WO2017187840A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2017187840A1
WO2017187840A1 PCT/JP2017/011035 JP2017011035W WO2017187840A1 WO 2017187840 A1 WO2017187840 A1 WO 2017187840A1 JP 2017011035 W JP2017011035 W JP 2017011035W WO 2017187840 A1 WO2017187840 A1 WO 2017187840A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
pipe
refrigerant
heat exchanger
transfer pipe
Prior art date
Application number
PCT/JP2017/011035
Other languages
French (fr)
Japanese (ja)
Inventor
松村 賢治
修平 多田
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to CN201780025312.XA priority Critical patent/CN109073334B/en
Publication of WO2017187840A1 publication Critical patent/WO2017187840A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger and an air conditioner.
  • Patent Document 1 discloses a horizontal flat tube disposed at a predetermined pitch in the vertical direction and 2 disposed at both ends of the horizontal flat tube. And a vertical header pipe of the book.
  • the heat exchanger is configured such that the space in the vertical header pipe is divided by the partition plate into a plurality of sections, and the sections flow through the refrigerant sequentially and gradually descend. ing. Then, for example, when the heat exchanger is made to function as a condenser, the temperature distribution of the refrigerant is biased in the vertical direction, and heat exchange is difficult to be performed in the lower part of the heat exchanger whose temperature is relatively low. is there.
  • this invention makes it a subject to provide the heat exchanger etc. with which heat exchange is performed with high efficiency.
  • the heat exchanger according to the present invention is characterized in that the refrigerant is led from one of the upper heat transfer pipe and the lower heat transfer pipe to the other through a connection pipe.
  • FIG. 1 It is a block diagram of an air conditioner provided with the outdoor heat exchanger which is a heat exchanger concerning a 1st embodiment of the present invention, and an indoor heat exchanger. It is a block diagram of the heat exchanger which concerns on 1st Embodiment of this invention. It is an explanatory view of a heat exchange part and a connecting pipe with which a heat exchanger concerning a 1st embodiment is provided.
  • the heat exchanger which concerns on 1st Embodiment of this invention functions as a condenser, it is explanatory drawing which shows the change of the pressure in case the flow volume of a refrigerant
  • FIG. 1 It is an explanatory view of a comparative example, the upper figure is a block diagram of a heat exchanger according to the comparative example, and the middle figure is a case where the heat exchanger according to the comparative example functions as a condenser, the flow rate of the refrigerant is relatively large. It is an explanatory view showing change of pressure of a refrigerant in a case, and a lower figure is an explanatory view showing change of pressure of a refrigerant in case flow volume of a refrigerant is comparatively small.
  • FIG. 1 is a block diagram of the air conditioner W provided with the outdoor heat exchanger 10t which is a heat exchanger which concerns on 1st Embodiment, and the indoor heat exchanger 10i.
  • the air conditioner W is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner W includes a refrigerant circuit R, an outdoor fan Ft (fan), and an indoor fan Fi (fan).
  • the refrigerant circuit R is a circuit in which a refrigerant circulates in a refrigeration cycle, and includes a compressor G, a four-way valve Vf, an outdoor heat exchanger 10t (heat exchanger), and an indoor heat exchanger 10i (heat exchanger)
  • the outdoor expansion valve Vt (expansion valve) and the indoor expansion valve Vi (expansion valve) are provided.
  • the refrigerant circuit R includes a compressor G, an outdoor heat exchanger 10t, an outdoor expansion valve Vt, an indoor expansion valve Vi, and an indoor heat exchanger 10i via a four-way valve Vf. It is configured to be sequentially connected in a ring.
  • the compressor G is a device that compresses a gaseous refrigerant.
  • the type of the compressor G is not particularly limited, and a scroll-type, piston-type, rotary-type, screw-type, centrifugal-type or the like compressor can be used.
  • An accumulator (not shown) may be provided on the suction side of the compressor G for gas-liquid separation of the refrigerant.
  • the four-way valve Vf is a valve that switches the flow direction of the refrigerant. That is, during the cooling operation (see solid arrows), the discharge side of the compressor G is connected to one end n of the outdoor heat exchanger 10t by the four-way valve Vf, and the suction side of the compressor G is the indoor heat exchanger 10i Is connected to one end u. Thereby, the outdoor heat exchanger 10t functions as a condenser, and the indoor heat exchanger 10i functions as an evaporator.
  • the discharge side of the compressor G is connected to one end u of the indoor heat exchanger 10i by the four-way valve Vf, and the suction side of the compressor G is the outdoor heat exchanger 10t Is connected to one end n.
  • the indoor heat exchanger 10i functions as a condenser
  • the outdoor heat exchanger 10t functions as an evaporator.
  • the outdoor heat exchanger 10t is a heat exchanger in which heat exchange is performed between the outside air and the refrigerant.
  • the outdoor fan Ft is a fan that sends outside air to the outdoor heat exchanger 10t, and is installed near the outdoor heat exchanger 10t.
  • the indoor heat exchanger 10i is a heat exchanger in which heat exchange is performed between indoor air (air in the space to be air-conditioned) and a refrigerant.
  • the other end p of the indoor heat exchanger 10i is connected to the other end q of the outdoor heat exchanger 10t through a pipe k.
  • the indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger 10i, and is installed near the indoor heat exchanger 10i.
  • the outdoor expansion valve Vt is a valve that depressurizes the refrigerant flowing into itself, and is provided in the vicinity of the outdoor heat exchanger 10t in the pipe k.
  • the indoor expansion valve Vi is a valve for reducing the pressure of the refrigerant flowing into itself, and is provided in the vicinity of the indoor heat exchanger 10i in the pipe k.
  • the compressor G, the four-way valve Vf, the outdoor heat exchanger 10t, the outdoor fan Ft, and the outdoor expansion valve Vt are installed in the outdoor unit Wt. Further, the indoor heat exchanger 10i, the indoor expansion valve Vi, and the indoor fan Fi are installed in the indoor unit Wi. And each apparatus of the air conditioner W is controlled by the control apparatus (not shown) based on the operation signal of each sensor (not shown), a remote control (not shown), etc.
  • heat exchangers 10 configurations of the outdoor heat exchanger 10t and the indoor heat exchanger 10i provided in the air conditioner W will be described. Hereinafter, these two heat exchangers will be referred to as “heat exchangers 10”. In addition, since the heat exchanger 10 is installed based on predetermined construction conditions, the "vertical direction" and the “horizontal direction” which are described below should not be interpreted strictly.
  • FIG. 2 is a block diagram of the heat exchanger 10 according to the first embodiment.
  • the heat exchanger 10 illustrated in FIG. 2 is a fin-tube type heat exchanger, and includes a first distribution pipe 11, a heat exchange unit 12, connection pipes 13a, 13b,..., 13f, and a second distribution pipe 14. And.
  • the first distribution pipe 11 causes the gas refrigerant to be transferred to the upper heat transfer pipes 12Ua, 12Uc, 12Ue and the lower heat transfer pipes 12Db, 12Dd, 12Df as shown by the arrows in FIG. It is piping to distribute.
  • the outdoor heat exchanger 10t functions as an evaporator, the gas refrigerants evaporated in the heat exchange unit 12 join in the first distribution pipe 11 in the opposite direction to the arrow in FIG.
  • the heat exchange unit 12 shown in FIG. 2 is a structure in which heat exchange between the refrigerant and the air is performed.
  • FIG. 3 is explanatory drawing of the heat exchange part 12 and the connection pipe 13a with which the heat exchanger 10 which concerns on 1st Embodiment is equipped.
  • the heat exchange unit 12 includes a plurality of fins J, a plurality of upper heat transfer tubes 12Ua and the like (heat transfer tubes), and a plurality of lower heat transfer tubes 12Da and the like (heat transfer tubes).
  • the plurality of fins J are metal plates for fixing the positions of the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Da and promoting heat exchange between the refrigerant and the air.
  • the plurality of fins J are arranged such that the plane direction is parallel with a predetermined interval between each other adjacent fin J.
  • the plurality of fins J are arranged such that the heat transfer surfaces thereof are parallel to the vertical direction.
  • Each of the plurality of fins J has an upper area JU and a lower area JD.
  • the upper area JU is an area of the upper portion of the fin J in the vertical direction.
  • a plurality of holes (not shown) for penetrating the upper heat transfer pipe 12Ua and the like are formed in the upper region JU.
  • the lower region JD is a region under the fin J in the vertical direction.
  • a plurality of holes (not shown) for penetrating the lower heat transfer pipe 12Da and the like are formed. The holes are arranged in a line along the vertical direction.
  • boundary line Q may be set such that the width in the vertical direction of upper region JU and the width in the vertical direction of lower region JD are substantially equal as shown in FIG. It is not a thing.
  • the upper heat transfer pipes 12Ua, 12Ub, ..., 12Uf and the lower heat transfer pipes 12Da, 12Da, 12Db, ..., 12Df shown in Fig. 2 respectively have a refrigerant passing therethrough and a fan (for example, an outdoor fan Ft: It is a metal pipe in which heat exchange with air from 1) takes place.
  • the upper heat transfer tubes 12Ua, 12Ub,..., 12Uf penetrate the upper region JU of the fin J.
  • the lower heat transfer tubes 12Da, 12Db,..., 12Df penetrate the lower region JD of the fin J.
  • 'U' included in the symbols of the upper heat transfer tubes 12Ua, 12Ub,..., 12Uf means being disposed at the upper portion of the heat exchange unit 12.
  • “D” included in the reference numerals of the lower heat transfer tubes 12Da, 12Db,..., 12Df means being disposed at the lower part of the heat exchange unit 12.
  • 'A' included in the symbols of the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Da means connected to a connection pipe 13a described later. The same applies to the other upper heat transfer pipes 12Ub, 12Uc, ..., 12Uf and the lower heat transfer pipes 12Db, 12Dc, ..., 12Df.
  • upper heat transfer pipes 12Ua, 12Ub, ..., 12Uf and lower heat transfer pipes 12Da, 12Db, ..., 12Df are schematically illustrated in Fig. 2, for example, the upper heat transfer pipes 12Ua are illustrated in Fig. 3. It is configured as shown in. That is, the upper heat transfer pipe 12Ua is disposed such that the refrigerant reciprocates in the fin J in one reciprocation (halfways) in the left-right direction in which the upper heat transfer pipe 12Ua penetrates the fin J. The same applies to the other upper heat transfer pipes 12Ub, 12Uc, ..., 12Uf and the lower heat transfer pipes 12Da, 12Db, ..., 12Df.
  • the refrigerant may be guided to the second distribution pipe 14 without reciprocating the refrigerant in the upper heat transfer pipe 12Ua.
  • the upper heat transfer pipe 12Ua or the like may be disposed so that the refrigerant reciprocates twice or more in the left-right direction.
  • heat transfer pipes having different numbers of reciprocations may be mixed.
  • connection pipe 13a shown in FIG. 2 is a pipe that connects the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Da.
  • the refrigerant flowing through the upper heat transfer pipe 12Ua is led to the lower heat transfer pipe 12Da via the connection pipe 13a.
  • the connection pipe 13b is a pipe that connects the lower heat transfer pipe 12Db and the upper heat transfer pipe 12Ub.
  • the refrigerant flowing through the lower heat transfer pipe 12Db is led to the upper heat transfer pipe 12Ub via the connection pipe 13b.
  • the connecting pipe 13a has a height H (a height based on the lower end of the heat exchange portion 12) at the connection position with the upper heat transfer pipe 12Ua, the other connecting pipes 13b, 13c,. It is the highest compared to 13f, while the height of the connection position with the lower heat transfer tube 12Da is the lowest. Further, the height of the connection position of the connection pipe 13b with the upper heat transfer pipe 12Ub is the second highest, while the height of the connection position with the lower heat transfer pipe 12Db is the second lowest. The same applies to the other connection pipes 13c,..., 13f. That is, the height of the connection position with the lower heat transfer pipe is lower as the height of the connection position with the upper heat transfer pipe is higher in the connection pipes 13a, 13b,.
  • the height of the connection position with the upper heat transfer tubes 12Ua, 12Ub, ..., 12Uf is the (2n-1) th highest in the upper region JU
  • the connection pipes whose heights at the connection positions with the lower heat transfer pipes 12Da, 12Db, ..., 12Df are the (2n-1) th lowest in the lower region JD are arranged to lead the refrigerant from the upper heat transfer pipe to the lower heat transfer pipe It is done.
  • 'n' is a natural number.
  • the heights of the connection positions with the upper heat transfer tubes 12Ua, 12Ub, ..., 12Uf are the second highest in the upper region JU, and the lower heat transfer tubes 12Da, 12Db,
  • the connecting pipe having the 2n-th lowest height in the lower region JD is arranged to lead the refrigerant from the lower heat transfer pipe to the upper heat transfer pipe.
  • the refrigerant is transferred from one of the upper heat transfer pipe and the lower heat transfer pipe to the other (for example, from the upper heat transfer pipe 12Ua to the lower heat transfer pipe 12Da) via the connection pipe (for example, the connection pipe 13a) Are configured to be guided.
  • the second distribution pipe 14 shown in FIG. 2 causes the liquid refrigerant condensed in the heat exchange unit 12 to merge at the connection unit 14s as shown by the arrow in FIG. Piping.
  • the heat exchanger 10 functions as an evaporator
  • the upper heat transfer pipes 12Ub, 12Ud, 12Uf and the lower heat transfer pipes 12Da, 12Dc via the second distribution pipe 14 in the direction opposite to the arrow in FIG. , 12De are distributed gas-liquid two-phase refrigerant.
  • the height based on the lower end of the heat exchanger 10 of the connection portion 14s of the second distribution pipe 14 is h.
  • the upper diagram in FIG. 12 is a configuration diagram of a heat exchanger 10Z according to a comparative example.
  • the refrigerant flowing through the heat transfer tube 12a having the highest height is led to the connection 14s via the upper path 14a having the highest height.
  • the refrigerant flowing through the heat transfer tube 12e having the lowest height is led to the connection 14s via the lower path 14e having the lowest height. That is, in the heat exchanger 10Z according to the comparative example, the order of the heights of the heat transfer pipes 12a, 12b, ..., 12e through which the refrigerant flows, and the paths 14a, 14b, through which the refrigerant flows through the second distribution pipe 14.
  • the order of the height of ..., 14e is the same.
  • the explanatory view of ⁇ at a large flow rate> shown in FIG. 12 is an explanatory view showing a change in pressure of the refrigerant when the flow rate of the refrigerant is relatively large when the heat exchanger 10Z according to the comparative example functions as a condenser. is there.
  • the horizontal axis of this explanatory view indicates the position in the horizontal direction (left and right direction) of the heat exchanger 10Z, and the vertical axis indicates the pressure of the refrigerant. That is, in the case where the heat exchanger 10Z functions as a condenser, this explanatory view shows the change in the pressure of the refrigerant from the upstream end of the heat exchange unit 12 to the downstream end of the second distribution pipe 14.
  • the thin line of the graph of ⁇ at large flow rate> shown in FIG. 12 shows a change in pressure of the refrigerant flowing through the heat transfer pipe 12a and the upper path 14a having the highest height.
  • the thick line in the graph indicates the pressure change of the refrigerant flowing through the heat transfer tube 12e having the lowest height and the lower path 14e.
  • the upstream end of the heat transfer pipe 12a (the upstream end of the heat exchange unit 12) with the highest height and the upstream end of the heat transfer pipe 12e with the lowest height ( At the upstream end of the heat exchange unit 12, the pressure of the refrigerant is substantially equal. Further, since the refrigerant merges at the downstream end of the second distribution pipe 14, the pressure of the refrigerant at the downstream end of the upper path 14a and the pressure of the refrigerant at the downstream end of the lower path 14e are equal.
  • the flow resistance is relatively large when the refrigerant flows through the heat transfer tubes 12a, 12b, ..., 12e at a large flow rate, the refrigerant flowing through the upper heat transfer tube 12a and the lower heat transfer tube 12e The pressure of any of the flowing refrigerants is greatly reduced (pressure change due to flow resistance).
  • the pressure of the refrigerant which descends via the upper path 14a rises due to the influence of gravity, and the pressure of the refrigerant which rises via the lower path 14e falls due to the influence of gravity (pressure change due to gravity).
  • the pressure decrease width (P1) due to flow resistance is higher than the pressure increase width (P3-P4) due to gravity.
  • -P4 is overwhelmingly larger. Further, the same can be said for the pressure change of the refrigerant flowing through the heat transfer tube 12e and the lower path 14e having the lowest height.
  • the diagram of ⁇ at a low flow rate> shown in FIG. 12 is an explanatory view showing a change in pressure of the refrigerant when the flow rate of the refrigerant is relatively small when the heat exchanger 10Z according to the comparative example functions as a condenser. .
  • the flow resistance when the refrigerant flows through the heat transfer pipes 12a, 12b, ..., 12e becomes smaller than that when the flow rate is large.
  • the pressure decrease width due to flow resistance (P5 to P8) is smaller than the pressure increase width due to gravity (P7 to P8) -P7) is not so big. Further, the same can be said for the pressure change of the refrigerant flowing through the heat transfer tube 12e and the lower path 14e having the lowest height.
  • the pressure difference ⁇ p (uppermost stage) due to the influence of the gravity of the refrigerant flowing through the uppermost stage is represented by the following formula (1).
  • V V is the density of the gas refrigerant
  • ⁇ L is the density of the liquid refrigerant
  • g is the gravitational acceleration
  • H is the height of the heat transfer pipe 12 a relative to the lower end of the heat exchange portion 12
  • h is the height of the connection portion 14 s of the second distribution pipe 14.
  • ⁇ p (uppermost stage) ⁇ ⁇ V ⁇ g ⁇ H + L L ⁇ g ⁇ (H ⁇ h) (1)
  • the first term of the equation (1) represents the pressure drop when the gas refrigerant rises via the first distribution pipe 11.
  • the second term of the equation (1) represents the pressure rise when the liquid refrigerant descends through the upper path 14a.
  • ⁇ p (bottom stage) ⁇ - L ⁇ g ⁇ h (2)
  • Formula (2) represents the pressure drop when the liquid refrigerant moves up and down through the lower path 14e.
  • the height of the lower path of the first distribution pipe 11 is substantially zero, there is almost no pressure change when the refrigerant flows through the lower path.
  • the difference ⁇ p (comparative example) between the equation (1) and the equation (2) described above is expressed by the following equation (3).
  • Formula (3) represents the difference of the influence of gravity in the refrigerant flowing through the top stage and the refrigerant flowing through the bottom stage. Since ⁇ ⁇ V ⁇ ⁇ L , in the equation (3), approximation of ( ⁇ L ⁇ V ) ⁇ L L is performed. Incidentally, in the configuration of the heat exchanger 10Z of the comparative example, even if the height of the connection portion 14s is changed, the above-mentioned pressure difference ⁇ p (comparative example) hardly changes.
  • FIG. 4 is an explanatory view showing a change in pressure when the flow rate of the refrigerant refrigerant is relatively small when the heat exchanger 10 according to the first embodiment functions as a condenser.
  • the horizontal axis in FIG. 4 indicates the position in the horizontal direction (left and right direction) of the heat exchanger 10 (see FIG. 2), and the vertical axis indicates the pressure of the refrigerant. That is, in the case where the heat exchanger 10 functions as a condenser, this explanatory view shows the change of the pressure of the refrigerant from the upstream end of the heat exchange unit 12 to the downstream end of the second distribution pipe 14.
  • the thick lines in the graph shown in FIG. 4 indicate changes in the pressure of the refrigerant flowing sequentially through the upper heat transfer pipe 12Ua, the connection pipe 13a, the lower heat transfer pipe 12Da, and the lower path 14a of the second distribution pipe 14 shown in FIG. ing.
  • thin lines in the graph show changes in pressure of the refrigerant that sequentially flows through the lower heat transfer pipe 12Db, the connection pipe 13b, the upper heat transfer pipe 12Ub, and the upper path 14b of the second distribution pipe 14.
  • the pressure difference ⁇ p (uppermost stage) due to the influence of gravity is expressed by the following equation (4).
  • M M is the density of the gas-liquid two-phase refrigerant flowing through the connection pipe 13a.
  • ⁇ p (uppermost stage) -V V ⁇ g ⁇ H + M M ⁇ g ⁇ H- L L ⁇ g ⁇ h (4)
  • the first term of the equation (4) represents the pressure drop when the gas refrigerant rises via the first distribution pipe 11.
  • the second term of the equation (4) represents the pressure rise when the gas-liquid two-phase refrigerant descends via the connection pipe 13a.
  • the pressure rise in the connection pipe 13a is one of the main features of the present embodiment.
  • the third term of the equation (4) represents the pressure drop when the liquid refrigerant rises through the lower path 14 a of the second distribution pipe 14.
  • the pressure difference ⁇ p (lowermost stage) due to the influence of gravity is expressed by the following equation (5).
  • the height of the heat transfer tube 12Ub shown in FIG. 2 is slightly lower than the height H of the uppermost heat transfer tube 12Ua, in the equation (5), the height of the heat transfer tube 12Ub is H (approximated Yes).
  • ⁇ p (lowermost stage) ⁇ ⁇ M ⁇ g ⁇ H + ⁇ L ⁇ g ⁇ (H ⁇ h) (5)
  • the first term of the equation (5) represents the pressure drop when the gas-liquid two-phase refrigerant rises via the connection pipe 13b.
  • the pressure drop in the connection pipe 13b is one of the main features of the present embodiment.
  • the second term of the equation (5) represents the pressure rise when the liquid refrigerant descends via the upper path 14 b of the second distribution pipe 14.
  • the difference ⁇ p (in the present embodiment) between the above-mentioned equation (4) and the equation (5) is expressed by the following equation (6).
  • Formula (6) represents the difference of the influence of gravity in the refrigerant flowing through the uppermost stage and the refrigerant flowing through the lowermost stage. Since ⁇ ⁇ V ⁇ ⁇ L , in Equation (6), approximation is performed as (2 M M- L L- V V ) ((2 M M- L L ). Further, the magnitude relationship between the densities V v , M M and L L is expressed by the following equation (7).
  • the pressure drop of the refrigerant rising in the second distribution pipe 14 is caused by the pressure rise (pressure difference ⁇ p ⁇ shown in FIG. 4) of the refrigerant falling in the connection pipe 13a. At least a part of the pressure difference ⁇ p ⁇ ) is canceled out.
  • at least one of the pressure rise (pressure difference ⁇ p ⁇ shown in FIG. 4) of the refrigerant falling in the second distribution pipe 14 due to the pressure drop (pressure difference ⁇ p ⁇ shown in FIG. 4) of the refrigerant rising the connection pipe 13b. Department is canceled. Therefore, according to the present embodiment, the pressure difference ⁇ p (present embodiment) due to the influence of gravity can be made smaller than that of the comparative example.
  • the refrigerant is distributed substantially equally to the upper heat transfer pipes 12Ua, 12Ub,... 12Uf and the lower heat transfer pipes 12Da, 12Db,. Accordingly, liquid accumulation in the lower heat transfer pipes 12Da, 12Db and the like can be suppressed, and the heat exchange in the heat exchange section 12 can be made more efficient. In particular, even when the air conditioner W performs low load operation and the flow rate of the refrigerant in the heat exchanger 10 is relatively small, the above-described liquid accumulation can be suppressed.
