WO2017188237A1 - Led light source device - Google Patents

Led light source device Download PDF

Info

Publication number
WO2017188237A1
WO2017188237A1 PCT/JP2017/016352 JP2017016352W WO2017188237A1 WO 2017188237 A1 WO2017188237 A1 WO 2017188237A1 JP 2017016352 W JP2017016352 W JP 2017016352W WO 2017188237 A1 WO2017188237 A1 WO 2017188237A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
light source
source device
led light
insulating substrate
Prior art date
Application number
PCT/JP2017/016352
Other languages
French (fr)
Japanese (ja)
Inventor
広明 佐野
清太郎 吉田
博之 澤野
健太郎 利根
Original Assignee
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光波 filed Critical 株式会社光波
Publication of WO2017188237A1 publication Critical patent/WO2017188237A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the present invention relates to an LED light source device.
  • the LED light source device includes a metal plate having a heat dissipation function, an insulating substrate disposed on the metal plate, having an opening exposing the metal plate, and having a wiring pattern formed on the upper surface, and a wiring pattern on the insulating substrate.
  • a plurality of LED elements connected and mounted in two layers, each layer covered with a phosphor-containing resin, a circular sealing frame provided on an insulating substrate so as to surround the plurality of LED elements, and sealing And a sealing material made of a transparent resin with a diffusing material filled inside the frame.
  • the LED light source device described in the conventional patent document 1 is mounted with the LED elements stacked, there is a possibility that the heat dissipation is inferior.
  • the opening for exposing the metal plate is formed on the insulating substrate, when the LED elements are arranged without being stacked, there is a disadvantage that the number of LED elements that can be mounted is reduced by the opening.
  • an object of the present invention is to provide an LED light source device that is excellent in heat dissipation and enables high-density mounting of LED elements.
  • a wiring pattern is formed on the first main surface of the insulating base material, and a metal layer is formed on the second main surface opposite to the first main surface.
  • a plurality of LED elements connected to the wiring pattern on the first main surface of the substrate and mounted at a predetermined mounting density, and a void ratio of the metal layer of the substrate equal to or lower than a predetermined value
  • An LED light source device comprising: a heat dissipating member joined via a metal joining layer.
  • heat dissipation is excellent, and high-density mounting of LED elements becomes possible.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an LED light source device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the LED light source device shown in FIG.
  • FIG. 3 is a plan view of an LED light source device showing a modification of the frame member shown in FIG.
  • FIG. 4A is a diagram illustrating temperature unevenness of Comparative Example 1 having a void ratio of 90%.
  • FIG. 4B is a diagram illustrating a state of voids in Comparative Example 1 having a void ratio of 90%.
  • FIG. 5A is a diagram showing temperature unevenness in Comparative Example 2 with a void ratio of 51%.
  • FIG. 5B is a diagram showing a state of voids in Comparative Example 2 having a void ratio of 51%.
  • FIG. 6A is a diagram illustrating temperature unevenness of Example 1 having a void ratio of 7%.
  • FIG. 6B is a diagram illustrating a state of voids in Example 1 having a void ratio of 7%.
  • FIG. 7A is a diagram showing temperature unevenness in Example 2 with a void ratio of 2%.
  • FIG. 7B is a diagram illustrating a void state of Example 2 having a void ratio of 2%.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an LED light source device according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the LED light source device shown in FIG.
  • the LED light source device 1 includes a metal block 2, an insulating substrate 4 provided on the upper surface 2 a of the metal block 2 via a solder layer 3, and a plurality of high-density mountings on the insulating substrate 4.
  • a resin layer 7 and a sealing resin 8 that seals the surface of the phosphor-containing resin layer 7 are provided.
  • the metal block 2 is an example of a heat dissipation member.
  • the solder layer 3 is an example of a metal bonding layer.
  • the phosphor-containing resin layer 7 and the sealing resin 8 are examples of a sealing material.
  • the LED light source device 1 includes a power supply board 10 provided on the upper surface 2a of the metal block 2 via a spacer 9 and a pair of power supply harnesses 11A and 11B connected to the power supply board 10.
  • the metal block 2 is made of metal such as copper, copper alloy, aluminum, aluminum alloy, for example.
  • the metal block 2 has a surface area and volume equal to or larger than the surface area and volume of the insulating substrate 4.
  • the metal block 2 is preferably formed with a through hole or a screw hole for fixing the metal block 2.
  • it is preferable that the metal block 2 is surface-treated in order to prevent corrosion and form the solder layer 3.
  • a heatsink having a large number of fins may be attached to the lower surface 2b of the metal block 2.
  • the radiator is made of metal such as aluminum or aluminum alloy, for example. Further, the radiator may be provided with a heat pipe. The radiator may be provided with a forced cooling mechanism such as a fan or water cooling.
  • the solder layer 3 has a void ratio indicating a void ratio of preferably 10% or less or 7% or less, and more preferably 2% or less.
  • the solder layer 3 includes, for example, an Au—Sn alloy containing Au as a main component, an Sn—Cu alloy containing Sn as a main component, an Sn—Ag alloy, an Sn—Ag—Cu alloy, and an Sn—Ag— Bi based alloys, Sn—Zn based alloys and the like can be used.
  • the thickness of the solder layer 3 depends on the size of the insulating substrate 4, for example, if it is about ⁇ 20 mm, it is preferably 0.2 mm or less or 0.1 mm or less, for example.
  • the solder layer 3 having a low void ratio is formed by joining the metal block 2 and the insulating substrate 4 under reduced pressure (for example, 100 Pa to 20 kPa).
  • the insulating substrate 4 is formed on the insulating base material 40, the wiring pattern 41 formed on the first main surface 40 a on the upper surface of the base material 40, and the second main surface 40 b on the lower surface of the base material 40. And a metal layer 42.
  • the wiring pattern 41 is formed by etching a copper foil, for example.
  • a copper foil can be used for the metal layer 42.
  • One end of the wiring pattern 41 is connected to the electrode of the LED element 5, and the other end is connected to the connectors of the power supply harnesses 11 ⁇ / b> A and 11 ⁇ / b> B via the power supply substrate 10.
  • a ceramic substrate such as aluminum nitride having a high thermal conductivity is preferably used from the viewpoint of heat dissipation and heat resistance.
  • the LED element 5 may be a flip chip type having a pair of electrodes on the lower surface.
  • the LED elements 5 are mounted on the insulating substrate 4 at a predetermined mounting density.
