromagnetic interference.
  • Resistive sensors include piezoresistive and contact resistive, which measure pressure by measuring changes in material resistivity, but their sensitivity and signal stability are limited.
  • methods such as strain gauges can be used to detect the sensory signals of the prosthetic hand, but there are also deficiencies such as complicated structure and low sensitivity.
  • piezoelectric and triboelectric sensors are piezoelectric and triboelectric sensors. These two types of sensors have a high preparation process, and the signal of the piezoelectric material is affected by temperature. When the hot or cold object is grasped, the temperature change interferes with the detection of the sensory signal.
  • an array of a plurality of resistive sensors can also be used for detecting sliding signals, as well as photoelectric, acoustic, electromagnetic, and other sensors, which acquire signals by indirect methods, but each has a complicated structure and is difficult to manufacture. Low reliability and difficulty in ensuring accuracy.
  • the piezoelectric film such as polyvinylidene can be used to detect the contact signal and the sliding signal at the same time, but the signal separation is difficult, so that the detection accuracy of both signals is low.
  • the present disclosure provides a signal detection sensing structure, a manufacturing method thereof, and a signal detection method, which realize simultaneous detection of a contact signal and a sliding signal by a single sensing unit, and improve detection precision of a contact signal and a sliding signal.
  • the present disclosure provides a signal detection sensing structure, including: a first piezoelectric electret layer, a second pressure An electret layer and an adhesive layer between the first piezoelectric electret layer and the second piezoelectric electret layer; the first piezoelectric electret layer being away from the second One side surface of the piezoelectric electret layer includes a plurality of convex structures; a side surface of the second piezoelectric electret layer adjacent to the first piezoelectric electret layer is a smooth surface; The piezoelectric electret layer is for detecting at least one of a contact signal and a sliding signal of the touch object, and the second piezoelectric electret layer is for detecting a contact signal of the touch object.
  • the first piezoelectric electret layer and the second piezoelectric electret layer have a microporous structure, and the cross-sectional shape of the microporous structure includes at least one of a circle, an ellipse, and a polygon.
  • the cross-sectional shape of the microporous structure includes at least one of a circle, an ellipse, and a polygon.
  • the material of the first piezoelectric electret layer comprises at least one of a fluorinated ethylene propylene copolymer and a polytetrafluoroethylene.
  • the material of the second piezoelectric electret layer comprises at least one of polypropylene, polyethylene terephthalate, and polyethylene naphthalate.
  • the first piezoelectric electret layer is laminated and bonded to the second piezoelectric electret layer through the adhesive layer by a bonding, hot pressing or melting process.
  • the signal detecting and sensing structure further includes: a signal processing module; a first electrode is disposed on a side of the first piezoelectric electret layer away from the second piezoelectric electret layer, a second electrode is disposed on a side of the first piezoelectric electret layer adjacent to the second piezoelectric electret layer; the second piezoelectric electret layer is adjacent to the first piezoelectric electret layer a third electrode is disposed on one side, the second electrode and the third electrode are insulated from each other, and a side of the second piezoelectric electret layer away from the first piezoelectric electret layer is disposed a fourth electrode; the signal processing module is electrically connected to the first electrode, the second electrode, the third electrode, and the fourth electrode, respectively, for calculating at least a contact signal and a sliding signal of the touch object One.
  • the present disclosure also provides a method for fabricating a signal sensing sensing structure as described above, comprising: providing a second piezoelectric electret layer; and attaching an adhesive layer on a side of the second piezoelectric electret layer Providing a first piezoelectric electret layer and laminating the first piezoelectric electret layer on the second piezoelectric electret layer through the adhesive layer; wherein a side surface of the first piezoelectric electret layer away from the second piezoelectric electret layer includes a plurality of convex structures; the second piezoelectric electret layer is adjacent to the first piezoelectric electret One side surface of the layer is a smooth surface; the first piezoelectric electret layer is for detecting at least one of a contact signal and a sliding signal of the touch object, and the second piezoelectric electret layer is for detecting a touch object Contact signal.
  • the first piezoelectric electret layer and the second piezoelectric electret layer are formed by a puffing method, a template method or an etching method.
  • the first piezoelectric electret layer is laminated and bonded to the second piezoelectric electret layer through the adhesive layer by a bonding, hot pressing or melting process.
  • the present disclosure also provides a signal detecting method for the signal detecting sensing structure as described above, comprising: acquiring a first signal detected by the first piezoelectric electret layer and a second signal detected by the second piezoelectric electret layer And determining, according to the first signal, at least one of a touch signal and a sliding signal of the touch object, and determining a contact signal of the touch object according to the second signal.
  • the detecting, according to the first signal, detecting at least one of a contact signal and a sliding signal of the touch object, detecting a contact signal of the touch object according to the second signal including: if a signal peak of the first signal If the number is equal to 1 and the amplitude of the signal peak is greater than the first preset value, determining that the first signal is a contact signal of the touch object; if the number of signal peaks of the first signal is greater than 1, and the signal The amplitude of the peak is less than the first preset value, and when the signal variance of the first signal is less than the second threshold, determining that the first signal is a sliding signal of the touch object; if the signal peak of the second signal The number of signals is equal to 1 and the amplitude of the signal peak is greater than the first predetermined value, and then the second signal is determined to be a contact signal of the touch object.
  • the detecting according to the first signal, detecting at least one of a contact signal and a sliding signal of the touch object, detecting a contact signal of the touch object according to the second signal, including: if a signal peak of the first signal If the number is greater than 1 and the amplitude of one of the signal peaks is greater than the first preset value, the difference between the absolute value of the first signal and the absolute value of the second signal is used as the third signal, and the third The signal is determined to be a sliding signal of the touch object; the second signal is determined to be a contact signal of the touch object.
  • the touch object is determined to be in a disengaged state.
  • the number of signal peaks of the second signal is equal to 1 and the amplitude of the signal peak is greater than a first preset value, and the signal peak of the second signal is greater than 0, determining that the touch object is gradually contacting a state; if the number of signal peaks of the second signal changes from 1 to 0, determining that the touch object changes from a gradual contact state to a grip state; if the number of signal peaks of the second signal is equal to 1 If the amplitude of the signal peak is greater than the first preset value, and the signal peak of the second signal is less than 0, it is determined that the touch object is in a disengaged state.
  • the present disclosure also provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer, Having the computer perform any of the methods described above.
  • the present disclosure also provides a computer readable storage medium storing computer executable instructions for performing the above method.
  • the signal detection and sensing structure of the present disclosure is simple, sensitive, and has no pyroelectric effect, and is substantially unaffected by temperature changes in the working temperature range, and can realize high-precision detection of contact signals and sliding signals.
  • FIG. 1 is a schematic diagram of a signal detection sensing structure provided by an embodiment.
  • FIG. 2 is a schematic diagram of a connection between a processing module of a signal detecting sensing structure and a first piezoelectric electret layer and a second piezoelectric electret layer according to an embodiment.
  • FIG. 3 is a flow chart of a method for fabricating a signal detection sensing structure according to an embodiment.
  • FIG. 4 is a flow chart of a signal detecting method of a signal detecting sensing structure according to an embodiment.
  • FIG. 5 is a schematic diagram of a contact signal output detected by a signal detecting sensing structure according to an embodiment.
  • FIG. 6 is a schematic diagram of a sliding signal output detected by a signal detecting sensing structure according to an embodiment.
  • FIG. 1 is a schematic diagram of a signal detecting and sensing structure according to an embodiment.
  • the signal detecting and sensing structure shown in FIG. 1 includes: a first piezoelectric electret layer 1 and a second piezoelectric electret layer 2 And an adhesive layer 5 between the first piezoelectric electret layer 1 and the second piezoelectric electret layer 2; the adhesive layer 5 has the first piezoelectric electret layer 1 and the second piezoelectric electret
  • the bulk layer 2 is laminated and bonded.
  • a side surface of the first piezoelectric electret layer 1 away from the second piezoelectric electret layer 2 includes a plurality of convex structures 3; the second piezoelectric electret layer 2 is adjacent to the first piezoelectric electret layer 1
  • One side surface is a smooth surface; the first piezoelectric electret layer 1 is for detecting at least one of a contact signal and a sliding signal of the touch object, and the second piezoelectric electret layer 2 is for detecting a contact signal of the touch object.