  • the high temperature gas refrigerant is distributed to both the upper and lower portions of the heat exchange unit 12, and the relatively low temperature gas-liquid two-phase refrigerant is connected to the connecting pipes 13a, 13b,. It distributes to both the upper part and the lower part of the heat exchange part 12 via. Therefore, compared with the structure which temperature distribution of a heat exchanger has deviated in the perpendicular direction like above-mentioned patent document 1, the efficiency improvement of heat exchange in the heat exchange part 12 can be achieved.
  • the heat transfer pipes 12Ug and 12Ug connected via the connection pipe 13g are adjacent to each other in the vertical direction. It differs from one embodiment. The other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 5 is a block diagram of a heat exchanger 10A according to the second embodiment.
  • the fins J of the heat exchange unit 12 have an intermediate region JM in the vertical direction.
  • the middle region JM is a region including the lower portion of the upper region JU of the fin J and the upper portion of the lower region JD.
  • the upper heat transfer pipes 12Ug and 12Ug, the lower heat transfer pipes 12Di and 12Di, and the like penetrate the intermediate region JM.
  • the upper upper heat transfer pipe 12Ug is connected to the lower upper heat transfer pipe 12Ug adjacent in the vertical direction via a connection pipe 13g.
  • the refrigerant is led from the upper heat transfer pipe 12Ua to the lower heat transfer pipe 12Da via the connection pipe 13a, and the lower heat transfer pipe 12Db
  • the refrigerant is led to the upper heat transfer pipe 12Ub from the above through the connection pipe 13b.
  • the third embodiment is different from the first embodiment in the connection positions of the connection pipes 13j, 13k and the like (see FIG. 6), but the other is the same as the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 6 is a block diagram of a heat exchanger 10B according to a third embodiment.
  • Connection tube 13j shown in FIG. 6 has the highest height in the upper region JU at the connection position with the upper heat transfer tube 12Uj, and has the second highest height in the lower region JD with the connection position with the lower heat transfer tube 12Dj. .
  • the refrigerant is led from the upper heat transfer pipe 12Uj to the lower heat transfer pipe 12Dj via the connection pipe 13j.
  • Connection tube 13k shown in FIG. 6 is the third highest in connection position with upper heat transfer tube 12Uk in upper region JU, and fourth in the lower region JD in connection position with lower heat transfer tube 12Dk. High.
  • the refrigerant is led from the upper heat transfer pipe 12Uk to the lower heat transfer pipe 12Dk via the connection pipe 13k. The same applies to the other connection pipes 13m.
  • the heat exchange unit 12 functions as a condenser
  • the heights of the connection positions with the upper heat transfer tubes 12Uj, 12Uk, 12Um are the (2n-1) th highest in the upper region JU
  • the lower heat transfer tubes 12Dj, 12Dk , 12Dm are led from the upper heat transfer pipe to the lower heat transfer pipe via the 2n-th highest connection pipe in the lower region JD.
  • 'n' is a natural number.
  • Connection tube 13q shown in FIG. 6 has the second highest height in the upper region JU at the connection position with the upper heat transfer tube 12Uq, and the highest in the lower region JD at the connection position with the lower heat transfer tube 12Dq. .
  • the refrigerant is led from the lower heat transfer pipe 12Dq to the upper heat transfer pipe 12Uq via the connection pipe 13q.
  • Connection tube 13p shown in FIG. 6 is the fourth highest in connection position with upper heat transfer tube 12Up in upper region JU, and third in the lower region JD in connection position with lower heat transfer tube 12Dp. High.
  • the refrigerant is led from the lower heat transfer pipe 12Dp to the upper heat transfer pipe 12Up via the connection pipe 13p. The same applies to the other connection pipes 13n.
  • the heights of the connection positions with upper heat transfer tubes 12Uq, 12Up, 12Un are 2n-th highest in upper region JU, and lower heat transfer tubes 12Dq, 12Dp, 12Dn
  • the refrigerant is led from the lower heat transfer pipe to the upper heat transfer pipe via the (2n-1) th highest connection pipe in the lower region JD at the height of the connection position.
  • the lengths of the connection pipes 13j, 13k,..., 13q can be made shorter than the connection pipes 13a, 13b (see FIG. 2) described in the first embodiment.
  • the connection pipes 13j, 13k,..., 13q are smaller than that of the connection pipes 13a, 13b of the first embodiment, the refrigerant easily flows.
  • the liquid accumulation in the lower part of the heat exchange part 12 can be suppressed, and the efficiency of heat exchange can be raised.
  • the fourth embodiment two rows of holes arranged in the vertical direction are provided in the fin J (see FIG. 7), and the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like pass through these holes. It differs from the first embodiment. Further, the first embodiment is that the refrigerant flowing through the upper heat transfer tube 12Ua in the rear row is led to the lower heat transfer tube 12Da in the front row, and the refrigerant flowing through the lower heat transfer tube 12Db in the rear row is guided to the upper heat transfer tube 12Ub in the front row. It is different from The other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
  • FIG. 7 is a block diagram of a heat exchanger 10C according to the fourth embodiment.
  • connection pipes 13a and 13b for guiding the refrigerant from one of the uppermost stage and the lowermost stage to the other are illustrated, and other connection pipes (corresponding to the connection pipes 13c, 13d, 13e and 13f shown in FIG. 2) are shown. Illustration is omitted.
  • the heat exchange part 12C functions as a condenser, the flow direction of the refrigerant
  • coolant is shown by the arrow.
  • a fan F for sending air toward the heat exchange portion 12C is installed.
  • two rows of holes (not shown) arranged in the vertical direction are respectively provided. Of the two rows described above, the row on the fan F side (upstream side in the air flow direction) is referred to as the “front row”, and the row on the opposite side (downstream side in the air flow direction) to the fan F It is called "the back row”.
  • the upper heat transfer pipes 12Ua and the like pass through the holes in the rear row of the upper area JU, and the upper heat transfer pipes 12Ub and the like pass through the holes in the front line of the upper area JU.
  • Lower heat transfer pipes 12Da and the like pass through holes in the front row of the lower region JD, and lower heat transfer pipes 12Db and the like pass through holes in the rear row of the lower region JD.
  • connection pipe 13a is a pipe that leads the refrigerant flowing through the upper heat transfer pipe 12Ua to the lower heat transfer pipe 12Da. That is, when the heat exchange unit 12C functions as a condenser, the refrigerant flowing through the upper heat transfer pipe 12Ua in the rear row is led to the lower heat transfer pipe 12Da in the front row via the connection pipe 13a.
  • the connection pipe 13b is a pipe that leads the refrigerant flowing through the lower heat transfer pipe 12Db to the upper heat transfer pipe 12Ub. That is, when the heat exchange section 12C functions as a condenser, the refrigerant flowing through the lower heat transfer pipe 12Db in the rear row is led to the upper heat transfer pipe 12Ub in the front row via the connection pipe 13b.
  • relatively high temperature gas refrigerant flows through the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Db in the rear row, and a relatively low temperature gas-liquid two-phase flow in the upper heat transfer pipe 12Ub and the lower heat transfer pipe 12Da in the front row.
  • the refrigerant flows. That is, the air heat-exchanged with the relatively low temperature gas-liquid two-phase refrigerant in the front row goes to the rear row, and exchanges heat with the relatively high temperature gas refrigerant in the rear row.
  • heat exchange between the refrigerant and the air can be performed with high efficiency by making the temperature distribution of the refrigerant and the flow direction of the air into the counterflow type.
  • connection pipes other than the connection pipes 13a and 13b are also disposed so as to guide the refrigerant from one of the upper heat transfer pipe and the lower heat transfer pipe to the other.
  • the heights of the connection positions of the lower heat transfer pipes 12Da, 12Db,... are lower as the heights of the connection positions of the connection pipes 13a, 13b, ... with the upper heat transfer pipes 12Ua, 12Ub,.
  • liquid accumulation in the lower heat transfer pipes 12Da, 12Db and the like can be prevented, and high efficiency of heat exchange can be achieved.
  • the fifth embodiment is different from the fourth embodiment in that the refrigerant flowing through the upper heat transfer pipe 12Ua (see FIG. 8) in the rear row is led to the connection pipe 13a via the upper heat transfer pipe 12Ua in the front row. ing.
  • the refrigerant flowing through the lower heat transfer pipe 12Db (see FIG. 8) in the rear row is led to the connection pipe 13b via the lower heat transfer pipe 12Db in the front row, and the fourth embodiment Are different.
  • the other aspects are the same as in the fourth embodiment. Therefore, the parts different from the fourth embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 8 is a block diagram of a heat exchanger 10D according to the fifth embodiment.
  • connection pipes 13 a and 13 b for guiding the refrigerant from one of the uppermost stage and the lowermost stage to the other are illustrated, and the other connection pipes are not illustrated.
  • the fin J shown in FIG. 8 is provided with a plurality of holes (not shown) arranged in the vertical direction in two rows.
  • the upper heat transfer tubes 12Ua, 12Ub, etc. pass through the holes of the upper region JU.
  • the lower heat transfer tubes 12Da, 12Db, etc. pass through the holes in the lower region JD.
  • the heat exchange unit 12D functions as a condenser
  • the refrigerant flowing through the upper heat transfer pipe 12Ua in the rear row is led to the upper heat transfer pipe 12Ua in the front row, and then through the connection pipe 13a.
  • the heat exchanger 10D is configured to be guided to the lower heat transfer tubes 12Da in the front row.
  • the heat exchange unit 12D functions as a condenser
  • the refrigerant flowing through the lower heat transfer pipe 12Db in the rear row is led to the lower heat transfer pipe 12Db in the front row, and then the upper portion of the front row is connected via the connection pipe 13b.
  • the heat exchanger 10D is configured to be led to the heat transfer tube 12Ub.
  • the density M M of the gas-liquid two-phase refrigerant is the density of the liquid refrigerant If it is close to 1 ⁇ 2 of ⁇ L (that is, if the pressure difference ⁇ p in equation (6) approaches zero), the heat exchange can be made more efficient.
  • the density M M of the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b, ... is increased to be close to 1 ⁇ 2 of the density L L of the liquid refrigerant,
  • the influence of gravity when the refrigerant is distributed to the upper heat transfer tube 12Ua, the lower heat transfer tube 12Da, and the like can be reduced.
  • the flow rates of the refrigerant flowing through the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like become substantially equal, and therefore, it is possible to achieve high efficiency of heat exchange in the heat exchanger 10D.
  • the sixth embodiment is different from the fourth embodiment in that the refrigerant is guided to the lower heat transfer pipe 12Da in the rear row via the connection pipe 13a (see FIG. 9) and is further guided to the lower heat transfer pipe 12Da in the front row. There is. Further, the sixth embodiment is different from the fourth embodiment in that the refrigerant is led to the upper heat transfer pipe 12Ub in the rear row via the connection pipe 13b (see FIG. 9) and is further led to the upper heat transfer pipe 12Ub in the front row. There is.
  • the other aspects are the same as in the fourth embodiment. Therefore, the parts different from the fourth embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 9 is a configuration diagram of a heat exchanger 10E according to a sixth embodiment.
  • connection pipes 13a and 13b for guiding the refrigerant from one of the uppermost stage and the lowermost stage to the other are illustrated, and the other connection pipes are not shown.
  • the fin J shown in FIG. 9 is provided with a plurality of holes (not shown) arranged in the vertical direction in two rows.
  • the upper heat transfer tubes 12Ua, 12Ub, etc. pass through the holes of the upper region JU.
  • the lower heat transfer tubes 12Da, 12Db, etc. pass through the holes in the lower region JD.
  • the heat exchange unit 12E functions as a condenser
  • the refrigerant flowing through the upper heat transfer pipe 12Ua in the rear row is led to the lower heat transfer pipe 12Da in the rear row via the connection pipe 13a.
  • the heat exchanger 10E is configured to be led to the lower heat transfer pipe 12Da in the front row afterward.
  • the refrigerant flowing through the lower heat transfer pipe 12Db in the rear row is led to the upper heat transfer pipe 12Ub in the rear row via the connection pipe 13b, and then the upper portion in the front row
  • the heat exchanger 10E is configured to be led to the heat transfer tube 12Ub.
  • the density M M of the gas-liquid two-phase refrigerant is 1 of the density L L of the liquid refrigerant If it becomes equal to / 2, pressure difference (DELTA) p of above-mentioned Formula (6) can be made into zero. This can reduce the influence of gravity when the refrigerant is distributed to the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like.
  • the density ⁇ M of the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b, ... is reduced to be close to 1 ⁇ 2 of the density L L of the liquid refrigerant,
  • the influence of gravity when the refrigerant is distributed to the upper heat transfer tube 12Ua, the lower heat transfer tube 12Da, and the like can be reduced.
  • the flow rates of the refrigerant flowing through the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like become substantially equal, and therefore, the heat exchange efficiency in the heat exchanger 10E can be improved.
  • the seventh embodiment is different from the first embodiment in that the heat exchange unit 12F allows the refrigerant to flow through the flat porous pipe 15 (a porous pipe: see FIG. 7).
  • the other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
  • FIG. 10 is a front view of a heat exchanger 10F according to a seventh embodiment.
  • the heat exchange part 12F functions as a condenser
  • the solid line arrow shown in FIG. 10 shows the flow path of the refrigerant in the front side
  • the broken line arrow shows the flow path of the refrigerant in the back side (refer FIG. 11). It shows.
  • connection pipes 13a and 13b for guiding the refrigerant from one of the upper portion and the lower portion of the heat exchange portion 12F to the other are illustrated, and the other connection pipes are not illustrated.
  • the heat exchanger 10F includes a heat exchange portion 12F, header pipes 161, 162Ua, 162Db, etc., and connection pipes 13a, 13b,.
  • the heat exchange unit 12F includes a plurality of fins J and a plurality of flat porous tubes 15.
  • the plurality of fins J are arranged such that the plane direction is parallel with a predetermined interval between each other adjacent fin J.
  • the plurality of fins J are arranged such that the heat transfer surfaces thereof are parallel to the vertical direction.
  • a plurality of holes for penetrating the flat porous tube 15 (porous tube) are respectively formed.
  • the flat porous pipe 15 is a heat transfer pipe in which heat exchange between the refrigerant flowing through the inside thereof and the air from the fan F is performed, and the fin J is penetrated.
  • the flat porous tube 15 has a configuration in which a plurality of holes are arranged in the horizontal direction, and exhibits a flat shape (a rectangular shape elongated in the horizontal direction in a cross sectional view). As shown in FIG. 10, in the front row on the fan F side, the plurality of flat porous tubes 15 are arranged in the vertical direction, and in the rear row opposite to the fan F, the plurality of flat porous tubes 15 are in the vertical direction Are arranged in
  • the plurality of flat porous tubes 15 penetrating the upper region JU of the fins J correspond to "upper heat transfer tubes”.
  • the plurality of flat porous tubes 15 penetrating the lower region JD of the fin J correspond to "lower heat transfer tubes”.
  • the header pipe 161 is a pipe for distributing the gas refrigerant flowing into itself to the flat porous pipes 15 in the rear row.
  • a part of the refrigerant led to each flat porous pipe 15 in the rear row through the header pipe 161 is directed to the header pipe 162Ua in the rear row through each flat porous pipe 15 in the upper region JU, and the remaining refrigerant is It goes to the header pipe 162Db (refer to FIG. 11) in the rear row through each flat porous pipe 15 in the area JD.
  • FIG. 11 is a rear view of the heat exchanger 10F according to the seventh embodiment.
  • the refrigerant flowing through the header pipe 162Ua in the rear row is led to the header pipe 163Ua in the front row via piping (not shown), and further, the header pipe in the front row of the upper region JU via the five flat porous pipes 15 It is led to 164Ua.
  • the refrigerant flowing through the header pipe 164Ua is lowered via the connection pipe 13a and is led to the header pipe 165Da of the front row of the lower region JD.
  • the refrigerant flowing through the header pipe 165Da is led to the header pipe 166Da shown in FIG. 11 through the three flat porous pipes 15. Then, the refrigerant flowing through the header pipe 166Da flows out as a liquid refrigerant via the two flat porous pipes 15 and the header pipe 167Da in the lower region JD shown in FIG.
  • the refrigerant flowing through the header pipe 162Db (see FIG. 11) in the rear row is led to the header pipe 163Db in the front row via a pipe (not shown), and further, the lower portion via the five flat porous pipes 15. It is led to the header pipe 164Db of the front row of the area JD. As shown in FIG. 10, the refrigerant flowing through the header pipe 164Db rises via the connection pipe 13b and is led to the header pipe 165Ub in the front row of the upper region JU. The refrigerant flowing through the header pipe 165Ub is led to the header pipe 166Ub shown in FIG. 11 through the three flat porous pipes 15. Then, the refrigerant flowing through the header pipe 166Ub flows out as liquid refrigerant via the two flat porous pipes 15 and the header pipe 167Ub of the upper region JU shown in FIG.
  • connection pipes other than the connection pipes 13a and 13b are also arranged to lead the refrigerant from one of the upper heat transfer pipe and the lower heat transfer pipe to the other. Further, as the heights of the connection positions of the connection pipes 13a, 13b, ... with the header pipes 164Ua, 165Ub, ... provided in the upper area JU increase, the header pipes 165Da, 164Db, ... provided in the lower area JD. The height of the connection position with is lowered. By this, the liquid accumulation in the lower part of the heat exchange part 12F can be prevented, and high efficiency-ization of heat exchange can be achieved.
  • the refrigerant flowing through the flat porous pipe 15 in the upper area JU is led to the flat porous pipe 15 in the lower area JD via the connection pipe 13a and the like. Further, the refrigerant flowing through the flat porous pipe 15 in the lower area JD is led to the flat porous pipe 15 in the upper area JU via the connection pipe 13b and the like.
  • the influence of gravity when the refrigerant is distributed to the flat porous tubes 15 can be reduced. Therefore, it is possible to suppress the deviation in the vertical direction of the flow rate of the refrigerant flowing through each flat porous pipe 15, and to achieve high efficiency of heat exchange in the heat exchanger 10F.
  • the heat exchanger 10F is configured to include the plurality of flat porous tubes 15, the density M M of the gas-liquid two-phase refrigerant is higher than that of the finned tube type heat exchanger.
  • the density M M of the gas-liquid two-phase refrigerant is higher than that of the finned tube type heat exchanger.
  • a flat porous pipe is provided which flows through the front row on the fan F side before the refrigerant flows into the connection pipe 13a etc. You can increase the number of fifteen.
  • the number of flat porous pipes 15 flowing in the front row on the fan F side may be reduced.
  • the height of the connection position with the upper heat transfer tube is 2n-th highest in the upper region JU
  • the height of the connection position with the lower heat transfer tube is 2 n-th lowest in the lower region JD via the upper heat transfer tube
  • the refrigerant may be led from the lower heat transfer pipe to the lower heat transfer pipe.
  • the height of the connection position with the upper heat transfer tube is (2n-1) th highest in the upper region JU
  • the height of the connection position with the lower heat transfer tube is (2 n in the lower region JD -1)
  • the refrigerant may be led from the lower heat transfer pipe to the upper heat transfer pipe via the lowest connection pipe.
  • the fourth embodiment although a plurality of holes arranged in the vertical direction are provided in two rows in the fin J, and the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, etc. are penetrated in these holes. Not exclusively. That is, three or more rows of holes arranged in the vertical direction may be provided in the fin J.
  • the refrigerant flowing through the upper heat transfer tube in the rear row (the row opposite to the fan F) is led to the lower heat transfer tube in the front row (the row on the fan F side) through the connection tube
  • the refrigerant flowing through the lower row heat transfer tubes in the rear row may be led to the upper heat transfer tube in the front row via the connection tube.
  • the air conditioner W (refer FIG. 1) demonstrated the structure provided with the four-way valve Vf in each embodiment, you may abbreviate
  • each embodiment demonstrated the structure in which the air conditioner W (refer FIG. 1) was equipped with the outdoor expansion valve Vt and the indoor expansion valve Vi, it does not restrict to this. That is, one expansion valve may be provided between the outdoor heat exchanger 10t and the indoor heat exchanger 10i, or three or more expansion valves connected in series may be provided. In addition, in the configuration including the plurality of expansion valves, a subcooler for increasing the degree of subcooling of the refrigerant may be provided between the expansion valve and another expansion valve.
  • both the outdoor heat exchanger 10t (see FIG. 1) and the indoor heat exchanger 10i (see FIG. 1) have the configuration of the heat exchanger 10 shown in FIGS. 2 and 3.
  • one of the outdoor heat exchanger 10 t and the indoor heat exchanger 10 i may have the configuration of the heat exchanger 10 shown in FIGS. 2 and 3.
  • each embodiment can be combined suitably.
  • the flat porous pipe 15 is made to penetrate each hole, and further in the third embodiment
  • the connection pipes 13a, 13b,..., 13f may be arranged as described.
  • each embodiment can be applied to a multi-type air conditioner in which a plurality of indoor units Wi are connected to one outdoor unit Wt.
  • each embodiment can be applied to an air conditioner having a configuration in which a plurality of outdoor units Wt are connected in parallel.
  • the air conditioner W described in each of the embodiments may be a packaged air conditioner or a room air conditioner, or may be an integrated air conditioner in which the outdoor unit Wt and the indoor unit Wi are integrated.
  • etc., Demonstrated by each embodiment is applicable to a chiller and a refrigerator other than air conditioner W.
  • each embodiment is described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to one having all the configurations described. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments. Further, the mechanisms and configurations described above indicate what is considered to be necessary for the description, and not all the mechanisms and configurations of the product are necessarily shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention provides a heat exchanger or the like in which heat exchange takes place in a highly efficient manner. A heat exchanger (10) is provided with: a heat exchange part (12) which has multiple fins that are disposed at a prescribed interval so as to have the surfaces thereof arranged to be parallel to each other, and multiple heat transfer pipes (12Ua, 12Ub,…) that penetrate the multiple fins; and multiple connection pipes (13a, 13b,…) that connect the heat transfer pipes (12Ua, 12Ub,…) to other heat transfer pipes. Further, between the upper heat transfer pipes (12Ua, 12Ub,…) and lower heat transfer pipes (12Da, 12Db,…), a refrigerant is led from one to the other via the connection pipes (13a, 13b,…).

