WO2017187938A1 - 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 - Google Patents
銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 Download PDFInfo
- Publication number
- WO2017187938A1 WO2017187938A1 PCT/JP2017/014522 JP2017014522W WO2017187938A1 WO 2017187938 A1 WO2017187938 A1 WO 2017187938A1 JP 2017014522 W JP2017014522 W JP 2017014522W WO 2017187938 A1 WO2017187938 A1 WO 2017187938A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- porous body
- copper porous
- fiber
- porosity
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1103—Making porous workpieces or articles with particular physical characteristics
- B22F3/1112—Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/11—Making porous workpieces or articles
- B22F3/1143—Making porous workpieces or articles involving an oxidation, reduction or reaction step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/23—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces involving a self-propagating high-temperature synthesis or reaction sintering step
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/002—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/062—Fibrous particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/10—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/062—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/08—Alloys with open or closed pores
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
Definitions
- the present invention relates to a copper porous body made of copper or a copper alloy, a copper porous composite member obtained by bonding the copper porous body to a member body, a method for producing a copper porous body, and a copper porous composite.
- the present invention relates to a method for manufacturing a member.
- Patent Document 1 as a method for producing a metal sintered body (copper porous sintered body) forming a three-dimensional network structure, a three-dimensional network structure (for example, urethane foam, made of a material that is burned down by heating) is disclosed. Polyethylene foam, synthetic resin foam with continuous cells, natural fiber cloth, man-made fiber cloth, etc.). And a method of using a sheet-like molded body in which a metal powder is formed on a material (for example, pulp or wool fiber) that can form a three-dimensional network structure.
- Patent Document 2 discloses a method of obtaining a porous material by conducting current heating under pressure on copper fibers.
- the present invention has been made against the background as described above, and has sufficient conductivity and thermal conductivity even when the porosity is high, and is particularly suitable as a conductive member and a heat transfer member.
- An object of the present invention is to provide a copper porous body, a copper porous composite member in which the copper porous body is bonded to a member body, a method for producing a copper porous body, and a method for producing a copper porous composite member .
- a copper porous body that is one embodiment of the present invention is a copper porous body having a three-dimensional network structure skeleton, and has a porosity of Porosity standardization within a range of 50% to 90% and defined by dividing the conductivity of the copper porous body measured by the four probe method by the apparent density ratio of the copper porous body.
- the electrical conductivity ⁇ N is characterized by being 20% IACS or more.
- the conductivity of the copper porous body measured by the four-terminal method is obtained by the copper porous body. Since the porosity normalized conductivity ⁇ N defined by dividing by the apparent density ratio is 20% IACS or more, it has excellent conductivity and is particularly suitable for a conductive member. Moreover, since heat conduction is carried out by free electrons as in the case of electrical conduction, conductivity is secured at the same time as conductivity is secured. Therefore, the copper porous body of the present invention is excellent in thermal conductivity and is particularly suitable for a heat transfer member.
- a redox layer is formed on the surface of the skeleton.
- irregularities are formed on the surface and the specific surface area is increased. For example, various properties such as heat exchange efficiency through the porous skeleton surface are greatly improved. It becomes possible to improve. Further, by performing the oxidation-reduction treatment, the porosity normalized conductivity ⁇ N can be further improved.
- skeleton part is good also as a sintered compact of at least one or both of the copper powder and copper fiber which consist of copper or a copper alloy.
- a copper porous body having a porosity of 50% or more and 90% or less can be obtained by adjusting the filling rate of copper powder and copper fiber made of copper or copper alloy.
- the copper fiber has a diameter R in a range of 0.02 mm to 1.0 mm, and a ratio L / R of the length L to the diameter R. Is preferably in the range of 4 or more and 2500 or less.
- the diameter R of the copper fiber is in the range of 0.02 mm or more and 1.0 mm or less
- the ratio L / R of the length L to the diameter R is in the range of 4 or more and 2500 or less.
- Sufficient voids are secured between the fibers, the shrinkage rate during sintering can be suppressed, the porosity can be increased, and the dimensional accuracy is excellent.
- the copper porous body which is one aspect of the present invention, at least one or both of the copper powder and the copper fiber are bonded integrally with the redox layers formed on the surfaces thereof. It is preferable. In this case, since the redox layers are integrally bonded to each other in at least one or both of the copper powder and the copper fiber, the bonding strength is excellent. Moreover, copper fiber and copper powder will be couple
- the copper porous composite member which is one embodiment of the present invention is characterized by comprising a joined body of a member main body and the above-mentioned copper porous body. According to the copper porous composite member having this configuration, since it is a joined body of the copper porous body and the member main body excellent in conductivity and thermal conductivity, the copper porous composite member has excellent conductivity. And can exhibit thermal conductivity.
- the bonding surface of the member main body with the copper porous body is made of copper or a copper alloy, and the copper porous body and the member main body It is preferable that the joining part is a sintered layer.
- the joining portion between the copper porous body and the member main body is a sintered layer, the copper porous body and the member main body are firmly joined, and the copper porous composite Excellent strength, conductivity, thermal conductivity, etc. can be obtained as a member.
- the method for producing a copper porous body according to one aspect of the present invention is a method for producing a copper porous body for producing the above-mentioned copper porous body, and is a method for oxidizing a skeleton part having a three-dimensional network structure. Oxidation treatment is performed at a holding temperature of 500 ° C. or higher and 1050 ° C. or lower in an atmosphere, and reduction treatment is performed at a holding temperature of 500 ° C. or higher and 1050 ° C. or lower in a reducing atmosphere, whereby the porosity normalized conductivity ⁇ N is 20 % IACS or more.
- the skeletal portion of the three-dimensional network structure is subjected to oxidation treatment and reduction treatment under the above-described conditions, thereby improving conductivity and standardizing porosity.
- the conductivity ⁇ N can be set to 20% IACS or more.
- the manufacturing method of the copper porous body which is 1 aspect of this invention is a manufacturing method of the copper porous body which manufactures the above-mentioned copper porous body, Comprising: At least one or both of the said copper powder and the said copper fiber Of the copper powder and the copper fiber by performing an oxidation treatment under a condition of a holding temperature of 500 ° C. or higher and 1050 ° C. or lower in an oxidizing atmosphere and a reducing treatment under a condition of a holding temperature of 500 ° C. or higher and 1050 ° C. or lower in a reducing atmosphere
- the skeleton is formed of at least one or both of the sintered bodies, and the porosity normalized conductivity ⁇ N is 20% IACS or more.