  • the signal detecting sensing structure provided by this embodiment can be worn, for example, on artificial skin of a prosthetic or robot hand, and the operation of the prosthetic body on the touch object is, for example, a sliding operation and a pressing operation.
  • the pressing operation is mainly a static force, and the pressing operation can be obtained by detecting the pressure of the contact surface of the prosthetic body with the touch object.
  • the sliding operation is mainly dynamic force. For the sliding operation, the prosthetic skin and the touching object seem smooth, but the microstructure There are a large number of tiny peaks distributed in the middle, and when the two slide relative to each other, micro-vibration is generated, and the sliding operation can be obtained by detecting the vibration of the micro-convex peak.
  • the signal detecting and sensing structure provided in this embodiment uses a piezoelectric electret, and the microporous structure in which the electric charge (dipole) is stored inside the piezoelectric electret is deformed by an external force (static force, dynamic force).
  • an external force static force, dynamic force
  • the electric dipole moment is changed, the charge is changed, and the corresponding electric charge or voltage signal is externally displayed, so that the sliding operation and the pressing operation between the prosthesis and the touch object can be detected.
  • a side surface of the first piezoelectric electret layer 1 of the signal detecting and sensing structure that is away from the second piezoelectric electret layer 2 includes a plurality of protruding structures 3 when the first pressure is applied.
  • the first piezoelectric electret layer 1 When the side surface of the electric electret layer 1 away from the second piezoelectric electret layer 2 and the touch object are relatively slid, the first piezoelectric electret layer 1 can detect the micro-vibration caused by the sliding, and thus can be detected. Sliding signal.
  • the first piezoelectric electret layer 1 in the signal detecting sensing structure worn on the prosthesis transmits pressure to the second piezoelectric electret layer 2, and the first piezoelectric electret layer 1 And the second piezoelectric electret layer 2 can detect the contact signal.
  • the first piezoelectric electret layer 1 can detect the sliding signal and the contact signal, and transmit the pressure to the first
  • the bi-electrode electret layer 2 causes the second piezoelectric electret layer 2 to detect a contact signal.
  • the signal detecting and sensing structure provided in this embodiment includes a laminated structure of a first piezoelectric electret layer 1 and a second piezoelectric electret layer 2, which not only realizes a single sensing unit pair contact signal and Simultaneous detection of the sliding signal, and the quality of the first piezoelectric electret layer and the second piezoelectric electret layer in this embodiment with respect to the capacitive, resistive, piezoelectric and friction sensors of the related art
  • first piezoelectric electret layer and the second piezoelectric electret layer have high sensitivity, good linearity, substantially no pyroelectric effect, and are substantially unaffected by temperature changes in the operating temperature range, contact can be achieved.
  • the high-precision detection of the signal and the sliding signal, and the signal detection sensing structure provided by the embodiment is simple, so the preparation process is simple, the cost is low, and the application potential is very large.
  • the first piezoelectric electret layer 1 and the second piezoelectric electret layer 2 have a microporous structure 4 therein, optionally, the second piezoelectric electret layer shown in FIG.
  • the cross-sectional shape of the microporous structure 4 of 2 is elliptical, and the cross-sectional shape of the microporous structure 4 in the first piezoelectric electret layer 1 shown in FIG. 1 is set to a half elliptical shape, optionally,
  • the cross-sectional shape of the microporous structure 4 in the piezoelectric electret layer 1 and the second piezoelectric electret layer 2 includes at least one of a circular shape, an elliptical shape, and a polygonal shape.
  • the microporous structures 4 of the first piezoelectric electret layer 1 and the second piezoelectric electret layer 2 may be the same or different, and may be determined according to actual preparation conditions, raw materials, and the like.
  • the material of the first piezoelectric electret layer 1 comprises at least one of a fluorinated ethylene propylene copolymer and a polytetrafluoroethylene.
  • the material of the second piezoelectric electret layer 2 comprises at least one of polypropylene, polyethylene terephthalate, and polyethylene naphthalate.
  • the first piezoelectric electret layer 1 is laminated and adhered to the second piezoelectric electret layer 2 through the adhesive layer 5 by a bonding, hot pressing or melting process, which not only ensures that when the touch object is pressed, The pressure can be transmitted from the first piezoelectric electret layer 1 to the second piezoelectric electret layer 2 without distortion, and the flexibility of the signal sensing sensing structure as a whole can be prevented.
  • the signal detecting and sensing structure further includes: a signal processing module 6, as shown in FIG. 2, FIG. 2 is a processing module 6 and a first piezoelectric electret layer 1 of the signal detecting sensing structure provided by an embodiment.
  • An insulating adhesive layer 5 is interposed between the first piezoelectric electret layer 1 and the second piezoelectric electret layer 2 to serve both adhesion and insulation of the second electrode 8 and the third electrode 9. effect.
  • the adhesive layer 5 is a flexible film material, which does not affect the overall flexibility of the sensing structure, and can transmit the pressure signal from the first piezoelectric electret layer 1 to the second piezoelectric electret layer 2.
  • a first electrode 7 is disposed on a side of the first piezoelectric electret layer 1 away from the second piezoelectric electret layer 2, and the first piezoelectric electret layer 1 is adjacent to the second piezoelectric electret layer 2 a second electrode 8 is disposed on the side; a third electrode 9 is disposed on a side of the second piezoelectric electret layer 2 adjacent to the first piezoelectric electret layer 1, and the second electrode 8 and the third electrode 9 are insulated from each other.
  • the fourth electrode 10 is disposed on a side of the second piezoelectric electret layer 2 away from the first piezoelectric electret layer 1.
  • the first electrode 7, the second electrode 8, the third electrode 9, and the fourth electrode 10 may be, for example, a thin metal electrode layer including a conductive material such as aluminum, silver, and gold, and the metal electrode layer is prepared by evaporative deposition and magnetic Control sputtering and other methods.
  • the signal processing module 6 is electrically connected to the first electrode 7, the second electrode 8, the third electrode 9, and the fourth electrode 10, respectively, for calculating at least one of a contact signal and a sliding signal of the touch object.
  • first piezoelectric electret layer 1 and the second piezoelectric electret layer 2 may share one signal processing module, and may also be used for the first piezoelectric electret 1 and the second piezoelectric electret 2 Set a signal processing module separately, here the first case is taken as an example.
  • the signal processing module is configured with a first signal end, a first ground end, a second signal end, and a second ground end.
  • the first signal end is electrically connected to the first electrode 7 and is configured to acquire a contact signal of the touch object and At least one of the sliding signals, the first grounding end is electrically connected to the second electrode 8, and is configured to achieve electromagnetic shielding to reduce other external signal interference;
  • the second signal end is electrically connected to the third electrode 9, and is set to acquire touch Touching the contact signal of the object, the second grounding end is electrically connected to the fourth electrode 10, and is arranged to realize electromagnetic shielding to reduce other external signal interference.
  • connection between the first signal end and the first ground end and the first electrode 7 and the second electrode 8 and the second signal end and the second ground end and the third electrode 9 and the fourth electrode 10 may be The first signal end is electrically connected to the second electrode 8. The first ground end is connected to the first electrode 7. The second signal end is electrically connected to the fourth electrode 10. The second ground end is electrically connected to the third electrode 9.
  • FIG. 3 is a flow chart of a method for fabricating the signal detection sensing structure provided by an embodiment, as shown in FIG. 3, including:
  • step 110 a second piezoelectric electret layer is provided.
  • step 120 an adhesive layer is attached to one side of the second piezoelectric electret layer.
  • step 130 a first piezoelectric electret layer is provided, and the first piezoelectric electret layer is laminated and bonded to the second piezoelectric electret layer through the adhesive layer.
  • a side surface of the first piezoelectric electret layer away from the second piezoelectric electret layer includes a plurality of convex structures; and the second piezoelectric electret layer is adjacent to the first piezoelectric electret layer.
  • One side surface is a smooth surface; the first piezoelectric electret layer is for detecting at least one of a contact signal and a sliding signal of the touch object, and the second piezoelectric electret layer is for detecting a contact signal of the touch object.
  • At least one of the first piezoelectric electret layer and the second piezoelectric electret layer is formed by a puffing method, a template method or an etching method.
  • the first piezoelectric electret layer is laminated and bonded on the second piezoelectric electret layer through the adhesive layer by a bonding, hot pressing or melting process, thereby not only ensuring the contact signal from the first piezoelectric resident.
  • the transfer of the polar body layer to the second piezoelectric electret layer is not distorted, and the flexibility of the signal sensing sensing structure as a whole may not be damaged.
