JP2015108495A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2015108495A
JP2015108495A JP2013252678A JP2013252678A JP2015108495A JP 2015108495 A JP2015108495 A JP 2015108495A JP 2013252678 A JP2013252678 A JP 2013252678A JP 2013252678 A JP2013252678 A JP 2013252678A JP 2015108495 A JP2015108495 A JP 2015108495A
Authority
JP
Japan
Prior art keywords
pipe
heat transfer
heat exchanger
branch pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013252678A
Other languages
Japanese (ja)
Inventor
秀穂 藤田
Hideo Fujita
秀穂 藤田
智史 莅戸
Tomohito Nozokido
智史 莅戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2013252678A priority Critical patent/JP2015108495A/en
Publication of JP2015108495A publication Critical patent/JP2015108495A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner for dispersing a coolant in an outdoor heat exchanger so that the coolant may be homogenized to improve a heat exchange efficiency.SOLUTION: A coolant having flown from a first branch pipe 18 is vertically split by first and second pipe arrangements 19 and 20. The coolant caused to flow upward by the first pipe arrangement is connected to a second branch pipe 21, and is shunted to lee side heat transfer pipes 17 of two upper and lower adjacent directions, to move to an upwind side heat transfer pipe 16 via a lee side heat transfer pipe, to merge into a third branch pipe 22 belonging to the upwind side heat transfer pipe 16, and to move via a third pipe arrangement 23 to the upwind side heat transfer pipe 16 and then from a fourth pipe arrangement 24 to a fourth branch pipe 25. The coolant caused to flow downward by the second pipe arrangement is connected to a fifth branch pipe 26, and is shunted to lee side heat transfer pipes of two upper and lower adjacent directions. After this, the coolant moves to the upwind side heat transfer pipe so that they merge at a sixth branch pipe 27 belonging to the upwind side heat transfer pipe. The coolant moves to the lee side heat transfer pipe in the center of a heat exchanger via a fifth pipe arrangement 28, and then reaches the fourth branch pipe from a sixth pipe arrangement 29 after having moved to the upwind side heat transfer pipe, so that it merges into the coolant of the fourth pipe arrangement side.

Description

この発明は、一般家庭用で使用する小型の空気調和機に関するものである。   The present invention relates to a small air conditioner used for general household use.

従来例として、圧縮機及び熱交換器を備えた室外ユニットと室内ユニットとを冷媒配管でつないだ空気調和機において、前記熱交換器は、風の後流側に冷媒入口として第1分岐管が配置され、隣接する2つの伝熱管に第1分岐管により冷媒が分流されて2つのサーキットとして冷媒を流し、2つのサーキットの隣接する2つの伝熱管を第2分岐管で合流させたのち、第2分岐管を長配管により熱交換器下部の後流側の伝熱管に接続させて熱交換器前流側最下端より冷媒を排出させるようにしたので、冷媒は、第1分岐管で隣接する2つの伝熱管に分岐されて2つのサーキットに流されて長い配管が不要になり、熱交換器の効率を向上させることが可能となる。また、2つのサーキットを第1分岐管で合流させて、風の後流側の伝熱管に接続しているので、冷媒の流れをカウンターフローにすることができ、熱交換器の効率を好ましい状態にすることができるものだった。(例えば、特許文献1参照)   As a conventional example, in an air conditioner in which an outdoor unit including a compressor and a heat exchanger and an indoor unit are connected by a refrigerant pipe, the heat exchanger has a first branch pipe as a refrigerant inlet on the wake side of the wind. The refrigerant is divided into two adjacent heat transfer pipes by the first branch pipe to flow the refrigerant as two circuits, and the two adjacent heat transfer pipes of the two circuits are joined by the second branch pipe. Since the two branch pipes are connected to the heat transfer pipe on the downstream side of the heat exchanger by the long pipe and the refrigerant is discharged from the lowermost end on the upstream side of the heat exchanger, the refrigerant is adjacent to the first branch pipe. Branching into two heat transfer tubes and flowing into two circuits eliminates the need for long pipes, thereby improving the efficiency of the heat exchanger. In addition, since the two circuits are joined by the first branch pipe and connected to the heat transfer pipe on the wake side of the wind, the refrigerant flow can be changed to the counter flow, and the efficiency of the heat exchanger is favorable. It was something that could be done. (For example, see Patent Document 1)

特開平11−230637号公報JP-A-11-230637

近年、地球温暖化問題が顕著化になり、あらゆる分野でエネルギー効率向上の試みが行われており、空気調和機の熱交換器でも更なる一層の熱交換効率の向上が必要である。   In recent years, the global warming problem has become prominent, and attempts have been made to improve energy efficiency in all fields, and further heat exchange efficiency needs to be improved even in heat exchangers of air conditioners.