  • the mounting density of the LED elements 5 is defined by the ratio of the total light emitting area to the mounting area.
  • the mounting density is preferably 50% or more.
  • the mounting area refers to the area inside the frame member 6.
  • the light emission area is an area of the LED element 5 in plan view.
  • the frame member 6 has, for example, a square shape and is formed of, for example, a silicone resin.
  • the frame member 6 is not limited to a square, and may be other shapes such as a rectangle or a circle.
  • the frame member 6 is preferably square or rectangular in order to increase the mounting density of the LED elements 5.
  • the phosphor-containing resin layer 7 is formed by mixing a resin 70 and a granular phosphor 71 at a predetermined ratio.
  • the resin 70 is formed of a material that is transparent to the emission wavelength of the LED element 5 and that can hold the phosphor 71.
  • a resin material for example, a transparent resin such as an epoxy resin, a silicone resin, or an acrylic resin can be used.
  • the color of the emitted light from the LED element 5 is blue and a phosphor that converts blue light into yellow light is used, part of the blue light emitted from the LED element 5 is converted into yellow light by the phosphor.
  • the blue light and the yellow light that have been converted and emitted from the LED element 5 and not converted into yellow light by the phosphor are combined, and white light is emitted from the LED light source device 1.
  • the sealing material 8 is formed from a material having transparency with respect to the emission wavelength of the LED element 5.
  • a resin material for example, a transparent resin such as an epoxy resin, a silicone resin, or an acrylic resin can be used.
  • the sealing material 8 may contain a diffusing material that diffuses the light emitted from the LED element 5.
  • the power supply substrate 10 has an octagonal shape, but is not limited to this shape.
  • the power supply substrate 10 has an opening 10a that is slightly larger than the outer shape of the frame member 6 so that the frame member 6 enters inside.
  • a wiring pattern (not shown) is formed on the upper surface of the power supply substrate 10.
  • One end of the wiring pattern of the power supply substrate 4 is electrically connected to the wiring pattern 41 of the insulating substrate 4 through the through hole 10b by solder, and the other end is electrically connected to the connector 111 of the power supply harnesses 11A and 11B. Is done.
  • the power supply harnesses 11 ⁇ / b> A and 11 ⁇ / b> B include an electric wire 110 and a connector 111.
  • the connector 111 is surface-mounted on the other end of the wiring pattern of the power supply substrate 10.
  • the power supply harnesses 11 ⁇ / b> A and 11 ⁇ / b> B are electrically connected to the LED element 5 through the wiring pattern of the power supply substrate 10, the through hole 10 b and the wiring pattern 41 of the insulating substrate 4.
  • FIG. 3 is a plan view of the LED light source device showing a modification of the frame member 6 shown in FIG.
  • the frame member 16 may be circular.
  • the power supply substrate 10 has an opening that is slightly larger than the outer shape of the frame member 16 so that the frame member 16 can enter inside.
  • 4A, 4B, 5A, 5B, 6A, and 6B are diagrams showing the relationship between the void ratio of the solder layer 3 and temperature unevenness.
  • 4A and 4B show Comparative Example 1 in which the void ratio is 90%, FIG. 4A shows temperature unevenness, and FIG. 4B shows the state of voids.
  • 5A and 5B show Comparative Example 2 in which the void ratio is 51%, FIG. 5A shows temperature unevenness, and FIG. 5B shows the state of voids.
  • 6A and 6B show Example 1 having a void ratio of 7%, FIG. 6A shows temperature unevenness, and FIG. 6B shows a void state.
  • 7A and 7B show Example 2 in which the void ratio is 2%, FIG.
  • FIG. 7A shows temperature unevenness
  • FIG. 7B shows the state of voids
  • 4A, 5A, 6A and 7A show the temperature scale on the left side
  • 4B, FIG. 5B, FIG. 6B, and FIG. 7B are photographs taken by enlarging the area inside the frame member 6.
  • Comparative Example 1, Comparative Example 2, Example 1 and Example 2 have a configuration corresponding to FIG. 2 except for the void ratio of the solder layer 3.
  • the size of the power supply substrate 10 was 40 mm ⁇ 40 mm.
  • Comparative Example 1 having a void ratio of 90%, since the voids 3a and 3b exist over a wide range as shown in FIG. 4B, a high temperature region of 70 ° C. or more is wide as shown in FIG. 4A. It can be seen that it exists over a range.
  • Comparative Example 2 with a void ratio of 51%, as shown in FIG. 5B, since the void 3c exists, the range is narrower than that of Comparative Example 1 as shown in FIG. It can be seen that the area exists.
  • Example 1 with a void ratio of 7% and Example 2 with a void ratio of 2% as shown in FIG. 6A and FIG. It can be seen that
  • the third embodiment has a configuration corresponding to FIG.
  • the size of the power supply substrate 10 was 60 mm ⁇ 60 mm.
  • the LED element 5 having the same size in plan view as that of Example 1 and 1 mm ⁇ 1 mm was used.
  • the mounting rate of the LED element 5 is 72% when the shape of the frame member 6 is square, whereas it is as small as 54% when the shape of the frame member 16 is circular. It can be seen that it is better to make the shape of the frame member square in order to increase the mounting rate.
  • this invention is not limited to the said embodiment, In the range which does not change the summary of invention, it can deform
  • the sealing material 8 may be omitted.
  • the present invention can be applied to an LED light source device that has excellent heat dissipation and requires high-density mounting of LED elements.
  • SYMBOLS 1 LED light source device, 2 ... Metal block, 2a ... Upper surface, 2b ... Lower surface, 3 ... Solder layer, 3a-3c ... Void, 4 ... Insulating substrate, 5 ... LED element, 6 ... Frame member, 7 ... Phosphor containing Resin layer, 8 ... sealing resin, 9 ... spacer, 10 ... power supply board, 10a ... opening, 10b ... through hole, 11A, 11B ... power supply harness, 16 ... frame member, 40 ... base material, 40a ... first Main surface, 40b ... second main surface, 41 ... wiring pattern, 42 ... metal layer, 70 ... resin, 71 ... phosphor, 110 ... electric wire, 111 ... connector

Abstract

In order to provide an LED light source device, which has excellent heat dissipating characteristics, and in which LED elements can be mounted at a high density, an LED light source device 1 is provided with: an insulating substrate 4, wherein a wiring pattern 41 is formed on a first main surface 40a of a base material 40 having insulating characteristics, and a metal layer 42 is formed on a second main surface 40b on the reverse side of the first main surface 40a; a plurality of LED elements 5, which are mounted, at a predetermined mounting density, on the first main surface 40a of the insulating substrate 4 by being connected to the wiring pattern 41; and a metal block 2 connected to the metal layer 42 of the insulating substrate 4 via a solder layer 3 having a void rate of a predetermined value or lower.

