WO2017188097A1 - 光モジュール - Google Patents

光モジュール Download PDF

Info

Publication number
WO2017188097A1
WO2017188097A1 PCT/JP2017/015771 JP2017015771W WO2017188097A1 WO 2017188097 A1 WO2017188097 A1 WO 2017188097A1 JP 2017015771 W JP2017015771 W JP 2017015771W WO 2017188097 A1 WO2017188097 A1 WO 2017188097A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
laser diode
optical module
filter
lens
Prior art date
Application number
PCT/JP2017/015771
Other languages
English (en)
French (fr)
Inventor
中西 裕美
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2018514538A priority Critical patent/JP6819677B2/ja
Priority to US16/094,016 priority patent/US10644480B2/en
Publication of WO2017188097A1 publication Critical patent/WO2017188097A1/ja
Priority to US16/829,645 priority patent/US11223182B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/046Surface mounting
    • H05K13/0465Surface mounting by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses

Definitions

  • the present invention relates to an optical module.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-93101
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2007-328895
  • Patent Document 3 Japanese Unexamined Patent Application Publication No. 2007-17925. No.
  • Patent Document 4 JP-A-2007-65600
  • An optical module includes a light forming portion that forms light, and a protective member that has an exit window that transmits light from the light forming portion and is disposed so as to surround the light forming portion.
  • the light forming section is mounted on the base member, the plurality of semiconductor light emitting elements mounted on the base member and emitting light of different wavelengths, and mounted on the base member, and directly receives the divergent light from the plurality of semiconductor light emitting elements.
  • a filter that multiplexes coaxially.
  • FIG. 1 is a schematic perspective view showing the structure of an optical module in Embodiment 1.
  • FIG. 1 is a schematic perspective view showing the structure of an optical module in Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the optical module in Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing the structure of an optical module in Embodiment 2.
  • FIG. 6 is a schematic cross-sectional view showing a structure of an optical module in Embodiment 3.
  • FIG. 6 is a schematic cross-sectional view showing the structure of an optical module in Embodiment 4.
  • FIG. 1 is a schematic perspective view showing the structure of an optical module in Embodiment 1.
  • FIG. 1 is a schematic perspective view showing the structure of an optical module in Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing the structure of the optical module in Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing the structure of an optical module in Embod
  • Miniaturization of the optical module is important for further spread of optical modules and expansion of applications. Further, in an optical module, there is a demand for, for example, emitting light of a plurality of colors from one optical module by combining and emitting light having different wavelengths. However, there is a problem in that miniaturization of the optical module is hindered when a structure capable of combining and emitting lights having different wavelengths is employed.
  • an object is to provide an optical module that can combine and emit light having different wavelengths while achieving miniaturization.
  • optical module of the present disclosure it is possible to provide an optical module that can combine and emit light having different wavelengths while achieving downsizing.
  • the optical module of the present application includes a light forming portion that forms light, and a protective member that has an exit window that transmits light from the light forming portion and is disposed so as to surround the light forming portion.
  • the light forming section is mounted on the base member, the plurality of semiconductor light emitting elements mounted on the base member and emitting light of different wavelengths, and mounted on the base member, and directly receives the divergent light from the plurality of semiconductor light emitting elements.
  • a filter that multiplexes coaxially.
  • the optical module of the present application light from a plurality of semiconductor light emitting elements that emit light of different wavelengths is coaxially multiplexed in a filter. Thereby, lights having different wavelengths can be combined and emitted from the optical module.
  • the filter the divergent light from the semiconductor light emitting element is multiplexed. That is, in the filter, light from a plurality of semiconductor light emitting elements is coaxially multiplexed without being converted into collimated light by the lens. Therefore, it is not necessary to arrange a lens between the semiconductor light emitting element and the filter. As a result, downsizing can be achieved.
  • the filter for example, a wavelength selective filter, a polarization synthesis filter, or the like can be employed.
  • divergent light emitted from the semiconductor element may be transmitted through the filter without being passed through the lens, or reflected by the filter.
  • Such a configuration can be employed in the optical module.
  • the optical module may further include a lens that is installed in the exit window and converts a spot size of divergent light from the plurality of semiconductor light emitting elements that are coaxially multiplexed. By doing in this way, the light of a desired spot size can be obtained, maintaining a compact shape.
  • the lens installed on the exit window may be a spherical lens.
  • the spherical lens is suitable as a lens installed on the exit window.
  • the optical module may further include a holding member that is installed on the protection member and holds an optical component on which light emitted from the emission window is incident. By doing so, it is possible to easily attach an optical component such as a lens or an optical fiber waveguide while maintaining a compact shape.
  • the optical module may further include an optical component that is held by the holding member.
  • the optical component may be an optical fiber waveguide.
  • the optical component may be a lens. Such a configuration can be employed in the optical module.
  • the plurality of semiconductor light emitting elements may include a semiconductor light emitting element that emits red light, a semiconductor light emitting element that emits green light, and a semiconductor light emitting element that emits blue light. By doing so, these lights can be combined to form light of a desired color.
  • the semiconductor light emitting element may be a laser diode. By doing in this way, the emitted light with little variation in wavelength can be obtained.
  • FIG. 2 is a view corresponding to a state in which the cap 40 of FIG. 1 is removed.
  • FIG. 3 is a sectional view taken along line III-III in FIG.
  • an optical module 1 includes a stem 10 having a disk shape and a light forming portion 20 that is disposed on one main surface 10A of the stem 10 and forms light. And a plurality of lead pins 51 arranged in contact with one main surface 10A of the stem 10 so as to cover the light forming portion 20 and projecting on both sides of the one main surface 10A side and the other main surface 10B side.
  • the stem 10 and the cap 40 are welded, for example, by a technique such as YAG (Yittrium Aluminum Garnet) laser welding, resistance welding, or the like, and are in an airtight state. That is, the light forming unit 20 is hermetically sealed by the stem 10 and the cap 40.
  • the space surrounded by the stem 10 and the cap 40 is filled with a gas in which moisture is reduced (removed) such as dry air and dry nitrogen.
  • the cap 40 is formed with an emission window 41 that is a through hole that transmits light from the light forming unit 20.
  • a transmission plate 42 that has a flat plate shape (disk shape) whose main surfaces are parallel to each other and transmits light formed in the light forming unit 20 is disposed.
  • the transmission plate 42 is made of glass, for example.
  • the stem 10 and the cap 40 constitute a protective member.
  • the light forming unit 20 includes a base block 60 which is a base member having a semi-cylindrical shape.
  • the base block 60 has a mounting surface 60A having a rectangular shape.
  • the base block 60 is fixed to one main surface 10A of the stem 10 at the bottom surface having a semicircular shape. More specifically, the mounting surface 60 ⁇ / b> A is disposed vertically so as to intersect the one main surface 10 ⁇ / b> A of the stem 10.