Description

熱交換器及び空気調和機Heat exchanger and air conditioner
 本発明は、熱交換器及び空気調和機に関する。 The present invention relates to a heat exchanger and an air conditioner.
 熱交換器における熱交換の高効率化を図る技術として、例えば、特許文献1には、垂直方向に所定ピッチで配置される水平方向偏平チューブと、この水平方向偏平チューブの両端に配置される2本の垂直方向ヘッダパイプと、を備える熱交換器について記載されている。 As a technique for achieving high efficiency of heat exchange in a heat exchanger, for example, Patent Document 1 discloses a horizontal flat tube disposed at a predetermined pitch in the vertical direction and 2 disposed at both ends of the horizontal flat tube. And a vertical header pipe of the book.
特開2013-53812号公報JP, 2013-53812, A
 特許文献1に記載の技術では、垂直方向ヘッダパイプ内の空間を仕切板によって複数の区画に分割し、これらの区画を冷媒が順次に通流して徐々に下降するように熱交換器が構成されている。そうすると、例えば、この熱交換器を凝縮器として機能させる場合、鉛直方向において冷媒の温度分布が偏るため、冷媒の温度が比較的低い熱交換器の下部では熱交換が行われにくくなるという事情がある。 In the technology described in Patent Document 1, the heat exchanger is configured such that the space in the vertical header pipe is divided by the partition plate into a plurality of sections, and the sections flow through the refrigerant sequentially and gradually descend. ing. Then, for example, when the heat exchanger is made to function as a condenser, the temperature distribution of the refrigerant is biased in the vertical direction, and heat exchange is difficult to be performed in the lower part of the heat exchanger whose temperature is relatively low. is there.
 また、詳細については実施形態に対する比較例として後記するが、従来の熱交換器では、低負荷運転時に熱交換器が凝縮器として機能する場合、熱交換器の下部の伝熱管において冷媒が流れにくくなる(つまり、「液溜まり」が生じる)という問題があった。このように液溜まりが生じると、熱交換器の下部では冷媒がほとんど流れなくなるため、熱交換の効率の低下を招いてしまう。 Further, although details will be described later as a comparative example to the embodiment, in the conventional heat exchanger, when the heat exchanger functions as a condenser during low load operation, the refrigerant is less likely to flow in the heat transfer tube in the lower portion of the heat exchanger (That is, "a liquid pool" occurs). Thus, since the refrigerant hardly flows in the lower part of the heat exchanger when the liquid pool occurs, the efficiency of heat exchange is lowered.
 そこで、本発明は、熱交換が高効率で行われる熱交換器等を提供することを課題とする。 Then, this invention makes it a subject to provide the heat exchanger etc. with which heat exchange is performed with high efficiency.
 前記した課題を解決するために、本発明に係る熱交換器は、接続管を介して、上部伝熱管及び下部伝熱管の一方から他方に冷媒が導かれることを特徴とする。 In order to solve the problems described above, the heat exchanger according to the present invention is characterized in that the refrigerant is led from one of the upper heat transfer pipe and the lower heat transfer pipe to the other through a connection pipe.
 本発明によれば、熱交換が高効率で行われる熱交換器等を提供できる。 According to the present invention, it is possible to provide a heat exchanger or the like in which heat exchange is performed with high efficiency.
本発明の第1実施形態に係る熱交換器である室外熱交換器及び室内熱交換器を備える空気調和機の構成図である。It is a block diagram of an air conditioner provided with the outdoor heat exchanger which is a heat exchanger concerning a 1st embodiment of the present invention, and an indoor heat exchanger. 本発明の第1実施形態に係る熱交換器の構成図である。It is a block diagram of the heat exchanger which concerns on 1st Embodiment of this invention. 第1実施形態に係る熱交換器が備える熱交換部及び接続管の説明図である。It is an explanatory view of a heat exchange part and a connecting pipe with which a heat exchanger concerning a 1st embodiment is provided. 本発明の第1実施形態に係る熱交換器が凝縮器として機能する場合において、冷媒の流量が比較的小さい場合の圧力の変化を示す説明図である。When the heat exchanger which concerns on 1st Embodiment of this invention functions as a condenser, it is explanatory drawing which shows the change of the pressure in case the flow volume of a refrigerant | coolant is comparatively small. 本発明の第2実施形態に係る熱交換器の構成図である。It is a block diagram of the heat exchanger which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱交換器の構成図である。It is a block diagram of the heat exchanger which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る熱交換器の構成図である。It is a block diagram of the heat exchanger which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る熱交換器の構成図である。It is a block diagram of the heat exchanger which concerns on 5th Embodiment of this invention. 本発明の第6実施形態に係る熱交換器の構成図であるIt is a block diagram of the heat exchanger which concerns on 6th Embodiment of this invention. 本発明の第7実施形態に係る熱交換器の正面図である。It is a front view of the heat exchanger concerning a 7th embodiment of the present invention. 本発明の第7実施形態に係る熱交換器の背面図である。It is a rear view of the heat exchanger concerning a 7th embodiment of the present invention. 比較例の説明図であり、上図は比較例に係る熱交換器の構成図であり、中図は比較例に係る熱交換器が凝縮器として機能する場合において、冷媒の流量が比較的大きい場合の冷媒の圧力の変化を示す説明図であり、下図は冷媒の流量が比較的小さい場合の冷媒の圧力の変化を示す説明図である。It is an explanatory view of a comparative example, the upper figure is a block diagram of a heat exchanger according to the comparative example, and the middle figure is a case where the heat exchanger according to the comparative example functions as a condenser, the flow rate of the refrigerant is relatively large. It is an explanatory view showing change of pressure of a refrigerant in a case, and a lower figure is an explanatory view showing change of pressure of a refrigerant in case flow volume of a refrigerant is comparatively small.
≪第1実施形態≫
<空気調和機の構成>
 図1は、第1実施形態に係る熱交換器である室外熱交換器10t及び室内熱交換器10iを備える空気調和機Wの構成図である。なお、図1では、冷房運転時に冷媒が流れる向きを実線矢印で示し、暖房運転時に冷媒が流れる向きを破線矢印で示している。
 空気調和機Wは、冷房運転・暖房運転等の空調を行う機器である。図1に示すように、空気調和機Wは、冷媒回路Rと、室外ファンFt(ファン)と、室内ファンFi(ファン)と、を備えている。
First Embodiment
<Configuration of air conditioner>
FIG. 1: is a block diagram of the air conditioner W provided with the outdoor heat exchanger 10t which is a heat exchanger which concerns on 1st Embodiment, and the indoor heat exchanger 10i. In FIG. 1, the direction in which the refrigerant flows in the cooling operation is indicated by a solid arrow, and the direction in which the refrigerant flows in the heating operation is indicated by a broken arrow.
The air conditioner W is a device that performs air conditioning such as cooling operation and heating operation. As shown in FIG. 1, the air conditioner W includes a refrigerant circuit R, an outdoor fan Ft (fan), and an indoor fan Fi (fan).
 冷媒回路Rは、冷凍サイクルで冷媒が循環する回路であり、圧縮機Gと、四方弁Vfと、室外熱交換器10t(熱交換器)と、室内熱交換器10i(熱交換器)と、室外膨張弁Vt(膨張弁)と、室内膨張弁Vi(膨張弁)と、を備えている。図1に示すように、冷媒回路Rは、圧縮機Gと、室外熱交換器10tと、室外膨張弁Vtと、室内膨張弁Viと、室内熱交換器10iと、が四方弁Vfを介して環状に順次接続された構成になっている。 The refrigerant circuit R is a circuit in which a refrigerant circulates in a refrigeration cycle, and includes a compressor G, a four-way valve Vf, an outdoor heat exchanger 10t (heat exchanger), and an indoor heat exchanger 10i (heat exchanger) The outdoor expansion valve Vt (expansion valve) and the indoor expansion valve Vi (expansion valve) are provided. As shown in FIG. 1, the refrigerant circuit R includes a compressor G, an outdoor heat exchanger 10t, an outdoor expansion valve Vt, an indoor expansion valve Vi, and an indoor heat exchanger 10i via a four-way valve Vf. It is configured to be sequentially connected in a ring.
 圧縮機Gは、ガス状の冷媒を圧縮する機器である。圧縮機Gの種類は特に限定されず、スクロール式、ピストン式、ロータリ式、スクリュー式、遠心式等の圧縮機を用いることができる。なお、冷媒を気液分離するためのアキュムレータ(図示せず)を圧縮機Gの吸込側に設けてもよい。 The compressor G is a device that compresses a gaseous refrigerant. The type of the compressor G is not particularly limited, and a scroll-type, piston-type, rotary-type, screw-type, centrifugal-type or the like compressor can be used. An accumulator (not shown) may be provided on the suction side of the compressor G for gas-liquid separation of the refrigerant.
 四方弁Vfは、冷媒が流れる向きを切り替える弁である。すなわち、冷房運転時(実線矢印を参照)には、四方弁Vfによって、圧縮機Gの吐出側が室外熱交換器10tの一端nに接続されるとともに、圧縮機Gの吸込側が室内熱交換器10iの一端uに接続される。これによって、室外熱交換器10tが凝縮器として機能し、室内熱交換器10iが蒸発器として機能する。
 また、暖房運転時(破線矢印を参照)には、四方弁Vfによって、圧縮機Gの吐出側が室内熱交換器10iの一端uに接続されるとともに、圧縮機Gの吸込側が室外熱交換器10tの一端nに接続される。これによって、室内熱交換器10iが凝縮器として機能し、室外熱交換器10tが蒸発器として機能する。
The four-way valve Vf is a valve that switches the flow direction of the refrigerant. That is, during the cooling operation (see solid arrows), the discharge side of the compressor G is connected to one end n of the outdoor heat exchanger 10t by the four-way valve Vf, and the suction side of the compressor G is the indoor heat exchanger 10i Is connected to one end u. Thereby, the outdoor heat exchanger 10t functions as a condenser, and the indoor heat exchanger 10i functions as an evaporator.
Further, during heating operation (see the broken arrow), the discharge side of the compressor G is connected to one end u of the indoor heat exchanger 10i by the four-way valve Vf, and the suction side of the compressor G is the outdoor heat exchanger 10t Is connected to one end n. Thereby, the indoor heat exchanger 10i functions as a condenser, and the outdoor heat exchanger 10t functions as an evaporator.
 室外熱交換器10tは、外気と冷媒との間で熱交換が行われる熱交換器である。
 室外ファンFtは、室外熱交換器10tに外気を送り込むファンであり、室外熱交換器10tの付近に設置されている。
The outdoor heat exchanger 10t is a heat exchanger in which heat exchange is performed between the outside air and the refrigerant.
The outdoor fan Ft is a fan that sends outside air to the outdoor heat exchanger 10t, and is installed near the outdoor heat exchanger 10t.
 室内熱交換器10iは、室内空気(空調対象空間の空気)と冷媒との間で熱交換が行われる熱交換器である。なお、室内熱交換器10iの他端pは、配管kを介して室外熱交換器10tの他端qに接続されている。
 室内ファンFiは、室内熱交換器10iに室内空気を送り込むファンであり、室内熱交換器10iの付近に設置されている。
The indoor heat exchanger 10i is a heat exchanger in which heat exchange is performed between indoor air (air in the space to be air-conditioned) and a refrigerant. The other end p of the indoor heat exchanger 10i is connected to the other end q of the outdoor heat exchanger 10t through a pipe k.
The indoor fan Fi is a fan that sends indoor air to the indoor heat exchanger 10i, and is installed near the indoor heat exchanger 10i.
 室外膨張弁Vtは、自身に流入する冷媒を減圧する弁であり、配管kにおいて室外熱交換器10tの付近に設けられている。
 室内膨張弁Viは、自身に流入する冷媒を減圧する弁であり、配管kにおいて室内熱交換器10iの付近に設けられている。
The outdoor expansion valve Vt is a valve that depressurizes the refrigerant flowing into itself, and is provided in the vicinity of the outdoor heat exchanger 10t in the pipe k.
The indoor expansion valve Vi is a valve for reducing the pressure of the refrigerant flowing into itself, and is provided in the vicinity of the indoor heat exchanger 10i in the pipe k.
 図1に示す例では、圧縮機Gと、四方弁Vfと、室外熱交換器10tと、室外ファンFtと、室外膨張弁Vtと、が室外機Wtに設置されている。また、室内熱交換器10iと、室内膨張弁Viと、室内ファンFiと、が室内機Wiに設置されている。そして、各センサ(図示せず)やリモコン(図示せず)の操作信号等に基づき、制御装置(図示せず)によって、空気調和機Wの各機器が制御されるようになっている。 In the example shown in FIG. 1, the compressor G, the four-way valve Vf, the outdoor heat exchanger 10t, the outdoor fan Ft, and the outdoor expansion valve Vt are installed in the outdoor unit Wt. Further, the indoor heat exchanger 10i, the indoor expansion valve Vi, and the indoor fan Fi are installed in the indoor unit Wi. And each apparatus of the air conditioner W is controlled by the control apparatus (not shown) based on the operation signal of each sensor (not shown), a remote control (not shown), etc.
<熱交換器の構成>
 次に、空気調和機Wが備える室外熱交換器10t及び室内熱交換器10iの構成について説明する。以下では、これらの2つの熱交換器を「熱交換器10」と記す。なお、所定の施工条件に基づいて熱交換器10が設置されるため、以下で記載する「鉛直方向」や「水平方向」は、厳密に解釈されるべきものではない。
<Configuration of heat exchanger>
Next, configurations of the outdoor heat exchanger 10t and the indoor heat exchanger 10i provided in the air conditioner W will be described. Hereinafter, these two heat exchangers will be referred to as “heat exchangers 10”. In addition, since the heat exchanger 10 is installed based on predetermined construction conditions, the "vertical direction" and the "horizontal direction" which are described below should not be interpreted strictly.
 図2は、第1実施形態に係る熱交換器10の構成図である。なお、図2では、熱交換器10が凝縮器として機能する場合での冷媒が流れる向きを矢印で図示している。また、図2に示すように、上下・左右を定義する。
 図2に示す熱交換器10は、フィンチューブ型の熱交換器であり、第1分配管11と、熱交換部12と、接続管13a,13b,…,13fと、第2分配管14と、を備えている。
FIG. 2 is a block diagram of the heat exchanger 10 according to the first embodiment. In FIG. 2, the direction in which the refrigerant flows when the heat exchanger 10 functions as a condenser is illustrated by arrows. Further, as shown in FIG. 2, upper, lower, left and right are defined.
The heat exchanger 10 illustrated in FIG. 2 is a fin-tube type heat exchanger, and includes a first distribution pipe 11, a heat exchange unit 12, connection pipes 13a, 13b,..., 13f, and a second distribution pipe 14. And.
 第1分配管11は、熱交換器10が凝縮器として機能する場合において、図2の矢印で示すように、ガス冷媒を上部伝熱管12Ua,12Uc,12Ue及び下部伝熱管12Db,12Dd,12Dfに分配する配管である。また、室外熱交換器10tが蒸発器として機能する場合には、図2の矢印とは逆向きに、熱交換部12で蒸発したガス冷媒が第1分配管11で合流する。
 なお、図2では、説明を分かりやすくするために「ガス冷媒」、「液冷媒」と記載しているが、ガス冷媒や液冷媒に気液二相の冷媒が混在していることもある。
 図2に示す熱交換部12は、冷媒と空気との間の熱交換が行われる構造体である。
In the case where the heat exchanger 10 functions as a condenser, the first distribution pipe 11 causes the gas refrigerant to be transferred to the upper heat transfer pipes 12Ua, 12Uc, 12Ue and the lower heat transfer pipes 12Db, 12Dd, 12Df as shown by the arrows in FIG. It is piping to distribute. Moreover, when the outdoor heat exchanger 10t functions as an evaporator, the gas refrigerants evaporated in the heat exchange unit 12 join in the first distribution pipe 11 in the opposite direction to the arrow in FIG.
Although FIG. 2 describes “gas refrigerant” and “liquid refrigerant” in order to make the description easy to understand, a gas refrigerant or a liquid refrigerant may be mixed with a gas-liquid two-phase refrigerant.
The heat exchange unit 12 shown in FIG. 2 is a structure in which heat exchange between the refrigerant and the air is performed.
 図3は、第1実施形態に係る熱交換器10が備える熱交換部12及び接続管13aの説明図である。
 図3に示すように、熱交換部12は、複数のフィンJと、複数の上部伝熱管12Ua等(伝熱管)と、複数の下部伝熱管12Da等(伝熱管)と、を備えている。
 複数のフィンJは、上部伝熱管12Uaや下部伝熱管12Daの位置を固定するとともに、冷媒と空気との間の熱交換を促進するための金属板である。複数のフィンJは、それぞれ、隣り合う他のフィンJとの間に所定の間隔を設けて、面方向が平行となるように配置されている。また、複数のフィンJは、その伝熱面が鉛直方向と平行となるように配置されている。
FIG. 3: is explanatory drawing of the heat exchange part 12 and the connection pipe 13a with which the heat exchanger 10 which concerns on 1st Embodiment is equipped.
As shown in FIG. 3, the heat exchange unit 12 includes a plurality of fins J, a plurality of upper heat transfer tubes 12Ua and the like (heat transfer tubes), and a plurality of lower heat transfer tubes 12Da and the like (heat transfer tubes).
The plurality of fins J are metal plates for fixing the positions of the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Da and promoting heat exchange between the refrigerant and the air. The plurality of fins J are arranged such that the plane direction is parallel with a predetermined interval between each other adjacent fin J. The plurality of fins J are arranged such that the heat transfer surfaces thereof are parallel to the vertical direction.
 複数のフィンJは、それぞれ、上部領域JUと、下部領域JDと、を有している。
 上部領域JUは、鉛直方向におけるフィンJの上部の領域である。上部領域JUには、上部伝熱管12Ua等を貫通させるための複数の孔(図示せず)が形成されている。
 下部領域JDは、鉛直方向におけるフィンJの下部の領域である。下部領域JDには、下部伝熱管12Da等を貫通させるための複数の孔(図示せず)が形成されている。前記した孔は、鉛直方向に沿って一列に配列されている。
Each of the plurality of fins J has an upper area JU and a lower area JD.
The upper area JU is an area of the upper portion of the fin J in the vertical direction. In the upper region JU, a plurality of holes (not shown) for penetrating the upper heat transfer pipe 12Ua and the like are formed.
The lower region JD is a region under the fin J in the vertical direction. In the lower region JD, a plurality of holes (not shown) for penetrating the lower heat transfer pipe 12Da and the like are formed. The holes are arranged in a line along the vertical direction.
 なお、図2に示すように、上部領域JUの鉛直方向の幅と、下部領域JDの鉛直方向の幅と、が略等しくなるように境界線Qを設定してもよいが、これに限定されるものではない。 Although boundary line Q may be set such that the width in the vertical direction of upper region JU and the width in the vertical direction of lower region JD are substantially equal as shown in FIG. It is not a thing.
 図2に示す上部伝熱管12Ua,12Ub,…,12Uf及び下部伝熱管12Da,12Da,12Db,…,12Dfは、それぞれ、自身の内部を通流する冷媒と、ファン(例えば、室外ファンFt:図1参照)からの空気と、の熱交換が行われる金属製の管である。上部伝熱管12Ua,12Ub,…,12Ufは、フィンJの上部領域JUを貫通している。一方、下部伝熱管12Da,12Db,…,12Dfは、フィンJの下部領域JDを貫通している。 The upper heat transfer pipes 12Ua, 12Ub, ..., 12Uf and the lower heat transfer pipes 12Da, 12Da, 12Db, ..., 12Df shown in Fig. 2 respectively have a refrigerant passing therethrough and a fan (for example, an outdoor fan Ft: It is a metal pipe in which heat exchange with air from 1) takes place. The upper heat transfer tubes 12Ua, 12Ub,..., 12Uf penetrate the upper region JU of the fin J. On the other hand, the lower heat transfer tubes 12Da, 12Db,..., 12Df penetrate the lower region JD of the fin J.
 ちなみに、上部伝熱管12Ua,12Ub,…,12Ufの符号に含まれる‘U’は、熱交換部12の上部に配置されることを意味している。下部伝熱管12Da,12Db,…,12Dfの符号に含まれる‘D’は、熱交換部12の下部に配置されることを意味している。
 上部伝熱管12Ua及び下部伝熱管12Daの符号に含まれる‘a’は、後記する接続管13aに接続されることを意味している。なお、他の上部伝熱管12Ub,12Uc,…,12Uf及び下部伝熱管12Db,12Dc,…,12Dfについても同様である。
Incidentally, 'U' included in the symbols of the upper heat transfer tubes 12Ua, 12Ub,..., 12Uf means being disposed at the upper portion of the heat exchange unit 12. “D” included in the reference numerals of the lower heat transfer tubes 12Da, 12Db,..., 12Df means being disposed at the lower part of the heat exchange unit 12.
'A' included in the symbols of the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Da means connected to a connection pipe 13a described later. The same applies to the other upper heat transfer pipes 12Ub, 12Uc, ..., 12Uf and the lower heat transfer pipes 12Db, 12Dc, ..., 12Df.
 また、図2では、上部伝熱管12Ua,12Ub,…,12Uf、及び下部伝熱管12Da,12Db,…,12Dfを模式的な線で図示しているが、例えば、上部伝熱管12Uaは、図3に示すように構成されている。すなわち、上部伝熱管12Uaは、この上部伝熱管12UaがフィンJを貫通する左右方向において、冷媒がフィンJを一往復半する(蛇行する)ように配設されている。他の上部伝熱管12Ub,12Uc,…,12Uf及び下部伝熱管12Da,12Db,…,12Dfについても同様である。 Although upper heat transfer pipes 12Ua, 12Ub, ..., 12Uf and lower heat transfer pipes 12Da, 12Db, ..., 12Df are schematically illustrated in Fig. 2, for example, the upper heat transfer pipes 12Ua are illustrated in Fig. 3. It is configured as shown in. That is, the upper heat transfer pipe 12Ua is disposed such that the refrigerant reciprocates in the fin J in one reciprocation (halfways) in the left-right direction in which the upper heat transfer pipe 12Ua penetrates the fin J. The same applies to the other upper heat transfer pipes 12Ub, 12Uc, ..., 12Uf and the lower heat transfer pipes 12Da, 12Db, ..., 12Df.
 なお、上部伝熱管12Uaにおいて冷媒を往復させることなく、第2分配管14に冷媒を導くようにしてもよい。また、冷媒が左右方向で2往復以上するように上部伝熱管12Ua等を配設してもよい。また、上部伝熱管12Ua,12Ub,…,12Uf及び下部伝熱管12Da,12Db,…,12Dfにおいて、前記した往復の回数が異なる伝熱管が混在していてもよい。 The refrigerant may be guided to the second distribution pipe 14 without reciprocating the refrigerant in the upper heat transfer pipe 12Ua. Further, the upper heat transfer pipe 12Ua or the like may be disposed so that the refrigerant reciprocates twice or more in the left-right direction. Further, in the upper heat transfer pipes 12Ua, 12Ub, ..., 12Uf and the lower heat transfer pipes 12Da, 12Db, ..., 12Df, heat transfer pipes having different numbers of reciprocations may be mixed.
 図2に示す接続管13aは、上部伝熱管12Uaと下部伝熱管12Daとを接続する配管である。この接続管13aを介して、上部伝熱管12Uaを通流する冷媒が下部伝熱管12Daに導かれる。なお、他の接続管13c,13eについても同様である。
 接続管13bは、下部伝熱管12Dbと上部伝熱管12Ubとを接続する配管である。この接続管13bを介して、下部伝熱管12Dbを通流する冷媒が上部伝熱管12Ubに導かれる。なお、他の接続管13d,13fについても同様である。
The connection pipe 13a shown in FIG. 2 is a pipe that connects the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Da. The refrigerant flowing through the upper heat transfer pipe 12Ua is led to the lower heat transfer pipe 12Da via the connection pipe 13a. The same applies to the other connection pipes 13c and 13e.
The connection pipe 13b is a pipe that connects the lower heat transfer pipe 12Db and the upper heat transfer pipe 12Ub. The refrigerant flowing through the lower heat transfer pipe 12Db is led to the upper heat transfer pipe 12Ub via the connection pipe 13b. The same applies to the other connection pipes 13d and 13f.
 図2に示すように、接続管13aは、上部伝熱管12Uaとの接続位置の高さH(熱交換部12の下端を基準とする高さ)が、他の接続管13b,13c,…,13fと比べて最も高く、その一方で、下部伝熱管12Daとの接続位置の高さが最も低くなっている。
 また、接続管13bは、上部伝熱管12Ubとの接続位置の高さが2番目に高く、その一方で、下部伝熱管12Dbとの接続位置の高さが2番目に低くなっている。なお、他の接続管13c,…,13fについても同様である。つまり、接続管13a,13b,…,13fは、上部伝熱管との接続位置の高さが高いほど、下部伝熱管との接続位置の高さが低くなっている。
As shown in FIG. 2, the connecting pipe 13a has a height H (a height based on the lower end of the heat exchange portion 12) at the connection position with the upper heat transfer pipe 12Ua, the other connecting pipes 13b, 13c,. It is the highest compared to 13f, while the height of the connection position with the lower heat transfer tube 12Da is the lowest.
Further, the height of the connection position of the connection pipe 13b with the upper heat transfer pipe 12Ub is the second highest, while the height of the connection position with the lower heat transfer pipe 12Db is the second lowest. The same applies to the other connection pipes 13c,..., 13f. That is, the height of the connection position with the lower heat transfer pipe is lower as the height of the connection position with the upper heat transfer pipe is higher in the connection pipes 13a, 13b,.
 さらに詳しく説明すると、熱交換部12が凝縮器として機能する場合において、上部伝熱管12Ua,12Ub,…,12Ufとの接続位置の高さが、上部領域JUにおいて(2n-1)番目に高く、下部伝熱管12Da,12Db,…,12Dfとの接続位置の高さが、下部領域JDにおいて(2n-1)番目に低い接続管は、上部伝熱管から下部伝熱管に冷媒を導くように配設されている。なお、前記した‘n’は自然数である。 More specifically, when the heat exchange unit 12 functions as a condenser, the height of the connection position with the upper heat transfer tubes 12Ua, 12Ub, ..., 12Uf is the (2n-1) th highest in the upper region JU, The connection pipes whose heights at the connection positions with the lower heat transfer pipes 12Da, 12Db, ..., 12Df are the (2n-1) th lowest in the lower region JD are arranged to lead the refrigerant from the upper heat transfer pipe to the lower heat transfer pipe It is done. Here, 'n' is a natural number.