- the method for producing a copper porous body having this configuration at least one or both of the copper powder and the copper fiber are subjected to an oxidation treatment and a reduction treatment under the above-described conditions.
- the skeleton portion made of at least one or both of the sintered bodies can be formed, and a copper porous body made of the sintered body can be obtained.
- the conductivity can be improved, and the porosity normalized conductivity ⁇ N can be set to 20% IACS or more.
- the method for producing a copper porous composite member according to one aspect of the present invention is a method for producing a copper porous composite member for producing a copper porous composite member comprising a joined body of a member main body and a copper porous body, It has the joining process which joins the copper porous body manufactured by the manufacturing method of the above-mentioned copper porous body, and the said member main body, It is characterized by the above-mentioned.
- the copper porous body manufactured by the above-described manufacturing method of the copper porous body is provided, and the copper porous having excellent conductivity and thermal conductivity.
- a composite member can be manufactured.
- a shape of a member main body a board, a rod, a pipe
- a bonding surface to which the copper porous body is bonded in the member main body is made of copper or a copper alloy
- the copper porous body and the member main body are preferably joined by sintering.
- the member main body and the copper porous body can be integrated by sintering, and a copper porous composite member having excellent characteristic stability can be manufactured.
- the copper porous body has sufficient conductivity and thermal conductivity and is particularly suitable as a conductive member and a heat transfer member, and the copper porous body is a member.
- a copper porous composite member bonded to a main body, a method for producing a copper porous body, and a method for producing a copper porous composite member can be provided.
- the copper porous body 10 which is 1st embodiment of this invention is demonstrated with reference to FIGS. 1-3.
- the copper porous body 10 which is this embodiment has the frame
- the copper fiber 11 is made of copper or a copper alloy, the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more and 2500. Within the following range.
- the copper fiber 11 is comprised by C1020 (oxygen-free copper), for example.
- the copper fiber 11 is given a shape such as twisting or bending.
- the apparent density ratio D A is less 51% of the true density D T of the copper fibers 11.
- a void shape between fibers can be formed sterically and isotropically. This leads to an improvement in the isotropy of various characteristics such as heat transfer characteristics and conductivity.
- the copper fiber 11 is adjusted to a predetermined circle-equivalent diameter R by a drawing method, a coil cutting method, a wire cutting method, a melt spinning method, and the length is further adjusted to satisfy a predetermined L / R. Then, it is manufactured by cutting.
- the circle-converted diameter R is a value calculated based on the cross-sectional area A of each fiber, and is defined by the following equation assuming that it is a perfect circle regardless of the cross-sectional shape.
- R (A / ⁇ ) 1/2 ⁇ 2
- the oxidation reduction layer is formed in the surface of the frame
- the redox layers formed on each other are bonded together.
- the redox layer has a porous structure, and has fine irregularities on the surface of the skeleton 12 (copper fibers 11).
- the specific surface area of the whole copper porous body 10 shall be 0.01 m ⁇ 2 > / g or more.
- the specific surface area of the entire copper porous body 10 is preferably 0.03 m 2 / g or more, but is not limited thereto.
- the porosity P shall be in the range of 50% or more and 90% or less, and the electrical conductivity ⁇ P of the copper porous body 10 measured by the four-terminal method, copper porous body 10 porosity standards influencing for good conductivity, which is defined by dividing the apparent density ratio D a of ⁇ N (% IACS) is a 20% IACS or more.
- the porosity normalized conductivity ⁇ N is calculated by the following equation, and the apparent density ratio D A and the porosity P are respectively calculated by the following equations.
- ⁇ N ⁇ P ⁇ (1 / D A )
- D A m / (V ⁇ D T )
- P (%) (1 ⁇ (m / (V ⁇ D T ))) ⁇ 100
- m mass of copper porous body 10 (g)
- V volume of copper porous body 10 (cm 3 )
- D T true density of copper fibers 11 constituting copper porous body 10 (g / cm 3 )
- the porosity P is preferably in the range of 70% to 90%, but is not limited thereto.
- the manufacturing method of the copper porous body 10 which is this embodiment is demonstrated with reference to the flowchart of FIG. 2, the process drawing of FIG.
- a bulk density D P after filling is stacked a plurality of copper fibers 11 to be equal to or less than 50% of the true density D T of the copper fibers 11.
- shape provision processing such as a twist process and a bending process, is given to the copper fiber 11, the three-dimensional and isotropic space
- oxidation reduction treatment step S02 oxidation reduction treatment step S02
- oxidation reduction treatment step S02 oxidation reduction treatment step S02
- the stainless steel container 32 filled with the copper fibers 11 is charged into a heating furnace 33 and heated in an oxidizing atmosphere to oxidize the copper fibers 11 (oxidation process step). S21).
- the conditions of the oxidation treatment step S21 in the present embodiment are that the atmosphere is an air atmosphere (air atmosphere (a)), the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, the holding time is 5 minutes or longer and 300 minutes or shorter. ing.
- the holding temperature in the oxidation treatment step S ⁇ b> 21 is set to 500 ° C. or higher and 1050 ° C. or lower.
- the lower limit of the holding temperature in the oxidation treatment step S21 is 600 ° C. or higher and the upper limit of the holding temperature is 1000 ° C. or lower.
- the holding time in the oxidation treatment step S21 is set within a range of 5 minutes or more and 300 minutes or less.
- the minimum of the retention time in oxidation treatment process S21 shall be 10 minutes or more.
- the upper limit of the retention time in oxidation treatment process S21 into 100 minutes or less.
- the stainless steel container 32 filled with the copper fibers 11 is charged into the heating furnace 34 and heated in a reducing atmosphere. Then, the oxidized copper fibers 11 are reduced to form a redox layer, and the copper fibers 11 are joined together to form the skeleton part 12 (reduction treatment step S22).
- the conditions of the reduction treatment step S22 in this embodiment are as follows: the atmosphere is a mixed gas atmosphere of argon and hydrogen (Ar + H 2 atmosphere (b)), the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, the holding time is 5 minutes or longer, and 300 minutes. Within the following range.
- the holding temperature in the reduction treatment step S ⁇ b> 22 is less than 500 ° C.
- the oxide layer formed on the surface of the copper fiber 11 may not be sufficiently reduced.
- the holding temperature in the reduction treatment step S22 exceeds 1050 ° C., it is heated to the vicinity of the melting point of copper, and there is a possibility that the strength and the porosity are lowered.
- the holding temperature in the reduction treatment step S22 is set to 500 ° C. or higher and 1050 ° C. or lower.
- the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 600 ° C. or higher.