  • FIG. 4 is a flow chart of a signal detection method for the signal detection sensing structure provided by an embodiment. As shown in FIG. 4, the method includes:
  • step 210 a first signal detected by the first piezoelectric electret and a second signal detected by the second piezoelectric electret layer are acquired.
  • step 220 at least one of a touch signal and a sliding signal of the touch object is determined according to the first signal, and the contact signal of the touch object is determined according to the second signal.
  • the signal detecting method of the signal detecting and sensing structure can perform signal detection on the signal detecting sensing structure worn on the prosthesis, for example, the operation of the prosthesis on the touch object, for example, a sliding operation and a pressing operation.
  • the pressing operation is mainly a static force, and the pressing operation can be obtained by detecting the pressure of the contact surface of the prosthetic hand with the touching object.
  • the sliding operation is mainly dynamic force, for sliding operation, Prosthetic skin and touching objects appear to be smooth, but there are a large number of tiny peaks distributed in the microstructure. When the two slide relative to each other, micro-vibration is generated, and the sliding operation can be obtained by detecting the vibration of the micro-convex peak.
  • the signal detecting method of the signal detecting and sensing structure provided by this embodiment is based on the characteristics of the piezoelectric electret, and the microporous structure of the electric charge (dipole) stored in the piezoelectric electret is external force (static force, dynamic force). Under the action of the deformation, the electric dipole moment is changed, the charge is changed, and the corresponding electric charge or voltage signal is displayed, so that the sliding operation and the pressing operation between the prosthesis and the touch object can be detected. Referring to FIG.
  • a signal detecting method for a signal detecting sensing structure includes a side surface of a first piezoelectric electret layer 1 remote from the second piezoelectric electret layer 2 including a plurality of convex structures 3 .
  • the first piezoelectric electret layer 1 can detect the micro-vibration caused by the sliding, Therefore, the sliding signal can be detected, and the detected sliding signal is used as the first signal.
  • the first piezoelectric electret layer 1 in the signal detecting sensing structure worn on the prosthesis transmits the pressure to the second
  • the piezoelectric electret layer 2 the first piezoelectric electret layer 1 and the second piezoelectric electret layer 2 can both detect the contact signal and use the detected contact signal as the second signal.
  • the first piezoelectric electret layer 1 can detect the sliding signal and the contact signal, and transmit the pressure to the first
  • the second piezoelectric electret layer 2 causes the second piezoelectric electret layer 2 to detect the contact signal, the detected sliding signal as the first signal, and the detected contact signal as the second signal.
  • the signal detecting method of the signal detecting and sensing structure first obtains the first signal detected by the first piezoelectric electret and the second signal detected by the second piezoelectric electret layer, and then determines the touch according to the first signal. At least one of a contact signal and a sliding signal of the object, determining a contact signal of the touch object according to the second signal, achieving simultaneous detection of the contact secondary signal and the sliding signal, and furthermore, the first piezoelectric electret layer and the second piezoelectric layer
  • the electret layer has high sensitivity, good linearity, no pyroelectric effect, and is not affected by temperature changes within the operating temperature range, so high-precision detection of contact signals and sliding signals can be achieved.
  • the first signal is a contact signal of the touch object
  • the first signal is a sliding signal of the touch object ;
  • the second signal is a contact signal of the touch object.
  • the separation of the detected contact signal and the sliding signal can also be achieved by the above method. If the number of signal peaks of the first signal detected by the first piezoelectric electret is equal to 1, and the amplitude of the signal peak is greater than the first preset value, then the first signal has only one isolated signal peak, and the signal peak The amplitude is relatively large, that is, only the contact signal exists in the first signal, and the first signal is determined as the contact signal of the touch object.
  • the first signal is a series of irregular small vibrations, and there are multiple signal peaks, and the amplitude of the signal peaks is small, that is, only the sliding signal exists in the first signal, and the first signal is determined as the sliding of the touch object. signal.
  • the second piezoelectric electret layer can only detect the contact signal, no signal separation is needed, and only when the number of signal peaks of the second signal is equal to 1 and the amplitude of the signal peak is greater than the first preset value, The second signal is determined to be a contact signal of the touch object.
  • the difference between the absolute value of the first signal and the absolute value of the second signal is used as the third signal, and the third The signal is determined to be a sliding signal of the touch object;
  • the second signal is determined to be a contact signal of the touch object.
  • the contact signal exists in the first signal, and Sliding signal.
  • the second signal detected by the second piezoelectric electret layer is a contact signal, and the contact signal detected by the second piezoelectric electret layer is transmitted by the first piezoelectric electret layer, and the two are detected.
  • the amplitude of the contact signal is equal.
  • the absolute value of the first signal is compared with the absolute value of the second signal to remove the first
  • the contact signal in the signal the difference is used as the third signal
  • the third signal is the sliding signal of the touch object.
  • the signal detection method of the signal detection sensing structure provided by this embodiment further includes:
  • the first signal has only one isolated signal peak, and the amplitude of the signal peak is larger, that is, the first A signal only has a contact signal, and because the signal peak of the first signal is greater than 0, the touch object is in a gradual contact process; if the number of signal peaks of the first signal changes from 1 to 0, the first signal is The changing signal output becomes no signal output, that is, the touch object changes from the gradual contact state to the grip state; if the signal peak number of the first signal is equal to 1 and the amplitude of the signal peak is greater than the first preset value, then the first There is only one isolated signal peak in a signal, and the amplitude of the signal peak is relatively large, that is, the first signal only has a contact signal, and since the signal peak of the first signal is less than 0, the touch object is in a disengaged state.
  • the signal detection method of the signal detection sensing structure provided by this embodiment further includes:
  • the second signal has only one isolated signal peak, and the amplitude of the signal peak is relatively large, that is, the first The second signal is the contact signal, and because the signal peak of the second signal is greater than 0, the touch object is in the process of gradually contacting; if the number of signal peaks of the second signal is changed from 1 to 0, the second signal is The changing signal output becomes no signal output, that is, the touch object changes from the gradual contact state to the grip state; if the signal peak number of the second signal is equal to 1 and the amplitude of the signal peak is greater than the first preset value, then the description There is only one isolated signal peak in the two signals, and the amplitude of the signal peak is relatively large, that is, the second signal is the contact signal, and because the signal peak of the second signal is less than 0, the touch object is in the disengaged state.
  • the embodiment further provides a computer program product comprising a computer program stored on a non-transitory computer readable storage medium, the computer program comprising program instructions, when the program instructions are executed by a computer Having the computer perform any of the methods described above.
  • the embodiment further provides a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the signal detecting method of the signal detecting and sensing structure first obtains the first signal detected by the first piezoelectric electret and the second signal detected by the second piezoelectric electret layer, and then determines the touch according to the first signal.
  • the contact signal and/or the sliding signal of the object determine the contact signal of the touch object according to the second signal, and realize simultaneous detection of the contact secondary signal and the sliding signal, and furthermore, the first piezoelectric electret layer and the second piezoelectric resident
  • the polar body layer has high sensitivity, good linearity, basically no pyroelectric effect, and is basically not affected by temperature changes in the operating temperature range, so high-precision detection of contact signals and sliding signals can be achieved.
  • the signal detecting method provided in this embodiment provides a method for separating the contact signal and the sliding signal in the first signal according to the characteristics of the contact signal and the sliding signal, and can determine that the signal detecting sensing structure is worn by the present invention.
  • the grasping state of the prosthetic hand such as judging whether the touch object is in a gradual contact state, a gripping state or a disengagement state, realizes the practical application of the novel sensing unit.
  • the signal detection sensing structure of the present disclosure has a simpler structure and higher detection accuracy for contact signals and sliding signals.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种信号检测传感结构,包括:第一压电驻极体层(1)、第二压电驻极体层(2)以及位于第一压电驻极体层(1)和第二压电驻极体层(2)之间的粘合层(5);第一压电驻极体层(1)远离第二压电驻极体层(2)的一侧表面包括多个凸起结构(3);第二压电驻极体层(2)临近第一压电驻极体层(1)的一侧表面为平滑表面;第一压电驻极体层(1)设置为检测触摸物体的接触信号和滑动信号中的至少一个,第二压电驻极体层(2)设置为检测触摸物体的接触信号。