Description

LED光源装置LED light source device
 本発明は、LED光源装置に関する。 The present invention relates to an LED light source device.
 近年、発光ダイオード(LED)素子を高密度実装した高輝度高出力のLED光源装置が提案されている(特許文献1参照)。 Recently, a high-luminance and high-power LED light source device in which light-emitting diode (LED) elements are mounted at high density has been proposed (see Patent Document 1).
 このLED光源装置は、放熱機能を有する金属板と、金属板上に配置され、金属板を露出させる開口を有し、上面に配線パターンが形成された絶縁基板と、絶縁基板上に配線パターンに接続されて2層に実装され、層ごとに蛍光体含有樹脂で覆われた複数のLED素子と、複数のLED素子を囲むように絶縁基板上に設けられた円形の封止枠と、封止枠の内側に充填された拡散材入りの透明樹脂からなる封止材とを備える。 The LED light source device includes a metal plate having a heat dissipation function, an insulating substrate disposed on the metal plate, having an opening exposing the metal plate, and having a wiring pattern formed on the upper surface, and a wiring pattern on the insulating substrate. A plurality of LED elements connected and mounted in two layers, each layer covered with a phosphor-containing resin, a circular sealing frame provided on an insulating substrate so as to surround the plurality of LED elements, and sealing And a sealing material made of a transparent resin with a diffusing material filled inside the frame.
 また、従来、LED素子に発生する熱を放熱し易くするため、LED素子をボイドのないAu-Sn合金はんだ層を介してアルミナ基板に接合したLED光源装置が提案されている(例えば、特許文献2参照。)。 Conventionally, in order to easily dissipate heat generated in the LED element, an LED light source device in which the LED element is bonded to an alumina substrate via a void-free Au—Sn alloy solder layer has been proposed (for example, Patent Documents). 2).
特開2015-70242号公報Japanese Patent Laying-Open No. 2015-70242 特開2008-10545号公報JP 2008-10545 A
 しかし、従来の特許文献1に記載されたLED光源装置は、LED素子を重ねて実装しているため、放熱性に劣るおそれがある。また、絶縁基板に金属板を露出させるための開口を形成しているため、LED素子を重ねずに配置した場合には、開口によってLED素子を実装できる数が減るという欠点がある。 However, since the LED light source device described in the conventional patent document 1 is mounted with the LED elements stacked, there is a possibility that the heat dissipation is inferior. In addition, since the opening for exposing the metal plate is formed on the insulating substrate, when the LED elements are arranged without being stacked, there is a disadvantage that the number of LED elements that can be mounted is reduced by the opening.
 したがって、本発明の目的は、放熱性に優れ、LED素子の高密度実装が可能なLED光源装置を提供することにある。 Therefore, an object of the present invention is to provide an LED light source device that is excellent in heat dissipation and enables high-density mounting of LED elements.
 本発明は、上記目的を達成するため、絶縁性を有する基材の第1の主面に配線パターンが形成され、前記第1の主面と反対側の第2の主面に金属層が形成された基板と、前記基板の前記第1の主面に前記配線パターンに接続されて所定の実装密度で実装された複数のLED素子と、前記基板の前記金属層にボイド率が所定の値以下の金属接合層を介して接合された放熱部材と、を備えたLED光源装置を提供する。 In order to achieve the above object, according to the present invention, a wiring pattern is formed on the first main surface of the insulating base material, and a metal layer is formed on the second main surface opposite to the first main surface. A plurality of LED elements connected to the wiring pattern on the first main surface of the substrate and mounted at a predetermined mounting density, and a void ratio of the metal layer of the substrate equal to or lower than a predetermined value An LED light source device comprising: a heat dissipating member joined via a metal joining layer.
 本発明によれば、放熱性に優れ、LED素子の高密度実装が可能になる。 According to the present invention, heat dissipation is excellent, and high-density mounting of LED elements becomes possible.
図1は、本発明の実施の形態に係るLED光源装置の概略の構成を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an LED light source device according to an embodiment of the present invention. 図2は、図1に示すLED光源装置の平面図である。FIG. 2 is a plan view of the LED light source device shown in FIG. 図3は、図2に示す枠部材の変形例を示すLED光源装置の平面図である。FIG. 3 is a plan view of an LED light source device showing a modification of the frame member shown in FIG. 図4Aは、ボイド率が90%の比較例1の温度ムラを示す図である。FIG. 4A is a diagram illustrating temperature unevenness of Comparative Example 1 having a void ratio of 90%. 図4Bは、ボイド率が90%の比較例1のボイドの状態を示す図である。FIG. 4B is a diagram illustrating a state of voids in Comparative Example 1 having a void ratio of 90%. 図5Aは、ボイド率が51%の比較例2の温度ムラを示す図である。FIG. 5A is a diagram showing temperature unevenness in Comparative Example 2 with a void ratio of 51%. 図5Bは、ボイド率が51%の比較例2のボイドの状態を示す図である。FIG. 5B is a diagram showing a state of voids in Comparative Example 2 having a void ratio of 51%. 図6Aは、ボイド率が7%の実施例1の温度ムラを示す図である。FIG. 6A is a diagram illustrating temperature unevenness of Example 1 having a void ratio of 7%. 図6Bは、ボイド率が7%の実施例1のボイドの状態を示す図である。FIG. 6B is a diagram illustrating a state of voids in Example 1 having a void ratio of 7%. 図7Aは、ボイド率が2%の実施例2の温度ムラを示す図である。FIG. 7A is a diagram showing temperature unevenness in Example 2 with a void ratio of 2%. 図7Bは、ボイド率が2%の実施例2のボイドの状態を示す図である。FIG. 7B is a diagram illustrating a void state of Example 2 having a void ratio of 2%.
 以下、本発明の実施の形態及び実施例について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。 Hereinafter, embodiments and examples of the present invention will be described with reference to the drawings. In addition, in each figure, about the component which has the substantially same function, the same code | symbol is attached | subjected and the duplicate description is abbreviate | omitted.
 図1は、本発明の実施の形態に係るLED光源装置の概略の構成を模式的に示す断面図である。図2は、図1に示すLED光源装置の平面図である。 FIG. 1 is a cross-sectional view schematically showing a schematic configuration of an LED light source device according to an embodiment of the present invention. FIG. 2 is a plan view of the LED light source device shown in FIG.