  • One main surface 10A and the other main surface 10B of the stem 10 are along the XY plane.
  • the mounting surface 60A is along the XZ plane.
  • a flat plate-like first submount 71 is disposed on the mounting surface 60A.
  • a first laser diode 81 is disposed on the first submount 71.
  • the first laser diode 81 emits red light.
  • the first submount 71 and the first laser diode 81 are arranged such that light from the first laser diode 81 is emitted along one side of the mounting surface 60A.
  • a flat plate-like second submount 72 is disposed on the mounting surface 60A.
  • a second laser diode 82 is disposed on the second submount 72.
  • the second laser diode 82 emits green light.
  • the second submount 72 and the second laser diode 82 are arranged such that light from the second laser diode 82 is emitted along another side that intersects the one side of the mounting surface 60A.
  • the second submount 72 and the second laser diode 82 are arranged such that light from the second laser diode 82 is emitted in a direction (perpendicular direction) intersecting with the light from the first laser diode 81.
  • a flat plate-like third submount 73 is disposed on the mounting surface 60A.
  • a third laser diode 83 is disposed on the third submount 73.
  • the third laser diode 83 emits blue light.
  • the third submount 73 and the third laser diode 83 are arranged such that light from the third laser diode 83 is emitted along the other side of the mounting surface 60A.
  • the third submount 73 and the third laser diode 83 are arranged so that light from the third laser diode 83 is emitted in a direction (perpendicular direction) intersecting with the light from the first laser diode 81.
  • the light from the third laser diode 83 is in a direction along the light from the second laser diode 82 (a direction parallel to the light from the second laser diode 82). It arrange
  • first laser diode 81, second laser diode 82, and third laser diode 83 are adjusted by the first submount 71, the second submount 72, and the third submount 73 to coincide with each other.
  • the first laser diode 81 emits light in the Z direction.
  • the second laser diode 82 and the third laser diode 83 emit light in the X direction.
  • the light emission direction of the first laser diode 81 and the light emission direction of the second laser diode 82 and the third laser diode 83 intersect each other.
  • the light emission direction of the first laser diode 81 is orthogonal to the light emission directions of the second laser diode 82 and the third laser diode 83.
  • the main surfaces of the submount 71 are parallel to each other.
  • the first filter 91 is disposed in a region on the mounting surface 60A corresponding to the position where the light emitted from the first laser diode 81 and the light emitted from the second laser diode 82 intersect.
  • the second filter 92 is disposed in a region on the mounting surface 60A corresponding to the position where the light emitted from the first laser diode 81 and the light emitted from the third laser diode 83 intersect.
  • the first filter 91 and the second filter 92 each have a flat plate shape having principal surfaces parallel to each other.
  • the first filter 91 and the second filter 92 are, for example, wavelength selective filters.
  • the first filter 91 and the second filter 92 are dielectric multilayer filters.
  • the first filter 91 transmits red light and reflects green light.
  • the second filter 92 transmits red light and green light, and reflects blue light.
  • the first filter 91 and the second filter 92 selectively transmit and reflect light having a specific wavelength.
  • the first filter 91 and the second filter 92 multiplex the light emitted from the first laser diode 81, the second laser diode 82, and the third laser diode 83.
  • the main surfaces of the first filter 91 and the second filter 92 are inclined with respect to the Z direction and the X direction. More specifically, the main surfaces of the first filter 91 and the second filter 92 are in the Z direction (the emission direction of the first laser diode 81) and the X direction (the emission direction of the second laser diode 82 and the third laser diode 83). ) With an inclination of 45 °.
  • the light emitted from the first laser diode 81 reaches the first filter 91 and the second filter 92 without passing through the lens.
  • the light emitted from the second laser diode 82 reaches the first filter 91 and the second filter 92 without passing through the lens.
  • the light emitted from the third laser diode 83 reaches the second filter 92 without passing through the lens. That is, no lens is disposed between the first laser diode 81 and the first filter 91. Further, no lens is disposed between the second laser diode 82 and the first filter 91. Further, no lens is disposed between the third laser diode 83 and the second filter 92. Light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 reaches the emission window 41 without passing through the lens.
  • the red light emitted from first laser diode 81 travels along optical path L ⁇ b> 1 and enters first filter 91. Since the first filter 91 transmits red light, the light emitted from the first laser diode 81 further travels along the optical path L 2 and enters the second filter 92. The second filter 92 for transmitting the red light, the light emitted from the first laser diode 81 further proceeds along the optical path L 3, a transparent plate 42 disposed on the exit window 41 of the cap 40 The light passes through and is emitted to the outside of the optical module 1.
  • the green light emitted from the second laser diode 82 travels along the optical path L 4 and enters the first filter 91.
  • the first filter 91 for reflecting green light, the light emitted from the second laser diode 82 joins the optical path L 2.
  • green light are multiplexed to a red light and a coaxial, along the optical path L 2 progresses, is incident on the second filter 92.
  • the second filter 92 for transmitting the green light, the light emitted from the second laser diode 82 is further advanced along the optical path L 3, a transparent plate 42 disposed on the exit window 41 of the cap 40 The light passes through and is emitted to the outside of the optical module 1.
  • the blue light emitted from the third laser diode 83 travels along the optical path L 5 and enters the second filter 92.
  • the second filter 92 for reflecting the blue light, the light emitted from the third laser diode 83 joins the optical path L 3.
  • the blue light is combined with red light and green light, along the optical path L 3 proceeds through the transmission plate 42 disposed on the exit window 41 of the cap 40 of the optical module 1 to the outside And exit.
  • the light formed by combining the red, green and blue lights is emitted from the emission window 41 of the cap 40.
  • the light emitted from the first laser diode 81, the second laser diode 82, and the third laser diode 83 is divergent light.
  • the first filter 91 and the second filter 92 coaxially multiplex the light reaching the first filter 91 and the second filter 92 without passing through the lens. That is, the first filter 91 and the second filter 92 directly receive the divergent light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 and multiplex them coaxially.
  • first, first submount 71, second submount 72 and third submount 73, first laser diode 81, second laser diode 82 and third laser diode are mounted on mounting surface 60A of base block 60. 83 is fixed and an electrical connection is formed.
  • the first filter 91 and the second filter 92 are held on an area in the mounting surface 60A where the first filter 91 and the second filter 92 are to be installed using an adhesive made of, for example, an ultraviolet curable resin. .
  • the first filter 91 and the second filter 92 are held by the adhesive force of the adhesive, but are not completely fixed.
  • the first laser diode 81 is made to emit light with a reference lens disposed on the side opposite to the stem 10 when viewed from the base block 60. Thereby, the light (diverging light) from the first laser diode 81 is converted into collimated light by the reference lens.
  • the first laser diode 81 converted into collimated light is received by, for example, a CCD (Charge Coupled Device) camera, and the received position is set as a reference point.
  • CCD Charge Coupled Device