Description

信号检测传感结构及其制作方法、信号检测方法 技术领域
本公开涉及信号检测技术,例如涉及一种信号检测传感结构及其制作方法、信号检测方法。
背景技术
与手部功能相关的感觉主要包括接触、压力、位置、滑动以及温度等。调查显示,接触、抓握等比较重要,在研究中我们也发现,“接触”和“滑动”是假肢手最重要的两类感觉信息,存在于绝大多数假肢手动作中(“挥手”等除外),是实现安全可靠抓握的关键。触滑信号可通过分析假肢手与物体之间的相互作用力得出,通常来说,“接触”信号主要是静态力,而“滑动”信号主要是动态力。
常见的静态力传感器有电容式和电阻式传感器。电容式传感器通过测量平行板之间的电容变化来测量压力,但其电路复杂,受电磁干扰大。电阻式传感器包括压阻式和接触电阻式,通过测量材料电阻率变化来测量压力,但其灵敏度和信号稳定性受到一定限制。此外,还可使用应变片等方法检测假肢手感觉信号,但也存在结构复杂、灵敏度低等不足。
常见的动态力传感器有压电式和摩擦电式传感器。这两类传感器制备工艺较高,且压电材料的信号受温度影响,在抓握较热或较冷物体时,温度变化干扰感觉信号的检测。此外,多个电阻式传感器构成的阵列,也能用于检测滑动信号,还有光电式、声电式、电磁式等传感器,通过间接的方式获取信号,但均存在结构复杂、制作难度大、可靠性低、精度难以保证等缺点。
可利用聚偏乙烯等压电薄膜能够同时检测接触信号和滑动信号,但信号分离难度较大,使得两种信号的检测精度都较低。
发明内容
本公开提供一种信号检测传感结构及其制作方法、信号检测方法,实现了单一传感单元对接触信号和滑动信号的同时检测,提高了接触信号和滑动信号的检测精度。
本公开提供了一种信号检测传感结构,包括:第一压电驻极体层、第二压 电驻极体层以及位于所述第一压电驻极体层和所述第二压电驻极体层之间的粘合层;所述第一压电驻极体层远离所述第二压电驻极体层的一侧表面包括多个凸起结构;所述第二压电驻极体层临近所述第一压电驻极体层的一侧表面为平滑表面;所述第一压电驻极体层用于检测触摸物体的接触信号和滑动信号中至少一个,所述第二压电驻极体层用于检测触摸物体的接触信号。
可选地,所述第一压电驻极体层以及所述第二压电驻极体层内具有微孔结构,所述微孔结构的截面形状包括圆形、椭圆形以及多边形中的至少一种。
可选地,所述第一压电驻极体层的材料包括氟化乙烯丙烯共聚物以及聚四氟乙烯中的至少一种。
可选地,所述第二压电驻极体层的材料包括聚丙烯、聚对苯二甲酸乙二醇酯以及聚萘二甲酸乙二醇酯中的至少一种。
可选地,采用粘贴、热压或熔融工艺将所述第一压电驻极体层通过所述粘合层层叠粘合在所述第二压电驻极体层上。
可选地,所述信号检测传感结构还包括:信号处理模块;所述第一压电驻极体层远离所述第二压电驻极体层的一侧设置有第一电极,所述第一压电驻极体层靠近所述第二压电驻极体层的一侧设置有第二电极;所述第二压电驻极体层靠近所述第一压电驻极体层的一侧设置有第三电极,所述第二电极和所述第三电极相互绝缘设置,所述第二压电驻极体层远离所述第一压电驻极体层的一侧设置有第四电极;所述信号处理模块分别与所述第一电极、所述第二电极、所述第三电极、以及所述第四电极电连接,用于计算触摸物体的接触信号和滑动信号中至少一个。
本公开还提供了一种如上述的信号检测传感结构的制作方法,包括:提供一第二压电驻极体层;在所述第二压电驻极体层一侧贴附粘合层;提供一第一压电驻极体层,并将所述第一压电驻极体层通过所述粘合层层叠粘合在所述第二压电驻极体层上;其中,所述第一压电驻极体层远离所述第二压电驻极体层的一侧表面包括多个凸起结构;所述第二压电驻极体层临近所述第一压电驻极体层的一侧表面为平滑表面;所述第一压电驻极体层用于检测触摸物体的接触信号和滑动信号中至少一个,所述第二压电驻极体层用于检测触摸物体的接触信号。
可选地,所述第一压电驻极体层和所述第二压电驻极体层采用膨化法、模板法或刻蚀法形成。
可选地,采用粘贴、热压或熔融工艺将所述第一压电驻极体层通过所述粘合层层叠粘合在所述第二压电驻极体层上。
本公开还提供了一种如上述的信号检测传感结构的信号检测方法,包括:获取第一压电驻极体层检测的第一信号以及第二压电驻极体层检测的第二信号;根据所述第一信号确定触摸物体的接触信号和滑动信号中至少一个,根据所述第二信号确定触摸物体的接触信号。
可选地,所述根据所述第一信号检测触摸物体的接触信号和滑动信号中至少一个,根据所述第二信号检测触摸物体的接触信号;包括:若所述第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,则确定所述第一信号为触摸物体的接触信号;若所述第一信号的信号峰的数量大于1,且所述信号峰的幅值均小于第一预设值,且在所述第一信号的信号方差小于第二阈值时,确定所述第一信号为触摸物体的滑动信号;若所述第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,则确定所述第二信号为触摸物体的接触信号。
可选地,所述根据所述第一信号检测触摸物体的接触信号和滑动信号中至少一个,根据所述第二信号检测触摸物体的接触信号;包括:若所述第一信号的信号峰的数量大于1且所述其中一信号峰的幅值大于第一预设值,将所述第一信号的绝对值与所述第二信号的绝对值的差作为第三信号,将所述第三信号确定为触摸物体的滑动信号;将所述第二信号确定为触摸物体的接触信号。
可选地,若所述第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第一信号的信号峰值大于0,则判定触摸物体为逐渐接触状态;若所述第一信号的信号峰的数量从1变为0,则判定触摸物体为从逐渐接触状态变为握紧状态;若所述第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第一信号的信号峰值小于0,则判定触摸物体为脱离接触状态。
可选地,若所述第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第二信号的信号峰值大于0,则判定触摸物体为逐渐接触状态;若所述第二信号的信号峰的数量从1变为0,则判定触摸物体为从逐渐接触状态变为握紧状态;若所述第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第二信号的信号峰值小于0,则判定触摸物体为脱离接触状态。
本公开还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任意一种方法。
本公开还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本公开的信号检测传感结构简单、灵敏度高且基本无热释电效应,在工作温度范围内基本不受温度变化影响,可以实现对接触信号和滑动信号的高精度检测。
附图说明
图1是一实施例提供的一种信号检测传感结构示意图。
图2是一实施例提供的信号检测传感结构的处理模块与第一压电驻极体层和第二压电驻极体层连接示意图。
图3是一实施例提供的信号检测传感结构的制作方法流程图。
图4是一实施例提供的信号检测传感结构的信号检测方法流程图。
图5是一实施例提供的信号检测传感结构检测的接触信号输出示意图。
图6是一实施例提供的信号检测传感结构检测的滑动信号输出示意图。
具体实施方式
图1为一实施例提供的一种信号检测传感结构示意图,如图1所示的信号检测传感结构,包括:第一压电驻极体层1、第二压电驻极体层2以及位于第一压电驻极体层1和第二压电驻极体层2之间的粘合层5;粘合层5将第一压电驻极体层1和第二压电驻极体层2层叠粘合。第一压电驻极体层1远离第二压电驻极体层2的一侧表面包括多个凸起结构3;第二压电驻极体层2临近第一压电驻极体层1的一侧表面为平滑表面;第一压电驻极体层1用于检测触摸物体的接触信号和滑动信号中至少一个,第二压电驻极体层2用于检测触摸物体的接触信号。