 このLED光源装置1は、図1に示すように、金属ブロック2と、金属ブロック2の上面2aにはんだ層3を介して設けられた絶縁基板4と、絶縁基板4に高密度実装された複数のLED素子5と、複数のLED素子5全体を囲むように絶縁基板4上に形成された枠部材6と、枠部材6の内側に複数のLED素子5を覆うように形成された蛍光体含有樹脂層7と、蛍光体含有樹脂層7の表面を封止する封止樹脂8とを備える。ここで、金属ブロック2は、放熱部材の一例である。はんだ層3は、金属接合層の一例である。蛍光体含有樹脂層7及び封止樹脂8は、封止材の一例である。 As shown in FIG. 1, the LED light source device 1 includes a metal block 2, an insulating substrate 4 provided on the upper surface 2 a of the metal block 2 via a solder layer 3, and a plurality of high-density mountings on the insulating substrate 4. LED element 5, frame member 6 formed on insulating substrate 4 so as to surround the plurality of LED elements 5, and phosphor containing the plurality of LED elements 5 formed inside frame member 6 A resin layer 7 and a sealing resin 8 that seals the surface of the phosphor-containing resin layer 7 are provided. Here, the metal block 2 is an example of a heat dissipation member. The solder layer 3 is an example of a metal bonding layer. The phosphor-containing resin layer 7 and the sealing resin 8 are examples of a sealing material.
 また、LED光源装置1は、金属ブロック2の上面2aにスペーサ9を介して設けられた給電基板10と、給電基板10に接続された一対の給電用ハーネス11A、11Bとを備える。 Further, the LED light source device 1 includes a power supply board 10 provided on the upper surface 2a of the metal block 2 via a spacer 9 and a pair of power supply harnesses 11A and 11B connected to the power supply board 10.
 金属ブロック2は、例えば、銅、銅合金、アルミニウム、アルミニウム合金等の金属から形成されている。金属ブロック2は、絶縁基板4の表面積及び体積と同等かそれよりも大きい表面積及び体積を有する。金属ブロック2は、金属ブロック2を固定するための貫通孔又はネジ穴が形成されているのが好ましい。また、金属ブロック2は、腐食防止、及びはんだ層3の形成のため、表面処理されているのが好ましい。 The metal block 2 is made of metal such as copper, copper alloy, aluminum, aluminum alloy, for example. The metal block 2 has a surface area and volume equal to or larger than the surface area and volume of the insulating substrate 4. The metal block 2 is preferably formed with a through hole or a screw hole for fixing the metal block 2. Moreover, it is preferable that the metal block 2 is surface-treated in order to prevent corrosion and form the solder layer 3.
 なお、放熱効果を高めるため、金属ブロック2の下面2bに、多数のフィンを有する放熱器を取り付けてもよい。放熱器は、例えば、アルミニウム又はアルミニウム合金等の金属から形成されている。また、放熱器は、ヒートパイプを備えたものでもよい。また、放熱器は、ファンや水冷等の強制冷却機構を備えたものでもよい。 In order to enhance the heat dissipation effect, a heatsink having a large number of fins may be attached to the lower surface 2b of the metal block 2. The radiator is made of metal such as aluminum or aluminum alloy, for example. Further, the radiator may be provided with a heat pipe. The radiator may be provided with a forced cooling mechanism such as a fan or water cooling.
 はんだ層3は、放熱性の観点より、ボイドの割合を示すボイド率が10%以下又は7%以下が好ましく、2%以下がより好ましい。はんだ層3は、例えば、Auを主成分とするAu-Sn系合金や、Snを主成分とするSn-Cu系合金、Sn-Ag系合金、Sn-Ag-Cu系合金、Sn-Ag-Bi系合金、Sn-Zn系合金等を用いることができる。はんだ層3の厚さは、絶縁基板4のサイズにもよるが、例えば□20mm程度であれば、例えば0.2mm以下又は0.1mm以下が好ましい。ボイド率の低いはんだ層3は、金属ブロック2と絶縁基板4とを減圧(例えば、100Pa~20kPa)下で接合することにより形成される。 From the viewpoint of heat dissipation, the solder layer 3 has a void ratio indicating a void ratio of preferably 10% or less or 7% or less, and more preferably 2% or less. The solder layer 3 includes, for example, an Au—Sn alloy containing Au as a main component, an Sn—Cu alloy containing Sn as a main component, an Sn—Ag alloy, an Sn—Ag—Cu alloy, and an Sn—Ag— Bi based alloys, Sn—Zn based alloys and the like can be used. Although the thickness of the solder layer 3 depends on the size of the insulating substrate 4, for example, if it is about □ 20 mm, it is preferably 0.2 mm or less or 0.1 mm or less, for example. The solder layer 3 having a low void ratio is formed by joining the metal block 2 and the insulating substrate 4 under reduced pressure (for example, 100 Pa to 20 kPa).
 絶縁基板4は、絶縁性を有する基材40と、基材40の上面の第1の主面40aに形成された配線パターン41と、基材40の下面の第2の主面40bに形成された金属層42とを備える。配線パターン41は、例えば銅箔をエッチングして形成される。金属層42は、例えば銅箔を用いることができる。配線パターン41は、一端がLED素子5の電極に接続され、他端が給電基板10を介して給電用ハーネス11A、11Bのコネクタに接続される。基材40は、放熱性及び耐熱性の観点より、例えば、熱伝導率が大きい窒化アルミニウム等のセラミック基板を用いるのが好ましい。 The insulating substrate 4 is formed on the insulating base material 40, the wiring pattern 41 formed on the first main surface 40 a on the upper surface of the base material 40, and the second main surface 40 b on the lower surface of the base material 40. And a metal layer 42. The wiring pattern 41 is formed by etching a copper foil, for example. For example, a copper foil can be used for the metal layer 42. One end of the wiring pattern 41 is connected to the electrode of the LED element 5, and the other end is connected to the connectors of the power supply harnesses 11 </ b> A and 11 </ b> B via the power supply substrate 10. For the base material 40, for example, a ceramic substrate such as aluminum nitride having a high thermal conductivity is preferably used from the viewpoint of heat dissipation and heat resistance.
 LED素子5は、一対の電極を下面に有するフリップチップタイプのものを用いることができる。LED素子5は、例えば、青色光を出射する青色LED素子を用いることができる。LED素子5は、所定の実装密度で絶縁基板4上に実装されている。LED素子5の実装密度は、実装面積に対する発光面積の合計の比率で定義される。実装密度は、50%以上が好ましい。実装面積は、枠部材6の内側の面積をいう。発光面積は、LED素子5の平面視の面積である。 The LED element 5 may be a flip chip type having a pair of electrodes on the lower surface. As the LED element 5, for example, a blue LED element that emits blue light can be used. The LED elements 5 are mounted on the insulating substrate 4 at a predetermined mounting density. The mounting density of the LED elements 5 is defined by the ratio of the total light emitting area to the mounting area. The mounting density is preferably 50% or more. The mounting area refers to the area inside the frame member 6. The light emission area is an area of the LED element 5 in plan view.