  • the energization to the first laser diode 81 is stopped and the second laser diode 82 is energized to emit light.
  • the light from the second laser diode 82 is converted into collimated light by the reference lens and then received by the CCD camera.
  • the first filter 91 is adjusted so that the light from the second laser diode 82 matches the reference point.
  • the energization to the second laser diode 82 is stopped and the third laser diode 83 is energized to emit light.
  • the light from the third laser diode 83 is converted into collimated light by the reference lens and then received by the CCD camera.
  • the second filter 92 is adjusted so that the light from the third laser diode 83 matches the reference point.
  • the first filter 91 and the second filter 92 are fixed by irradiating the ultraviolet curable resin, which is an adhesive, with ultraviolet rays and curing.
  • the positions and orientations of the first filter 91 and the second filter 92 are adjusted so that divergent light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 are coaxially combined. Is done. Thereafter, the cap 40 is attached to the stem 10.
  • the light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 that emits light of different wavelengths is coaxial in the first filter 91 and the second filter 92. To be combined. As a result, light having different wavelengths can be multiplexed and light of a desired color can be emitted from the optical module 1. Further, in the first filter 91 and the second filter 92, the divergent light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 is multiplexed.
  • the optical module 1 of the present embodiment is an optical module that can combine and emit light having different wavelengths while achieving downsizing.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the optical module in the second embodiment. 4 is a cross-sectional view corresponding to FIG. 3 of the first embodiment.
  • the optical module 1 in the present embodiment basically has the same structure as that of the first embodiment, and has the same effects.
  • the optical module 1 according to the second embodiment is different from that according to the first embodiment in that a lens is disposed at the exit window 41.
  • a spherical lens 43 is installed as a collimating lens in the exit window 41.
  • the divergent light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 that are coaxially combined in the first filter 91 and the second filter 92 is converted into collimated light by the spherical lens 43. And emitted from the optical module 1.
  • an optical module can be used as compared with the case where a lens is arranged on the mounting surface 60A so as to correspond to each of the first laser diode 81, the second laser diode 82, and the third laser diode 83. Collimated light can be emitted from the optical module 1 while downsizing the optical module 1.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the optical module according to the third embodiment.
  • FIG. 5 is a cross-sectional view corresponding to FIG. 3 of the first embodiment.
  • the optical module 1 in the present embodiment basically has the same structure as that of the first embodiment and has the same effects.
  • the optical module 1 according to the third embodiment is installed on the cap 40 that is a protective member, and serves as a holding member for holding the optical fiber waveguide 101 as an optical component on which light emitted from the emission window 41 enters.
  • This embodiment is different from the first embodiment in that the base body 44 and the fiber holding member 45 are further provided.
  • the base body 44 has a hollow cylindrical shape.
  • the base body 44 is attached to the outer wall of the cap 40 so that the hollow portion 44 ⁇ / b> A corresponds to the emission window 41 at one end face.
  • the fiber holding member 45 has a truncated cone shape having a through hole 45A so as to include the central axis.
  • the fiber holding member 45 is attached to the end surface of the bottom surface opposite to the side connected to the cap 40 so that the through hole 45A corresponds to the hollow portion 44A of the base body 44.
  • the optical fiber waveguide 101 is held by the fiber holding member 45 by inserting the optical fiber waveguide 101 into the through hole 45A.
  • a spherical lens 49 is installed in the exit window 41 as a condenser lens.
  • the diverging light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 that are coaxially combined in the first filter 91 and the second filter 92 is collected by the spherical lens 49, The light enters the optical fiber waveguide 101.
  • FIG. 6 is a schematic cross-sectional view showing the structure of the optical module in the fourth embodiment. 6 is a cross-sectional view corresponding to FIG. 3 of the first embodiment.
  • the optical module 1 in the present embodiment has basically the same structure as that of the first embodiment and has the same effects.
  • the optical module 1 according to the fourth embodiment is installed in a cap 40 that is a protective member, and serves as a holding member for holding the aspherical lens 102 as an optical component on which light emitted from the emission window 41 enters.
  • the second embodiment is different from the first embodiment in that a base body 46 and a lens holding member 47 are further provided.
  • the base body 46 has a hollow cylindrical shape.
  • the base body 46 is attached to the outer wall of the cap 40 so that the hollow portion 46 ⁇ / b> A corresponds to the emission window 41 at one end surface.
  • the lens holding member 47 has a hollow cylindrical shape.
  • the lens holding member 47 is attached to an end surface of one end surface opposite to the side connected to the cap 40 so that the hollow portion 47A corresponds to the hollow portion 46A of the base body 46.
  • the divergent light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 that are coaxially combined in the first filter 91 and the second filter 92 is collimated by the aspherical lens 102. Converted. By adopting such a structure, it is possible to obtain collimated light adjusted to a desired color while miniaturizing the optical module 1.
  • the submount is made of a material having a thermal expansion coefficient close to that of an element mounted on the submount.
  • the submount is made of AlN (aluminum nitride), SiC (silicon carbide), Si (silicon), diamond, or the like.
  • the stem and the cap for example, iron, copper or the like having a high thermal conductivity may be adopted, AlN (aluminum nitride), CuW (copper tungsten), CuMo (copper molybdenum). Etc. may be adopted.
  • the first laser diode 81, the second laser diode 82, and the third laser diode 83 are arranged such that the first laser diode 81, the second laser diode 81 and the third laser diode 83 are arranged when a lens is disposed at the exit window 41 or outside the exit window 41. It is preferable that the light beams from the second laser diode 83 and the third laser diode 83 are arranged so as to have the same spot size or in the same focal position. More specifically, the refractive index is large (short wavelength) so that the light from the first laser diode 81, the second laser diode 82, and the third laser diode 83 is converted into the same spot size by the lens.
  • the first laser diode 81, the second laser diode 82, and the third laser diode 83 are arranged so that the length of the optical path from the diode 81 to the lens is shorter than the length of the optical path from the second laser diode 82 to the lens. It is preferred that
  • Embodiments 1 to 4 are examples of the structure of the optical module of the present application.
  • the case where the light from the three laser diodes is combined has been described.
  • the light from the two laser diodes may be combined, or from four or more laser diodes. May be combined.
  • the case where a laser diode is employed as an example of the semiconductor light emitting element has been described.
  • a light emitting diode may be employed as the semiconductor light emitting element.
  • 1 optical module 10 stem, 10A, 10B main surface, 20 light forming part, 40 cap, 41 exit window, 42 transmission plate, 43 spherical lens, 44 base body, 44A hollow part, 45 fiber holding member, 45A through hole, 46 base body, 46A hollow portion, 47 lens holding member, 47A hollow portion, 49 spherical lens, 51 lead pin, 60 base block, 60A mounting surface, 71 first submount, 72 second submount, 73 third submount, 81 1st laser diode, 82 2nd laser diode, 83 3rd laser diode, 91 1st filter, 92 2nd filter, 101 optical fiber waveguide, 102 aspherical lens.