本实施例提供的信号检测传感结构例如可以佩戴在假肢或机器手的人造皮肤上,假肢对触摸物体的操作例如有滑动操作和按压操作等。按压操作主要是静态力,对于按压操作可通过检测假肢与触摸物体接触面的压力得到。滑动操作主要是动态力,对于滑动操作,假肢皮肤和触摸物体看似光滑,但微观结构 中分布有大量微小凸峰,在二者发生相对滑动时,会产生微振动,滑动操作可通过检测微凸峰的振动得到。本实施例提供的信号检测传感结构使用压电驻极体,压电驻极体内部储存有电荷(偶极子)的微孔结构在外力(静态力、动态力)的作用下会产生形变,从而改变电偶极矩,补偿电荷发生变化,对外表现出相应的电荷或电压信号,因此可以检测假肢与触摸物体之间的滑动操作和按压操作等。参见图1,本实施例提供的信号检测传感结构的第一压电驻极体层1远离第二压电驻极体层2的一侧表面包括多个凸起结构3,当第一压电驻极体层1远离第二压电驻极体层2的一侧表面与触摸物体之间发生相对滑动时,第一压电驻极体层1可以检测滑动引起的微振动,因此可以检测滑动信号。当假肢按压触摸物体时,假肢上佩戴的信号检测传感结构中的第一压电驻极体层1将压力传递至第二压电驻极体层2,第一压电驻极体层1以及第二压电驻极体层2均可检测到接触信号。当佩戴有信号检测传感结构的假肢对触摸物体之间既具有滑动触摸又具有用力按压操作时,第一压电驻极体层1可以检测到滑动信号和接触信号,并将压力传递至第二压电驻极体层2以使第二压电驻极体层2检测到接触信号。
本实施例提供的信号检测传感结构包括第一压电驻极体层1和第二压电驻极体层2的叠层结构,该叠层结构不仅实现了单一传感单元对接触信号和滑动信号的同时检测,而且相对于相关技术中的电容式、电阻式、压电式和摩擦式传感器,本实施例中的第一压电驻极体层和第二压电驻极体层质量轻、厚度薄、柔软可弯折,具有一定伸缩性,因此能够较容易的嵌入到假肢手的人造皮肤表面。此外由于第一压电驻极体层和第二压电驻极体层灵敏度高、线性度好、基本无热释电效应、在工作温度范围内基本不受温度变化影响,因此可以实现对接触信号和滑动信号的高精度检测,并且本实施例提供的信号检测传感结构简单,因此制备工艺简单,成本低廉,应用潜力非常大。
可选的,第一压电驻极体层1以及所述第二压电驻极体层2内具有微孔结构4,可选地,图1中所示的第二压电驻极体层2的微孔结构4的截面形状为椭圆形,图1中所示的第一压电驻极体层1中的微孔结构4的截面形状设置成半个椭圆的形状,可选地,第一压电驻极体层1以及所述第二压电驻极体层2中的微孔结构4的截面形状包括圆形、椭圆形以及多边形中的至少一种。可选地,第一压电驻极体层1和第二压电驻极体层2的微孔结构4可以相同也可以不同,可以根据实际的制备条件、原材料等因素确定。
可选的,第一压电驻极体层1的材料包括氟化乙烯丙烯共聚物以及聚四氟乙烯中的至少一种。可选的,第二压电驻极体层2的材料包括聚丙烯、聚对苯二甲酸乙二醇酯以及聚萘二甲酸乙二醇酯中的至少一种。
可选的,采用粘贴、热压或熔融工艺将第一压电驻极体层1通过粘合层5层叠粘合在第二压电驻极体层2上,不仅可以保证按压触摸物体时,压力可以从第一压电驻极体层1传递至第二压电驻极体层2不失真,而且还可以不破坏信号检测传感结构整体的柔韧度。
可选的,信号检测传感结构还包括:信号处理模块6,如图2所示,图2为一实施例提供的信号检测传感结构的处理模块6与第一压电驻极体层1和第二压电驻极体层2的连接示意图,可选地,图2为了清楚的描述处理模块6与第一压电驻极体层1和第二压电驻极体层2的电连接关系,将第一压电驻极体层1和第二压电驻极体层2分开展示,但第一压电驻极体1和第二压电驻极体2实际上是层叠粘合在一起的。第一压电驻极体层1和第二压电驻极体层2之间是绝缘的粘合层5,既起到粘合作用,又起到绝缘第二电极8和第三电极9的作用。该粘合层5为柔性薄膜材料,不影响传感结构整体的柔性,又能将压力信号较好地由第一压电驻极体层1传递至第二压电驻极体层2。第一压电驻极体层1远离第二压电驻极体层2的一侧设置有第一电极7,第一压电驻极体层1靠近第二压电驻极体层2的一侧设置有第二电极8;第二压电驻极体层2靠近第一压电驻极体层1的一侧设置有第三电极9,第二电极8和第三电极9相互绝缘设置,第二压电驻极体层2远离第一压电驻极体层1的一侧设置有第四电极10。第一电极7、第二电极8、第三电极9和第四电极10例如可以是较薄的金属电极层,包括铝、银及金等导电材料,金属电极层的制备方法包括蒸发沉积和磁控溅射等方法。信号处理模块6分别与第一电极7、第二电极8、第三电极9以及第四电极10电连接,用于计算触摸物体的接触信号和滑动信号中至少一个。
可选的,第一压电驻极体层1和第二压电驻极体层2可以共用一个信号处理模块,也可以给第一压电驻极体1和第二压电驻极体2分别设置一个信号处理模块,此处以第一种情况为例。
可选的,信号处理模块设置有第一信号端、第一接地端、第二信号端及第二接地端,第一信号端与第一电极7电连接,设置为获取触摸物体的接触信号和滑动信号中至少一个,第一接地端与第二电极8电连接,设置为实现电磁屏蔽,减少外界其它信号干扰;第二信号端与第三电极9电连接,设置为获取触 摸物体的接触信号,第二接地端与第四电极10电连接,设置为实现电磁屏蔽,减少外界其它信号干扰。可选地,第一信号端和第一接地端与第一电极7和第二电极8及第二信号端和第二接地端与第三电极9和第四电极10之间的连接,可以是第一信号端与第二电极8电连接,第一接地端与第一电极电7连接,第二信号端与第四电极10电连接,第二接地端与第三电极9电连接。
本实施例还提供了如上述的信号检测传感结构的制作方法,图3为一实施例提供的信号检测传感结构的制作方法流程图,如图3所示,包括:
在步骤110中,提供一第二压电驻极体层。
在步骤120中,在所述第二压电驻极体层一侧贴附粘合层。
在步骤130中,提供一第一压电驻极体层,并将第一压电驻极体层通过所述粘合层层叠粘合在第二压电驻极体层上。
可选的,第一压电驻极体层远离第二压电驻极体层的一侧表面包括多个凸起结构;第二压电驻极体层临近第一压电驻极体层的一侧表面为平滑表面;第一压电驻极体层用于检测触摸物体的接触信号和滑动信号中至少一个,第二压电驻极体层用于检测触摸物体的接触信号。
可选的,第一压电驻极体层和第二压电驻极体层中至少一个采用膨化法、模板法或刻蚀法形成。
可选的,采用粘贴、热压或熔融工艺将第一压电驻极体层通过粘合层层叠粘合在第二压电驻极体层上,不仅可以保证接触信号从第一压电驻极体层传递至第二压电驻极体层不失真,而且还可以不破坏信号检测传感结构整体的柔韧度。
本实施例还提供了如上述的信号检测传感结构的信号检测方法,图4为一实施例提供的信号检测传感结构的信号检测方法流程图,如图4所示,包括:
在步骤210中,获取第一压电驻极体检测的第一信号以及第二压电驻极体层检测的第二信号。
在步骤220中,根据第一信号确定触摸物体的接触信号和滑动信号中至少一个,根据第二信号确定触摸物体的接触信号。