この発明はこの点に着目し上記欠点を解決する為、特にその構成を、圧縮機と四方弁、熱交換器等を備えた室外機と室内機とを冷媒配管で接続した空気調和機に於いて、前記熱交換器は水平かつ平行で多数の風上側伝熱管と風下側伝熱管が多数のフィンを貫通して設けられ、前記熱交換器は、風の下流側に第1分岐管を備え、冷房運転時この第1分岐管から流入した冷媒は第1配管と第2配管によって上下に分流され、第1配管によって熱交換器上部に流れた冷媒は第2分岐管に接続され、この第2分岐管に近接する上下2方向の風下側伝熱管に分流して冷媒を流した後、多数の風下側伝熱管を経由した後、風上側伝熱管に移動し風上側伝熱管に備えた第3分岐管にて合流し、第3配管を通って熱交換器最下部の風下側伝熱管に流れ、風上側伝熱管に移動後第4配管から第4分岐管に到る、一方前記第2配管によって熱交換器下部に流れた冷媒は第5分岐管に接続され、この第5分岐管に近接する上下2方向の風下側伝熱管に分流して冷媒を流した後、多数の風下側伝熱管を流れた後、風上側伝熱管に移動し風上側伝熱管に備えた第6分岐管にて合流し、第5配管を経由して熱交換器上部と熱交換器下部の間に位置する熱交換器中央部の風下側伝熱管に流れ、風上側伝熱管に移動後第6配管から前記第4分岐管に到り第4配管側の冷媒と合流して冷媒を排出するようにしたものである。   The present invention pays attention to this point and solves the above-described drawbacks. In particular, the present invention is an air conditioner in which an outdoor unit including a compressor, a four-way valve, a heat exchanger, etc. and an indoor unit are connected by a refrigerant pipe. The heat exchanger is horizontal and parallel, and a large number of windward side heat transfer tubes and a leeward side heat transfer tube are provided through a large number of fins, and the heat exchanger includes a first branch pipe on the downstream side of the wind. During the cooling operation, the refrigerant flowing in from the first branch pipe is vertically divided by the first pipe and the second pipe, and the refrigerant flowing to the upper portion of the heat exchanger by the first pipe is connected to the second branch pipe. The flow is divided into two leeward heat transfer tubes in the upper and lower directions adjacent to the bifurcated tube, flows through the refrigerant, passes through a number of leeward heat transfer tubes, then moves to the windward heat transfer tube, and is provided in the windward heat transfer tube. Merges at the three branch pipes, flows through the third pipe to the leeward heat transfer pipe at the bottom of the heat exchanger, From the fourth pipe to the fourth branch pipe after moving to the heat pipe, the refrigerant that has flowed to the lower part of the heat exchanger by the second pipe is connected to the fifth branch pipe, and the two directions in the vertical direction close to the fifth branch pipe The refrigerant is divided into the leeward side heat transfer tubes and then flows through the numerous leeward side heat transfer tubes, and then moves to the windward side heat transfer tube and joins at the sixth branch pipe provided in the windward side heat transfer tube. It flows to the leeward heat transfer pipe in the center of the heat exchanger located between the upper part of the heat exchanger and the lower part of the heat exchanger via the five pipes, moves to the upwind heat transfer pipe, and then moves from the sixth pipe to the fourth branch pipe. In the end, the refrigerant is merged with the refrigerant on the fourth pipe side and discharged.

この発明によれば、冷媒を熱交換器内に分散して均一に流すことで過冷却度を均一にして熱交換器の効率を向上し、冷房運転の性能を向上させることができる。   According to the present invention, the refrigerant is dispersed in the heat exchanger and allowed to flow uniformly, so that the degree of supercooling is made uniform, the efficiency of the heat exchanger is improved, and the performance of the cooling operation can be improved.

この発明一実施例の概略構成図。The schematic block diagram of one Example of this invention. 同熱交換器の側面方向の断面図。Sectional drawing of the side surface direction of the same heat exchanger.