- the holding time in the reduction treatment step S22 is set within a range of 5 minutes or more and 300 minutes or less.
- the lower limit of the holding temperature in the reduction treatment step S22 is preferably set to 10 minutes or more.
- the upper limit of the holding time in the reduction treatment step S22 is 100 minutes or less.
- an oxidation reduction layer is formed on the surface of the copper fiber 11 (frame portion 12), and irregularities having a specific microporous structure are generated. That is, the redox layer 12 has a porous structure, and fine irregularities are generated on the surface of the copper fiber 11. Thereby, the specific surface area of the whole copper porous body 20 is 0.01 m ⁇ 2 > / g or more. Moreover, an oxide layer is formed on the surface of the copper fiber 11 by the oxidation treatment step S21, and the plurality of copper fibers 11 are cross-linked by the oxide layer.
- the oxide layer formed on the surface of the copper fiber 11 is reduced to form the above-described oxidation-reduction layer, and the oxidation-reduction layers are bonded to each other.
- the fibers 11 are sintered to form the skeleton part 12.
- the copper fibers 11 and 11 are sintered to form the skeleton portion 12, and a redox layer is formed on the surface of the skeleton portion 12 (copper fiber 11). Furthermore, the above-mentioned porosity normalized conductivity ⁇ N is 20% IACS or more. Thereby, the copper porous body 10 which is this embodiment is manufactured.
- the porosity P is as high as 50% or more and 90% or less, and the porosity normalized conductivity ⁇ N is 20%. % IACS or more, it is excellent in conductivity and thermal conductivity, and has excellent characteristics as a conductive member and a heat transfer member.
- the redox layer is formed on the surface of the skeleton part 12
- the specific surface area is formed by forming irregularities having a microporous structure peculiar to the surface.
- various characteristics such as heat exchange efficiency through the porous skeleton surface can be greatly improved.
- the porosity normalized conductivity ⁇ N can be further improved.
- the redox layers formed on the surfaces of the copper fibers 11 are bonded together in the bonding portion between the copper fibers 11, the bonding strength is excellent.
- the diameter R is in the range of 0.02 mm or more and 1.0 mm or less, and the ratio L / R of the length L to the diameter R is 4 or more, Since the skeleton part 12 is formed by sintering the copper fiber 11 within the range of 2500 or less, a sufficient gap is secured between the copper fibers 11 and the shrinkage rate during sintering The porosity is high and the dimensional accuracy is excellent.
- the diameter R is in the range of 0.02 mm to 1.0 mm, and the ratio L / R of the length L to the diameter R is in the range of 4 to 2500.
- the diameter R of the copper fibers 11 is set in the range of 0.02 mm or more and 1.0 mm or less.
- the lower limit of the diameter R of the copper fiber 11 is preferably 0.05 mm or more, and the upper limit of the diameter R of the copper fiber 11 is preferably 0.5 mm or less.
- the ratio L / R of the length L and the diameter R of the copper fibers 11 is set in the range of 4 or more and 2500 or less.
- the lower limit of the ratio L / R between the length L and the diameter R of the copper fiber 11 is preferably 10 or more.
- the ratio L / R upper limit of the length L of the copper fiber 11 and the diameter R is 500 or less.
- the oxidation treatment process S21 which oxidizes the copper fiber 11 and the reduction treatment process S22 which reduces the oxidized copper fiber 11 are provided.
- a redox layer can be formed on the surface of the copper fiber 11 (skeleton part 12).
- the porosity normalized conductivity ⁇ N can be set to 20% IACS or more by the oxidation treatment step S21 and the reduction treatment step S22.
- the copper porous composite member 100 includes a copper plate 120 (member main body) made of copper or a copper alloy, and a copper porous body 110 bonded to the surface of the copper plate 120.
- the copper porous body 110 has a skeleton formed by sintering a plurality of copper fibers, as in the first embodiment.
- the copper fiber is made of copper or a copper alloy
- the diameter R is in the range of 0.02 mm to 1.0 mm
- the ratio L / R of the length L to the diameter R is 4 or more and 2500 or less. It is within the range.
- the copper fiber is made of, for example, C1020 (oxygen-free copper).
- the copper fiber is given a shape such as twisting or bending.
- the apparent density ratio D A is less 51% of the true density D T of copper fibers.
- a redox layer is formed by performing redox treatment (oxidation treatment and reduction treatment) on the surfaces of the copper fibers (skeleton part) and the copper plate 120 constituting the copper porous body 110 as described later.
- redox treatment oxidation treatment and reduction treatment
- fine irregularities are formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120.
- the specific surface area of the entire copper porous body 110 is set to 0.01 m 2 / g or more.
- the specific surface area of the entire copper porous body 110 is preferably 0.03 m 2 / g or more, but is not limited thereto.
- the oxidation reduction layer formed in the surface of the copper fiber and the oxidation reduction layer formed in the surface of the copper plate are united. Are connected.
- the porosity P shall be in the range of 50% or more and 90% or less, and the electrical conductivity (sigma) P of the copper porous body 110 measured by the 4 terminal method is set.
- the porosity P is preferably in the range of 70% to 90%, but is not limited thereto.
- the copper plate 120 which is a member main body is prepared (copper plate arrangement
- copper fibers are dispersed and arranged on the surface of the copper plate 120 (copper fiber lamination step S101).
- bulk density D P is stacked a plurality of copper fibers to be equal to or less than 50% of the true density D T of copper fibers.
- the copper fibers stacked and arranged on the surface of the copper plate 120 are sintered to form the copper porous body 110, and the copper porous body 110 and the copper plate 120 are bonded (sintering step S102 and joining step S103). ).
- the oxidation treatment step S121 for performing the oxidation treatment of the copper fiber and the copper plate 120 and the oxidized copper fiber and the copper plate 120 are reduced and sintered.
- the copper plate 120 on which the copper fibers are laminated is placed in a heating furnace and heated in an oxidizing atmosphere to oxidize the copper fibers (oxidation treatment step S121).
- oxidation treatment step S121 an oxide layer having a thickness of 1 ⁇ m or more and 100 ⁇ m or less is formed on the surfaces of the copper fiber and the copper plate 120, for example.
- the conditions of the oxidation treatment step S121 in the present embodiment are that the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, desirably 600 ° C. or higher and 1000 ° C. or lower, and the holding time is 5 minutes or longer and 300 minutes or shorter, preferably 10 It is within the range of not less than 100 minutes and not more than 100 minutes.