Abstract

光モジュールは、光を形成する光形成部と、光形成部からの光を透過する出射窓を有し、光形成部を取り囲むように配置される保護部材と、を備える。光形成部は、ベース部材と、ベース部材上に搭載され、異なる波長の光を出射する複数の半導体発光素子と、ベース部材上に搭載され、複数の半導体発光素子からの発散光を直接受けて同軸に合波するフィルタと、を含む。

Description

光モジュール
 本発明は、光モジュールに関するものである。
 本出願は、2016年4月25日出願の日本出願第2016-086721号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 パッケージ内に半導体発光素子を配置した光モジュールが知られている(たとえば、特開2009-93101号公報(特許文献1)、特開2007-328895号公報(特許文献2)、特開2007-17925号公報(特許文献3)および特開2007-65600号公報(特許文献4)参照)。
特開2009-93101号公報 特開2007-328895号公報 特開2007-17925号公報 特開2007-65600号公報
 本発明に従った光モジュールは、光を形成する光形成部と、光形成部からの光を透過する出射窓を有し、光形成部を取り囲むように配置される保護部材と、を備える。光形成部は、ベース部材と、ベース部材上に搭載され、異なる波長の光を出射する複数の半導体発光素子と、ベース部材上に搭載され、上記複数の半導体発光素子からの発散光を直接受けて同軸に合波するフィルタと、を含む。
実施の形態1における光モジュールの構造を示す概略斜視図である。 実施の形態1における光モジュールの構造を示す概略斜視図である。 実施の形態1における光モジュールの構造を示す概略断面図である。 実施の形態2における光モジュールの構造を示す概略断面図である。 実施の形態3における光モジュールの構造を示す概略断面図である。 実施の形態4における光モジュールの構造を示す概略断面図である。
 [本開示が解決しようとする課題]
 光モジュールの更なる普及や用途拡大のためには、光モジュールの小型化が重要である。また、光モジュールにおいては、波長の異なる光を合波して出射することにより、たとえば複数の色の光を一の光モジュールから出射することに対する要求がある。しかし、波長の異なる光を合波して出射可能な構造を採用すると、光モジュールの小型化が妨げられるという問題がある。
 そこで、小型化を達成しつつ波長の異なる光を合波して出射可能な光モジュールを提供することを目的の1つとする。
 [本開示の効果]
 本開示の光モジュールによれば、小型化を達成しつつ波長の異なる光を合波して出射可能な光モジュールを提供することができる。
 [本願発明の実施形態の説明]
 最初に本願発明の実施態様を列記して説明する。本願の光モジュールは、光を形成する光形成部と、光形成部からの光を透過する出射窓を有し、光形成部を取り囲むように配置される保護部材と、を備える。光形成部は、ベース部材と、ベース部材上に搭載され、異なる波長の光を出射する複数の半導体発光素子と、ベース部材上に搭載され、上記複数の半導体発光素子からの発散光を直接受けて同軸に合波するフィルタと、を含む。
 本願の光モジュールでは、異なる波長の光を出射する複数の半導体発光素子からの光がフィルタにおいて同軸に合波される。これにより、波長の異なる光を合波して光モジュールから出射することができる。また、フィルタでは、半導体発光素子からの発散光が合波される。つまり、フィルタにおいては、複数の半導体発光素子からの光がレンズによってコリメート光に変換されることなく同軸に合波される。そのため、半導体発光素子とフィルタとの間にレンズを配置する必要がない。その結果、小型化を達成することができる。このように、本願の光モジュールによれば、小型化を達成しつつ波長の異なる光を合波して出射可能な光モジュールを提供することができる。なお、フィルタとしては、たとえば波長選択性フィルタ、偏波合成フィルタなどを採用することができる。
 上記光モジュールにおいて、半導体素子から出射された発散光は、レンズを介さずに上記フィルタを透過し、または上記フィルタによって反射されてもよい。上記光モジュールにおいては、このような構成を採用することができる。
 上記光モジュールは、上記出射窓に設置され、同軸に合波された上記複数の半導体発光素子からの発散光のスポットサイズを変換するレンズをさらに備えていてもよい。このようにすることにより、コンパクトな形状を維持しつつ、所望のスポットサイズの光を得ることができる。
 上記光モジュールにおいて、上記出射窓に設置されるレンズは、球面レンズであってもよい。球面レンズは、出射窓に設置されるレンズとして好適である。
 上記光モジュールは、上記保護部材に設置され、上記出射窓から出射した光が入射する光学部品を保持するための保持部材をさらに備えていてもよい。このようにすることにより、コンパクトな形状を維持しつつ、レンズ、光ファイバ導波路などの光学部品の取り付けを容易とすることができる。
 上記光モジュールは、上記保持部材に保持される光学部品をさらに備えていてもよい。この光学部品は、光ファイバ導波路であってもよい。また、この光学部品は、レンズであってもよい。上記光モジュールにおいては、このような構成を採用することができる。
 上記光モジュールにおいて、上記複数の半導体発光素子は、赤色の光を出射する半導体発光素子、緑色の光を出射する半導体発光素子および青色の光を出射する半導体発光素子を含んでいてもよい。このようにすることにより、これらの光を合波し、所望の色の光を形成することができる。
 上記光モジュールにおいて、上記半導体発光素子はレーザダイオードであってもよい。このようにすることにより、波長のばらつきの少ない出射光を得ることができる。
 [本願発明の実施形態の詳細]
 次に、本発明にかかる光モジュールの実施の形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 (実施の形態1)
 まず、図1~図3を参照して実施の形態1について説明する。図2は、図1のキャップ40を取り外した状態に対応する図である。また、図3は、図2の線分III-IIIに沿う断面図である。
 図1および図2を参照して、本実施の形態における光モジュール1は、円盤の形状を有するステム10と、ステム10の一方の主面10A上に配置され、光を形成する光形成部20と、光形成部20を覆うようにステム10の一方の主面10A上に接触して配置され、一方の主面10A側および他方の主面10B側の両側に突出する複数のリードピン51とを備えている。ステム10とキャップ40とは、たとえばYAG(Yittrium Aluminium Garnet)レーザ溶接、抵抗溶接などの手法により溶接され、気密状態とされている。すなわち、光形成部20は、ステム10とキャップ40とによりハーメチックシールされている。
 ステム10とキャップ40とにより取り囲まれる空間には、たとえば乾燥空気、乾燥窒素などの水分が低減(除去)された気体が封入されている。キャップ40には、光形成部20からの光を透過する貫通孔である出射窓41が形成されている。出射窓41には、主面が互いに平行な平板状の形状(円盤状の形状)を有し、光形成部20において形成された光を透過する透過板42が配置されている。透過板42は、たとえばガラスからなっている。ステム10およびキャップ40は、保護部材を構成する。
 図2を参照して、光形成部20は、半円柱状の形状を有するベース部材であるベースブロック60を含む。ベースブロック60は、長方形形状を有する搭載面60Aを有している。ベースブロック60は、半円形状を有する底面において、ステム10の一方の主面10Aに固定されている。搭載面60Aは、ステム10の一方の主面10Aに対して交差するように、より具体的には垂直に配置される。ステム10の一方の主面10Aおよび他方の主面10Bは、X-Y平面に沿う。搭載面60Aは、X-Z平面に沿う。
 図2および図3を参照して、搭載面60A上には、平板状の第1サブマウント71が配置されている。そして、第1サブマウント71上に、第1レーザダイオード81が配置されている。第1レーザダイオード81は、赤色の光を出射する。第1サブマウント71および第1レーザダイオード81は、第1レーザダイオード81からの光が搭載面60Aの一の辺に沿って出射されるように配置される。
 搭載面60A上には、平板状の第2サブマウント72が配置されている。そして、第2サブマウント72上に、第2レーザダイオード82が配置されている。第2レーザダイオード82は、緑色の光を出射する。第2サブマウント72および第2レーザダイオード82は、第2レーザダイオード82からの光が搭載面60Aの上記一の辺に交差する他の辺に沿って出射されるように配置される。第2サブマウント72および第2レーザダイオード82は、第2レーザダイオード82からの光が、第1レーザダイオード81からの光と交差する方向(直交する方向)に出射されるように配置される。