次にこの発明の一実施形態を図面に基づき説明する。
1は屋外に設置される空気調和機の室外機で、室内に設置される室内機2と冷媒配管3で接続される。この空気調和機は、インバータ制御により回転数可変の圧縮機3と、四方弁5と、室外熱交換器6と、膨張弁7と、室内熱交換器8とが順次接続され冷凍回路を形成するものである。
Next, an embodiment of the present invention will be described with reference to the drawings.
1 is an outdoor unit of an air conditioner installed outdoors, and is connected to an indoor unit 2 installed indoors by a refrigerant pipe 3. In this air conditioner, the compressor 3, the four-way valve 5, the outdoor heat exchanger 6, the expansion valve 7, and the indoor heat exchanger 8 are sequentially connected to form a refrigeration circuit by the inverter control. Is.

前記室外熱交換器6には、この室外熱交換器6の能力を調整するための室外ファン(プロペラファン)9が付設され、この室外ファンは室外モータ10にて駆動されるもので、交流電源を使用する安価なACモータを使用することによってコストダウンを行うものであり、供給する交流電源のパルスを操作するサイクル制御によって室外モータ10の回転数をコントロールするものである。   The outdoor heat exchanger 6 is provided with an outdoor fan (propeller fan) 9 for adjusting the capacity of the outdoor heat exchanger 6, and this outdoor fan is driven by an outdoor motor 10, and is supplied with an AC power source. The cost is reduced by using an inexpensive AC motor that uses the motor, and the rotational speed of the outdoor motor 10 is controlled by cycle control that operates the pulse of the supplied AC power supply.

前記室内熱交換器8には、この室内熱交換器8の能力を調整するための室内ファン11が付設されている。更に、この空気調和機は前記圧縮機4の吐出温度を検出する吐出温度と、外気温度と、室内熱交換器温度とを検出するセンサー類(図示せず)を備える。   The indoor heat exchanger 8 is provided with an indoor fan 11 for adjusting the capacity of the indoor heat exchanger 8. The air conditioner further includes sensors (not shown) for detecting the discharge temperature for detecting the discharge temperature of the compressor 4, the outside air temperature, and the indoor heat exchanger temperature.

12は室内制御部で、内部に備えたマイコンの機能として能力制御手段(図示せず)を備え、この能力制御手段は室内ファン11の風量を増減させる室内ファン制御、圧縮機4の能力を増減させる圧縮機能力制御等を行うものである。   An indoor control unit 12 includes a capacity control means (not shown) as a function of an internal microcomputer. The capacity control means controls the indoor fan to increase or decrease the air volume of the indoor fan 11, and increases or decreases the capacity of the compressor 4. Compression function force control to be performed.

室外機1内には室外制御部13を備え、内部に備えたマイコンの機能として吐出温度と凝縮温度を検知して、予め設定された目標吐出温度や凝縮温度に近づけるように室外ファン9の回転を制御するものである。   The outdoor unit 1 includes an outdoor control unit 13 that detects the discharge temperature and the condensation temperature as a function of the microcomputer provided therein, and rotates the outdoor fan 9 so as to approach the preset target discharge temperature and the condensation temperature. Is to control.

前記室外熱交換器6は多数の薄板状のアルミニュームフィン14を銅管製の伝熱管15が貫通して形成されるフィンチューブ式の熱交換器で、前記伝熱管15は垂直方向に等間隔で24本が水平方向に延びる風上側伝熱管16と、この風上側伝熱管16と平行で千鳥足状に位置する24本の風下側伝熱管17で形成されいる。   The outdoor heat exchanger 6 is a fin tube type heat exchanger in which a large number of thin plate-like aluminum fins 14 are formed through copper tube heat transfer tubes 15, and the heat transfer tubes 15 are equally spaced in the vertical direction. The 24 windward side heat transfer tubes 16 extending in the horizontal direction and the 24 leeward side heat transfer tubes 17 parallel to the windward side heat transfer tube 16 and positioned in a staggered pattern are formed.

前記室外熱交換器6は風の下流側で上下方向の略中央に第1分岐管18を備え、冷房運転時に圧縮機4から送られた高温で高圧の冷媒が第1分岐管18から流入し、冷媒は第1配管19と第2配管20によって上下に分流され、第1配管19から室外熱交換器上部6aに流れた冷媒は第2分岐管21に接続される。   The outdoor heat exchanger 6 includes a first branch pipe 18 at a substantially central position in the vertical direction on the downstream side of the wind, and a high-temperature and high-pressure refrigerant sent from the compressor 4 during the cooling operation flows from the first branch pipe 18. The refrigerant is split up and down by the first pipe 19 and the second pipe 20, and the refrigerant flowing from the first pipe 19 to the outdoor heat exchanger upper part 6 a is connected to the second branch pipe 21.