 また、熱交換部12が凝縮器として機能する場合において、上部伝熱管12Ua,12Ub,…,12Ufとの接続位置の高さが、上部領域JUにおいて2n番目に高く、下部伝熱管12Da,12Db,…,12Dfとの接続位置の高さが、下部領域JDにおいて2n番目に低い接続管は、下部伝熱管から上部伝熱管に冷媒を導くように配設されている。このように、熱交換器10は、接続管(例えば、接続管13a)を介して、上部伝熱管及び下部伝熱管の一方から他方に(例えば、上部伝熱管12Uaから下部伝熱管12Daに)冷媒が導かれるように構成されている。 When the heat exchange unit 12 functions as a condenser, the heights of the connection positions with the upper heat transfer tubes 12Ua, 12Ub, ..., 12Uf are the second highest in the upper region JU, and the lower heat transfer tubes 12Da, 12Db, The connecting pipe having the 2n-th lowest height in the lower region JD is arranged to lead the refrigerant from the lower heat transfer pipe to the upper heat transfer pipe. Thus, in the heat exchanger 10, the refrigerant is transferred from one of the upper heat transfer pipe and the lower heat transfer pipe to the other (for example, from the upper heat transfer pipe 12Ua to the lower heat transfer pipe 12Da) via the connection pipe (for example, the connection pipe 13a) Are configured to be guided.
 図2に示す第2分配管14は、熱交換部12が凝縮器として機能する場合において、図2の矢印で示すように、熱交換部12で凝縮した液冷媒を接続部14sで合流させるための配管である。また、熱交換器10が蒸発器として機能する場合には、図2の矢印とは逆向きに、第2分配管14を介して、上部伝熱管12Ub,12Ud,12Uf及び下部伝熱管12Da,12Dc,12Deに気液二相冷媒が分配される。
 なお、以下の説明において、第2分配管14の接続部14s(例えば、図1に示す配管mとの接続箇所)の、熱交換器10の下端を基準とする高さをhとする。
In the case where the heat exchange unit 12 functions as a condenser, the second distribution pipe 14 shown in FIG. 2 causes the liquid refrigerant condensed in the heat exchange unit 12 to merge at the connection unit 14s as shown by the arrow in FIG. Piping. Further, when the heat exchanger 10 functions as an evaporator, the upper heat transfer pipes 12Ub, 12Ud, 12Uf and the lower heat transfer pipes 12Da, 12Dc via the second distribution pipe 14 in the direction opposite to the arrow in FIG. , 12De are distributed gas-liquid two-phase refrigerant.
In the following description, the height based on the lower end of the heat exchanger 10 of the connection portion 14s of the second distribution pipe 14 (for example, the connection portion with the pipe m shown in FIG. 1) is h.
<作用・効果>
 次に、比較例の熱交換器10Z(図12参照)について説明した後、本実施形態に係る熱交換器10の作用・効果について説明する。
<Operation and effect>
Next, after the heat exchanger 10Z (see FIG. 12) of the comparative example is described, the operation and effect of the heat exchanger 10 according to the present embodiment will be described.
 図12の上側の図は、比較例に係る熱交換器10Zの構成図である。
 図12に示す比較例では、例えば、高さが最も高い伝熱管12aを通流する冷媒は、高さが最も高い上部パス14aを介して接続部14sに導かれる。一方、高さが最も低い伝熱管12eを通流する冷媒は、高さが最も低い下部パス14eを介して接続部14sに導かれる。つまり、比較例に係る熱交換器10Zでは、冷媒が通流する伝熱管12a,12b,…,12eの高さの順位と、第2分配管14において冷媒が通流する各パス14a,14b,…,14eの高さの順位と、が同一になっている。
The upper diagram in FIG. 12 is a configuration diagram of a heat exchanger 10Z according to a comparative example.
In the comparative example shown in FIG. 12, for example, the refrigerant flowing through the heat transfer tube 12a having the highest height is led to the connection 14s via the upper path 14a having the highest height. On the other hand, the refrigerant flowing through the heat transfer tube 12e having the lowest height is led to the connection 14s via the lower path 14e having the lowest height. That is, in the heat exchanger 10Z according to the comparative example, the order of the heights of the heat transfer pipes 12a, 12b, ..., 12e through which the refrigerant flows, and the paths 14a, 14b, through which the refrigerant flows through the second distribution pipe 14. The order of the height of ..., 14e is the same.
 図12に示す<大流量時>の説明図は、比較例に係る熱交換器10Zが凝縮器として機能する場合において、冷媒の流量が比較的大きい場合の冷媒の圧力の変化を示す説明図である。
 この説明図の横軸は、熱交換器10Zの水平方向(左右方向)の位置を示し、縦軸は、冷媒の圧力を示している。つまり、この説明図は、熱交換器10Zが凝縮器として機能する場合において、熱交換部12の上流端から第2分配管14の下流端までの冷媒の圧力の変化を示している。
The explanatory view of <at a large flow rate> shown in FIG. 12 is an explanatory view showing a change in pressure of the refrigerant when the flow rate of the refrigerant is relatively large when the heat exchanger 10Z according to the comparative example functions as a condenser. is there.
The horizontal axis of this explanatory view indicates the position in the horizontal direction (left and right direction) of the heat exchanger 10Z, and the vertical axis indicates the pressure of the refrigerant. That is, in the case where the heat exchanger 10Z functions as a condenser, this explanatory view shows the change in the pressure of the refrigerant from the upstream end of the heat exchange unit 12 to the downstream end of the second distribution pipe 14.
 図12に示す<大流量時>のグラフの細線は、高さが最も高い伝熱管12a及び上部パス14aを流れる冷媒の圧力の変化を示している。一方、グラフの太線は、高さが最も低い伝熱管12e及び下部パス14eを流れる冷媒の圧力変化を示している。 The thin line of the graph of <at large flow rate> shown in FIG. 12 shows a change in pressure of the refrigerant flowing through the heat transfer pipe 12a and the upper path 14a having the highest height. On the other hand, the thick line in the graph indicates the pressure change of the refrigerant flowing through the heat transfer tube 12e having the lowest height and the lower path 14e.
 第1分配管11を通流する冷媒はガス状であるから、高さが最も伝熱管12aの上流端(熱交換部12の上流端)と、高さが最も低い伝熱管12eの上流端(熱交換部12の上流端)と、において、冷媒の圧力は略等しくなっている。また、第2分配管14の下流端で冷媒が合流するため、上部パス14aの下流端における冷媒の圧力と、下部パス14eの下流端における冷媒の圧力と、は等しくなっている。 Since the refrigerant flowing through the first distribution pipe 11 is gaseous, the upstream end of the heat transfer pipe 12a (the upstream end of the heat exchange unit 12) with the highest height and the upstream end of the heat transfer pipe 12e with the lowest height ( At the upstream end of the heat exchange unit 12, the pressure of the refrigerant is substantially equal. Further, since the refrigerant merges at the downstream end of the second distribution pipe 14, the pressure of the refrigerant at the downstream end of the upper path 14a and the pressure of the refrigerant at the downstream end of the lower path 14e are equal.
 また、大流量時には、冷媒が伝熱管12a,12b,…,12eを通流する際の流動抵抗が比較的大きいため、上側の伝熱管12aを通流する冷媒、及び下側の伝熱管12eを通流する冷媒のいずれも、その圧力が大きく低下する(流動抵抗による圧力変化)。
 また、上部パス14aを介して下降する冷媒の圧力は、重力の影響によって上昇し、下部パス14eを介して上昇する冷媒の圧力は、重力の影響によって低下する(重力による圧力変化)。
Also, since the flow resistance is relatively large when the refrigerant flows through the heat transfer tubes 12a, 12b, ..., 12e at a large flow rate, the refrigerant flowing through the upper heat transfer tube 12a and the lower heat transfer tube 12e The pressure of any of the flowing refrigerants is greatly reduced (pressure change due to flow resistance).
In addition, the pressure of the refrigerant which descends via the upper path 14a rises due to the influence of gravity, and the pressure of the refrigerant which rises via the lower path 14e falls due to the influence of gravity (pressure change due to gravity).
 ここで、高さが最も高い伝熱管12a及び上部パス14aを通流する冷媒の圧力変化に着目すると、重力による圧力の上昇幅(P3-P4)よりも、流動抵抗による圧力の低下幅(P1-P4)のほうが圧倒的に大きい。また、高さが最も低い伝熱管12e及び下部パス14eを通流する冷媒の圧力変化についても同様のことがいえる。 Here, focusing on the pressure change of the refrigerant flowing through the heat transfer pipe 12a and the upper path 14a having the highest height, the pressure decrease width (P1) due to flow resistance is higher than the pressure increase width (P3-P4) due to gravity. -P4) is overwhelmingly larger. Further, the same can be said for the pressure change of the refrigerant flowing through the heat transfer tube 12e and the lower path 14e having the lowest height.
 したがって、大流量時には、伝熱管12a,12b,…,12eに分配される冷媒の流量に関して、重力はほとんど影響を及ぼしていない。また、流動抵抗に伴う圧力低下は、前記したように、伝熱管12a,12b,…,12eにおいて略同一の値である。その結果、大流量時には、伝熱管12a,12b,…,12eに冷媒が略均等に分配されるため、冷媒の流量が略同一になる。 Therefore, gravity has little influence on the flow rate of the refrigerant distributed to the heat transfer tubes 12a, 12b, ..., 12e at a large flow rate. Further, as described above, the pressure drop caused by the flow resistance is substantially the same value in the heat transfer tubes 12a, 12b,. As a result, when the flow rate is large, the refrigerant is distributed substantially equally to the heat transfer pipes 12a, 12b,..., 12e, so that the flow rate of the refrigerant becomes substantially the same.
 図12に示す<小流量時>の図は、比較例に係る熱交換器10Zが凝縮器として機能する場合において、冷媒の流量が比較的小さい場合の冷媒の圧力の変化を示す説明図である。
 小流量時には、冷媒が伝熱管12a,12b,…,12eを通流する際の流動抵抗が、大流量時に比べて小さくなる。例えば、高さが最も高い伝熱管12a及び上部パス14aを通流する冷媒の圧力変化に着目すると、重力による圧力の上昇幅(P7-P8)に対して、流動抵抗による圧力の低下幅(P5-P7)はそれほど大きくない。また、高さが最も低い伝熱管12e及び下部パス14eを通流する冷媒の圧力変化についても同様のことがいえる。
The diagram of <at a low flow rate> shown in FIG. 12 is an explanatory view showing a change in pressure of the refrigerant when the flow rate of the refrigerant is relatively small when the heat exchanger 10Z according to the comparative example functions as a condenser. .
When the flow rate is small, the flow resistance when the refrigerant flows through the heat transfer pipes 12a, 12b, ..., 12e becomes smaller than that when the flow rate is large. For example, focusing on the pressure change of the refrigerant flowing through the heat transfer pipe 12a and the upper path 14a having the highest height, the pressure decrease width due to flow resistance (P5 to P8) is smaller than the pressure increase width due to gravity (P7 to P8) -P7) is not so big. Further, the same can be said for the pressure change of the refrigerant flowing through the heat transfer tube 12e and the lower path 14e having the lowest height.
 したがって、小流量時には、伝熱管12a,12b,…,12eに分配される冷媒の流量に重力が大きな影響を及ぼし、上側の伝熱管12aよりも下側の伝熱管12eの方が、冷媒の流量が小さくなる。つまり、伝熱管12a,12b,…12eの高さが低いほど、冷媒が流れにくくなる。その結果、特に高さが最も低い伝熱管12eを通流する冷媒がすぐに凝縮して液溜まりが生じるため、熱交換の効率の低下を招くという問題があった。また、前記した液溜まりに伴い、冷媒回路Rを循環する冷媒の量が不足するという問題もあった。 Therefore, when the flow rate is small, gravity has a large effect on the flow rate of the refrigerant distributed to the heat transfer tubes 12a, 12b, ..., 12e, and the heat transfer tube 12e on the lower side than the upper heat transfer tube 12a has a flow rate of the refrigerant Becomes smaller. That is, the lower the heights of the heat transfer tubes 12a, 12b,... 12e, the less the refrigerant flows. As a result, the refrigerant flowing through the heat transfer tube 12e having the lowest height is particularly condensed immediately to form a liquid pool, which causes a problem of reducing the efficiency of heat exchange. In addition, there is also a problem that the amount of the refrigerant circulating through the refrigerant circuit R runs short due to the above-described liquid accumulation.
 なお、比較例に係る熱交換器10Zにおいて、最上段を通流する冷媒の重力の影響による圧力差Δp(最上段)は、以下の式(1)で表される。ここで、ρはガス冷媒の密度であり、ρは液冷媒の密度であり、gは重力加速度である。Hは、熱交換部12の下端を基準とする伝熱管12aの高さあり、hは、第2分配管14の接続部14sの高さである。 In the heat exchanger 10Z according to the comparative example, the pressure difference Δp (uppermost stage) due to the influence of the gravity of the refrigerant flowing through the uppermost stage is represented by the following formula (1). Here, V V is the density of the gas refrigerant, ρ L is the density of the liquid refrigerant, and g is the gravitational acceleration. H is the height of the heat transfer pipe 12 a relative to the lower end of the heat exchange portion 12, and h is the height of the connection portion 14 s of the second distribution pipe 14.
 Δp(最上段)=-ρ・g・H+ρ・g・(H-h) ・・・(1) Δp (uppermost stage) = − ρ V · g · H + L L · g · (H−h) (1)
 式(1)の第1項は、第1分配管11を介してガス冷媒が上昇する際の圧力低下を表している。式(1)の第2項は、上部パス14aを介して液冷媒が下降する際の圧力上昇を表している。 The first term of the equation (1) represents the pressure drop when the gas refrigerant rises via the first distribution pipe 11. The second term of the equation (1) represents the pressure rise when the liquid refrigerant descends through the upper path 14a.
 一方、最下段を通流する冷媒に関して、重力の影響による圧力差Δp(最下段)は、以下の式(2)で表される。 On the other hand, regarding the refrigerant flowing through the lowermost stage, the pressure difference Δp (lowermost stage) due to the influence of gravity is expressed by the following equation (2).
 Δp(最下段)=-ρ・g・h ・・・(2) Δp (bottom stage) = −- L · g · h (2)
 式(2)は、下部パス14eを介して液冷媒が上降する際の圧力低下を表している。なお、第1分配管11の下部パスの高さは略ゼロであるから、この下部パスを冷媒が通流する際の圧力変化はほとんどない。また、前記した式(1)と式(2)との差Δp(比較例)は、以下の式(3)で表される。 Formula (2) represents the pressure drop when the liquid refrigerant moves up and down through the lower path 14e. In addition, since the height of the lower path of the first distribution pipe 11 is substantially zero, there is almost no pressure change when the refrigerant flows through the lower path. Further, the difference Δp (comparative example) between the equation (1) and the equation (2) described above is expressed by the following equation (3).
 Δp(比較例)=Δp(最上段)-Δp(最下段)
        =(ρ-ρ)・g・H      ・・・(3)
        ≒ρ・g・H
Δp (comparative example) = Δp (uppermost stage) −Δp (lowermost stage)
= (Ρ LV ) · g · H (3)
Ρ L · g · H
 式(3)は、最上段を通流する冷媒、及び最下段を通流する冷媒における重力の影響の差分を表している。なお、ρ<<ρのため、式(3)では(ρ-ρ)≒ρの近似を行っている。ちなみに、比較例の熱交換器10Zの構成において、接続部14sの高さを変えたとしても、前記した圧力差Δp(比較例)は、ほとんど変化しない。 Formula (3) represents the difference of the influence of gravity in the refrigerant flowing through the top stage and the refrigerant flowing through the bottom stage. Since た めV << ρ L , in the equation (3), approximation of (ρ L −ρ V ) ≒ L L is performed. Incidentally, in the configuration of the heat exchanger 10Z of the comparative example, even if the height of the connection portion 14s is changed, the above-mentioned pressure difference Δp (comparative example) hardly changes.
 図4は、第1実施形態に係る熱交換器10が凝縮器として機能する場合において、冷媒の冷媒の流量が比較的小さい場合の圧力の変化を示す説明図である。
 図4の横軸は、熱交換器10(図2参照)の水平方向(左右方向)の位置を示し、縦軸は、冷媒の圧力を示している。つまり、この説明図は、熱交換器10が凝縮器として機能する場合において、熱交換部12の上流端から第2分配管14の下流端までの冷媒の圧力の変化を示している。
FIG. 4 is an explanatory view showing a change in pressure when the flow rate of the refrigerant refrigerant is relatively small when the heat exchanger 10 according to the first embodiment functions as a condenser.
The horizontal axis in FIG. 4 indicates the position in the horizontal direction (left and right direction) of the heat exchanger 10 (see FIG. 2), and the vertical axis indicates the pressure of the refrigerant. That is, in the case where the heat exchanger 10 functions as a condenser, this explanatory view shows the change of the pressure of the refrigerant from the upstream end of the heat exchange unit 12 to the downstream end of the second distribution pipe 14.
 図4に示すグラフの太線は、図2に示す上部伝熱管12Ua、接続管13a、下部伝熱管12Da、及び第2分配管14の下部パス14aを順次に通流する冷媒の圧力の変化を示している。一方、グラフの細線は、下部伝熱管12Db、接続管13b、上部伝熱管12Ub、及び第2分配管14の上部パス14bを順次に通流する冷媒の圧力の変化を示している。
 なお、最上段を通流する冷媒に関して、重力の影響による圧力差Δp(最上段)は、以下の式(4)で表される。ここで、ρは、接続管13aを通流する気液二相冷媒の密度である。
The thick lines in the graph shown in FIG. 4 indicate changes in the pressure of the refrigerant flowing sequentially through the upper heat transfer pipe 12Ua, the connection pipe 13a, the lower heat transfer pipe 12Da, and the lower path 14a of the second distribution pipe 14 shown in FIG. ing. On the other hand, thin lines in the graph show changes in pressure of the refrigerant that sequentially flows through the lower heat transfer pipe 12Db, the connection pipe 13b, the upper heat transfer pipe 12Ub, and the upper path 14b of the second distribution pipe 14.
In addition, regarding the refrigerant flowing through the uppermost stage, the pressure difference Δp (uppermost stage) due to the influence of gravity is expressed by the following equation (4). Here, M M is the density of the gas-liquid two-phase refrigerant flowing through the connection pipe 13a.
 Δp(最上段)=-ρ・g・H+ρ・g・H-ρ・g・h ・・・(4) Δp (uppermost stage) = -V V · g · H + M M · g · H- L L · g · h (4)
 式(4)の第1項は、第1分配管11を介してガス冷媒が上昇する際の圧力低下を表している。式(4)の第2項は、接続管13aを介して気液二相冷媒が下降する際の圧力上昇を表している。この接続管13aにおける圧力上昇が、本実施形態の主な特徴の一つである。式(4)の第3項は、第2分配管14の下部パス14aを介して液冷媒が上昇する際の圧力低下を表している。 The first term of the equation (4) represents the pressure drop when the gas refrigerant rises via the first distribution pipe 11. The second term of the equation (4) represents the pressure rise when the gas-liquid two-phase refrigerant descends via the connection pipe 13a. The pressure rise in the connection pipe 13a is one of the main features of the present embodiment. The third term of the equation (4) represents the pressure drop when the liquid refrigerant rises through the lower path 14 a of the second distribution pipe 14.
 一方、最下段を通流する冷媒に関して、重力の影響による圧力差Δp(最下段)は、以下の式(5)で表される。なお、図2に示す伝熱管12Ubの高さは、最上段の伝熱管12Uaの高さHよりも若干低いが、式(5)では、伝熱管12Ubの高さをHとしている(近似している)。 On the other hand, regarding the refrigerant flowing through the lowermost stage, the pressure difference Δp (lowermost stage) due to the influence of gravity is expressed by the following equation (5). Although the height of the heat transfer tube 12Ub shown in FIG. 2 is slightly lower than the height H of the uppermost heat transfer tube 12Ua, in the equation (5), the height of the heat transfer tube 12Ub is H (approximated Yes).
 Δp(最下段)=-ρ・g・H+ρ・g・(H-h) ・・・(5) Δp (lowermost stage) = − ρ M · g · H + ρ L · g · (H−h) (5)
 式(5)の第1項は、接続管13bを介して気液二相冷媒が上昇する際の圧力低下を表している。この接続管13bにおける圧力低下が、本実施形態の主な特徴の一つである。式(5)の第2項は、第2分配管14の上部パス14bを介して液冷媒が下降する際の圧力上昇を表している。なお、第1分配管11の下部パスの高さは略ゼロであるから、この下部パスを冷媒が通流する際の圧力変化はほとんどない。
 また、前記した式(4)と式(5)との差Δp(本実施形態)は、以下の式(6)で表される。
The first term of the equation (5) represents the pressure drop when the gas-liquid two-phase refrigerant rises via the connection pipe 13b. The pressure drop in the connection pipe 13b is one of the main features of the present embodiment. The second term of the equation (5) represents the pressure rise when the liquid refrigerant descends via the upper path 14 b of the second distribution pipe 14. In addition, since the height of the lower path of the first distribution pipe 11 is substantially zero, there is almost no pressure change when the refrigerant flows through the lower path.
Further, the difference Δp (in the present embodiment) between the above-mentioned equation (4) and the equation (5) is expressed by the following equation (6).
 Δp(本実施形態)=Δp(最上段)-Δp(最下段)
          =(2ρ-ρ-ρ)・g・H      ・・・(6)
          ≒(2ρ-ρ)・g・H
Δp (this embodiment) = Δp (uppermost stage) −Δp (lowermost stage)
= (2 M M- L L- V V ) · g · H (6)
((2 M M- L L ) · g · H
 式(6)は、最上段を通流する冷媒、及び最下段を通流する冷媒における重力の影響の差分を表している。なお、ρ<<ρのため、式(6)では(2ρ-ρ-ρ)≒(2ρ-ρ)のように近似している。また、密度ρ,ρ,ρの大小関係は、以下の式(7)で表される。 Formula (6) represents the difference of the influence of gravity in the refrigerant flowing through the uppermost stage and the refrigerant flowing through the lowermost stage. Since た めV << ρ L , in Equation (6), approximation is performed as (2 M M- L L- V V ) ((2 M M- L L ). Further, the magnitude relationship between the densities V v , M M and L L is expressed by the following equation (7).
 ρ<ρ<ρ ・・・(7) V V < M M < L L (7)
 したがって、前記した圧力差Δp(比較例)と、圧力差Δp(本実施形態)の大小関係は、以下の式(8)で表される。 Therefore, the magnitude relation between the pressure difference Δp (comparative example) and the pressure difference Δp (this embodiment) is expressed by the following equation (8).
 圧力差Δp(本実施形態)<圧力差Δp(比較例) ・・・(8) Pressure difference Δp (this embodiment) <pressure difference Δp (comparative example) ... (8)
 このように、本実施形態によれば、接続管13aを下降する冷媒の圧力上昇(図4に示す圧力差Δpα)によって、第2分配管14を上昇する冷媒の圧力低下(図4に示す圧力差Δpβ)の少なくとも一部が打ち消される。
 同様に、接続管13bを上昇する冷媒の圧力低下(図4に示す圧力差Δpγ)によって、第2分配管14を下降する冷媒の圧力上昇(図4に示す圧力差Δpδ)の少なくとも一部が打ち消される。したがって、本実施形態によれば、重力の影響による圧力差Δp(本実施形態)を、比較例よりも小さくすることができる。
Thus, according to the present embodiment, the pressure drop of the refrigerant rising in the second distribution pipe 14 (FIG. 4) is caused by the pressure rise (pressure difference Δp α shown in FIG. 4) of the refrigerant falling in the connection pipe 13a. At least a part of the pressure difference Δp β ) is canceled out.
Similarly, at least one of the pressure rise (pressure difference Δp δ shown in FIG. 4) of the refrigerant falling in the second distribution pipe 14 due to the pressure drop (pressure difference Δp γ shown in FIG. 4) of the refrigerant rising the connection pipe 13b. Department is canceled. Therefore, according to the present embodiment, the pressure difference Δp (present embodiment) due to the influence of gravity can be made smaller than that of the comparative example.
 その結果、図2に示す上部伝熱管12Ua,12Ub…,12Uf及び下部伝熱管12Da,12Db,…,12Dfに冷媒が略均等に分配され、冷媒の流量が略同一になる。したがって、下部伝熱管12Da,12Db等における液溜まりが抑制され、熱交換部12における熱交換の高効率化を図ることができる。特に、空気調和機Wが低負荷運転を行っており、熱交換器10における冷媒の流量が比較的小さいときでも、前記した液溜まりを抑制できる。 As a result, the refrigerant is distributed substantially equally to the upper heat transfer pipes 12Ua, 12Ub,... 12Uf and the lower heat transfer pipes 12Da, 12Db,. Accordingly, liquid accumulation in the lower heat transfer pipes 12Da, 12Db and the like can be suppressed, and the heat exchange in the heat exchange section 12 can be made more efficient. In particular, even when the air conditioner W performs low load operation and the flow rate of the refrigerant in the heat exchanger 10 is relatively small, the above-described liquid accumulation can be suppressed.
 また、本実施形態によれば、高温のガス冷媒が熱交換部12の上部・下部の両方に分配されるとともに、比較的低温の気液二相冷媒が接続管13a,13b,…,13fを介して、熱交換部12の上部・下部の両方に分配される。したがって、前記した特許文献1のように、熱交換器の温度分布が鉛直方向で偏っている構成と比較して、熱交換部12における熱交換の高効率化を図ることができる。 Further, according to the present embodiment, the high temperature gas refrigerant is distributed to both the upper and lower portions of the heat exchange unit 12, and the relatively low temperature gas-liquid two-phase refrigerant is connected to the connecting pipes 13a, 13b,. It distributes to both the upper part and the lower part of the heat exchange part 12 via. Therefore, compared with the structure which temperature distribution of a heat exchanger has deviated in the perpendicular direction like above-mentioned patent document 1, the efficiency improvement of heat exchange in the heat exchange part 12 can be achieved.
≪第2実施形態≫