可选的,本实施例提供的信号检测传感结构的信号检测方法例如可以对佩戴在假肢上的信号检测传感结构进行信号检测,假肢对触摸物体的操作例如有滑动操作和按压操作等。按压操作主要是静态力,对于按压操作可通过检测假肢手与触摸物体接触面的压力得到。滑动操作主要是动态力,对于滑动操作, 假肢皮肤和触摸物体看似光滑,但微观结构中分布有大量微小凸峰,在二者发生相对滑动时,会产生微振动,滑动操作可通过检测微凸峰的振动得到。本实施例提供的信号检测传感结构的信号检测方法根据压电驻极体的特性,压电驻极体内部储存有电荷(偶极子)的微孔结构在外力(静态力、动态力)的作用下会产生形变,从而改变电偶极矩,补偿电荷发生变化,对外表现出相应的电荷或电压信号,因此可以检测假肢与触摸物体之间的滑动操作和按压操作等。参见图1,本实施例提供的信号检测传感结构的信号检测方法第一压电驻极体层1远离第二压电驻极体层2的一侧表面包括多个凸起结构3,当第一压电驻极体层1远离第二压电驻极体层2的一侧表面与触摸物体之间发生相对滑动时,第一压电驻极体层1可以检测滑动引起的微振动,因此可以检测滑动信号,将检测的该滑动信号作为第一信号,当假肢按压触摸物体时,假肢上佩戴的信号检测传感结构中的第一压电驻极体层1将压力传递至第二压电驻极体层2,第一压电驻极体层1以及第二压电驻极体层2均可检测到接触信号,将检测的接触信号作为第二信号。当佩戴有信号检测传感结构的假肢对触摸物体之间既具有滑动触摸又具有用力按压操作时,第一压电驻极体层1可以检测到滑动信号和接触信号,并将压力传递至第二压电驻极体层2以使第二压电驻极体层2检测到接触信号,将检测的滑动信号作为第一信号,检测的接触信号作为第二信号。
本实施例提供的信号检测传感结构的信号检测方法首先获取第一压电驻极体检测的第一信号以及第二压电驻极体层检测的第二信号,然后根据第一信号确定触摸物体的接触信号和滑动信号中至少一个,根据第二信号确定触摸物体的接触信号,实现了对接触次信号和滑动信号的同时检测,此外由于第一压电驻极体层和第二压电驻极体层灵敏度高、线性度好、基本无热释电效应、在工作温度范围内基本不受温度变化影响,因此可以实现对接触信号和滑动信号的高精度检测。
图5为本实施例提供的信号检测传感结构检测的接触信号输出示意图,如图5所示,在接触物体时,接触信号的信号输出为一个孤立的信号峰,且信号峰的幅值比较大。图6是本实施例提供的信号检测传感结构检测的滑动信号输出示意图,如图6所示,滑动信号的信号输出为一系列不规则的微小振动,存在多个信号峰,且信号峰的幅值都较小。因此,可以设置第一阈值和第二阈值,根据信号峰的数量及信号峰的幅值与第一阈值比较、信号的方差与第二阈值比较来区分接触信号和滑动信号。
可选的,根据第一信号检测触摸物体的接触信号和滑动信号中至少一个,根据第二信号检测触摸物体的接触信号;包括:
若第一信号的信号峰的数量等于1且信号峰的幅值大于第一预设值,则确定第一信号为触摸物体的接触信号;
若第一信号的信号峰的数量大于1,且信号峰的幅值均小于第一预设值,且在第一信号的信号方差小于第二阈值时,确定第一信号为触摸物体的滑动信号;
若第二信号的信号峰的数量等于1且信号峰的幅值大于第一预设值,则确定所述第二信号为触摸物体的接触信号。
由于第一压电驻极体层既可以检测接触信号又可以检测滑动信号,因此本实施例通过上述方法还可实现对检测到的接触信号以及滑动信号的分离。若第一压电驻极体检测的第一信号的信号峰的数量等于1,且信号峰的幅值大于第一预设值,那么说明第一信号只存在一个孤立的信号峰,且信号峰的幅值比较大,即第一信号中只存在接触信号,此时将第一信号确定为触摸物体的接触信号。若第一信号的信号峰的数量大于1,且信号峰的幅值均小于第一预设值,说明第一信号中不存在接触信号,若第一信号的信号方差小于第二阈值,那么说明第一信号为一系列不规则的微小振动,存在多个信号峰,且信号峰的幅值都较小,即第一信号中只存在滑动信号,此时将第一信号确定为触摸物体的滑动信号。由于第二压电驻极体层只能检测接触信号,因此无需进行信号分离,只需在第二信号的信号峰的数量等于1且信号峰的幅值大于第一预设值时,即可确定第二信号为触摸物体的接触信号。
可选的,根据第一信号检测触摸物体的接触信号和滑动信号中至少一个,根据第二信号检测触摸物体的接触信号;包括:
若第一信号的信号峰的数量大于1且其中一信号峰的幅值大于第一预设值,将第一信号的绝对值与第二信号的绝对值的差作为第三信号,将第三信号确定为触摸物体的滑动信号;
将第二信号确定为触摸物体的接触信号。
若第一压电驻极体检测的第一信号的信号峰的数量大于1,且其中一信号峰的幅值均大于第一预设值,那么说明第一信号中既存在接触信号,又存在滑动信号。由于第二压电驻极体层检测的第二信号为接触信号,且第二压电驻极体层检测到的接触信号是由第一压电驻极体层传递的,两者检测到的接触信号幅值相等,可选的,将第一信号的绝对值与第二信号的绝对值做差便可去除第一 信号中的接触信号,该差值作为第三信号,第三信号便为触摸物体的滑动信号。
可选的,本实施例提供的信号检测传感结构的信号检测方法还包括:
若第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,第一信号的信号峰值大于0,则判定触摸物体为逐渐接触状态;
若第一信号的信号峰的数量从1变为0,则判定触摸物体为从逐渐接触状态变为握紧状态;
若第一信号的信号峰的数量等于1且信号峰的幅值大于第一预设值,第一信号的信号峰值小于0,则判定触摸物体为脱离接触状态。
若第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,那么说明第一信号只存在一个孤立的信号峰,且信号峰的幅值较大,即第一信号只存在接触信号,又因为第一信号的信号峰值大于0,则说明触摸物体是处于逐渐接触的过程;若第一信号的信号峰的数量从1变为0,则说明第一信号从不断变化的信号输出变为无信号输出,即触摸物体从逐渐接触状态变为握紧状态;若第一信号的信号峰数量等于1且信号峰的幅值大于第一预设值,则说明第一信号只存在一个孤立的信号峰,且信号峰的幅值比较大,即第一信号只存在接触信号,又因为第一信号的信号峰值小于0,则说明触摸物体为脱离接触状态。
可选的,本实施例提供的信号检测传感结构的信号检测方法还包括:
若第二信号的信号峰的数量等于1且信号峰的幅值大于第一预设值,第二信号的信号峰值大于0,则判定触摸物体为逐渐接触状态;
若第二信号的信号峰的数量从1变为0,则判定触摸物体为从逐渐接触状态变为握紧状态;
若第二信号的信号峰的数量等于1且信号峰的幅值大于第一预设值,第二信号的信号峰值小于0,则判定触摸物体为脱离接触状态。
若第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,那么说明第二信号只存在一个孤立的信号峰,且信号峰的幅值比较大,即第二信号为接触信号,又因为第二信号的信号峰值大于0,则说明触摸物体是处在逐渐接触的过程;若第二信号的信号峰的数量从1变为0,则说明第二信号从不断变化的信号输出变为无信号输出,即触摸物体从逐渐接触状态变为握紧状态;若第二信号的信号峰数量等于1且信号峰的幅值大于第一预设值,则说明第二信号只存在一个孤立的信号峰,且信号峰的幅值比较大,即第二信号为接触信号,又因为第二信号的信号峰值小于0,则说明触摸物体为脱离接触状态。
本实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述任一项方法。
本实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本实施例提供的信号检测传感结构的信号检测方法首先获取第一压电驻极体检测的第一信号以及第二压电驻极体层检测的第二信号,然后根据第一信号确定触摸物体的接触信号和/或滑动信号,根据第二信号确定触摸物体的接触信号,实现了对接触次信号和滑动信号的同时检测,此外由于第一压电驻极体层和第二压电驻极体层灵敏度高、线性度好、基本无热释电效应、在工作温度范围内基本不受温度变化影响,因此可以实现对接触信号和滑动信号的高精度检测。本实施例提供的信号检测方法根据接触信号和滑动信号的特征,提供了对第一信号中的接触信号和滑动信号进行分离的方法,并能够判断出佩戴有本所述的信号检测传感结构的假肢手的抓握状态,比如判断触摸物体是处于逐渐接触状态、握紧状态还是脱离接触状态,实现了新型传感单元的实际应用。
工业实用性
本公开的信号检测传感结构,结构更简单、对接触信号和滑动信号的检测精度更高。