- the copper plate 120 on which the copper fibers are laminated is placed in a firing furnace, heated in a reducing atmosphere, and oxidized copper fibers and the copper plate 120.
- the copper fiber and the copper plate 120 are combined with each other (reduction process step S122).
- the conditions of the reduction treatment step S122 in this embodiment are that the atmosphere is a mixed gas atmosphere of nitrogen and hydrogen, the holding temperature is 500 ° C. or higher and 1050 ° C. or lower, desirably 600 ° C. or higher and 1000 ° C. or lower, and the holding time is 5 Min. To 300 min., Preferably 10 min. To 100 min.
- a redox layer is formed on the surfaces of the copper fibers (skeleton part) and the copper plate 120, and fine irregularities are generated.
- an oxide layer is formed on the surfaces of the copper fibers (skeleton) and the copper plate 120 by the oxidation treatment step S121, and the plurality of copper fibers and the copper plate 120 are cross-linked by the oxide layer.
- the reduction treatment step S122 the copper fiber (skeleton part) and the oxide layer formed on the surface of the copper plate 120 are reduced, and the copper fibers are sintered through the oxidation-reduction layer, so that the skeleton part is formed.
- the copper porous body 110 and the copper plate 120 are bonded.
- the porosity normalized conductivity ⁇ N of the copper porous body 110 is 20% IACS or more.
- the copper porous composite member 100 according to the present embodiment is manufactured by the manufacturing method as described above.
- the porosity normalized conductivity ⁇ N of the copper porous body 110 is 20% IACS or more.
- the conductivity and thermal conductivity of the entire copper porous composite member 100 can be improved.
- an oxidation-reduction layer is formed on the surfaces of the copper fibers and the copper plate 120 constituting the copper porous body 110, and the specific surface area of the entire copper porous body 110 is 0.01 m 2 / g or more.
- the porosity P is in the range of 50% or more and 90% or less, and it is possible to greatly improve various characteristics such as heat exchange efficiency and water retention.
- the copper fibers are stacked on the surface of the copper plate 120 made of copper and a copper alloy, and the sintering step S102 and the joining step S103 are simultaneously performed. Therefore, the manufacturing process can be simplified.
- the porosity normalized conductivity ⁇ N can be set to 20% IACS or more.
- this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
- this invention is not limited to this, Even if it manufactures a copper porous body using another manufacturing equipment Good.
- the atmosphere of the oxidation treatment steps S21 and S121 may be an oxidation atmosphere in which copper or a copper alloy is oxidized at a predetermined temperature. Specifically, the atmosphere is not limited to the atmosphere, but is 0. Any atmosphere containing 5 vol% or more of oxygen may be used. Also, the atmosphere of the reduction treatment steps S22 and S122 may be any reducing atmosphere in which copper oxide is reduced to metallic copper or copper oxide is decomposed at a predetermined temperature. Specifically, hydrogen of several vol% or more is used. A nitrogen-hydrogen mixed gas, an argon-hydrogen mixed gas, a pure hydrogen gas, or an ammonia decomposition gas or a propane decomposition gas often used industrially can also be suitably used.
- skeleton part of a copper porous body by sintering copper fiber it is not limited to this,
- copper such as a fiber nonwoven fabric and a metal filter A porous body is prepared, and the copper porous body is subjected to an oxidation treatment in an oxidizing atmosphere under a holding temperature of 500 ° C. or higher and 1050 ° C. or lower, and in a reducing atmosphere under a holding temperature of 500 ° C. or higher and 1050 ° C. or lower.
- the porosity normalized conductivity ⁇ N may be set to 20% IACS or more.
- copper fibers made of oxygen-free copper (JIS C1020), phosphorus deoxidized copper (JIS C1201, C1220), tough pitch copper (JIS C1100), and the like are used, but the present invention is not limited thereto.
- a highly conductive copper alloy such as other Cr copper (C18200) or Cr—Zr copper (C18150) may be used.
- copper fiber was used, you may use both copper powder, copper fiber, and copper powder.
- the average particle diameter of the copper powder is preferably 0.005 mm or more and 0.3 mm or less, more preferably 0.01 mm or more and 0.1 mm or less, but is not limited thereto.
- the copper porous composite member having the structure shown in FIG. 4 has been described as an example.
- the present invention is not limited to this, and the copper having the structure as shown in FIGS. It may be a porous composite member.
- the joining method in which the sintered layer which consists of a redox layer is formed in the junction part of a copper porous body and a member main body was illustrated as a desirable method, it is limited to this.
- the porosity normalized conductivity ⁇ N of the copper porous body is 20% IACS or higher even in various welding methods (laser welding method, resistance welding method) and the joining method by brazing using a brazing material that melts at a low temperature It only has to be.
- a copper porous composite member 200 having a structure in which a plurality of copper tubes 220 are inserted into a copper porous body 210 as a member main body may be used.
- a copper porous composite member 300 having a structure in which a copper tube 320 curved in a U shape as a member main body is inserted into a copper porous body 310 may be used.
- the copper porous composite member 400 of the structure which joined the copper porous body 410 to the internal peripheral surface of the copper pipe 420 which is a member main body may be sufficient.
- the copper porous composite member 500 of the structure which joined the copper porous body 510 to the outer peripheral surface of the copper tube 520 which is a member main body may be sufficient.
- a copper porous composite member 600 having a structure in which a copper porous body 610 is bonded to the inner peripheral surface and the outer peripheral surface of a copper tube 620 that is a member main body may be used.
- the copper porous composite member 700 of the structure which joined the copper porous body 710 to both surfaces of the copper plate 720 which is a member main body may be sufficient.
- Example 1 Various porous bodies manufactured by the materials and manufacturing methods shown in Table 1 were prepared. First, the porosity before heat treatment and the porosity normalized conductivity were measured. Thereafter, oxidation treatment and reduction treatment were performed under the conditions described in Table 1, and the porosity and porosity normalized conductivity after the oxidation treatment and reduction treatment were measured. In addition, the porosity and the porosity normalized conductivity were measured as follows. The evaluation results are shown in Table 1.
- Porosity The true density D T (g / cm 3 ) was measured by an underwater method using a precision balance, and the porosity P was calculated by the following equation.
- the mass of the copper porous body was m (g), and the volume of the copper porous body was V (cm 3 ).