 第2実施形態は、鉛直方向における熱交換部12の中間領域JM(図5参照)では、接続管13gを介して接続される伝熱管12Ug,12Ugが鉛直方向において隣り合っている点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Second Embodiment
In the second embodiment, in the middle region JM (see FIG. 5) of the heat exchange section 12 in the vertical direction, the heat transfer pipes 12Ug and 12Ug connected via the connection pipe 13g are adjacent to each other in the vertical direction. It differs from one embodiment. The other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
 図5は、第2実施形態に係る熱交換器10Aの構成図である。
 図5に示すように、熱交換部12のフィンJは、鉛直方向における中間領域JMを有している。この中間領域JMは、フィンJの上部領域JUの下部、及び下部領域JDの上部を含む領域である。中間領域JMには、上部伝熱管12Ug,12Ugや下部伝熱管12Di,12Di等が貫通している。2つの上部伝熱管12Ug,12Ugのうち、上側の上部伝熱管12Ugは、鉛直方向において隣り合う下側の上部伝熱管12Ugに、接続管13gを介して接続されている。なお、下部伝熱管12Di,12Di等についても同様である。
FIG. 5 is a block diagram of a heat exchanger 10A according to the second embodiment.
As shown in FIG. 5, the fins J of the heat exchange unit 12 have an intermediate region JM in the vertical direction. The middle region JM is a region including the lower portion of the upper region JU of the fin J and the upper portion of the lower region JD. The upper heat transfer pipes 12Ug and 12Ug, the lower heat transfer pipes 12Di and 12Di, and the like penetrate the intermediate region JM. Of the two upper heat transfer pipes 12Ug and 12Ug, the upper upper heat transfer pipe 12Ug is connected to the lower upper heat transfer pipe 12Ug adjacent in the vertical direction via a connection pipe 13g. The same applies to the lower heat transfer tubes 12Di, 12Di, etc.
 また、上部領域JU及び下部領域JDにおいて、中間領域JMに含まれない領域では、例えば、上部伝熱管12Uaから接続管13aを介して下部伝熱管12Daに冷媒が導かれ、また、下部伝熱管12Dbから接続管13bを介して上部伝熱管12Ubに冷媒が導かれる。 In the upper area JU and the lower area JD, in the area not included in the middle area JM, for example, the refrigerant is led from the upper heat transfer pipe 12Ua to the lower heat transfer pipe 12Da via the connection pipe 13a, and the lower heat transfer pipe 12Db The refrigerant is led to the upper heat transfer pipe 12Ub from the above through the connection pipe 13b.
<効果>
 第2実施形態によれば、各接続管13a,13b,…,13g,13h,13iの長さの和を第1実施形態よりも短くすることができるため、熱交換器10Aの製造コストを低減できる。また、中間領域JMについては、上部伝熱管12Ug,12Ugや下部伝熱管12Di,12Di等に冷媒を分配する際の重力の影響が比較的小さい。したがって、図5に示す構成でも、上部伝熱管12Ua,12Ub,…12Ug,12Ug,…、及び下部伝熱管12Da,12Db,…12Di,12Di,…に略均一に冷媒が分配されるため、熱交換の高効率化を図ることができる。
<Effect>
According to the second embodiment, since the sum of the lengths of the connection pipes 13a, 13b, ..., 13g, 13h, 13i can be made shorter than in the first embodiment, the manufacturing cost of the heat exchanger 10A is reduced. it can. Further, in the intermediate region JM, the influence of gravity at the time of distributing the refrigerant to the upper heat transfer pipes 12Ug, 12Ug, the lower heat transfer pipes 12Di, 12Di, etc. is relatively small. Therefore, even in the configuration shown in FIG. 5, the heat exchange is performed because the refrigerant is distributed substantially uniformly to the upper heat transfer tubes 12Ua, 12Ub,... 12Ug, 12Ug,... And the lower heat transfer tubes 12Da, 12Db,. Efficiency can be achieved.
≪第3実施形態≫
 第3実施形態は、接続管13j,13k等(図6参照)の接続位置が第1実施形態とは異なっているが、それ以外については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Third Embodiment
The third embodiment is different from the first embodiment in the connection positions of the connection pipes 13j, 13k and the like (see FIG. 6), but the other is the same as the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
 図6は、第3実施形態に係る熱交換器10Bの構成図である。
 図6に示す接続管13jは、上部伝熱管12Ujとの接続位置の高さが上部領域JUにおいて最も高く、また、下部伝熱管12Djとの接続位置の高さが下部領域JDにおいて2番目に高い。この接続管13jを介して、上部伝熱管12Ujから下部伝熱管12Djに冷媒が導かれる。
FIG. 6 is a block diagram of a heat exchanger 10B according to a third embodiment.
Connection tube 13j shown in FIG. 6 has the highest height in the upper region JU at the connection position with the upper heat transfer tube 12Uj, and has the second highest height in the lower region JD with the connection position with the lower heat transfer tube 12Dj. . The refrigerant is led from the upper heat transfer pipe 12Uj to the lower heat transfer pipe 12Dj via the connection pipe 13j.
 図6に示す接続管13kは、上部伝熱管12Ukとの接続位置の高さが上部領域JUにおいて3番目に高く、また、下部伝熱管12Dkとの接続位置の高さが下部領域JDにおいて4番目に高い。この接続管13kを介して、上部伝熱管12Ukから下部伝熱管12Dkに冷媒が導かれる。なお、他の接続管13mについても同様である。 Connection tube 13k shown in FIG. 6 is the third highest in connection position with upper heat transfer tube 12Uk in upper region JU, and fourth in the lower region JD in connection position with lower heat transfer tube 12Dk. High. The refrigerant is led from the upper heat transfer pipe 12Uk to the lower heat transfer pipe 12Dk via the connection pipe 13k. The same applies to the other connection pipes 13m.
 すなわち、熱交換部12が凝縮器として機能する場合において、上部伝熱管12Uj,12Uk,12Umとの接続位置の高さが上部領域JUにおいて(2n-1)番目に高く、下部伝熱管12Dj,12Dk,12Dmとの接続位置の高さが下部領域JDにおいて2n番目に高い接続管を介して、上部伝熱管から下部伝熱管に冷媒が導かれるようになっている。なお、前記した‘n’は、自然数である。 That is, when the heat exchange unit 12 functions as a condenser, the heights of the connection positions with the upper heat transfer tubes 12Uj, 12Uk, 12Um are the (2n-1) th highest in the upper region JU, and the lower heat transfer tubes 12Dj, 12Dk , 12Dm are led from the upper heat transfer pipe to the lower heat transfer pipe via the 2n-th highest connection pipe in the lower region JD. Here, 'n' is a natural number.
 図6に示す接続管13qは、上部伝熱管12Uqとの接続位置の高さが上部領域JUにおいて2番目に高く、また、下部伝熱管12Dqとの接続位置の高さが下部領域JDにおいて最も高い。この接続管13qを介して、下部伝熱管12Dqから上部伝熱管12Uqに冷媒が導かれる。
 図6に示す接続管13pは、上部伝熱管12Upとの接続位置の高さが上部領域JUにおいて4番目に高く、また、下部伝熱管12Dpとの接続位置の高さが下部領域JDにおいて3番目に高い。この接続管13pを介して、下部伝熱管12Dpから上部伝熱管12Upに冷媒が導かれる。なお、他の接続管13nについても同様である。
Connection tube 13q shown in FIG. 6 has the second highest height in the upper region JU at the connection position with the upper heat transfer tube 12Uq, and the highest in the lower region JD at the connection position with the lower heat transfer tube 12Dq. . The refrigerant is led from the lower heat transfer pipe 12Dq to the upper heat transfer pipe 12Uq via the connection pipe 13q.
Connection tube 13p shown in FIG. 6 is the fourth highest in connection position with upper heat transfer tube 12Up in upper region JU, and third in the lower region JD in connection position with lower heat transfer tube 12Dp. High. The refrigerant is led from the lower heat transfer pipe 12Dp to the upper heat transfer pipe 12Up via the connection pipe 13p. The same applies to the other connection pipes 13n.
 すなわち、熱交換部12が凝縮器として機能する場合において、上部伝熱管12Uq,12Up,12Unとの接続位置の高さが上部領域JUにおいて2n番目に高く、下部伝熱管12Dq,12Dp,12Dnとの接続位置の高さが下部領域JDにおいて(2n-1)番目に高い接続管を介して、下部伝熱管から上部伝熱管に冷媒が導かれるようになっている。 That is, in the case where heat exchange unit 12 functions as a condenser, the heights of the connection positions with upper heat transfer tubes 12Uq, 12Up, 12Un are 2n-th highest in upper region JU, and lower heat transfer tubes 12Dq, 12Dp, 12Dn The refrigerant is led from the lower heat transfer pipe to the upper heat transfer pipe via the (2n-1) th highest connection pipe in the lower region JD at the height of the connection position.
<効果>
 第3実施形態によれば、接続管13j,13k,…,13qのそれぞれの長さを、第1実施形態で説明した接続管13a,13b(図2参照)よりも短くすることができる。これによって、圧縮機11(図1参照)の駆動に伴う接続管13j,13k,…,13qの振動を抑制できる。また、接続管13j,13k,…,13qの管路抵抗が、第1実施形態の接続管13a,13bよりも小さくなるため、冷媒が流れやすくなる。これによって、熱交換部12の下部における液溜まりを抑制し、熱交換の効率を高めることができる。
<Effect>
According to the third embodiment, the lengths of the connection pipes 13j, 13k,..., 13q can be made shorter than the connection pipes 13a, 13b (see FIG. 2) described in the first embodiment. By this, it is possible to suppress the vibration of the connection pipes 13j, 13k,... Further, since the pipe line resistances of the connection pipes 13j, 13k, ..., 13q are smaller than that of the connection pipes 13a, 13b of the first embodiment, the refrigerant easily flows. By this, the liquid accumulation in the lower part of the heat exchange part 12 can be suppressed, and the efficiency of heat exchange can be raised.
≪第4実施形態≫
 第4実施形態は、フィンJ(図7参照)において鉛直方向に配列された複数の孔を2列設け、これらの孔に上部伝熱管12Uaや下部伝熱管12Da等が貫通している点が、第1実施形態とは異なっている。また、後列の上部伝熱管12Uaを通流する冷媒を前列の下部伝熱管12Daに導き、後列の下部伝熱管12Dbを通流する冷媒を前列の上部伝熱管12Ubに導く点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態と異なる部分について説明し、重複する部分については説明を省略する。
Fourth Embodiment
In the fourth embodiment, two rows of holes arranged in the vertical direction are provided in the fin J (see FIG. 7), and the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like pass through these holes. It differs from the first embodiment. Further, the first embodiment is that the refrigerant flowing through the upper heat transfer tube 12Ua in the rear row is led to the lower heat transfer tube 12Da in the front row, and the refrigerant flowing through the lower heat transfer tube 12Db in the rear row is guided to the upper heat transfer tube 12Ub in the front row. It is different from The other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the description of the overlapping parts will be omitted.
 図7は、第4実施形態に係る熱交換器10Cの構成図である。
 なお、図7では、最上段及び最下段の一方から他方に冷媒を導く接続管13a,13bを図示し、他の接続管(図2に示す接続管13c,13d,13e,13fに対応)の図示を省略している。また、図7では、熱交換部12Cが凝縮器として機能する場合に冷媒が通流する向きを矢印で示している。
FIG. 7 is a block diagram of a heat exchanger 10C according to the fourth embodiment.
7, connection pipes 13a and 13b for guiding the refrigerant from one of the uppermost stage and the lowermost stage to the other are illustrated, and other connection pipes (corresponding to the connection pipes 13c, 13d, 13e and 13f shown in FIG. 2) are shown. Illustration is omitted. Moreover, in FIG. 7, when the heat exchange part 12C functions as a condenser, the flow direction of the refrigerant | coolant is shown by the arrow.
 図7に示す熱交換部12Cの付近には、この熱交換部12Cに向けて空気を送るファンFが設置されている。また、複数のフィンJには、それぞれ、鉛直方向に配列された複数の孔(図示せず)が2列設けられている。前記した2列のうち、ファンF側(空気が通流する向きの上流側)の列を「前列」とし、このファンFとは反対側(空気が通流する向きの下流側)の列を「後列」とする。 In the vicinity of the heat exchange portion 12C shown in FIG. 7, a fan F for sending air toward the heat exchange portion 12C is installed. Further, in the plurality of fins J, two rows of holes (not shown) arranged in the vertical direction are respectively provided. Of the two rows described above, the row on the fan F side (upstream side in the air flow direction) is referred to as the “front row”, and the row on the opposite side (downstream side in the air flow direction) to the fan F It is called "the back row".
 上部領域JUの後列の孔には上部伝熱管12Ua等が貫通し、上部領域JUの前列の孔には上部伝熱管12Ub等が貫通している。
 下部領域JDの前列の孔には下部伝熱管12Da等が貫通し、下部領域JDの後列の孔には下部伝熱管12Db等が貫通している。
The upper heat transfer pipes 12Ua and the like pass through the holes in the rear row of the upper area JU, and the upper heat transfer pipes 12Ub and the like pass through the holes in the front line of the upper area JU.
Lower heat transfer pipes 12Da and the like pass through holes in the front row of the lower region JD, and lower heat transfer pipes 12Db and the like pass through holes in the rear row of the lower region JD.
 接続管13aは、上部伝熱管12Uaを通流する冷媒を下部伝熱管12Daに導く配管である。つまり、熱交換部12Cが凝縮器として機能する場合において、後列の上部伝熱管12Uaを通流する冷媒が、接続管13aを介して、前列の下部伝熱管12Daに導かれる。
 接続管13bは、下部伝熱管12Dbを通流する冷媒を上部伝熱管12Ubに導く配管である。つまり、熱交換部12Cが凝縮器として機能する場合において、後列の下部伝熱管12Dbを通流する冷媒は、接続管13bを介して、前列の上部伝熱管12Ubに導かれる。
The connection pipe 13a is a pipe that leads the refrigerant flowing through the upper heat transfer pipe 12Ua to the lower heat transfer pipe 12Da. That is, when the heat exchange unit 12C functions as a condenser, the refrigerant flowing through the upper heat transfer pipe 12Ua in the rear row is led to the lower heat transfer pipe 12Da in the front row via the connection pipe 13a.
The connection pipe 13b is a pipe that leads the refrigerant flowing through the lower heat transfer pipe 12Db to the upper heat transfer pipe 12Ub. That is, when the heat exchange section 12C functions as a condenser, the refrigerant flowing through the lower heat transfer pipe 12Db in the rear row is led to the upper heat transfer pipe 12Ub in the front row via the connection pipe 13b.
 したがって、後列の上部伝熱管12Uaや下部伝熱管12Db等には、比較的高温のガス冷媒が通流し、前列の上部伝熱管12Ubや下部伝熱管12Da等には、比較的低温の気液二相冷媒が通流する。つまり、前列において比較的低温の気液二相冷媒と熱交換した空気が後列に向かい、この後列において比較的高温のガス冷媒と熱交換するようになっている。このように、冷媒の温度分布と、空気の流れる向きと、を対向流型にすることで、冷媒と空気との間の熱交換を高効率で行うことができる。 Therefore, relatively high temperature gas refrigerant flows through the upper heat transfer pipe 12Ua and the lower heat transfer pipe 12Db in the rear row, and a relatively low temperature gas-liquid two-phase flow in the upper heat transfer pipe 12Ub and the lower heat transfer pipe 12Da in the front row. The refrigerant flows. That is, the air heat-exchanged with the relatively low temperature gas-liquid two-phase refrigerant in the front row goes to the rear row, and exchanges heat with the relatively high temperature gas refrigerant in the rear row. Thus, heat exchange between the refrigerant and the air can be performed with high efficiency by making the temperature distribution of the refrigerant and the flow direction of the air into the counterflow type.
 なお、図7では図示を省略したが、接続管13a,13b以外の他の接続管も、上部伝熱管及び下部伝熱管の一方から他方に冷媒を導くように配設されている。また、接続管13a,13b,…は、上部伝熱管12Ua,12Ub,…との接続位置の高さが高いほど、下部伝熱管12Da,12Db,…の接続位置の高さが低くなっている。これによって、下部伝熱管12Da,12Db等における液溜まりを防止し、熱交換の高効率化を図ることができる。 Although not shown in FIG. 7, connection pipes other than the connection pipes 13a and 13b are also disposed so as to guide the refrigerant from one of the upper heat transfer pipe and the lower heat transfer pipe to the other. The heights of the connection positions of the lower heat transfer pipes 12Da, 12Db,... Are lower as the heights of the connection positions of the connection pipes 13a, 13b, ... with the upper heat transfer pipes 12Ua, 12Ub,. As a result, liquid accumulation in the lower heat transfer pipes 12Da, 12Db and the like can be prevented, and high efficiency of heat exchange can be achieved.
<効果>
 第4実施形態によれば、前記したように、冷媒と空気との間で対向流型の熱交換が行われるため、冷媒と空気との間の熱交換を第1実施形態よりも高効率で行うことができる。
<Effect>
According to the fourth embodiment, as described above, since the counterflow heat exchange is performed between the refrigerant and the air, the heat exchange between the refrigerant and the air is made more efficient than the first embodiment. It can be carried out.
≪第5実施形態≫
 第5実施形態は、後列の上部伝熱管12Ua(図8参照)を通流する冷媒が、前列の上部伝熱管12Uaを経由して接続管13aに導かれる点が、第4実施形態とは異なっている。また、第5実施形態は、後列の下部伝熱管12Db(図8参照)を通流する冷媒が、前列の下部伝熱管12Dbを経由して接続管13bに導かれる点が、第4実施形態とは異なっている。なお、その他については第4実施形態と同様である。したがって、第4実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Fifth Embodiment
The fifth embodiment is different from the fourth embodiment in that the refrigerant flowing through the upper heat transfer pipe 12Ua (see FIG. 8) in the rear row is led to the connection pipe 13a via the upper heat transfer pipe 12Ua in the front row. ing. In the fifth embodiment, the refrigerant flowing through the lower heat transfer pipe 12Db (see FIG. 8) in the rear row is led to the connection pipe 13b via the lower heat transfer pipe 12Db in the front row, and the fourth embodiment Are different. The other aspects are the same as in the fourth embodiment. Therefore, the parts different from the fourth embodiment will be described, and the descriptions of the overlapping parts will be omitted.
 図8は、第5実施形態に係る熱交換器10Dの構成図である。
 なお、図8では、最上段及び最下段の一方から他方に冷媒を導く接続管13a,13bを図示し、他の接続管の図示を省略している。
 図8に示すフィンJには、鉛直方向に配列される複数の孔(図示せず)が2列設けられている。上部伝熱管12Ua,12Ub等は、上部領域JUの孔を貫通している。下部伝熱管12Da,12Db等は、下部領域JDの孔を貫通している。
FIG. 8 is a block diagram of a heat exchanger 10D according to the fifth embodiment.
In FIG. 8, connection pipes 13 a and 13 b for guiding the refrigerant from one of the uppermost stage and the lowermost stage to the other are illustrated, and the other connection pipes are not illustrated.
The fin J shown in FIG. 8 is provided with a plurality of holes (not shown) arranged in the vertical direction in two rows. The upper heat transfer tubes 12Ua, 12Ub, etc. pass through the holes of the upper region JU. The lower heat transfer tubes 12Da, 12Db, etc. pass through the holes in the lower region JD.
 図8に示すように、熱交換部12Dが凝縮器として機能する場合において、後列の上部伝熱管12Uaを通流する冷媒が、前列の上部伝熱管12Uaに導かれた後、接続管13aを介して、前列の下部伝熱管12Daに導かれるように熱交換器10Dが構成されている。
 また、熱交換部12Dが凝縮器として機能する場合において、後列の下部伝熱管12Dbを通流する冷媒が、前列の下部伝熱管12Dbに導かれた後、接続管13bを介して、前列の上部伝熱管12Ubに導かれるように熱交換器10Dが構成されている。これによって、接続管13a,13b,…に通流する気液二相冷媒を液相に近づけ、その密度ρを第4実施形態よりも大きくすることができる。
As shown in FIG. 8, in the case where the heat exchange unit 12D functions as a condenser, the refrigerant flowing through the upper heat transfer pipe 12Ua in the rear row is led to the upper heat transfer pipe 12Ua in the front row, and then through the connection pipe 13a. The heat exchanger 10D is configured to be guided to the lower heat transfer tubes 12Da in the front row.
When the heat exchange unit 12D functions as a condenser, the refrigerant flowing through the lower heat transfer pipe 12Db in the rear row is led to the lower heat transfer pipe 12Db in the front row, and then the upper portion of the front row is connected via the connection pipe 13b. The heat exchanger 10D is configured to be led to the heat transfer tube 12Ub. As a result, the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b,... Can be brought close to the liquid phase, and the density M M can be made larger than in the fourth embodiment.
 仮に、接続管13a,13b,…を通流する気液二相冷媒の密度ρが、液冷媒の密度ρの1/2に等しくなれば、前記した式(6)の圧力差Δpがゼロになる。その結果、第1実施形態で説明した重力の影響がなくなるため、上部伝熱管12Uaや下部伝熱管12Da等に冷媒が均等に分配される。これによって、冷媒と空気との間で行われる熱交換の高効率化を図ることができる。言い換えると、図8に示す構成において、空気調和機Wが所定の空調運転(例えば、高頻度で行われる定格運転)を行っているとき、気液二相冷媒の密度ρが液冷媒の密度ρの1/2に近づけば(つまり、式(6)の圧力差Δpがゼロに近づけば)、熱交換の高効率化を図ることができる。 If the density M M of the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b, ... is equal to 1⁄2 of the density L L of the liquid refrigerant, the pressure difference Δp of the above equation (6) becomes It becomes zero. As a result, since the influence of gravity described in the first embodiment is eliminated, the refrigerant is evenly distributed to the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like. By this, it is possible to achieve high efficiency of heat exchange performed between the refrigerant and the air. In other words, in the configuration shown in FIG. 8, when the air conditioner W is performing a predetermined air conditioning operation (for example, rated operation performed with high frequency), the density M M of the gas-liquid two-phase refrigerant is the density of the liquid refrigerant If it is close to 1⁄2 of ρ L (that is, if the pressure difference Δp in equation (6) approaches zero), the heat exchange can be made more efficient.
<効果>
 第5実施形態によれば、接続管13a,13b,…を通流する気液二相冷媒の密度ρの密度を大きくして、液冷媒の密度ρの1/2に近づけることで、上部伝熱管12Uaや下部伝熱管12Da等に冷媒が分配される際の重力の影響を低減できる。これによって、上部伝熱管12Uaや下部伝熱管12Da等に通流する冷媒の流量が略等しくなるため、熱交換器10Dにおける熱交換の高効率化を図ることができる。
<Effect>
According to the fifth embodiment, the density M M of the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b, ... is increased to be close to 1⁄2 of the density L L of the liquid refrigerant, The influence of gravity when the refrigerant is distributed to the upper heat transfer tube 12Ua, the lower heat transfer tube 12Da, and the like can be reduced. As a result, the flow rates of the refrigerant flowing through the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like become substantially equal, and therefore, it is possible to achieve high efficiency of heat exchange in the heat exchanger 10D.
≪第6実施形態≫
 第6実施形態は、接続管13a(図9参照)を介して後列の下部伝熱管12Daに冷媒を導き、さらに前列の下部伝熱管12Daに冷媒を導く点が、第4実施形態とは異なっている。また、第6実施形態は、接続管13b(図9参照)を介して後列の上部伝熱管12Ubに冷媒を導き、さらに前列の上部伝熱管12Ubに導く点が、第4実施形態とは異なっている。なお、その他については第4実施形態と同様である。したがって、第4実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Sixth Embodiment
The sixth embodiment is different from the fourth embodiment in that the refrigerant is guided to the lower heat transfer pipe 12Da in the rear row via the connection pipe 13a (see FIG. 9) and is further guided to the lower heat transfer pipe 12Da in the front row. There is. Further, the sixth embodiment is different from the fourth embodiment in that the refrigerant is led to the upper heat transfer pipe 12Ub in the rear row via the connection pipe 13b (see FIG. 9) and is further led to the upper heat transfer pipe 12Ub in the front row. There is. The other aspects are the same as in the fourth embodiment. Therefore, the parts different from the fourth embodiment will be described, and the descriptions of the overlapping parts will be omitted.
 図9は、第6実施形態に係る熱交換器10Eの構成図である。
 なお、図9では、最上段及び最下段の一方から他方に冷媒を導く接続管13a,13bを図示し、他の接続管の図示を省略している。
 図9に示すフィンJには、鉛直方向に配列される複数の孔(図示せず)が2列設けられている。上部伝熱管12Ua,12Ub等は、上部領域JUの孔を貫通している。下部伝熱管12Da,12Db等は、下部領域JDの孔を貫通している。
FIG. 9 is a configuration diagram of a heat exchanger 10E according to a sixth embodiment.
In FIG. 9, connection pipes 13a and 13b for guiding the refrigerant from one of the uppermost stage and the lowermost stage to the other are illustrated, and the other connection pipes are not shown.
The fin J shown in FIG. 9 is provided with a plurality of holes (not shown) arranged in the vertical direction in two rows. The upper heat transfer tubes 12Ua, 12Ub, etc. pass through the holes of the upper region JU. The lower heat transfer tubes 12Da, 12Db, etc. pass through the holes in the lower region JD.
 図9に示すように、熱交換部12Eが凝縮器として機能する場合において、後列の上部伝熱管12Uaを通流する冷媒が、接続管13aを介して、後列の下部伝熱管12Daに導かれた後、前列の下部伝熱管12Daに導かれるように熱交換器10Eが構成されている。
 また、熱交換部12Eが凝縮器として機能する場合において、後列の下部伝熱管12Dbを通流する冷媒が、接続管13bを介して、後列の上部伝熱管12Ubに導かれた後、前列の上部伝熱管12Ubに導かれるように熱交換器10Eが構成されている。これによって、接続管13a,13b,…に通流する気液二相冷媒を気相に近づけ、その密度ρを第4実施形態よりも小さくすることができる。