 搭載面60A上には、平板状の第3サブマウント73が配置されている。そして、第3サブマウント73上に、第3レーザダイオード83が配置されている。第3レーザダイオード83は、青色の光を出射する。第3サブマウント73および第3レーザダイオード83は、第3レーザダイオード83からの光が搭載面60Aの上記他の辺に沿って出射されるように配置される。第3サブマウント73および第3レーザダイオード83は、第3レーザダイオード83からの光が、第1レーザダイオード81からの光と交差する方向(直交する方向)に出射されるように配置される。第3サブマウント73および第3レーザダイオード83は、第3レーザダイオード83からの光が、第2レーザダイオード82からの光に沿った方向(第2レーザダイオード82からの光に平行な方向)に出射されるように配置される。
 第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83の光軸の高さ(搭載面60Aを基準面とした場合の基準面と光軸との距離;Y軸方向における基準面との距離)は、第1サブマウント71、第2サブマウント72および第3サブマウント73により調整されて一致している。第1レーザダイオード81は、Z方向に光を出射する。第2レーザダイオード82および第3レーザダイオード83は、X方向に光を出射する。第1レーザダイオード81の光の出射方向と第2レーザダイオード82および第3レーザダイオード83の光の出射方向とは交差する。より具体的には、第1レーザダイオード81の光の出射方向と第2レーザダイオード82および第3レーザダイオード83の光の出射方向とは直交する。第3レーザダイオード83の設置面である第3サブマウント73の主面、第2レーザダイオード82の設置面である第2サブマウント72の主面および第1レーザダイオード81の設置面である第1サブマウント71の主面は、互いに平行である。
 第1レーザダイオード81を出射した光と第2レーザダイオード82を出射した光とが交差する位置に対応する搭載面60A上の領域に、第1フィルタ91が配置される。第1レーザダイオード81を出射した光と第3レーザダイオード83を出射した光とが交差する位置に対応する搭載面60A上の領域に、第2フィルタ92が配置される。第1フィルタ91および第2フィルタ92は、それぞれ互いに平行な主面を有する平板状の形状を有している。第1フィルタ91および第2フィルタ92は、たとえば波長選択性フィルタである。第1フィルタ91および第2フィルタ92は、誘電体多層膜フィルタである。
 第1フィルタ91は、赤色の光を透過し、緑色の光を反射する。第2フィルタ92は、赤色の光および緑色の光を透過し、青色の光を反射する。このように、第1フィルタ91および第2フィルタ92は、特定の波長の光を選択的に透過および反射する。その結果、第1フィルタ91および第2フィルタ92は、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83から出射された光を合波する。
 第1フィルタ91および第2フィルタ92の主面は、Z方向およびX方向に対して傾斜している。より具体的には、第1フィルタ91および第2フィルタ92の主面は、Z方向(第1レーザダイオード81の出射方向)およびX方向(第2レーザダイオード82および第3レーザダイオード83の出射方向)に対して45°傾斜している。
 第1レーザダイオード81から出射される光は、レンズを通過することなく第1フィルタ91および第2フィルタ92に到達する。第2レーザダイオード82から出射される光は、レンズを通過することなく第1フィルタ91および第2フィルタ92に到達する。第3レーザダイオード83から出射される光は、レンズを通過することなく第2フィルタ92に到達する。すなわち、第1レーザダイオード81と第1フィルタ91との間には、レンズは配置されない。また、第2レーザダイオード82と第1フィルタ91との間には、レンズは配置されない。さらに、第3レーザダイオード83と第2フィルタ92との間には、レンズは配置されない。第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの光は、レンズを通過することなく出射窓41に到達する。
 次に、本実施の形態における光モジュール1の動作について説明する。図3を参照して、第1レーザダイオード81から出射された赤色の光は、光路Lに沿って進行し、第1フィルタ91に入射する。第1フィルタ91は赤色の光を透過するため、第1レーザダイオード81から出射された光は光路Lに沿ってさらに進行し、第2フィルタ92に入射する。そして、第2フィルタ92は赤色の光を透過するため、第1レーザダイオード81から出射された光は光路Lに沿ってさらに進行し、キャップ40の出射窓41に配置された透過板42を通って光モジュール1の外部へと出射する。
 第2レーザダイオード82から出射された緑色の光は、光路Lに沿って進行し、第1フィルタ91に入射する。第1フィルタ91は緑色の光を反射するため、第2レーザダイオード82から出射された光は光路Lに合流する。その結果、緑色の光は赤色の光と同軸に合波され、光路Lに沿って進行し、第2フィルタ92に入射する。そして、第2フィルタ92は緑色の光を透過するため、第2レーザダイオード82から出射された光は光路Lに沿ってさらに進行し、キャップ40の出射窓41に配置された透過板42を通って光モジュール1の外部へと出射する。
 第3レーザダイオード83から出射された青色の光は、光路Lに沿って進行し、第2フィルタ92に入射する。第2フィルタ92は青色の光を反射するため、第3レーザダイオード83から出射された光は光路Lに合流する。その結果、青色の光は赤色の光および緑色の光と合波され、光路Lに沿って進行し、キャップ40の出射窓41に配置された透過板42を通って光モジュール1の外部へと出射する。
 このようにして、キャップ40の出射窓41から、赤色、緑色および青色の光が合波されて形成された光が出射する。ここで、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83から出射される光は発散光である。そして、第1フィルタ91および第2フィルタ92は、レンズを通ることなく第1フィルタ91および第2フィルタ92に到達した光を同軸に合波する。すなわち、第1フィルタ91および第2フィルタ92は、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの発散光を直接受けて同軸に合波する。
 第1フィルタ91および第2フィルタ92の位置および向きは、たとえば以下のように調整することができる。図3を参照して、まずベースブロック60の搭載面60Aに第1サブマウント71、第2サブマウント72および第3サブマウント73ならびに第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83が固定され、電気的接続が形成される。次に、第1フィルタ91および第2フィルタ92が設置されるべき搭載面60A内の領域上に、たとえば紫外線硬化樹脂からなる接着剤を用いて第1フィルタ91および第2フィルタ92が保持される。この時点では、接着剤の粘着力により第1フィルタ91および第2フィルタ92が保持されているものの、完全に固定されている状態とはなっていない。
 次に、ベースブロック60から見てステム10とは反対側にリファレンスレンズを配置した状態で第1レーザダイオード81に通電して発光させる。これにより、第1レーザダイオード81からの光(発散光)がリファレンスレンズによりコリメート光に変換される。そして、コリメート光に変換された第1レーザダイオード81を、たとえばCCD(Charge Coupled Device)カメラで受光し、受光した位置を基準点とする。
 次に、第1レーザダイオード81への通電を停止するとともに、第2レーザダイオード82に通電して発光させる。第2レーザダイオード82からの光は、リファレンスレンズによりコリメート光に変換されたうえで、CCDカメラによって受光される。そして、第2レーザダイオード82からの光が上記基準点に一致するように第1フィルタ91が調整される。
 次に、第2レーザダイオード82への通電を停止するとともに、第3レーザダイオード83に通電して発光させる。第3レーザダイオード83からの光は、リファレンスレンズによりコリメート光に変換されたうえで、CCDカメラによって受光される。そして、第3レーザダイオード83からの光が上記基準点に一致するように第2フィルタ92が調整される。その後、接着剤である紫外線硬化樹脂に紫外線が照射されて硬化されることにより、第1フィルタ91および第2フィルタ92が固定される。以上のようにして、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの発散光を同軸に合波するように第1フィルタ91および第2フィルタ92の位置および向きが調整される。その後、キャップ40がステム10に取り付けられる。