- Porosity P (%) (1 ⁇ (m / (V ⁇ D T ))) ⁇ 100
- Example 2 Using the copper powder shown in Table 2, oxidation-reduction treatment was performed under the conditions shown in Table 2 to produce a copper porous body. About the obtained copper porous body, the porosity and the porosity normalized electrical conductivity were measured. In addition, although the porosity and the porosity normalized conductivity were measured by the same method as in Example 1, in Example 2, DT when calculating the porosity normalized conductivity was set to be copper porous. It was set as the true density (g / cm ⁇ 3 >) of the copper powder which comprises a mass. The evaluation results are shown in Table 2.
- Example 3 Using the copper fibers shown in Table 3, oxidation-reduction treatment was performed under the conditions shown in Table 3 to produce a copper porous body. In addition, the fiber diameter R and the fiber length L of the copper fiber were measured by the following methods.
- Fiber length L As the fiber length L (mm) of the copper fiber, a simple average value calculated by image analysis using a particle analyzer “Morphology G3” manufactured by Malvern Co., Ltd. was used.
- the porosity and the porosity normalized electrical conductivity were measured.
- the porosity and the porosity normalized conductivity were measured by the same method as in Example 1, in Example 3, DT when calculating the porosity normalized conductivity was copper porous. It was set as the true density (g / cm ⁇ 3 >) of the copper fiber which comprises a body. The evaluation results are shown in Table 3.
- the copper porous body is suitable as a conductive member and a heat transfer member.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
本願は、2016年4月27日に、日本に出願された特願2016-089358号に基づき優先権を主張し、その内容をここに援用する。
例えば、特許文献1には三次元網目状構造体をなす金属焼結体(銅多孔質焼結体)の製造方法として、加熱により焼失する材質から成る三次元網目状構造体(例えばウレタンフォーム、ポリエチレンフォーム等連続気泡を持つ合成樹脂発泡体、天然繊維クロス、人造繊維クロス等)の骨格に粘着剤を塗布し、金属粉状物を被着した成形体を用いる方法や、加熱により焼失する材質から成り、かつ三次元網目状構造体を形成することができる材料(例えばパルプや羊毛繊維)に金属粉状物を抄き込んだシート状成形体を用いる方法等が開示されている。
また、特許文献2には、銅繊維を加圧下において通電加熱を行うことにより多孔質材料を得る方法が開示されている。
特許文献1及び特許文献2に記載された銅多孔質体においては、導電性及び熱伝導性について考慮されておらず、特に気孔率が高い場合には、銅粉もしくは銅繊維同士の接合が不十分となり、結果として導電性及び熱伝導性が不十分となるおそれがあった。
この場合、前記骨格部の表面に酸化還元層が形成されているので、表面に凹凸が形成されて比表面積が大きくなり、例えば多孔体骨格表面を介した熱交換効率等の各種特性を大幅に向上させることが可能となる。また、酸化還元処理を行うことで、気孔率規格化導電率σNをさらに向上させることができる。
この場合、銅又は銅合金からなる銅粉末および銅繊維の充填率を調整することで、気孔率50%以上90%以下の範囲内の銅多孔質体を得ることができる。
この場合、銅繊維の直径Rが0.02mm以上1.0mm以下の範囲内とされ、長さLと直径Rとの比L/Rが4以上2500以下の範囲内とされているので、銅繊維同士の間に十分な空隙が確保されるとともに、焼結時における収縮率を抑えることができ、気孔率を高くすることが可能となり、さらに寸法精度に優れている。
この場合、前記銅粉末および銅繊維の少なくとも一方又は両方の結合部において酸化還元層同士が一体に結合していることから、結合強度に優れている。また、銅繊維及び銅粉末同士が強固に結合することになり、導電性、熱伝導性も向上させることができる。
この構成の銅多孔質複合部材によれば、導電性及び熱伝導性に優れた銅多孔質体と部材本体との接合体とされていることから、銅多孔質複合部材として、優れた導電性及び熱伝導性を発揮することができる。
この場合、前記銅多孔質体と前記部材本体との接合部が焼結層とされているので、前記銅多孔質体と前記部材本体とが強固に接合されることになり、銅多孔質複合部材として優れた強度、導電性及び熱伝導性等を得ることができる。
この場合、前記部材本体と前記銅多孔質体とを焼結によって一体化することができ、特性の安定性に優れた銅多孔質複合部材を製造することが可能となる。
まず、本発明の第一の実施形態である銅多孔質体10について、図1から図3を参照して説明する。
本実施形態である銅多孔質体10は、図1に示すように、複数の銅繊維11が焼結された骨格部12を有している。
なお、本実施形態では、銅繊維11には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体10においては、その見掛け密度比DAが銅繊維11の真密度DTの51%以下とされている。銅繊維11の形状については、前記見掛け密度比DAが銅繊維11の真密度DTの51%以下となる限りにおいて、直線状、曲線状など任意であるが、銅繊維11の少なくとも一部に、ねじり加工や曲げ加工等により所定の形状付与加工をされたものを用いると、繊維同士の間の空隙形状を立体的かつ等方的に形成させることができ、その結果、銅多孔質体10の伝熱特性及び導電性等の各種特性の等方性向上に繋がる。
ここで、円換算径Rとは、各繊維の断面積Aを元に算出される値であり、断面形状に関わらず真円であると仮定し、以下の式により定義される。
R=(A/π)1/2×2
なお、この酸化還元層は、ポーラスな構造とされており、骨格部12(銅繊維11)の表面に微細な凹凸を生じさせている。これにより、銅多孔質体10全体の比表面積が0.01m2/g以上とされている。銅多孔質体10全体の比表面積は、0.03m2/g以上であることが好ましいが、これに限定されることはない。
σN=σP×(1/DA)
DA=m/(V×DT)
P(%)=(1-(m/(V×DT)))×100
ここで、m:銅多孔質体10の質量(g)、V:銅多孔質体10の体積(cm3)、DT:銅多孔質体10を構成する銅繊維11の真密度(g/cm3)
気孔率Pは70%以上90%以下の範囲内であることが好ましいが、これに限定されることはない。