Claims (15)

  1. 一种信号检测传感结构,包括:
    第一压电驻极体层、第二压电驻极体层以及位于所述第一压电驻极体层和所述第二压电驻极体层之间的粘合层;
    所述第一压电驻极体层远离所述第二压电驻极体层的一侧表面包括多个凸起结构;所述第二压电驻极体层临近所述第一压电驻极体层的一侧表面为平滑表面;
    所述第一压电驻极体层设置为检测触摸物体的接触信号和滑动信号中至少一个,所述第二压电驻极体层设置为检测触摸物体的接触信号。
  2. 根据权利要求1所述的信号检测传感结构,其中,所述第一压电驻极体层以及所述第二压电驻极体层内具有微孔结构,所述微孔结构的截面形状包括圆形、椭圆形以及多边形中的至少一种。
  3. 根据权利要求1所述的信号检测传感结构,其中,所述第一压电驻极体层的材料包括氟化乙烯丙烯共聚物以及聚四氟乙烯中的至少一种。
  4. 根据权利要求1所述的信号检测传感结构,其中,所述第二压电驻极体层的材料包括聚丙烯、聚对苯二甲酸乙二醇酯以及聚萘二甲酸乙二醇酯中的至少一种。
  5. 根据权利要求1所述的信号检测传感结构,其中,所述第一压电驻极体层是采用粘贴、热压或熔融工艺通过所述粘合层层叠粘合在所述第二压电驻极体层上。
  6. 根据权利要求1所述的信号检测传感结构,还包括:信号处理模块;
    所述第一压电驻极体层远离所述第二压电驻极体层的一侧设置有第一电极,所述第一压电驻极体层靠近所述第二压电驻极体层的一侧设置有第二电极;
    所述第二压电驻极体层靠近所述第一压电驻极体层的一侧设置有第三电极,所述第二电极和所述第三电极相互绝缘设置,所述第二压电驻极体层远离所述第一压电驻极体层的一侧设置有第四电极;
    所述信号处理模块分别与所述第一电极、所述第二电极、所述第三电极以及所述第四电极电连接,设置为计算触摸物体的接触信号和滑动信号中至少一个。
  7. 一种如权利要求1-6任一所述的信号检测传感结构的制作方法,包括:
    提供一第二压电驻极体层;
    在所述第二压电驻极体层一侧贴附粘合层;以及,
    提供一第一压电驻极体层,并将所述第一压电驻极体层通过所述粘合层层叠粘合在所述第二压电驻极体层上;
    其中,所述第一压电驻极体层远离所述第二压电驻极体层的一侧表面包括多个凸起结构;所述第二压电驻极体层临近所述第一压电驻极体层的一侧表面为平滑表面;所述第一压电驻极体层设置为检测触摸物体的接触信号和滑动信号中至少一个,所述第二压电驻极体层设置为检测触摸物体的接触信号。
  8. 根据权利要求7所述的方法,其中,所述第一压电驻极体层和所述第二压电驻极体层中至少一个是采用膨化法、模板法或刻蚀法形成。
  9. 根据权利要求7所述的方法,其中,还包括采用粘贴、热压或熔融工艺将所述第一压电驻极体层通过所述粘合层层叠粘合在所述第二压电驻极体层上。
  10. 一种如权利要求1-6任一所述的信号检测传感结构的信号检测方法,包括:
    获取第一压电驻极体层检测的第一信号以及第二压电驻极体层检测的第二信号;以及
    根据所述第一信号确定触摸物体的接触信号和滑动信号中至少一个,根据所述第二信号确定触摸物体的接触信号。
  11. 根据权利要求10所述的方法,其中,所述根据所述第一信号检测触摸物体的接触信号和滑动信号中至少一个,根据所述第二信号检测触摸物体的接触信号,包括:
    若所述第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,则确定所述第一信号为触摸物体的接触信号;
    若所述第一信号的信号峰的数量大于1,且所述信号峰的幅值均小于第一预设值,且在所述第一信号的信号方差小于第二阈值时,确定所述第一信号为触摸物体的滑动信号;以及,
    若所述第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,则确定所述第二信号为触摸物体的接触信号。
  12. 根据权利要求10所述的方法,其中,所述根据所述第一信号检测触摸物体的接触信号和滑动信号中至少一个,根据所述第二信号检测触摸物体的接触信号,包括:
    若所述第一信号的信号峰的数量大于1且所述其中一信号峰的幅值大于第一预设值,将所述第一信号的绝对值与所述第二信号的绝对值的差作为第三信 号,将所述第三信号确定为触摸物体的滑动信号;以及
    将所述第二信号确定为触摸物体的接触信号。
  13. 根据权利要求10所述的方法,还包括:
    若所述第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第一信号的信号峰值大于0,则判定触摸物体为逐渐接触状态;
    若所述第一信号的信号峰的数量从1变为0,则判定触摸物体为从逐渐接触状态变为握紧状态;以及,
    若所述第一信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第一信号的信号峰值小于0,则判定触摸物体为脱离接触状态。
  14. 根据权利要求10所述的方法,还包括:
    若所述第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第二信号的信号峰值大于0,则判定触摸物体为逐渐接触状态;
    若所述第二信号的信号峰的数量从1变为0,则判定触摸物体为从逐渐接触状态变为握紧状态;以及
    若所述第二信号的信号峰的数量等于1且所述信号峰的幅值大于第一预设值,所述第二信号的信号峰值小于0,则判定触摸物体为脱离接触状态。
  15. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求10-14任一项的方法。
PCT/CN2017/113418 2017-08-02 2017-11-28 信号检测传感结构及其制作方法、信号检测方法 WO2019024342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710651168.2 2017-08-02
CN201710651168.2A CN107328497B (zh) 2017-08-02 2017-08-02 一种信号检测传感结构及其制作方法、信号检测方法