 本実施の形態の光モジュール1においては、異なる波長の光を出射する第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの光が第1フィルタ91および第2フィルタ92において同軸に合波される。これにより、波長の異なる光を合波して、所望の色の光を光モジュール1から出射することができる。また、第1フィルタ91および第2フィルタ92では、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの発散光が合波される。つまり、第1フィルタ91および第2フィルタ92においては、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの光がレンズによってコリメート光に変換されることなく同軸に合波される。そのため、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83と第1フィルタ91および第2フィルタ92との間にレンズを配置する必要がない。その結果、小型化を達成することができる。このように、本実施の形態の光モジュール1は、小型化を達成しつつ波長の異なる光を合波して出射可能な光モジュールとなっている。
 (実施の形態2)
 次に、他の実施の形態である実施の形態2について説明する。図4は、実施の形態2における光モジュールの構造を示す概略断面図である。図4は、上記実施の形態1の図3に対応する断面図である。図4および図3を参照して、本実施の形態における光モジュール1は、基本的には実施の形態1の場合と同様の構造を有し、同様の効果を奏する。しかし、実施の形態2における光モジュール1は、出射窓41にレンズが配置される点において実施の形態1の場合とは異なっている。
 図4を参照して、実施の形態2の光モジュール1においては、出射窓41に、コリメートレンズとして球面レンズ43が設置される。これにより、第1フィルタ91および第2フィルタ92において同軸に合波された第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの発散光は、球面レンズ43によってコリメート光に変換されて光モジュール1から出射する。このような構造を採用することにより、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83のそれぞれに対応するように搭載面60A上にレンズを配置する場合に比べて、光モジュール1を小型化しつつ、光モジュール1からコリメート光を出射させることができる。
 (実施の形態3)
 次に、さらに他の実施の形態である実施の形態3について説明する。図5は、実施の形態3における光モジュールの構造を示す概略断面図である。図5は、上記実施の形態1の図3に対応する断面図である。図5および図3を参照して、本実施の形態における光モジュール1は、基本的には実施の形態1の場合と同様の構造を有し、同様の効果を奏する。しかし、実施の形態3における光モジュール1は、保護部材であるキャップ40に設置され、出射窓41から出射した光が入射する光学部品しての光ファイバ導波路101を保持するための保持部材としてのベース体44およびファイバ保持部材45をさらに備える点において実施の形態1の場合とは異なっている。
 図5を参照して、ベース体44は、中空円筒状の形状を有している。ベース体44は、一方の端面において、中空部分44Aが出射窓41に対応するようにキャップ40の外壁に取り付けられている。ファイバ保持部材45は、中心軸を含むように貫通孔45Aを有する円錐台状の形状を有している。ファイバ保持部材45は、貫通孔45Aがベース体44の中空部分44Aに対応するように、底面においてベース体44のキャップ40に接続される側とは反対側の端面に取り付けられている。貫通孔45Aに光ファイバ導波路101が挿入されることにより、光ファイバ導波路101がファイバ保持部材45に保持されている。また、出射窓41に、集光レンズとして球面レンズ49が設置される。これにより、第1フィルタ91および第2フィルタ92において同軸に合波された第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの発散光は、球面レンズ49によって集光され、光ファイバ導波路101に入射する。このような構造を採用することにより、光モジュール1を小型化しつつ、所望の色に調整された光を光ファイバ導波路101に入射させることができる。
 (実施の形態4)
 次に、さらに他の実施の形態である実施の形態4について説明する。図6は、実施の形態4における光モジュールの構造を示す概略断面図である。図6は、上記実施の形態1の図3に対応する断面図である。図6および図3を参照して、本実施の形態における光モジュール1は、基本的には実施の形態1の場合と同様の構造を有し、同様の効果を奏する。しかし、実施の形態4における光モジュール1は、保護部材であるキャップ40に設置され、出射窓41から出射した光が入射する光学部品しての非球面レンズ102を保持するための保持部材としてのベース体46およびレンズ保持部材47をさらに備える点において実施の形態1の場合とは異なっている。
 具体的には、図6を参照して、ベース体46は、中空円筒状の形状を有している。ベース体46は、一方の端面において、中空部分46Aが出射窓41に対応するようにキャップ40の外壁に取り付けられている。レンズ保持部材47は、中空円筒状の形状を有している。レンズ保持部材47は、中空部分47Aがベース体46の中空部分46Aに対応するように、一方の端面においてベース体46のキャップ40に接続される側とは反対側の端面に取り付けられている。中空部分47Aに挿入されることにより、コリメートレンズとしての非球面レンズ102が外周面においてレンズ保持部材47に保持される。これにより、第1フィルタ91および第2フィルタ92において同軸に合波された第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの発散光は、非球面レンズ102によってコリメート光に変換される。このような構造を採用することにより、光モジュール1を小型化しつつ、所望の色に調整されたコリメート光を得ることができる。
 なお、上記サブマウントは、サブマウント上に搭載される素子等に熱膨張係数が近い材料からなるものとされ、たとえばAlN(窒化アルミニウム)、SiC(炭化珪素)、Si(珪素)、ダイヤモンドなどからなるものとすることができる。また、ステムおよびキャップを構成する材料としては、たとえば熱伝導率の高い材料である鉄、銅などを採用してもよいし、AlN(窒化アルミニウム)、CuW(銅タングステン)、CuMo(銅モリブデン)などを採用してもよい。
 また、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83は、出射窓41に、または出射窓41の外側にレンズを配置した場合に、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの光が同一のスポットサイズとなるように、または焦点位置が一致するように配置されることが好ましい。より具体的には、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83からの光が、レンズによって同一のスポットサイズに変換されるように、屈折率の大きい(波長の短い)光を出射する第3レーザダイオード83からレンズまでの光路の長さが第2レーザダイオード82からレンズまでの光路の長さよりも長く、屈折率の小さい(波長の長い)光を出射する第1レーザダイオード81からレンズまでの光路の長さが、第2レーザダイオード82からレンズまでの光路の長さよりも短くなるように、第1レーザダイオード81、第2レーザダイオード82および第3レーザダイオード83が配置されることが好ましい。
 上記実施の形態1~4の構造は、本願の光モジュールの構造の一例である。上記実施の形態においては、3個のレーザダイオードからの光が合波される場合について説明したが、2個のレーザダイオードからの光が合波されてもよいし、4個以上のレーザダイオードからの光が合波されてもよい。また、上記実施の形態では、半導体発光素子の一例としてレーザダイオードが採用される場合について説明したが、半導体発光素子として発光ダイオードが採用されてもよい。
 今回開示された実施の形態はすべての点で例示であって、どのような面からも制限的なものではないと理解されるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって規定され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 光モジュール、10 ステム、10A,10B 主面、20 光形成部、40 キャップ、41 出射窓、42 透過板、43 球面レンズ、44 ベース体、44A 中空部分、45 ファイバ保持部材、45A 貫通孔、46 ベース体、46A 中空部分、47 レンズ保持部材、47A 中空部分、49 球面レンズ、51 リードピン、60 ベースブロック、60A 搭載面、71 第1サブマウント、72 第2サブマウント、73 第3サブマウント、81 第1レーザダイオード、82 第2レーザダイオード、83 第3レーザダイオード、91 第1フィルタ、92 第2フィルタ、101 光ファイバ導波路、102 非球面レンズ。