 枠部材6は、例えば正方形を有し、例えばシリコーン樹脂から形成される。なお、枠部材6は、正方形に限られず、長方形でも円形等の他の形状でもよい。枠部材6は、正方形や長方形の方がLED素子5の実装密度を高める上で好ましい。 The frame member 6 has, for example, a square shape and is formed of, for example, a silicone resin. The frame member 6 is not limited to a square, and may be other shapes such as a rectangle or a circle. The frame member 6 is preferably square or rectangular in order to increase the mounting density of the LED elements 5.
 蛍光体含有樹脂層7は、樹脂70と粒状の蛍光体71とを所定の比率で混合して形成されたものである。樹脂70は、LED素子5の発光波長に対して透過性を有し、かつ、蛍光体71を保持できる材料から形成される。このような樹脂材料として、例えば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂等の透明樹脂を用いることができる。 The phosphor-containing resin layer 7 is formed by mixing a resin 70 and a granular phosphor 71 at a predetermined ratio. The resin 70 is formed of a material that is transparent to the emission wavelength of the LED element 5 and that can hold the phosphor 71. As such a resin material, for example, a transparent resin such as an epoxy resin, a silicone resin, or an acrylic resin can be used.
 LED素子5の出射光の色を青色とし、蛍光体として青色の光を黄色の光に変換するものを用いた場合、LED素子5から出射された青色光の一部は蛍光体によって黄色光に変換され、LED素子5から出射され、蛍光体によって黄色光に変換されなかった青色光と黄色光とが合成されてLED光源装置1から白色光が出射される。 When the color of the emitted light from the LED element 5 is blue and a phosphor that converts blue light into yellow light is used, part of the blue light emitted from the LED element 5 is converted into yellow light by the phosphor. The blue light and the yellow light that have been converted and emitted from the LED element 5 and not converted into yellow light by the phosphor are combined, and white light is emitted from the LED light source device 1.
 封止材8は、LED素子5の発光波長に対して透過性を有する材料から形成される。このような樹脂材料として、例えば、エポキシ樹脂、シリコーン樹脂、アクリル樹脂等の透明樹脂を用いることができる。なお、封止材8は、LED素子5から出射された光を拡散する拡散材を含有してもよい。 The sealing material 8 is formed from a material having transparency with respect to the emission wavelength of the LED element 5. As such a resin material, for example, a transparent resin such as an epoxy resin, a silicone resin, or an acrylic resin can be used. The sealing material 8 may contain a diffusing material that diffuses the light emitted from the LED element 5.
 給電基板10は、図2に示すように、8角形を有するが、この形状に限定されない。給電基板10は、枠部材6が内側に入るように、枠部材6の外形よりもやや大きい開口10aを有する。給電基板10の上面に配線パターン(図示せず)が形成されている。給電基板4の配線パターンの一端は、スルーホール10bを介して絶縁基板4の配線パターン41にはんだにより電気的に接続され、他端は、給電用ハーネス11A、11Bのコネクタ111に電気的に接続される。 As shown in FIG. 2, the power supply substrate 10 has an octagonal shape, but is not limited to this shape. The power supply substrate 10 has an opening 10a that is slightly larger than the outer shape of the frame member 6 so that the frame member 6 enters inside. A wiring pattern (not shown) is formed on the upper surface of the power supply substrate 10. One end of the wiring pattern of the power supply substrate 4 is electrically connected to the wiring pattern 41 of the insulating substrate 4 through the through hole 10b by solder, and the other end is electrically connected to the connector 111 of the power supply harnesses 11A and 11B. Is done.
 給電用ハーネス11A、11Bは、電線110と、コネクタ111とを備える。コネクタ111は、給電基板10の配線パターンの他端に表面実装されている。給電用ハーネス11A、11Bは、給電基板10の配線パターン、スルーホール10b及び絶縁基板4の配線パターン41を介してLED素子5に電気的に接続される。 The power supply harnesses 11 </ b> A and 11 </ b> B include an electric wire 110 and a connector 111. The connector 111 is surface-mounted on the other end of the wiring pattern of the power supply substrate 10. The power supply harnesses 11 </ b> A and 11 </ b> B are electrically connected to the LED element 5 through the wiring pattern of the power supply substrate 10, the through hole 10 b and the wiring pattern 41 of the insulating substrate 4.
(実施の形態の効果)
 本実施の形態によれば、以下の作用、効果を奏する。
(a)LED素子5の基材として熱伝導率の高い窒化アルミニウム製の絶縁基板4を用い、この絶縁基板4に金属ブロック2を減圧下ではんだ接合しているので、LED素子5から金属ブロック2に至る熱抵抗が小さくなり、放熱性に優れたLED光源装置1を提供することができる。
(b)放熱性に優れた構造を有していることに加えて枠部材7を四角にしているため、枠部材7の内側にLED素子5を高密度実装することができる。
(c)絶縁基板4よりも表面積及び体積が大きい金属ブロック2を絶縁基板4に接合しているので、枠部材6の内側の実装面積(発熱面積)が小さくても十分に熱拡散ができ、放熱性に優れたLED光源装置1を提供することができる。
(Effect of embodiment)
According to the present embodiment, the following operations and effects are achieved.
(A) Since the insulating substrate 4 made of aluminum nitride having high thermal conductivity is used as the base material of the LED element 5 and the metal block 2 is solder-bonded to the insulating substrate 4 under reduced pressure, the metal block from the LED element 5 is Therefore, the LED light source device 1 having a low heat resistance and excellent heat dissipation can be provided.
(B) Since the frame member 7 has a square shape in addition to having a structure excellent in heat dissipation, the LED elements 5 can be mounted at high density inside the frame member 7.
(C) Since the metal block 2 having a larger surface area and volume than the insulating substrate 4 is bonded to the insulating substrate 4, sufficient heat diffusion can be achieved even if the mounting area (heat generation area) inside the frame member 6 is small, The LED light source device 1 excellent in heat dissipation can be provided.
(枠部材の変形例)
 図3は、図2に示す枠部材6の変形例を示すLED光源装置の平面図である。図3に示すように、枠部材16は円形でもよい。これにより、図2に示す枠部材6と比べてLED素子5の実装密度が小さくなるが、光束のゆがみが少なくなるという利点がある。給電基板10は、内側に枠部材16が入るように枠部材16の外形よりもやや大きい開口を有する。
(Modification of frame member)