まず、図3に示すように、銅繊維11を、散布機31からステンレス製容器32内に向けて散布して嵩充填し、銅繊維11を積層する(銅繊維積層工程S01)。
ここで、この銅繊維積層工程S01では、充填後の嵩密度DPが銅繊維11の真密度DTの50%以下となるように複数の銅繊維11を積層配置する。なお、本実施形態では、銅繊維11にねじり加工や曲げ加工等の形状付与加工が施されているので、積層時に銅繊維11同士の間に立体的かつ等方的な空隙が確保される。
この酸化還元処理工程S02においては、図2及び図3に示すように、銅繊維11の酸化処理を行う酸化処理工程S21と、酸化処理された銅繊維11を還元して焼結する還元処理工程S22と、を備えている。
本実施形態における酸化処理工程S21の条件は、雰囲気が大気雰囲気(大気雰囲気(a))、保持温度が500℃以上、1050℃以下、保持時間が5分以上、300分以下の範囲内とされている。
以上のことから、本実施形態においては、酸化処理工程S21における保持温度を500℃以上、1050℃以下に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持温度の下限を600℃以上、保持温度の上限を1000℃以下、とすることが好ましい。
以上のことから、本実施形態においては、酸化処理工程S21における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に酸化物層を確実に形成するためには、酸化処理工程S21における保持時間の下限を10分以上とすることが好ましい。また、銅繊維11の内部にまで酸化することを確実に抑制するためには、酸化処理工程S21における保持時間の上限を100分以下とすることが好ましい。
本実施形態における還元処理工程S22の条件は、雰囲気がアルゴンと水素の混合ガス雰囲気(Ar+H2雰囲気(b))、保持温度が500℃以上、1050℃以下、保持時間が5分以上、300分以下の範囲内とされている。
以上のことから、本実施形態においては、還元処理工程S22における保持温度を500℃以上、1050℃以下に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するためには、還元処理工程S22における保持温度の下限を600℃以上とすることが好ましい。また、強度及び気孔率の低下を確実に抑制するためには、還元処理工程S22における保持温度の上限を1000℃以下とすることが好ましい。
以上のことから、本実施形態においては、還元処理工程S22における保持時間を5分以上、300分以下の範囲内に設定している。なお、銅繊維11の表面に形成された酸化物層を確実に還元するとともに焼結を十分に進行させるためには、還元処理工程S22における保持温度の下限を10分以上とすることが好ましい。また、焼結による熱収縮や強度低下を確実に抑制するためには、還元処理工程S22における保持時間の上限を100分以下とすることが好ましい。
また、酸化処理工程S21によって銅繊維11の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維11同士が架橋される。その後、還元処理工程S22を行うことで、銅繊維11の表面に形成された酸化物層が還元されて上述の酸化還元層が形成されるとともに、この酸化還元層同士が結合することにより、銅繊維11同士が焼結されて骨格部12が形成される。
さらに、本実施形態では、銅繊維11同士の結合部において、互いの表面に形成された酸化還元層同士が一体に結合しているので、結合強度に優れている。
以上のことから、本実施形態では、銅繊維11の直径Rを0.02mm以上、1.0mm以下の範囲内に設定している。なお、さらなる強度向上を図る場合には、銅繊維11の直径Rの下限を0.05mm以上とすることが好ましく、銅繊維11の直径Rの上限を0.5mm以下とすることが好ましい。
以上のことから、本実施形態では、銅繊維11の長さLと直径Rとの比L/Rを4以上、2500以下の範囲内に設定している。なお、さらなる気孔率の向上を図る場合には、銅繊維11の長さLと直径Rとの比L/Rの下限を10以上とすることが好ましい。また、確実に気孔率Pが均一な銅多孔質体10を得るためには、銅繊維11の長さLと直径Rとの比L/R上限を500以下とすることが好ましい。
次に、本発明の第二の実施形態である銅多孔質複合部材100について、添付した図面を参照して説明する。
図4に、本実施形態である銅多孔質複合部材100を示す。この銅多孔質複合部材100は、銅又は銅合金からなる銅板120(部材本体)と、この銅板120の表面に接合された銅多孔質体110と、を備えている。
なお、本実施形態では、銅繊維には、ねじりや曲げ等の形状付与が施されている。また、本実施形態である銅多孔質体110においては、その見掛け密度比DAが銅繊維の真密度DTの51%以下とされている。
また、銅多孔質体110を構成する銅繊維と銅板120の表面との結合部においては、銅繊維の表面に形成された酸化還元層と銅板の表面に形成された酸化還元層とが一体に結合している。
気孔率Pは70%以上90%以下の範囲内であることが好ましいが、これに限定されることはない。
まず、部材本体である銅板120を準備する(銅板配置工程S100)。次に、この銅板120の表面に銅繊維を分散させて積層配置する(銅繊維積層工程S101)。ここで、この銅繊維積層工程S101では、嵩密度DPが銅繊維の真密度DTの50%以下となるように複数の銅繊維を積層配置する。
ここで、本実施形態における酸化処理工程S121の条件は、保持温度が500℃以上、1050℃以下、望ましくは600℃以上、1000℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
ここで、本実施形態における還元処理工程S122の条件は、雰囲気が窒素と水素の混合ガス雰囲気、保持温度が500℃以上、1050℃以下、望ましくは600℃以上、1000℃以下、保持時間が5分以上、300分以下、望ましくは10分以上、100分以下の範囲内とされている。
また、酸化処理工程S121によって銅繊維(骨格部)及び銅板120の表面に酸化物層が形成され、この酸化物層によって複数の銅繊維同士及び銅板120が架橋される。その後、還元処理工程S122を行うことで、銅繊維(骨格部)及び銅板120の表面に形成された酸化物層が還元され、酸化還元層を介して銅繊維同士が焼結されて骨格部が形成されるとともに銅多孔質体110と銅板120とが結合される。さらに、銅多孔質体110の気孔率規格化導電率σNが20%IACS以上となる。
以上のような製造方法によって、本実施形態である銅多孔質複合部材100が製造される。
また、酸化処理工程S121及び還元処理工程S122を実施することにより、気孔率規格化導電率σNを20%IACS以上とすることができる。
例えば、図3に示す製造設備を用いて、銅多孔質体を製造するものとして説明したが、これに限定されることはなく、他の製造設備を用いて銅多孔質体を製造してもよい。
さらに、第二の実施形態では、銅多孔質体と部材本体の接合部に酸化還元層からなる焼結層が形成されている接合方法を望ましい方法として例示したが、これに限定されることはなく、各種溶接法(レーザー溶接法、抵抗溶接法)や低温で溶融するロウ材を用いたロウ付け法による接合方法でも、銅多孔質体の気孔率規格化導電率σNが20%IACS以上とされていればよい。
あるいは、図7に示すように、銅多孔質体310の中に、部材本体としてU字状に湾曲された銅管320が挿入された構造の銅多孔質複合部材300であってもよい。
また、図9に示すように、部材本体である銅管520の外周面に銅多孔質体510を接合した構造の銅多孔質複合部材500であってもよい。
また、図11に示すように、部材本体である銅板720の両面に銅多孔質体710を接合した構造の銅多孔質複合部材700であってもよい。
表1に示す材質及び製造方法によって製造された各種多孔質体を準備した。まず、熱処理前の気孔率と気孔率規格化導電率を測定した。その後、表1に記載した条件で酸化処理及び還元処理を行い、酸化処理及び還元処理後の気孔率と気孔率規格化導電率を測定した。なお、気孔率、及び、気孔率規格化導電率は、以下のようにして測定した。評価結果を表1に示す。
精密天秤を用いて水中法により真密度DT(g/cm3)を測定し、以下の式で気孔率Pを算出した。なお、銅多孔質体の質量をm(g)、銅多孔質体の体積をV(cm3)とした。
気孔率P(%)=(1-(m/(V×DT)))×100
幅30mm×長さ200mm×厚さ5mmの板状に切り出したサンプルを用いて、JIS C2525に準拠し、日置電機社製マイクロオームハイテスター3227を用いて、電圧端子間隔150mm、測定電流0.5Aの条件にて4端子法により導電率σP(%IACS)を測定した。そして、以下の式により、気孔率規格化導電率σNを算出した。