前記第2分岐管21は上から4段目と5段目の近接する風下側伝熱管17に接続され上下2方向に分流して冷媒を流した後、上側に流れた冷媒は4本の風下側伝熱管17を通過した後、風上側伝熱管16の最上段から風上側伝熱管16の6段目に到る。一方下側に流れた冷媒は6本の風下側伝熱管17を通過した後、風上側伝熱管16の10段目に移動し上方向に7段目に到り、上下の冷媒が風上側伝熱管16の6段目と7段目に接続された第3分岐管22で合流する。   The second branch pipe 21 is connected to the leeward side heat transfer pipes 17 adjacent to the fourth and fifth stages from the top, and after splitting the refrigerant in two directions up and down, the refrigerant that has flowed upward is four downwinds. After passing through the side heat transfer tube 17, the uppermost stage of the windward side heat transfer tube 16 reaches the sixth stage of the windward side heat transfer tube 16. On the other hand, the refrigerant flowing downward passes through the six leeward heat transfer tubes 17 and then moves to the 10th stage of the windward heat transfer pipe 16 and reaches the seventh stage in the upward direction. The heat pipe 16 joins at the third branch pipe 22 connected to the sixth and seventh stages.

前記第3分岐管22で合流した冷媒は第3配管23によって熱交換器最下部6bの風下側伝熱管17の下から2段目に流れ、風下側伝熱管17の最下段を通って風上側伝熱管16の最下段に移動後、下から2段目から第4配管24を経由して第4分岐管25に到る。   The refrigerant merged in the third branch pipe 22 flows through the third pipe 23 to the second stage from the bottom of the leeward heat transfer pipe 17 in the lowermost part 6 b of the heat exchanger, passes through the lowermost stage of the leeward heat transfer pipe 17, and rises to the windward side. After moving to the lowest stage of the heat transfer pipe 16, the second stage from the bottom reaches the fourth branch pipe 25 via the fourth pipe 24.

前記第2配管20によって熱交換器下部6cに流れた冷媒は第5分岐管26に接続され、この第5分岐管26は上から14段目と15段目の近接する風下側伝熱管17に接続され上下2方向に分流して冷媒を流した後、上側に流れた冷媒は2本の風下側伝熱管17を通過した後、風上側伝熱管16の13段目から風上側伝熱管16の20段目に到る。一方下側に流れた冷媒は8本の風下側伝熱管17を通過した後、風上側伝熱管16の22段目に移動し上方向に21段目に到り、上下の冷媒が風上側伝熱管16の20段目と21段目に接続された第6分岐管27で合流する。   The refrigerant flowing to the heat exchanger lower part 6c by the second pipe 20 is connected to the fifth branch pipe 26, and the fifth branch pipe 26 is connected to the leeward heat transfer pipe 17 adjacent to the 14th and 15th stages from the top. After being connected and diverted in two directions up and down to flow the refrigerant, the refrigerant flowing upward passes through the two leeward heat transfer tubes 17 and then from the 13th stage of the windward heat transfer tube 16 to the windward heat transfer tube 16. The 20th stage is reached. On the other hand, the refrigerant flowing downward passes through the eight leeward heat transfer tubes 17 and then moves to the 22nd stage of the windward heat transfer pipe 16 and reaches the 21st stage in the upward direction. The heat pipe 16 joins at the sixth branch pipe 27 connected to the 20th stage and the 21st stage.

前記第6分岐管27で合流した冷媒は第5配管28によって熱交換器中央部6dの風下側伝熱管17の上から11段目に流れ、風下側伝熱管17の12段目を通って風上側伝熱管16の上から12段目に移動後、上から11段目から第6配管29を経由して第4分岐管25に到り、第4配管24側の冷媒と合流して冷媒を排出する。   The refrigerant merged in the sixth branch pipe 27 flows through the fifth pipe 28 to the eleventh stage from the top of the leeward heat transfer pipe 17 in the central portion 6d of the heat exchanger, and passes through the twelfth stage of the leeward heat transfer pipe 17 to wind. After moving to the 12th stage from the top of the upper heat transfer pipe 16, the 11th stage from the top reaches the fourth branch pipe 25 via the sixth pipe 29, and merges with the refrigerant on the fourth pipe 24 side to supply the refrigerant. Discharge.