As shown in FIG. 9, in the case where the heat exchange unit 12E functions as a condenser, the refrigerant flowing through the upper heat transfer pipe 12Ua in the rear row is led to the lower heat transfer pipe 12Da in the rear row via the connection pipe 13a. The heat exchanger 10E is configured to be led to the lower heat transfer pipe 12Da in the front row afterward.
In the case where the heat exchange unit 12E functions as a condenser, the refrigerant flowing through the lower heat transfer pipe 12Db in the rear row is led to the upper heat transfer pipe 12Ub in the rear row via the connection pipe 13b, and then the upper portion in the front row The heat exchanger 10E is configured to be led to the heat transfer tube 12Ub. As a result, the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b,... Can be brought close to the gas phase, and the density M M can be made smaller than in the fourth embodiment.
 図9に示す構成において、空気調和機Wが所定の空調運転(例えば、高頻度で行う定格運転)を行っているとき、気液二相冷媒の密度ρが液冷媒の密度ρの1/2に等しくなれば、前記した式(6)の圧力差Δpをゼロにすることができる。これによって、上部伝熱管12Uaや下部伝熱管12Da等に冷媒が分配される際の重力の影響を低減できる。 In the configuration shown in FIG. 9, when the air conditioner W is performing a predetermined air conditioning operation (for example, rated operation performed with high frequency), the density M M of the gas-liquid two-phase refrigerant is 1 of the density L L of the liquid refrigerant If it becomes equal to / 2, pressure difference (DELTA) p of above-mentioned Formula (6) can be made into zero. This can reduce the influence of gravity when the refrigerant is distributed to the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like.
<効果>
 第6実施形態によれば、接続管13a,13b,…を通流する気液二相冷媒の密度ρの密度を小さくして、液冷媒の密度ρの1/2に近づけることで、上部伝熱管12Uaや下部伝熱管12Da等に冷媒が分配される際の重力の影響を低減できる。これによって、上部伝熱管12Uaや下部伝熱管12Da等に通流する冷媒の流量が略等しくなるため、熱交換器10Eにおける熱交換の高効率化を図ることができる。
<Effect>
According to the sixth embodiment, the density ρ M of the gas-liquid two-phase refrigerant flowing through the connection pipes 13a, 13b, ... is reduced to be close to 1⁄2 of the density L L of the liquid refrigerant, The influence of gravity when the refrigerant is distributed to the upper heat transfer tube 12Ua, the lower heat transfer tube 12Da, and the like can be reduced. As a result, the flow rates of the refrigerant flowing through the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, and the like become substantially equal, and therefore, the heat exchange efficiency in the heat exchanger 10E can be improved.
≪第7実施形態≫
 第7実施形態は、熱交換部12Fにおいて、扁平多孔管15(多孔管:図7参照)を介して冷媒を通流させる点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
Seventh Embodiment
The seventh embodiment is different from the first embodiment in that the heat exchange unit 12F allows the refrigerant to flow through the flat porous pipe 15 (a porous pipe: see FIG. 7). The other aspects are the same as in the first embodiment. Therefore, only the parts different from the first embodiment will be described, and the descriptions of the overlapping parts will be omitted.
 図10は、第7実施形態に係る熱交換器10Fの正面図である。
 なお、図10に示す実線矢印は、熱交換部12Fが凝縮器として機能する場合において、正面側における冷媒の流路を示し、破線矢印は、背面側(図11参照)における冷媒の流路を示している。また、図10では、熱交換部12Fの上部及び下部の一方から他方に冷媒を導く接続管13a,13bを図示し、他の接続管の図示を省略している。
FIG. 10 is a front view of a heat exchanger 10F according to a seventh embodiment.
In addition, when the heat exchange part 12F functions as a condenser, the solid line arrow shown in FIG. 10 shows the flow path of the refrigerant in the front side, and the broken line arrow shows the flow path of the refrigerant in the back side (refer FIG. 11). It shows. Further, in FIG. 10, connection pipes 13a and 13b for guiding the refrigerant from one of the upper portion and the lower portion of the heat exchange portion 12F to the other are illustrated, and the other connection pipes are not illustrated.
 図10に示すように、熱交換器10Fは、熱交換部12Fと、ヘッダパイプ161、162Ua,162Db等と、接続管13a,13b,…と、を備えている。 As shown in FIG. 10, the heat exchanger 10F includes a heat exchange portion 12F, header pipes 161, 162Ua, 162Db, etc., and connection pipes 13a, 13b,.
 熱交換部12Fは、複数のフィンJと、複数の扁平多孔管15と、を備えている。
 複数のフィンJは、それぞれ、隣り合う他のフィンJとの間に所定の間隔を設けて、面方向が平行となるように配置されている。また、複数のフィンJは、その伝熱面が鉛直方向と平行となるように配置されている。複数のフィンJの上部領域JU及び下部領域JDには、それぞれ、扁平多孔管15(多孔管)を貫通させるための複数の孔が形成されている。
The heat exchange unit 12F includes a plurality of fins J and a plurality of flat porous tubes 15.
The plurality of fins J are arranged such that the plane direction is parallel with a predetermined interval between each other adjacent fin J. The plurality of fins J are arranged such that the heat transfer surfaces thereof are parallel to the vertical direction. In the upper region JU and the lower region JD of the plurality of fins J, a plurality of holes for penetrating the flat porous tube 15 (porous tube) are respectively formed.
 扁平多孔管15は、自身の内部を通流する冷媒と、ファンFからの空気と、の熱交換が行われる伝熱管であり、フィンJを貫通している。この扁平多孔管15は、水平方向に複数の孔が配列された構成であり、扁平状(断面視において水平方向に細長い矩形状)を呈している。図10に示すように、ファンF側である前列において、複数の扁平多孔管15が鉛直方向に配列され、また、ファンFとは反対側である後列において、複数の扁平多孔管15が鉛直方向に配列されている。 The flat porous pipe 15 is a heat transfer pipe in which heat exchange between the refrigerant flowing through the inside thereof and the air from the fan F is performed, and the fin J is penetrated. The flat porous tube 15 has a configuration in which a plurality of holes are arranged in the horizontal direction, and exhibits a flat shape (a rectangular shape elongated in the horizontal direction in a cross sectional view). As shown in FIG. 10, in the front row on the fan F side, the plurality of flat porous tubes 15 are arranged in the vertical direction, and in the rear row opposite to the fan F, the plurality of flat porous tubes 15 are in the vertical direction Are arranged in
 なお、フィンJの上部領域JUを貫通する複数の扁平多孔管15が、「上部伝熱管」に相当する。また、フィンJの下部領域JDを貫通する複数の扁平多孔管15が、「下部伝熱管」に相当する。 The plurality of flat porous tubes 15 penetrating the upper region JU of the fins J correspond to "upper heat transfer tubes". In addition, the plurality of flat porous tubes 15 penetrating the lower region JD of the fin J correspond to "lower heat transfer tubes".
 ヘッダパイプ161は、自身に流入するガス冷媒を後列の各扁平多孔管15に分配するためのパイプである。ヘッダパイプ161において扁平多孔管15に臨む側には、鉛直方向に細長い開口が設けられている。そして、この開口を介して、後列の各扁平多孔管15の各孔に冷媒が導かれるようになっている。 The header pipe 161 is a pipe for distributing the gas refrigerant flowing into itself to the flat porous pipes 15 in the rear row. On the side of the header pipe 161 facing the flat porous pipe 15, an elongated opening is provided in the vertical direction. And a refrigerant | coolant is guide | induced to each hole of each flat porous pipe 15 of a back row through this opening.
 ヘッダパイプ161を介して後列の各扁平多孔管15に導かれた冷媒の一部は、上部領域JUの各扁平多孔管15を介して、後列のヘッダパイプ162Uaに向かい、残りの冷媒は、下部領域JDの各扁平多孔管15を介して、後列のヘッダパイプ162Db(図11参照)に向かう。 A part of the refrigerant led to each flat porous pipe 15 in the rear row through the header pipe 161 is directed to the header pipe 162Ua in the rear row through each flat porous pipe 15 in the upper region JU, and the remaining refrigerant is It goes to the header pipe 162Db (refer to FIG. 11) in the rear row through each flat porous pipe 15 in the area JD.
 図11は、第7実施形態に係る熱交換器10Fの背面図である。
 後列のヘッダパイプ162Uaを通流する冷媒は、配管(図示せず)を介して前列のヘッダパイプ163Uaに導かれ、さらに、5つの扁平多孔管15を介して、上部領域JUの前列のヘッダパイプ164Uaに導かれる。図10に示すように、ヘッダパイプ164Uaを通流する冷媒は、接続管13aを介して下降し、下部領域JDの前列のヘッダパイプ165Daに導かれる。ヘッダパイプ165Daを通流する冷媒は、3つの扁平多孔管15を介して、図11に示すヘッダパイプ166Daに導かれる。そして、ヘッダパイプ166Daを通流する冷媒は、図10に示す下部領域JDの2つの扁平多孔管15及びヘッダパイプ167Daを介して、液冷媒として流出する。
FIG. 11 is a rear view of the heat exchanger 10F according to the seventh embodiment.
The refrigerant flowing through the header pipe 162Ua in the rear row is led to the header pipe 163Ua in the front row via piping (not shown), and further, the header pipe in the front row of the upper region JU via the five flat porous pipes 15 It is led to 164Ua. As shown in FIG. 10, the refrigerant flowing through the header pipe 164Ua is lowered via the connection pipe 13a and is led to the header pipe 165Da of the front row of the lower region JD. The refrigerant flowing through the header pipe 165Da is led to the header pipe 166Da shown in FIG. 11 through the three flat porous pipes 15. Then, the refrigerant flowing through the header pipe 166Da flows out as a liquid refrigerant via the two flat porous pipes 15 and the header pipe 167Da in the lower region JD shown in FIG.
 一方、後列のヘッダパイプ162Db(図11参照)を通流する冷媒は、配管(図示せず)を介して前列のヘッダパイプ163Dbに導かれ、さらに、5つの扁平多孔管15を介して、下部領域JDの前列のヘッダパイプ164Dbに導かれる。図10に示すように、ヘッダパイプ164Dbを通流する冷媒は、接続管13bを介して上昇し、上部領域JUの前列のヘッダパイプ165Ubに導かれる。ヘッダパイプ165Ubを通流する冷媒は、3つの扁平多孔管15を介して、図11に示すヘッダパイプ166Ubに導かれる。そして、ヘッダパイプ166Ubを通流する冷媒は、図10に示す上部領域JUの2つの扁平多孔管15及びヘッダパイプ167Ubを介して、液冷媒として流出する。 On the other hand, the refrigerant flowing through the header pipe 162Db (see FIG. 11) in the rear row is led to the header pipe 163Db in the front row via a pipe (not shown), and further, the lower portion via the five flat porous pipes 15. It is led to the header pipe 164Db of the front row of the area JD. As shown in FIG. 10, the refrigerant flowing through the header pipe 164Db rises via the connection pipe 13b and is led to the header pipe 165Ub in the front row of the upper region JU. The refrigerant flowing through the header pipe 165Ub is led to the header pipe 166Ub shown in FIG. 11 through the three flat porous pipes 15. Then, the refrigerant flowing through the header pipe 166Ub flows out as liquid refrigerant via the two flat porous pipes 15 and the header pipe 167Ub of the upper region JU shown in FIG.
 なお、図10、図11では図示を省略したが、接続管13a,13b以外の他の接続管も、上部伝熱管及び下部伝熱管の一方から他方に冷媒を導くように配設されている。また、接続管13a,13b,…は、上部領域JUに設けられたヘッダパイプ164Ua,165Ub,…との接続位置の高さが高いほど、下部領域JDに設けられたヘッダパイプ165Da,164Db,…との接続位置の高さが低くなっている。これによって、熱交換部12Fの下部における液溜まりを防止し、熱交換の高効率化を図ることができる。 Although not shown in FIGS. 10 and 11, connection pipes other than the connection pipes 13a and 13b are also arranged to lead the refrigerant from one of the upper heat transfer pipe and the lower heat transfer pipe to the other. Further, as the heights of the connection positions of the connection pipes 13a, 13b, ... with the header pipes 164Ua, 165Ub, ... provided in the upper area JU increase, the header pipes 165Da, 164Db, ... provided in the lower area JD. The height of the connection position with is lowered. By this, the liquid accumulation in the lower part of the heat exchange part 12F can be prevented, and high efficiency-ization of heat exchange can be achieved.
<効果>
 第7実施形態によれば、上部領域JUの扁平多孔管15を通流する冷媒が、接続管13a等を介して下部領域JDの扁平多孔管15に導かれる。また、下部領域JDの扁平多孔管15を通流する冷媒が、接続管13b等を介して上部領域JUの扁平多孔管15に導かれる。これによって、第1実施形態と同様に、各扁平多孔管15に冷媒が分配される際の重力の影響を低減できる。したがって、各扁平多孔管15に通流する冷媒の流量の鉛直方向における偏りを抑制し、熱交換器10Fにおける熱交換の高効率化を図ることができる。
<Effect>
According to the seventh embodiment, the refrigerant flowing through the flat porous pipe 15 in the upper area JU is led to the flat porous pipe 15 in the lower area JD via the connection pipe 13a and the like. Further, the refrigerant flowing through the flat porous pipe 15 in the lower area JD is led to the flat porous pipe 15 in the upper area JU via the connection pipe 13b and the like. Thus, as in the first embodiment, the influence of gravity when the refrigerant is distributed to the flat porous tubes 15 can be reduced. Therefore, it is possible to suppress the deviation in the vertical direction of the flow rate of the refrigerant flowing through each flat porous pipe 15, and to achieve high efficiency of heat exchange in the heat exchanger 10F.
 また、第7実施形態によれば、熱交換器10Fが複数の扁平多孔管15を備える構成であるため、フィンチューブ型の熱交換器と比較して、気液二相冷媒の密度ρを液冷媒の密度ρの1/2に近づけるための微調整を行いやすいという利点がある。例えば、気液二相冷媒を液相に近づける(冷媒の密度pを大きくする)には、冷媒が接続管13a等に流入する前段階で、ファンF側の前列に通流する扁平多孔管15の個数を増やせばよい。一方、気液二相冷媒を気相に近づける(冷媒の密度pを小さくする)には、ファンF側の前列に通流する扁平多孔管15の個数を減らせばよい。 Further, according to the seventh embodiment, since the heat exchanger 10F is configured to include the plurality of flat porous tubes 15, the density M M of the gas-liquid two-phase refrigerant is higher than that of the finned tube type heat exchanger. There is an advantage that it is easy to perform fine adjustment so as to approach half of the density L L of the liquid refrigerant. For example, in order to bring the gas-liquid two-phase refrigerant close to the liquid phase (increase the refrigerant density p M ), a flat porous pipe is provided which flows through the front row on the fan F side before the refrigerant flows into the connection pipe 13a etc. You can increase the number of fifteen. On the other hand, in order to make the gas-liquid two-phase refrigerant close to the gas phase (to reduce the density p M of the refrigerant), the number of flat porous pipes 15 flowing in the front row on the fan F side may be reduced.
≪変形例≫
 以上、本発明に係る熱交換器10等について各実施形態で説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
 例えば、第1実施形態では、熱交換部12が凝縮器として機能する場合において、上部伝熱管との接続位置の高さが上部領域JUにおいて(2n-1)番目に高く、下部伝熱管との接続位置の高さが下部領域JDにおいて(2n-1)番目に低い接続管を介して、上部伝熱管から下部伝熱管に冷媒を導く構成について説明したが、これに限らない。すなわち、上部伝熱管との接続位置の高さが上部領域JUにおいて2n番目に高く、下部伝熱管との接続位置の高さが下部領域JDにおいて2n番目に低い接続管を介して、上部伝熱管から下部伝熱管に冷媒を導くようにしてもよい。そして、前記した構成において、上部伝熱管との接続位置の高さが上部領域JUにおいて(2n-1)番目に高く、かつ、下部伝熱管との接続位置の高さが下部領域JDにおいて(2n-1)番目に低い接続管を介して、下部伝熱管から上部伝熱管に冷媒を導くように構成してもよい。
«Modification»
As mentioned above, although each embodiment demonstrated heat exchanger 10 grade | etc., Which concerns on this invention, this invention is not limited to these description, A various change can be made.
For example, in the first embodiment, in the case where the heat exchange unit 12 functions as a condenser, the height of the connection position with the upper heat transfer tube is the (2n-1) th highest in the upper region JU, Although the configuration has been described in which the refrigerant is introduced from the upper heat transfer pipe to the lower heat transfer pipe via the (2n-1) th lowest connection pipe in the lower region JD in the lower region JD, the present invention is not limited thereto. That is, the height of the connection position with the upper heat transfer tube is 2n-th highest in the upper region JU, and the height of the connection position with the lower heat transfer tube is 2 n-th lowest in the lower region JD via the upper heat transfer tube The refrigerant may be led from the lower heat transfer pipe to the lower heat transfer pipe. Further, in the above configuration, the height of the connection position with the upper heat transfer tube is (2n-1) th highest in the upper region JU, and the height of the connection position with the lower heat transfer tube is (2 n in the lower region JD -1) The refrigerant may be led from the lower heat transfer pipe to the upper heat transfer pipe via the lowest connection pipe.
 また、第4実施形態では、鉛直方向に配列された複数の孔をフィンJに2列設け、これらの孔に上部伝熱管12Uaや下部伝熱管12Da等を貫通させる構成について説明したが、これに限らない。すなわち、鉛直方向に配列された複数の孔をフィンJに3列以上設けてもよい。このような構成において、後列(ファンFとは反対側の列)の上部伝熱管を通流する冷媒が、接続管を介して、前列(ファンF側の列)の下部伝熱管に導かれ、後列の下部伝熱管を通流する冷媒が、接続管を介して、前列の上部伝熱管に導かれるようにしてもよい。なお、第5、第6、第7実施形態についても同様のことがいえる。 Further, in the fourth embodiment, although a plurality of holes arranged in the vertical direction are provided in two rows in the fin J, and the upper heat transfer pipe 12Ua, the lower heat transfer pipe 12Da, etc. are penetrated in these holes. Not exclusively. That is, three or more rows of holes arranged in the vertical direction may be provided in the fin J. In such a configuration, the refrigerant flowing through the upper heat transfer tube in the rear row (the row opposite to the fan F) is led to the lower heat transfer tube in the front row (the row on the fan F side) through the connection tube, The refrigerant flowing through the lower row heat transfer tubes in the rear row may be led to the upper heat transfer tube in the front row via the connection tube. The same applies to the fifth, sixth, and seventh embodiments.
 また、各実施形態では、空気調和機W(図1参照)が四方弁Vfを備える構成について説明したが、この四方弁Vfを省略してもよい。つまり、冷房専用又は暖房専用の空気調和機において、圧縮機Gと、室外熱交換器10tと、室外膨張弁Vtと、室内膨張弁Viと、室内熱交換器10iと、が環状に順次接続されてなる冷媒回路を備える構成にしてもよい。 Moreover, although the air conditioner W (refer FIG. 1) demonstrated the structure provided with the four-way valve Vf in each embodiment, you may abbreviate | omit this four-way valve Vf. That is, in the air conditioner exclusively for cooling or heating, the compressor G, the outdoor heat exchanger 10t, the outdoor expansion valve Vt, the indoor expansion valve Vi, and the indoor heat exchanger 10i are sequentially connected in an annular manner. You may make it the structure provided with the refrigerant circuit which becomes.
 また、各実施形態では、空気調和機W(図1参照)が室外膨張弁Vt及び室内膨張弁Viを備える構成について説明したが、これに限らない。すなわち、室外熱交換器10tと室内熱交換器10iとの間に一つの膨張弁を備える構成であってもよいし、また、直列接続された3つ以上の膨張弁を備える構成でもよい。また、複数の膨張弁を備える構成において、膨張弁と、別の膨張弁と、の間に、冷媒の過冷却度を高めるための過冷却器を設けてもよい。 Moreover, although each embodiment demonstrated the structure in which the air conditioner W (refer FIG. 1) was equipped with the outdoor expansion valve Vt and the indoor expansion valve Vi, it does not restrict to this. That is, one expansion valve may be provided between the outdoor heat exchanger 10t and the indoor heat exchanger 10i, or three or more expansion valves connected in series may be provided. In addition, in the configuration including the plurality of expansion valves, a subcooler for increasing the degree of subcooling of the refrigerant may be provided between the expansion valve and another expansion valve.
 また、第1実施形態では、室外熱交換器10t(図1参照)及び室内熱交換器10i(図1参照)の両方が、図2、図3に示す熱交換器10の構成を備える場合について説明したが、これに限らない。すなわち、室外熱交換器10t及び室内熱交換器10iの一方が、図2、図3に示す熱交換器10の構成を備えるようにしてもよい。なお、第2~第7実施形態についても、同様のことがいえる。 In the first embodiment, both the outdoor heat exchanger 10t (see FIG. 1) and the indoor heat exchanger 10i (see FIG. 1) have the configuration of the heat exchanger 10 shown in FIGS. 2 and 3. Although explained, it does not restrict to this. That is, one of the outdoor heat exchanger 10 t and the indoor heat exchanger 10 i may have the configuration of the heat exchanger 10 shown in FIGS. 2 and 3. The same applies to the second to seventh embodiments.
 また、各実施形態は、適宜組み合わせることができる。例えば、第3実施形態と第7実施形態とを組み合わせ、鉛直方向に配列された孔をフィンJに複数列設ける構成において、各孔に扁平多孔管15を貫通させ、さらに、第3実施形態で説明したように接続管13a,13b,…,13fを配設してもよい。 Moreover, each embodiment can be combined suitably. For example, in the configuration in which the third embodiment and the seventh embodiment are combined and a plurality of holes arranged in the vertical direction are provided in the fin J, the flat porous pipe 15 is made to penetrate each hole, and further in the third embodiment The connection pipes 13a, 13b,..., 13f may be arranged as described.
 また、各実施形態では、空気調和機Wが、室外機Wt及び室内機Wiを1台ずつ備える構成について説明したが、これに限らない。例えば、1台の室外機Wtに複数台の室内機Wiを接続したマルチ型の空気調和機にも各実施形態を適用できる。また、複数台の室外機Wtが並列接続された構成の空気調和機にも各実施形態を適用できる。 Moreover, in each embodiment, although the air conditioner W demonstrated the structure provided with one outdoor unit Wt and one indoor unit Wi, it does not restrict to this. For example, each embodiment can be applied to a multi-type air conditioner in which a plurality of indoor units Wi are connected to one outdoor unit Wt. In addition, each embodiment can be applied to an air conditioner having a configuration in which a plurality of outdoor units Wt are connected in parallel.
 また、各実施形態で説明した空気調和機Wは、パッケージエアコンやルームエアコンであってもよいし、室外機Wtと室内機Wiとを一体化させた一体型エアコンであってもよい。また、各実施形態で説明した熱交換器10等は、空気調和機Wの他、チラーや冷凍機にも適用できる。 Further, the air conditioner W described in each of the embodiments may be a packaged air conditioner or a room air conditioner, or may be an integrated air conditioner in which the outdoor unit Wt and the indoor unit Wi are integrated. Moreover, the heat exchanger 10 grade | etc., Demonstrated by each embodiment is applicable to a chiller and a refrigerator other than air conditioner W.
 また、各実施形態は本発明を分かりやすく説明するために詳細に記載したものであり、必ずしも説明した全ての構成を備えるものに限定されない。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 また、前記した機構や構成は説明上必要と考えられるものを示しており、製品上必ずしも全ての機構や構成を示しているとは限らない。
Further, each embodiment is described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to one having all the configurations described. Moreover, it is possible to add, delete, and replace other configurations for part of the configurations of the respective embodiments.
Further, the mechanisms and configurations described above indicate what is considered to be necessary for the description, and not all the mechanisms and configurations of the product are necessarily shown.
 10,10A,10B,10C,10D,10E,10F 熱交換器
 10i 室内熱交換器(熱交換器)
 10t 室外熱交換器(熱交換器)
 11 第1分配管
 12,12C,12D,12E,12F 熱交換部
 12Ua,12Ub,12Uc,12Ud,12Ue,12Uf,12Ug,12Uj,12Uk,12Um,12Un,12Up,12Uq 上部伝熱管(伝熱管)
 12Da,12Db,12Dc,12Dd,12De,12Df,12Di,12Dj,12Dk,12Dm,12Dn,12Dp,12Dq 下部伝熱管(伝熱管)
 13a,13b,13c,13d,13e,13f,13g,13h,13i,13j,13k,13m,13n,13p,13q 接続管
 14 第2分配管
 15 扁平多孔管(多孔管)
 F ファン
 Fi 室内ファン(ファン)
 Ft 室外ファン(ファン)
 G 圧縮機
 J フィン
 JU 上部領域
 JD 下部領域
 R 冷媒回路
 Vf 四方弁
 Vi 室内膨張弁(膨張弁)
 Vt 室外膨張弁(膨張弁)
 W 空気調和機
 Wi 室内機
 Wt 室外機
10, 10A, 10B, 10C, 10D, 10E, 10F Heat exchanger 10i Indoor heat exchanger (heat exchanger)
10t outdoor heat exchanger (heat exchanger)
11 1st distribution piping 12, 12C, 12D, 12E, 12F Heat exchange part 12Ua, 12Ub, 12Uc, 12Ud, 12Ue, 12Uf, 12Ug, 12Uj, 12Uk, 12Uk, 12Un, 12Up, 12Uq upper heat transfer tube (heat transfer tube)
12Da, 12Db, 12Dc, 12Dd, 12De, 12Df, 12Di, 12Dj, 12Dk, 12Dm, 12Dn, 12Dp, 12Dq Lower heat transfer tubes (heat transfer tubes)
13a, 13b, 13c, 13d, 13e, 13g, 13h, 13i, 13j, 13k, 13m, 13n, 13p, 13q Connecting pipe 14 Second distribution pipe 15 Flat porous pipe (porous pipe)
F Fan Fi Indoor fan (fan)
Ft Outdoor fan (fan)
G compressor J fin JU upper area JD lower area R refrigerant circuit Vf four-way valve Vi indoor expansion valve (expansion valve)
Vt Outdoor expansion valve (expansion valve)
W air conditioner Wi indoor unit Wt outdoor unit