気孔率規格化導電率σN(%IACS)=σP×(1/DA)
なお、見掛け密度比DA(%)は、以下の式から算出した。
見掛け密度比DA=100×m/(V×DT)
ここで、m:銅多孔質体の質量(g)、V:銅多孔質体の体積(cm3)、DT:銅多孔質体を構成する銅または銅合金の真密度(g/cm3)
これに対して、酸化処理の温度条件が低い比較例1及び,還元処理の温度条件が低い比較例2においては、酸化処理及び還元処理後においても十分に導電率が向上しておらず、気孔率規格化導電率σNが20%IACS未満となった。
表2に示す銅粉末を用いて、表2に示す条件で酸化還元処理を行い、銅多孔質体を製造した。得られた銅多孔質体について、気孔率と気孔率規格化導電率を測定した。なお、気孔率、及び、気孔率規格化導電率は、実施例1と同様の方法により測定したが、実施例2においては、気孔率規格化導電率を算出する際のDTを、銅多孔質体を構成する銅粉末の真密度(g/cm3)とした。評価結果を表2に示す。
これに対して、酸化処理の温度条件が低い比較例11及び,還元処理の温度条件が低い比較例12においては、気孔率規格化導電率σNが20%IACS未満となった。
表3に示す銅繊維を用いて、表3に示す条件で酸化還元処理を行い、銅多孔質体を製造した。なお、銅繊維の繊維径R及び繊維長さLは、以下の方法で測定した。
繊維径R(mm)は、マルバーン社製粒子解析装置「Morphologi G3」を用いて、JIS Z 8827-1に基づいて、画像解析により算出された円相当径(Heywood径)R=(A/π)1/2×2の平均値を用いた。
銅繊維の繊維長L(mm)は、マルバーン社製粒子解析装置「Morphologi G3」を用いて、画像解析により算出された単純平均値を用いた。
これに対して、酸化処理の温度条件が低い比較例21及び,還元処理の温度条件が低い比較例22においては、気孔率規格化導電率σNが20%IACS未満となった。
11 銅繊維
12 骨格部
100 銅多孔質複合部材
120 銅板(部材本体)
Claims (11)
- 三次元網目構造の骨格部を有する銅多孔質体であって、
気孔率が50%以上90%以下の範囲内であり、
4端子法によって測定された前記銅多孔質体の導電率を、前記銅多孔質体の見掛け密度比で除することによって規定される気孔率規格化導電率σNが20%IACS以上であることを特徴とする銅多孔質体。 - 前記骨格部の表面に、酸化還元層が形成されていることを特徴とする請求項1に記載の銅多孔質体。
- 前記骨格部は、銅又は銅合金からなる銅粉末および銅繊維の少なくとも一方又は両方の焼結体であることを特徴とする請求項1又は請求項2に記載の銅多孔質体。
- 前記銅繊維は、直径Rが0.02mm以上1.0mm以下の範囲内であり、長さLと直径Rとの比L/Rが4以上2500以下の範囲内であることを特徴とする請求項3に記載の銅多孔質体。
- 前記銅粉末および銅繊維の少なくとも一方又は両方の結合部は、互いの表面に形成された酸化還元層同士が一体に結合していることを特徴とする請求項3又は請求項4に記載の銅多孔質体。
- 部材本体と、請求項1から請求項5のいずれか一項に記載の銅多孔質体との接合体からなることを特徴とする銅多孔質複合部材。
- 前記部材本体のうち前記銅多孔質体との接合面が銅又は銅合金で構成され、前記銅多孔質体と前記部材本体との接合部が焼結層であることを特徴とする請求項6に記載の銅多孔質複合部材。
- 請求項1又は請求項2に記載の銅多孔質体を製造する銅多孔質体の製造方法であって、
三次元網目構造の骨格部に対して、酸化雰囲気で保持温度500℃以上1050℃以下の条件で酸化処理を行うとともに、還元雰囲気で保持温度500℃以上1050℃以下の条件で還元処理を行うことにより、気孔率規格化導電率σNを20%IACS以上とすることを特徴とする銅多孔質体の製造方法。 - 請求項3から請求項5のいずれか一項に記載の銅多孔質体を製造する銅多孔質体の製造方法であって、
前記銅粉末および前記銅繊維の少なくとも一方又は両方を、酸化雰囲気で保持温度500℃以上1050℃以下の条件で酸化処理を行うとともに還元雰囲気で保持温度500℃以上1050℃以下の条件で還元処理を行うことにより、前記銅粉末および前記銅繊維の少なくとも一方又は両方の焼結体からなる前記骨格部を形成するとともに、気孔率規格化導電率σNを20%IACS以上とすることを特徴とする銅多孔質体の製造方法。 - 部材本体と、請求項1から請求項5のいずれか一項に記載の銅多孔質体の接合体からなる銅多孔質複合部材の製造方法であって、
請求項1から請求項5のいずれか一項に記載の銅多孔質体と、前記部材本体とを接合する接合工程を備えていることを特徴とする銅多孔質複合部材の製造方法。 - 前記部材本体のうち前記銅多孔質体が接合される接合面は、銅又は銅合金で構成されており、前記接合工程は、前記銅多孔質体と前記部材本体とを焼結によって接合することを特徴とする請求項10に記載の銅多孔質複合部材の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/081,527 US20190076927A1 (en) | 2016-04-27 | 2017-04-07 | Porous copper body, porous copper composite member, method for producing porous copper body, and method for producing porous copper composite member |
CN201780008127.XA CN108602127A (zh) | 2016-04-27 | 2017-04-07 | 铜多孔体、铜多孔复合部件、铜多孔体的制造方法及铜多孔复合部件的制造方法 |
EP17789225.4A EP3450061A4 (en) | 2016-04-27 | 2017-04-07 | POROUS COPPER BODY, POROUS COPPER COMPOSITE ELEMENT, METHOD FOR PRODUCING THE POROUS COPPER BODY, AND METHOD FOR PRODUCING THE POROUS COPPER COMPOSITE ELEMENT |
KR1020187023139A KR20190002422A (ko) | 2016-04-27 | 2017-04-07 | 구리 다공질체, 구리 다공질 복합 부재, 구리 다공질체의 제조 방법 및 구리 다공질 복합 부재의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-089358 | 2016-04-27 | ||
JP2016089358A JP6733286B2 (ja) | 2016-04-27 | 2016-04-27 | 銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017187938A1 true WO2017187938A1 (ja) | 2017-11-02 |
Family
ID=60161562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/014522 WO2017187938A1 (ja) | 2016-04-27 | 2017-04-07 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20190076927A1 (ja) |
EP (1) | EP3450061A4 (ja) |
JP (1) | JP6733286B2 (ja) |
KR (1) | KR20190002422A (ja) |
CN (1) | CN108602127A (ja) |
TW (1) | TW201806751A (ja) |
WO (1) | WO2017187938A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019086259A (ja) * | 2017-11-09 | 2019-06-06 | 三菱マテリアル株式会社 | 気化部材用銅多孔質体、沸騰冷却器、及び、ヒートパイプ |
CN115740431A (zh) * | 2022-12-21 | 2023-03-07 | 北京有研粉末新材料研究院有限公司 | 复配铜粉及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076758A (ja) * | 1993-06-16 | 1995-01-10 | Yuasa Corp | 亜鉛極板 |