FIG. 3 is a plan view of the LED light source device showing a modification of the frame member 6 shown in FIG. As shown in FIG. 3, the frame member 16 may be circular. Thereby, compared with the frame member 6 shown in FIG. 2, the mounting density of the LED elements 5 is reduced, but there is an advantage that the distortion of the light beam is reduced. The power supply substrate 10 has an opening that is slightly larger than the outer shape of the frame member 16 so that the frame member 16 can enter inside.
(実施例1、2)
 図4A、図4B、図5A、図5B、図6A及び図6Bは、はんだ層3のボイド率と温度ムラとの関係を示す図である。図4A及び図4Bは、ボイド率が90%の比較例1を示し、図4Aは温度ムラ、図4Bはボイドの状態を示す図である。図5A及び図5Bは、ボイド率が51%の比較例2を示し、図5Aは温度ムラ、図5Bはボイドの状態を示す図である。図6A及び図6Bは、ボイド率が7%の実施例1を示し、図6Aは温度ムラ、図6Bはボイドの状態を示す図である。図7A及び図7Bは、ボイド率が2%の実施例2を示し、図7Aは温度ムラ、図7Bはボイドの状態を示す図である。図4A、図5A、図6A、図7Aは、左側に温度のスケールを示す。図4B、図5B、図6B、図7Bは、いずれも枠部材6の内側の領域を拡大して撮影した写真である。
(Examples 1 and 2)
4A, 4B, 5A, 5B, 6A, and 6B are diagrams showing the relationship between the void ratio of the solder layer 3 and temperature unevenness. 4A and 4B show Comparative Example 1 in which the void ratio is 90%, FIG. 4A shows temperature unevenness, and FIG. 4B shows the state of voids. 5A and 5B show Comparative Example 2 in which the void ratio is 51%, FIG. 5A shows temperature unevenness, and FIG. 5B shows the state of voids. 6A and 6B show Example 1 having a void ratio of 7%, FIG. 6A shows temperature unevenness, and FIG. 6B shows a void state. 7A and 7B show Example 2 in which the void ratio is 2%, FIG. 7A shows temperature unevenness, and FIG. 7B shows the state of voids. 4A, 5A, 6A and 7A show the temperature scale on the left side. 4B, FIG. 5B, FIG. 6B, and FIG. 7B are photographs taken by enlarging the area inside the frame member 6. FIG.
 比較例1、比較例2、実施例1及び実施例2は、はんだ層3のボイド率を除いて図2に対応する構成を有する。給電基板10のサイズは、40mm×40mmとした。LED素子5は、平面視のサイズで1mm×1mmのものを用いたLED素子5の実装数は、11個×11個=121個とした。枠部材6の内側の面積(実装面積)は、13mm×13mm=169mmとした。発光面積の合計は、121mmとした。したがって、LED素子5の実装密度は、発光面積/実装面積=121/169=0.72=72%となる。 Comparative Example 1, Comparative Example 2, Example 1 and Example 2 have a configuration corresponding to FIG. 2 except for the void ratio of the solder layer 3. The size of the power supply substrate 10 was 40 mm × 40 mm. The number of LED elements 5 using 1 mm × 1 mm in the size in plan view was 11 × 11 = 121. The inner area (mounting area) of the frame member 6 was 13 mm × 13 mm = 169 mm 2 . The total light emitting area was 121 mm 2 . Therefore, the mounting density of the LED elements 5 is light emission area / mounting area = 121/169 = 0.72 = 72%.
 ボイド率が90%の比較例1は、図4Bに示すように、ボイド3a、3bが広い範囲に渡って存在しているため、図4Aに示すように、70℃以上の高温の領域が広い範囲に渡って存在していることが分かる。ボイド率が51%の比較例2は、図5Bに示すように、ボイド3cが存在しているため、図5Aに示すように、比較例1よりも範囲は狭いが、70℃以上の高温の領域が存在していることが分かる。ボイド率が7%の実施例1及びボイド率が2%の実施例2は、それぞれ図6A、図7Aに示すように、70℃以上の高温の領域は存在しておらず、優れた放熱効果を発揮していることが分かる。 In Comparative Example 1 having a void ratio of 90%, since the voids 3a and 3b exist over a wide range as shown in FIG. 4B, a high temperature region of 70 ° C. or more is wide as shown in FIG. 4A. It can be seen that it exists over a range. In Comparative Example 2 with a void ratio of 51%, as shown in FIG. 5B, since the void 3c exists, the range is narrower than that of Comparative Example 1 as shown in FIG. It can be seen that the area exists. In Example 1 with a void ratio of 7% and Example 2 with a void ratio of 2%, as shown in FIG. 6A and FIG. It can be seen that
(実施例3)
 実施例3は、図3に対応する構成としたものである。給電基板10のサイズは、60mm×60mmとした。LED素子5は、実施例1と同じの平面視のサイズで1mm×1mmのものを用いた。LED素子5の実装数は、実施例1よりも増やして13個×13個=169個とした。枠部材16の内側の直径を20mmとしたことから、各部材16の内側の面積(実装面積)は、直径20mm×20mm×π/4=314mmとした。発光面積の合計は、169mmとした。したがって、LED素子5の実装密度は、発光面積/実装面積=169/314=0.54=54%となる。LED素子5の実装率は、枠部材6の形状が四角の場合、72%であるのに対し、枠部材16の形状が円形の場合、54%と小さくなった。実装率を高くするには、枠部材の形状を四角にした方がよいことが分かる。
(Example 3)
The third embodiment has a configuration corresponding to FIG. The size of the power supply substrate 10 was 60 mm × 60 mm. The LED element 5 having the same size in plan view as that of Example 1 and 1 mm × 1 mm was used. The number of LED elements 5 mounted was increased from that in Example 1 to 13 × 13 = 169. Since the inner diameter of the frame member 16 was 20 mm, the inner area (mounting area) of each member 16 was 20 mm × 20 mm × π / 4 = 314 mm 2 . The total light emitting area was 169 mm 2 . Therefore, the mounting density of the LED elements 5 is light emitting area / mounting area = 169/314 = 0.54 = 54%. The mounting rate of the LED element 5 is 72% when the shape of the frame member 6 is square, whereas it is as small as 54% when the shape of the frame member 16 is circular. It can be seen that it is better to make the shape of the frame member square in order to increase the mounting rate.
 なお、本発明は、上記実施の形態に限定されず、発明の要旨を変更しない範囲内で種々に変形可能である。 In addition, this invention is not limited to the said embodiment, In the range which does not change the summary of invention, it can deform | transform variously.
 また、本発明の要旨を変更しない範囲内で、上記実施の形態の構成要素の一部を省くことが可能である。例えば、封止材8を省いてもよい。 Further, it is possible to omit some of the constituent elements of the above-described embodiment within a range not changing the gist of the present invention. For example, the sealing material 8 may be omitted.
 本発明は、放熱性に優れ、LED素子の高密度実装が必要なLED光源装置に適用することができる。 The present invention can be applied to an LED light source device that has excellent heat dissipation and requires high-density mounting of LED elements.
1…LED光源装置、2…金属ブロック、2a…上面、2b…下面、3…はんだ層、3a~3c…ボイド、4…絶縁基板、5…LED素子、6…枠部材、7…蛍光体含有樹脂層、8…封止樹脂、9…スペーサ、10…給電基板、10a…開口、10b…スルーホール、11A、11B…給電用ハーネス、16…枠部材、40…基材、40a…第1の主面、40b…第2の主面、41…配線パターン、42…金属層、70…樹脂、71…蛍光体、110…電線、111…コネクタ
 