Claims (9)

  1.  所定の間隔を設けて面方向が平行に配置される複数のフィンと、複数の前記フィンを貫通する複数の伝熱管と、を有する熱交換部と、
     前記伝熱管と他の前記伝熱管とを接続する複数の接続管と、を備え、
     複数の前記フィンは、上部領域と、下部領域と、を有し、
     複数の前記伝熱管は、前記上部領域を貫通する複数の上部伝熱管と、前記下部領域を貫通する複数の下部伝熱管と、を有し、
     前記接続管を介して、前記上部伝熱管及び前記下部伝熱管の一方から他方に冷媒が導かれること
     を特徴とする熱交換器。
    A heat exchange portion having a plurality of fins arranged in parallel in a plane direction with a predetermined interval, and a plurality of heat transfer tubes penetrating the plurality of fins;
    And a plurality of connecting pipes for connecting the heat transfer pipe and the other heat transfer pipe,
    The plurality of fins have an upper region and a lower region,
    The plurality of heat transfer tubes have a plurality of upper heat transfer tubes passing through the upper region and a plurality of lower heat transfer tubes passing through the lower region.
    A heat exchanger characterized in that a refrigerant is introduced from one of the upper heat transfer pipe and the lower heat transfer pipe to the other through the connection pipe.
  2.  複数の前記接続管は、前記上部伝熱管との接続位置の高さが高いほど、前記下部伝熱管との接続位置の高さが低いこと
     を特徴とする請求項1に記載の熱交換器。
    The heat exchanger according to claim 1, wherein the height of the connection position with the lower heat transfer pipe is lower as the height of the connection position with the upper heat transfer pipe is higher.
  3.  前記熱交換部が凝縮器として機能する場合において、
     前記上部伝熱管との接続位置の高さが、前記上部領域において(2n-1)番目に高く、前記下部伝熱管との接続位置の高さが、前記下部領域において(2n-1)番目に低い前記接続管を介して、前記上部伝熱管から前記下部伝熱管に冷媒が導かれ、
     前記上部伝熱管との接続位置の高さが、前記上部領域において2n番目に高く、前記下部伝熱管との接続位置の高さが、前記下部領域において2n番目に低い前記接続管を介して、前記下部伝熱管から前記上部伝熱管に冷媒が導かれること
     を特徴とする請求項2に記載の熱交換器。
     ここで、nは自然数である。
    In the case where the heat exchange unit functions as a condenser,
    The height of the connection position with the upper heat transfer tube is the (2n-1) th highest in the upper region, and the height of the connection position with the lower heat transfer tube is the (2n-1) th in the lower region The refrigerant is led from the upper heat transfer pipe to the lower heat transfer pipe via the lower connection pipe,
    The height of the connection position with the upper heat transfer pipe is 2n-th highest in the upper region, and the height of the connection position with the lower heat-transfer pipe is 2n the lowest in the lower region via the connection pipe The heat exchanger according to claim 2, wherein a refrigerant is led from the lower heat transfer pipe to the upper heat transfer pipe.
    Here, n is a natural number.
  4.  前記熱交換部が凝縮器として機能する場合において、
     前記上部伝熱管との接続位置の高さが、前記上部領域において(2n-1)番目に高く、前記下部伝熱管との接続位置の高さが、前記下部領域において2n番目に高い前記接続管を介して、前記上部伝熱管から前記下部伝熱管に冷媒が導かれ、
     前記上部伝熱管との接続位置の高さが、前記上部領域において2n番目に高く、前記下部伝熱管との接続位置の高さが、前記下部領域において(2n-1)番目に高い前記接続管を介して、前記下部伝熱管から前記上部伝熱管に冷媒が導かれること
     を特徴とする請求項1に記載の熱交換器。
     ここで、nは自然数である。
    In the case where the heat exchange unit functions as a condenser,
    The height of the connection position with the upper heat transfer pipe is (2n-1) th highest in the upper region, and the height of the connection position with the lower heat transfer pipe is the 2nth highest in the lower region The refrigerant is led from the upper heat transfer pipe to the lower heat transfer pipe via
    The height of the connection position with the upper heat transfer tube is 2nth highest in the upper region, and the height of the connection position with the lower heat transfer tube is the (2n-1) th highest in the lower region The heat exchanger according to claim 1, wherein the refrigerant is led from the lower heat transfer pipe to the upper heat transfer pipe via the heat transfer pipe.
    Here, n is a natural number.
  5.  複数の前記フィンには、鉛直方向に配列された複数の孔が複数列設けられ、
     前記上部領域の複数の前記孔には、それぞれ、前記上部伝熱管が貫通し、
     前記下部領域の複数の前記孔には、それぞれ、前記下部伝熱管が貫通し、
     前記熱交換部が凝縮器として機能する場合において、
     前記複数列のうち、前記熱交換部に向けて空気を送るファンとは反対側の列の前記上部伝熱管を通流する冷媒は、前記接続管を介して、前記ファン側の列の前記下部伝熱管に導かれ、
     前記複数列のうち、前記ファンとは反対側の列の前記下部伝熱管を通流する冷媒は、前記接続管を介して、前記ファン側の列の前記上部伝熱管に導かれること
     を特徴とする請求項1に記載の熱交換器。
    A plurality of rows of holes arranged in the vertical direction are provided in the plurality of fins.
    The upper heat transfer tube passes through the plurality of holes in the upper region, respectively;
    Each of the lower heat transfer tubes penetrates the plurality of holes in the lower region;
    In the case where the heat exchange unit functions as a condenser,
    Among the plurality of rows, the refrigerant flowing through the upper heat transfer pipe of the row opposite to the fan that sends air toward the heat exchange portion is the lower portion of the lower row of the fan side via the connection tube. Led to the heat transfer tube,
    Among the plurality of rows, the refrigerant flowing through the lower heat transfer tube in a row opposite to the fan is guided to the upper heat transfer tube in the row on the fan side via the connection tube. The heat exchanger according to claim 1.
  6.  複数の前記フィンには、鉛直方向に配列された複数の孔が複数列設けられ、
     前記上部領域の複数の前記孔には、それぞれ、前記上部伝熱管が貫通し、
     前記下部領域の複数の前記孔には、それぞれ、前記下部伝熱管が貫通し、
     前記熱交換部が凝縮器として機能する場合において、
     前記複数列のうち、前記熱交換部に向けて空気を送るファンとは反対側の列の前記上部伝熱管を通流する冷媒は、前記ファン側の列の前記上部伝熱管に導かれた後、前記接続管を介して、前記ファン側の列の前記下部伝熱管に導かれ、
     前記複数列のうち、前記ファンとは反対側の列の前記下部伝熱管を通流する冷媒は、前記ファン側の列の前記下部伝熱管に導かれた後、前記接続管を介して、前記ファン側の列の前記上部伝熱管に導かれること
     を特徴とする請求項1に記載の熱交換器。
    A plurality of rows of holes arranged in the vertical direction are provided in the plurality of fins.
    The upper heat transfer tube passes through the plurality of holes in the upper region, respectively;
    Each of the lower heat transfer tubes penetrates the plurality of holes in the lower region;
    In the case where the heat exchange unit functions as a condenser,
    Among the plurality of rows, the refrigerant flowing through the upper heat transfer tube of the row opposite to the fan that sends air toward the heat exchange portion is led to the upper heat transfer tube of the row on the fan side , Led to the lower heat transfer tube of the fan-side row via the connection tube,
    The refrigerant flowing through the lower heat transfer tube in the row opposite to the fan among the plurality of rows is led to the lower heat transfer tube in the row on the fan side, and then the refrigerant is passed through the connection tube. The heat exchanger according to claim 1, wherein the heat exchanger is led to the upper heat transfer tubes in a fan-side row.
  7.  複数の前記フィンには、鉛直方向に配列された複数の孔が複数列設けられ、
     前記上部領域の複数の前記孔には、それぞれ、前記上部伝熱管が貫通し、
     前記下部領域の複数の前記孔には、それぞれ、前記下部伝熱管が貫通し、
     前記熱交換部が凝縮器として機能する場合において、
     前記複数列のうち、前記熱交換部に向けて空気を送るファンとは反対側の列の前記上部伝熱管を通流する冷媒は、前記接続管を介して、前記ファンとは反対側の列の前記下部伝熱管に導かれた後、前記ファン側の列の前記下部伝熱管に導かれ、
     前記複数列のうち、前記ファンとは反対側の列の前記下部伝熱管を通流する冷媒は、前記接続管を介して、前記ファンとは反対側の列の前記上部伝熱管に導かれた後、前記ファン側の列の前記上部伝熱管に導かれること
     を特徴とする請求項1に記載の熱交換器。
    A plurality of rows of holes arranged in the vertical direction are provided in the plurality of fins.
    The upper heat transfer tube passes through the plurality of holes in the upper region, respectively;
    Each of the lower heat transfer tubes penetrates the plurality of holes in the lower region;
    In the case where the heat exchange unit functions as a condenser,
    Among the plurality of rows, the refrigerant flowing through the upper heat transfer pipe in the row opposite to the fan that sends air toward the heat exchange unit is a row that is opposite to the fan via the connection tube. Are led to the lower heat transfer tubes of the fan-side row,
    The refrigerant flowing through the lower heat transfer tube in the opposite row to the fan among the plurality of rows is led to the upper heat transfer tube in the opposite row to the fan via the connection tube. The heat exchanger according to claim 1, which is then led to the upper heat transfer tubes of the fan-side row.
  8.  前記伝熱管は、水平方向に複数の孔が配列されてなる多孔管であること
     を特徴とする請求項1から請求項7のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 7, wherein the heat transfer tube is a perforated tube in which a plurality of holes are arranged in the horizontal direction.
  9.  圧縮機と、室外熱交換器と、少なくとも一つの膨張弁と、室内熱交換器と、が環状に順次接続され、冷凍サイクルで冷媒が循環する冷媒回路を備え、
     前記室外熱交換器及び前記室内熱交換器のうち一方又は両方は、
     所定の間隔を設けて面方向が平行に配置される複数のフィンと、複数の前記フィンを貫通する複数の伝熱管と、を有する熱交換部と、
     前記伝熱管と他の前記伝熱管とを接続する複数の接続管と、を備え、
     複数の前記フィンは、上部領域と、下部領域と、を有し、
     複数の前記伝熱管は、前記上部領域を貫通する複数の上部伝熱管と、前記下部領域を貫通する複数の下部伝熱管と、を有し、
     前記接続管を介して、前記上部伝熱管及び前記下部伝熱管の一方から他方に冷媒が導かれること
     を特徴とする空気調和機。
    The compressor, the outdoor heat exchanger, the at least one expansion valve, and the indoor heat exchanger are sequentially connected in a ring, and the refrigerant circuit includes a refrigerant circulating in the refrigeration cycle.
    One or both of the outdoor heat exchanger and the indoor heat exchanger are:
    A heat exchange portion having a plurality of fins arranged in parallel in a plane direction with a predetermined interval, and a plurality of heat transfer tubes penetrating the plurality of fins;
    And a plurality of connecting pipes for connecting the heat transfer pipe and the other heat transfer pipe,
    The plurality of fins have an upper region and a lower region,
    The plurality of heat transfer tubes have a plurality of upper heat transfer tubes passing through the upper region and a plurality of lower heat transfer tubes passing through the lower region.
    An air conditioner characterized in that a refrigerant is led from one of the upper heat transfer pipe and the lower heat transfer pipe to the other through the connection pipe.
PCT/JP2017/011035 2016-04-26 2017-03-17 Heat exchanger and air conditioner WO2017187840A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780025312.XA CN109073334B (en) 2016-04-26 2017-03-17 Heat exchanger and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016087815A JP6531063B2 (en) 2016-04-26 2016-04-26 Heat exchanger and air conditioner
JP2016-087815 2016-04-26