Claims (10)

  1.  光を形成する光形成部と、
     前記光形成部からの光を透過する出射窓を有し、前記光形成部を取り囲むように配置される保護部材と、を備え、
     前記光形成部は、
     ベース部材と、
     前記ベース部材上に搭載され、異なる波長の光を出射する複数の半導体発光素子と、
     前記ベース部材上に搭載され、前記複数の半導体発光素子からの発散光を直接受けて同軸に合波するフィルタと、を含む、光モジュール。
  2.  前記半導体発光素子から出射された発散光は、レンズを介さずに前記フィルタを透過し、または前記フィルタによって反射される、請求項1に記載の光モジュール。
  3.  前記出射窓に設置され、同軸に合波された前記複数の半導体発光素子からの発散光のスポットサイズを変換するレンズをさらに備える、請求項1または請求項2に記載の光モジュール。
  4.  前記出射窓に設置されるレンズは、球面レンズである、請求項3に記載の光モジュール。
  5.  前記保護部材に設置され、前記出射窓から出射した光が入射する光学部品を保持するための保持部材をさらに備える、請求項1~請求項4のいずれか1項に記載の光モジュール。
  6.  前記保持部材に保持される前記光学部品をさらに備える、請求項5に記載の光モジュール。
  7.  前記光学部品は光ファイバ導波路である、請求項6に記載の光モジュール。
  8.  前記光学部品はレンズである、請求項6に記載の光モジュール。
  9.  前記複数の半導体発光素子は、赤色の光を出射する前記半導体発光素子、緑色の光を出射する前記半導体発光素子および青色の光を出射する前記半導体発光素子を含む、請求項1~請求項8のいずれか1項に記載の光モジュール。
  10.  前記半導体発光素子はレーザダイオードである、請求項1~請求項9のいずれか1項に記載の光モジュール。
     