DESCRIPTION OF SYMBOLS 1 ... LED light source device, 2 ... Metal block, 2a ... Upper surface, 2b ... Lower surface, 3 ... Solder layer, 3a-3c ... Void, 4 ... Insulating substrate, 5 ... LED element, 6 ... Frame member, 7 ... Phosphor containing Resin layer, 8 ... sealing resin, 9 ... spacer, 10 ... power supply board, 10a ... opening, 10b ... through hole, 11A, 11B ... power supply harness, 16 ... frame member, 40 ... base material, 40a ... first Main surface, 40b ... second main surface, 41 ... wiring pattern, 42 ... metal layer, 70 ... resin, 71 ... phosphor, 110 ... electric wire, 111 ... connector

Claims (5)

  1.  絶縁性を有する基材の第1の主面に配線パターンが形成され、前記第1の主面と反対側の第2の主面に金属層が形成された基板と、
     前記基板の前記第1の主面に前記配線パターンに接続されて所定の実装密度で実装された複数のLED素子と、
     前記基板の前記金属層にボイド率が所定の値以下の金属接合層を介して接合された放熱部材と、
     を備えたLED光源装置。
    A substrate having a wiring pattern formed on a first main surface of an insulating base material and a metal layer formed on a second main surface opposite to the first main surface;
    A plurality of LED elements connected to the wiring pattern on the first main surface of the substrate and mounted at a predetermined mounting density;
    A heat dissipation member bonded to the metal layer of the substrate via a metal bonding layer having a void ratio of a predetermined value or less;
    LED light source device comprising:
  2.  前記金属接合層の前記ボイド率は、7%以下である、
     請求項1に記載のLED光源装置。
    The void ratio of the metal bonding layer is 7% or less.
    The LED light source device according to claim 1.
  3.  前記LED素子の実装密度は、実装面積に対する発光面積の合計が50%以上である、
     請求項1又は2に記載のLED光源装置。
    The mounting density of the LED elements is 50% or more of the total light emitting area with respect to the mounting area.
    The LED light source device according to claim 1.
  4.  前記基板は、窒化アルミニウムからなる、請求項1から3のいずれか1項に記載のLED光源装置。 4. The LED light source device according to claim 1, wherein the substrate is made of aluminum nitride.
  5.  絶縁性を有する基材の第1の主面に配線パターンが形成され、前記第1の主面と反対側の第2の主面に金属層が形成された窒化アルミニウムからなる絶縁基板と、
     前記絶縁基板の前記第1の主面に前記配線パターンに接続されて50%以上の実装密度でフリップチップ実装された複数のLED素子と、
     前記絶縁基板上に前記複数のLED素子を囲むように設けられた枠部材と、
     前記枠部材の内側に封止された透光性を有する封止部材と、
     前記絶縁基板の表面積及び体積よりも大きい表面積及び体積を有し、前記絶縁基板の前記金属層にボイド率が7%以下のはんだ層を介して接合された放熱部材と、
     を備えたLED光源装置。
    An insulating substrate made of aluminum nitride in which a wiring pattern is formed on a first main surface of an insulating base material and a metal layer is formed on a second main surface opposite to the first main surface;
    A plurality of LED elements connected to the wiring pattern on the first main surface of the insulating substrate and flip-chip mounted at a mounting density of 50% or more;
    A frame member provided on the insulating substrate so as to surround the plurality of LED elements;
    A translucent sealing member sealed inside the frame member;
    A heat radiating member having a surface area and volume larger than the surface area and volume of the insulating substrate, and bonded to the metal layer of the insulating substrate via a solder layer having a void ratio of 7% or less;
    LED light source device comprising:
PCT/JP2017/016352 2016-04-28 2017-04-25 Led light source device WO2017188237A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-090643 2016-04-28
JP2016090643A JP2017199842A (en) 2016-04-28 2016-04-28 LED light source device