Publications (1)

Publication Number Publication Date
WO2019024342A1 true WO2019024342A1 (zh) 2019-02-07

Family

ID=60200057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113418 WO2019024342A1 (zh) 2017-08-02 2017-11-28 信号检测传感结构及其制作方法、信号检测方法

Country Status (2)

Country Link
CN (1) CN107328497B (zh)
WO (1) WO2019024342A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107328497B (zh) * 2017-08-02 2023-06-27 深圳先进技术研究院 一种信号检测传感结构及其制作方法、信号检测方法
CN108931323A (zh) * 2018-05-03 2018-12-04 复旦大学 一种驻极体晶体管力传感器及其制备方法
CN109271031A (zh) * 2018-09-27 2019-01-25 中国科学院深圳先进技术研究院 一种触觉信号检测方法、装置、系统、设备及存储介质
CN109100070A (zh) * 2018-09-27 2018-12-28 中国科学院深圳先进技术研究院 一种传感器及检测触觉信号的方法
CN110017937A (zh) * 2019-04-08 2019-07-16 清华大学深圳研究生院 一种柔性压力传感器及其制备方法和诊脉仪
CN110617914B (zh) * 2019-08-30 2022-01-11 华为技术有限公司 一种压电传感器的信号校正方法及电子设备
CN113576084A (zh) * 2021-08-18 2021-11-02 同济大学 一种集成式智能腰带及其制备方法
CN114322827B (zh) * 2021-12-13 2023-12-01 北京纳米能源与系统研究所 一种非接触式传感器及相关的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130593A1 (en) * 2000-11-24 2002-09-19 Chih-Kung Lee Piezoelectric transducer apparatus having independent gain and phase characteristics functions of the fourth-order partial differential equations
US20070112283A1 (en) * 2005-11-17 2007-05-17 Aisin Seiki Kabushiki Kaisha Biological information pressure sensor and biological information pressure detector
CN106813812A (zh) * 2016-12-28 2017-06-09 华中科技大学 一种高压电活性柔性复合膜压电传感器及其制备方法
CN107328497A (zh) * 2017-08-02 2017-11-07 深圳先进技术研究院 一种信号检测传感结构及其制作方法、信号检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4555953A (en) * 1984-04-16 1985-12-03 Paolo Dario Composite, multifunctional tactile sensor
JP4671057B2 (ja) * 2007-12-28 2011-04-13 花王株式会社 毛髪表面特性センサー
CN103519924B (zh) * 2013-10-22 2015-12-02 深圳先进技术研究院 智能假手系统
CN104406627B (zh) * 2014-11-11 2017-01-25 浙江大学 假肢手穿戴式柔性触觉传感器及其触觉检测系统
CN207036311U (zh) * 2017-08-02 2018-02-23 深圳先进技术研究院 一种信号检测传感结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020130593A1 (en) * 2000-11-24 2002-09-19 Chih-Kung Lee Piezoelectric transducer apparatus having independent gain and phase characteristics functions of the fourth-order partial differential equations
US20070112283A1 (en) * 2005-11-17 2007-05-17 Aisin Seiki Kabushiki Kaisha Biological information pressure sensor and biological information pressure detector
CN106813812A (zh) * 2016-12-28 2017-06-09 华中科技大学 一种高压电活性柔性复合膜压电传感器及其制备方法
CN107328497A (zh) * 2017-08-02 2017-11-07 深圳先进技术研究院 一种信号检测传感结构及其制作方法、信号检测方法

Also Published As

Publication number Publication date
CN107328497B (zh) 2023-06-27
CN107328497A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2019024342A1 (zh) 信号检测传感结构及其制作方法、信号检测方法
KR102565832B1 (ko) 압력 감지 장치 및 방법
US10353506B2 (en) Dual resistive strain and pressure sensor for force touch
US10842397B2 (en) Flexible sensor and application thereof
KR101790558B1 (ko) 강유전성 복합 소재 기반 인공 전자 피부
CN105991064B (zh) 基于摩擦发电机的触觉传感器及机器人触觉感知系统
JP5187856B2 (ja) 触覚センサ
US20070041273A1 (en) Acoustic sensor
Xin et al. PVDF tactile sensors for detecting contact force and slip: A review
CN104215363A (zh) 基于压敏导电橡胶的柔性触滑觉复合传感阵列
CN109141696B (zh) 一种基于压电薄膜的柔性触觉传感器及其信号处理系统
CN204214475U (zh) 一种假肢手穿戴式柔性触觉传感器及其触觉检测装置
Mastronardi et al. Low stiffness tactile transducers based on AlN thin film and polyimide
CN207036311U (zh) 一种信号检测传感结构
CN109100070A (zh) 一种传感器及检测触觉信号的方法
Tandon et al. Review of transduction techniques for tactile sensors and a comparative analysis of commercial sensors
CN113588149A (zh) 一种硅基mems单元结合线圈阵列的柔性多模式触觉传感器
KR20160015729A (ko) 웨어러블 스마트 밴드
JPS62238417A (ja) 多機能マトリツクスセンサ
KR102120924B1 (ko) 고감도 복합 센서 및 이를 이용한 센서 측정 시스템
Noda et al. Stretchable force sensor array using conductive liquid
Kimoto et al. A new sensing method using contact voltage for material discrimination
WO2019047063A1 (zh) 集成检测传感器及触摸感应设备
US11442569B2 (en) Apparatus and method for sensing pressure
JP6171783B2 (ja) 触診センサおよび触診システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919894

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 17919894

Country of ref document: EP

Kind code of ref document: A1