PCT/JP2017/015771 2016-04-25 2017-04-19 光モジュール WO2017188097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018514538A JP6819677B2 (ja) 2016-04-25 2017-04-19 光モジュール
US16/094,016 US10644480B2 (en) 2016-04-25 2017-04-19 Optical module
US16/829,645 US11223182B2 (en) 2016-04-25 2020-03-25 Method of manufacturing optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-086721 2016-04-25
JP2016086721 2016-04-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/094,016 A-371-Of-International US10644480B2 (en) 2016-04-25 2017-04-19 Optical module
US16/829,645 Continuation US11223182B2 (en) 2016-04-25 2020-03-25 Method of manufacturing optical module

Publications (1)

Publication Number Publication Date
WO2017188097A1 true WO2017188097A1 (ja) 2017-11-02

Family

ID=60161429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015771 WO2017188097A1 (ja) 2016-04-25 2017-04-19 光モジュール

Country Status (3)

Country Link
US (2) US10644480B2 (ja)
JP (1) JP6819677B2 (ja)
WO (1) WO2017188097A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165127A (ja) * 2018-03-20 2019-09-26 住友電気工業株式会社 フィルタおよび光モジュール
US20210075186A1 (en) * 2018-04-28 2021-03-11 SZ DJI Technology Co., Ltd. Laser diode module, transmitter, ranging device and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013127A (ja) * 2004-06-25 2006-01-12 Sony Corp 光源装置及び表示装置
WO2013146313A1 (ja) * 2012-03-26 2013-10-03 シチズンホールディングス株式会社 レーザ光源装置及びレーザ光源装置の製造方法
WO2015005329A1 (ja) * 2013-07-08 2015-01-15 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542018A (en) * 1990-08-31 1996-07-30 Kuhara; Yoshiki Semiconductor laser device making use of photodiode chip
JP2007017925A (ja) 2005-06-07 2007-01-25 Fujifilm Holdings Corp 合波レーザ光源
JP2007328895A (ja) 2005-06-16 2007-12-20 Sanyo Electric Co Ltd 光ピックアップ装置
JP2007065600A (ja) 2005-09-02 2007-03-15 Fujifilm Corp 合波レーザ装置
JP2007115905A (ja) * 2005-10-20 2007-05-10 Fujifilm Corp 撮像素子パッケージの製造装置及び撮像素子パッケージの製造方法
JP2009093101A (ja) 2007-10-12 2009-04-30 Hitachi Communication Technologies Ltd 光モジュール
JP2009105106A (ja) * 2007-10-22 2009-05-14 Hitachi Ltd 光送受信モジュール
JP5439191B2 (ja) * 2007-12-26 2014-03-12 株式会社日立製作所 光送受信モジュール
US7733932B2 (en) * 2008-03-28 2010-06-08 Victor Faybishenko Laser diode assemblies
US9197804B1 (en) * 2011-10-14 2015-11-24 Monolithic 3D Inc. Semiconductor and optoelectronic devices
JP5759499B2 (ja) * 2013-02-28 2015-08-05 住友電気工業株式会社 光アセンブリ
US9243761B2 (en) * 2013-02-28 2016-01-26 Sumitomo Electric Industries, Ltd. Optical assembly and method for assembling the same, and optical module implemented with optical assembly
JP2015162591A (ja) * 2014-02-27 2015-09-07 三菱電機株式会社 光モジュール及び光伝送方法
JP2016004850A (ja) 2014-06-16 2016-01-12 株式会社デンソー 車載用レーザ光源ユニット
JP6097253B2 (ja) * 2014-07-02 2017-03-15 住友電気工業株式会社 三色光光源
WO2016068130A1 (ja) * 2014-10-31 2016-05-06 住友電気工業株式会社 発光モジュール及び多チャネル発光モジュール
US20170031118A1 (en) * 2015-07-31 2017-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Optoelectronic components housed in a to-can package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013127A (ja) * 2004-06-25 2006-01-12 Sony Corp 光源装置及び表示装置
WO2013146313A1 (ja) * 2012-03-26 2013-10-03 シチズンホールディングス株式会社 レーザ光源装置及びレーザ光源装置の製造方法
WO2015005329A1 (ja) * 2013-07-08 2015-01-15 住友電気工業株式会社 光アセンブリの製造方法、及び光アセンブリ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165127A (ja) * 2018-03-20 2019-09-26 住友電気工業株式会社 フィルタおよび光モジュール
JP7040185B2 (ja) 2018-03-20 2022-03-23 住友電気工業株式会社 光モジュール
US20210075186A1 (en) * 2018-04-28 2021-03-11 SZ DJI Technology Co., Ltd. Laser diode module, transmitter, ranging device and electronic device

Also Published As

Publication number Publication date
US20190131763A1 (en) 2019-05-02
JP6819677B2 (ja) 2021-01-27
US10644480B2 (en) 2020-05-05
US11223182B2 (en) 2022-01-11
JPWO2017188097A1 (ja) 2018-10-18
US20200227886A1 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
JP6413675B2 (ja) 光モジュール
JP4809634B2 (ja) 発光モジュール及び一芯双方向光通信モジュール
KR102312472B1 (ko) 광 어셈블리
US9816677B2 (en) Light emitting device, vehicle headlamp, illumination device, and laser element
US9151468B2 (en) High brightness illumination devices using wavelength conversion materials
JP6361293B2 (ja) 半導体レーザ装置
JP5435854B2 (ja) 半導体発光装置
WO2016140137A1 (ja) 光モジュール
JP2016092364A (ja) 発光装置及び灯具
JP6629688B2 (ja) 光モジュール
US11223182B2 (en) Method of manufacturing optical module
JP6740766B2 (ja) 光モジュール
JP6189638B2 (ja) 光学系
JP6958122B2 (ja) 光モジュール
WO2019069775A1 (ja) 光モジュール
JP2017211665A (ja) 光学系
JP2017201652A (ja) 光モジュール
JP6812812B2 (ja) 光モジュール
JP3240859U (ja) レーザ蛍光体一体型光源
US20220416502A1 (en) Semiconductor laser device
JP6766663B2 (ja) 光モジュール
JP2016134416A (ja) 光モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789381

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789381

Country of ref document: EP

Kind code of ref document: A1