Publications (1)

Publication Number Publication Date
WO2017188237A1 true WO2017188237A1 (en) 2017-11-02

Family

ID=60161537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016352 WO2017188237A1 (en) 2016-04-28 2017-04-25 Led light source device

Country Status (2)

Country Link
JP (1) JP2017199842A (en)
WO (1) WO2017188237A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184371A1 (en) 2019-03-08 2020-09-17 京セラ株式会社 Assembly and light-source device
WO2021039825A1 (en) 2019-08-28 2021-03-04 京セラ株式会社 Light-emitting element moutning package and light-emitting device
WO2021060475A1 (en) 2019-09-25 2021-04-01 京セラ株式会社 Electronic component mounting base and electronic device
WO2021193607A1 (en) 2020-03-27 2021-09-30 京セラ株式会社 Electronic component mounting substrate and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205418A (en) * 2004-01-20 2005-08-04 Denso Corp Joined structure manufacturing method
JP2008010545A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp METHOD FOR JOINING WHOLE OF JUNCTION FACE OF ELEMENT TO SUBSTRATE BY USING Au-Sn ALLOY SOLDER PASTE
US20090243089A1 (en) * 2008-03-31 2009-10-01 Infineon Technologies Ag Module including a rough solder joint
JP2014132629A (en) * 2012-12-07 2014-07-17 Toshiba Lighting & Technology Corp Light-emitting device and light device
CN104501013A (en) * 2014-12-24 2015-04-08 付斌 Led lamp

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2510557B2 (en) * 1986-10-17 1996-06-26 株式会社日立製作所 Method for manufacturing composite structure
JPH04141606A (en) * 1990-10-02 1992-05-15 Hitachi Ltd Photoelectric device
JP4404000B2 (en) * 2005-04-05 2010-01-27 トヨタ自動車株式会社 Manufacturing method of bonded structure
JP2010114197A (en) * 2008-11-05 2010-05-20 Toshiba Corp Method for manufacturing semiconductor component
CN101994929A (en) * 2009-08-20 2011-03-30 启耀光电股份有限公司 Light emitting module
JP2013004752A (en) * 2011-06-16 2013-01-07 Fujikura Ltd Laser module
JP2013201255A (en) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp Wiring board device, light-emitting module, lighting device, and method for manufacturing wiring board device
JP2014110397A (en) * 2012-12-04 2014-06-12 Toshiba Lighting & Technology Corp Light-emitting device
JP2015186810A (en) * 2014-03-26 2015-10-29 株式会社フジクラ Solder joint method, production method of ld module and solder joint device
KR101860378B1 (en) * 2014-04-04 2018-05-23 쿄세라 코포레이션 Thermosetting resin composition, semiconductor device and electrical/electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205418A (en) * 2004-01-20 2005-08-04 Denso Corp Joined structure manufacturing method
JP2008010545A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp METHOD FOR JOINING WHOLE OF JUNCTION FACE OF ELEMENT TO SUBSTRATE BY USING Au-Sn ALLOY SOLDER PASTE
US20090243089A1 (en) * 2008-03-31 2009-10-01 Infineon Technologies Ag Module including a rough solder joint
JP2014132629A (en) * 2012-12-07 2014-07-17 Toshiba Lighting & Technology Corp Light-emitting device and light device
CN104501013A (en) * 2014-12-24 2015-04-08 付斌 Led lamp

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184371A1 (en) 2019-03-08 2020-09-17 京セラ株式会社 Assembly and light-source device
CN113490592A (en) * 2019-03-08 2021-10-08 京瓷株式会社 Bonded body and light source device
JPWO2020184371A1 (en) * 2019-03-08 2021-12-23 京セラ株式会社 Joined body and light source device
JP7187664B2 (en) 2019-03-08 2022-12-12 京セラ株式会社 Junction and light source device
CN113490592B (en) * 2019-03-08 2023-10-24 京瓷株式会社 Joint body and light source device
WO2021039825A1 (en) 2019-08-28 2021-03-04 京セラ株式会社 Light-emitting element moutning package and light-emitting device
WO2021060475A1 (en) 2019-09-25 2021-04-01 京セラ株式会社 Electronic component mounting base and electronic device
WO2021193607A1 (en) 2020-03-27 2021-09-30 京セラ株式会社 Electronic component mounting substrate and electronic device

Also Published As

Publication number Publication date
JP2017199842A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP4123105B2 (en) Light emitting device
JP5421751B2 (en) Semiconductor light emitting device
JP5288642B2 (en) Light emitting element
JP2006049442A (en) Semiconductor light emission device and its manufacturing method
WO2017188237A1 (en) Led light source device
JP2005158957A (en) Light emitting device
JP2007073575A (en) Semiconductor light emitting device
JP4821343B2 (en) Submount substrate and light emitting device including the same
JP2009054801A (en) Heat radiation member, and light emitting module equipped with the same
JP5124688B2 (en) Lighting device, display, and signal lamp
WO2018105448A1 (en) Light emitting device
JP2009111180A (en) Led unit
US20180062059A1 (en) Light-emitting module, lighting apparatus for mobile object, and mobile object
JP2006073699A (en) Light emitting element accommodating package
JP2009094213A (en) Light emitting device
JP2010080796A (en) Lighting device
JP2009021384A (en) Electronic component and light emitting device
JP4938611B2 (en) Semiconductor light emitting device
JP6210720B2 (en) LED package
KR101135580B1 (en) Light Emitting Diode lamp module
JP2009038156A (en) Circuit board, and lighting device
JP2006237464A (en) Semiconductor light emitting device
JP2013030598A (en) Heat generation device
JP5538989B2 (en) Light emitting diode structure
JP2009021303A (en) Light-emitting device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789519

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789519

Country of ref document: EP

Kind code of ref document: A1