Publications (1)

Publication Number Publication Date
WO2017187840A1 true WO2017187840A1 (en) 2017-11-02

Family

ID=60161357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/011035 WO2017187840A1 (en) 2016-04-26 2017-03-17 Heat exchanger and air conditioner

Country Status (4)

Country Link
JP (1) JP6531063B2 (en)
CN (1) CN109073334B (en)
TW (1) TWI634305B (en)
WO (1) WO2017187840A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200053137A (en) * 2018-11-08 2020-05-18 엘지전자 주식회사 Heat exchanger and air-conditioner having the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489209A (en) * 1968-12-23 1970-01-13 Herbert G Johnson Heat exchanger having plastic and metal components
JP2005083607A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Heat exchanger of air conditioner
JP2007163013A (en) * 2005-12-13 2007-06-28 Mitsubishi Electric Corp Refrigerating cycle device
DE202007009383U1 (en) * 2007-07-02 2007-09-06 Kalor Thermotechnik Gmbh Heating body has heating pipes connected to collection tubes connected to and essentially aligned with heating tubes in longitudinal direction of heating tubes
JP2009063216A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
KR20120043916A (en) * 2010-10-27 2012-05-07 엘지전자 주식회사 Heat exchanging apparatus
JP2013053812A (en) * 2011-09-05 2013-03-21 Sharp Corp Parallel flow heat exchanger and air conditioner mounted with the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835741A (en) * 1994-07-22 1996-02-06 Sanyo Electric Co Ltd Heat exchanger
JP3344218B2 (en) * 1996-06-17 2002-11-11 株式会社日立製作所 Heat exchanger
CN1125309C (en) * 1996-10-02 2003-10-22 松下电器产业株式会社 Finned heat exchanger
FR2758876B1 (en) * 1997-01-27 1999-04-02 Valeo Thermique Moteur Sa CONDENSER PROVIDED WITH A REFRIGERANT FLUID TANK FOR AIR CONDITIONING CIRCUIT
JP4814907B2 (en) * 2008-05-29 2011-11-16 日立アプライアンス株式会社 Refrigeration cycle equipment
JP4845943B2 (en) * 2008-08-26 2011-12-28 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle air conditioner
JP5716496B2 (en) * 2011-03-31 2015-05-13 ダイキン工業株式会社 Heat exchanger and air conditioner
JP5627635B2 (en) * 2012-04-26 2014-11-19 三菱電機株式会社 Air conditioner
JP2015108495A (en) * 2013-12-06 2015-06-11 株式会社コロナ Air conditioner
JP6456088B2 (en) * 2014-09-29 2019-01-23 三菱重工サーマルシステムズ株式会社 Radiator and refrigeration cycle device
CN104596155B (en) * 2015-01-27 2017-11-07 珠海格力电器股份有限公司 Fin heat exchanger and air conditioner
JP2017036900A (en) * 2015-08-13 2017-02-16 三菱重工業株式会社 Radiator and super-critical pressure refrigerating-cycle using the radiator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3489209A (en) * 1968-12-23 1970-01-13 Herbert G Johnson Heat exchanger having plastic and metal components
JP2005083607A (en) * 2003-09-05 2005-03-31 Matsushita Electric Ind Co Ltd Heat exchanger of air conditioner
JP2007163013A (en) * 2005-12-13 2007-06-28 Mitsubishi Electric Corp Refrigerating cycle device
DE202007009383U1 (en) * 2007-07-02 2007-09-06 Kalor Thermotechnik Gmbh Heating body has heating pipes connected to collection tubes connected to and essentially aligned with heating tubes in longitudinal direction of heating tubes
JP2009063216A (en) * 2007-09-06 2009-03-26 Hitachi Appliances Inc Heat exchanger and air conditioner using the same
KR20120043916A (en) * 2010-10-27 2012-05-07 엘지전자 주식회사 Heat exchanging apparatus
JP2013053812A (en) * 2011-09-05 2013-03-21 Sharp Corp Parallel flow heat exchanger and air conditioner mounted with the same

Also Published As

Publication number Publication date
JP2017198367A (en) 2017-11-02
TW201738524A (en) 2017-11-01
TWI634305B (en) 2018-09-01
JP6531063B2 (en) 2019-06-12
CN109073334A (en) 2018-12-21
CN109073334B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
CN112204312B (en) Outdoor unit of air conditioner and air conditioner
AU2015325721B2 (en) Heat exchanger and air conditioning apparatus
JP5754490B2 (en) Heat exchanger and air conditioner
AU2012355058B2 (en) Air conditioning apparatus
WO2018116929A1 (en) Heat exchanger and air conditioner
JP2011127831A (en) Heat exchanger and refrigerating cycle device including the same
JP2018162900A (en) Heat exchanger and air conditioner including the same
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
JPWO2015189990A1 (en) Heat exchanger
JP2018194251A (en) Heat exchanger
US12000633B2 (en) Outdoor unit and air-conditioning apparatus
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP6531063B2 (en) Heat exchanger and air conditioner
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
JP6458432B2 (en) Heat exchanger
JP2020112274A (en) Heat exchanger
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
JP2020115070A (en) Heat exchanger
JP2020085267A (en) Heat exchanger
WO2016092655A1 (en) Refrigeration cycle device
JP2020085268A (en) Heat exchanger
JP2020115069A (en) Heat exchanger
JPWO2016098204A1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789129

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789129

Country of ref document: EP

Kind code of ref document: A1