JPH07150270A (ja) * | 1993-11-30 | 1995-06-13 | Sumitomo Electric Ind Ltd | 金属多孔質材、その製造方法およびそれを用いた電池用電極 |
JPH08145592A (ja) | 1994-11-16 | 1996-06-07 | Hitachi Chem Co Ltd | 伝熱部材およびその製造法 |
JP2003268410A (ja) * | 2002-03-12 | 2003-09-25 | National Institute Of Advanced Industrial & Technology | 多孔質材料の作製方法及びその成形体 |
JP2010500771A (ja) * | 2006-08-16 | 2010-01-07 | ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング | 構造化した焼結活性表面を有する半製品およびその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5817817B2 (ja) * | 1974-11-26 | 1983-04-09 | 株式会社豊田中央研究所 | 大表面積金属体の製造方法 |
US5640669A (en) * | 1995-01-12 | 1997-06-17 | Sumitomo Electric Industries, Ltd. | Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same |
JP2000192107A (ja) * | 1998-12-25 | 2000-07-11 | Kogi Corp | 多孔質金属及びその製造方法 |
JP4812823B2 (ja) * | 2008-10-27 | 2011-11-09 | Ntn株式会社 | 複層軸受の製造方法 |
JP6011593B2 (ja) * | 2014-10-22 | 2016-10-19 | 三菱マテリアル株式会社 | 銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 |
JP6065059B2 (ja) * | 2015-06-12 | 2017-01-25 | 三菱マテリアル株式会社 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
JP6107888B2 (ja) * | 2015-06-12 | 2017-04-05 | 三菱マテリアル株式会社 | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 |
JP6065058B2 (ja) * | 2015-06-12 | 2017-01-25 | 三菱マテリアル株式会社 | 銅多孔質体、及び、銅多孔質複合部材 |
-
2016
- 2016-04-27 JP JP2016089358A patent/JP6733286B2/ja active Active
-
2017
- 2017-04-07 KR KR1020187023139A patent/KR20190002422A/ko unknown
- 2017-04-07 EP EP17789225.4A patent/EP3450061A4/en not_active Withdrawn
- 2017-04-07 WO PCT/JP2017/014522 patent/WO2017187938A1/ja active Application Filing
- 2017-04-07 CN CN201780008127.XA patent/CN108602127A/zh active Pending
- 2017-04-07 US US16/081,527 patent/US20190076927A1/en not_active Abandoned
- 2017-04-17 TW TW106112787A patent/TW201806751A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH076758A (ja) * | 1993-06-16 | 1995-01-10 | Yuasa Corp | 亜鉛極板 |
JPH07150270A (ja) * | 1993-11-30 | 1995-06-13 | Sumitomo Electric Ind Ltd | 金属多孔質材、その製造方法およびそれを用いた電池用電極 |
JPH08145592A (ja) | 1994-11-16 | 1996-06-07 | Hitachi Chem Co Ltd | 伝熱部材およびその製造法 |
JP2003268410A (ja) * | 2002-03-12 | 2003-09-25 | National Institute Of Advanced Industrial & Technology | 多孔質材料の作製方法及びその成形体 |
JP3735712B2 (ja) | 2002-03-12 | 2006-01-18 | 独立行政法人産業技術総合研究所 | 多孔質材料の作製方法及びその成形体 |
JP2010500771A (ja) * | 2006-08-16 | 2010-01-07 | ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング | 構造化した焼結活性表面を有する半製品およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3450061A4 |
Also Published As
Publication number | Publication date |
---|---|
CN108602127A (zh) | 2018-09-28 |
TW201806751A (zh) | 2018-03-01 |
KR20190002422A (ko) | 2019-01-08 |
EP3450061A4 (en) | 2019-10-02 |
JP6733286B2 (ja) | 2020-07-29 |
EP3450061A1 (en) | 2019-03-06 |
JP2017197811A (ja) | 2017-11-02 |
US20190076927A1 (en) | 2019-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6065059B2 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
JP6011593B2 (ja) | 銅多孔質焼結体の製造方法及び銅多孔質複合部材の製造方法 | |
WO2016199566A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
WO2016199571A1 (ja) | 銅多孔質体、及び、銅多孔質複合部材 | |
JP6589402B2 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
WO2017187938A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
JP6724801B2 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
JP6249060B2 (ja) | 銅多孔質複合部材 | |
WO2018212039A1 (ja) | 銅多孔質体、銅多孔質複合部材、銅多孔質体の製造方法、及び、銅多孔質複合部材の製造方法 | |
JP5422590B2 (ja) | 複合集電体を備えた燃料電池モジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20187023139 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017789225 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17789225 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017789225 Country of ref document: EP Effective date: 20181127 |