暖房運転時には前記四方弁5の切換により、室外熱交換器6の冷媒の流れる方向は冷房運転時とは逆になるものであるが、暖房運転中の除霜運転では冷媒の冷媒の流れる方向は冷房運転と同じ方向になり、除霜運転では比較的温度の高い冷媒を熱交換器最下部6bに流すことで除霜運転終了時の融け残りを防止するものである。   During the heating operation, the direction of the refrigerant flowing in the outdoor heat exchanger 6 is opposite to that during the cooling operation by switching the four-way valve 5, but in the defrosting operation during the heating operation, the direction of the refrigerant flowing in the refrigerant is It becomes the same direction as the cooling operation, and in the defrosting operation, a relatively high temperature refrigerant is passed through the heat exchanger lowermost part 6b to prevent unmelting at the end of the defrosting operation.

このように、室外熱交換器6の冷媒経路を熱交換器上部6aと熱交換器中央部6d、熱交換器下部6c、熱交換器最下部6bに分けて、冷媒循環量を調整することで、冷媒を熱交換器6内に分散して均一に流すことができ、過冷却度を均一にして熱交換器の効率を向上し、冷房運転の性能を向上させることができる。
また、暖房運転中の除霜運転では比較的温度の高い冷媒を熱交換器最下部6bに流すことで除霜運転終了時の融け残りを防止するものである。
In this way, the refrigerant path of the outdoor heat exchanger 6 is divided into the heat exchanger upper part 6a, the heat exchanger central part 6d, the heat exchanger lower part 6c, and the heat exchanger lowest part 6b, thereby adjusting the refrigerant circulation amount. The refrigerant can be dispersed and flown uniformly in the heat exchanger 6, the degree of supercooling can be made uniform, the efficiency of the heat exchanger can be improved, and the performance of the cooling operation can be improved.
Further, in the defrosting operation during the heating operation, a relatively high-temperature refrigerant is caused to flow through the heat exchanger lowermost part 6b to prevent unmelting at the end of the defrosting operation.

1 室外機
2 室内機
4 圧縮機
6 室外熱交換器
6a 熱交換器上部
6b 熱交換器最下部
6c 熱交換器下部
6d 熱交換器中央部
12 フィン
16 風上側伝熱管
17 風下側伝熱管
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 4 Compressor 6 Outdoor heat exchanger 6a Heat exchanger upper part 6b Heat exchanger lowest part 6c Heat exchanger lower part 6d Heat exchanger center part 12 Fin 16 Upward side heat exchanger tube 17 Downward side heat exchanger tube

Claims (1)

圧縮機と四方弁、室外熱交換器等を備えた室外機と室内機とを冷媒配管で接続した空気調和機に於いて、前記室外熱交換器は水平かつ平行で多数の風上側伝熱管と風下側伝熱管が多数のフィンを貫通して設けられ、前記熱交換器は風の下流側に第1分岐管を備え、冷房運転時この第1分岐管から流入した冷媒は第1配管と第2配管によって上下に分流され、第1配管によって熱交換器上部に流れた冷媒は第2分岐管に接続され、この第2分岐管に近接する上下2方向の風下側伝熱管に分流して冷媒を流した後、多数の風下側伝熱管を経由した後、風上側伝熱管に移動し風上側伝熱管に備えた第3分岐管にて合流し、第3配管を通って熱交換器最下部の風下側伝熱管に流れ、風上側伝熱管に移動後第4配管から第4分岐管に到る、一方前記第2配管によって熱交換器下部に流れた冷媒は第5分岐管に接続され、この第5分岐管に近接する上下2方向の風下側伝熱管に分流して冷媒を流した後、多数の風下側伝熱管を流れた後、風上側伝熱管に移動し風上側伝熱管に備えた第6分岐管にて合流し、第5配管を経由して熱交換器上部と熱交換器下部の間に位置する熱交換器中央部の風下側伝熱管に流れ、風上側伝熱管に移動後第6配管から前記第4分岐管に到り第4配管側の冷媒と合流して冷媒を排出することを特徴とする空気調和機。   In an air conditioner in which an outdoor unit provided with a compressor, a four-way valve, an outdoor heat exchanger, etc., and the indoor unit are connected by a refrigerant pipe, the outdoor heat exchanger is horizontal and parallel to a number of windward side heat transfer tubes and A leeward heat transfer pipe is provided through a large number of fins, and the heat exchanger includes a first branch pipe on the downstream side of the wind. During cooling operation, the refrigerant flowing from the first branch pipe is connected to the first pipe and the first pipe. The refrigerant divided up and down by the two pipes and flowing to the upper part of the heat exchanger by the first pipe is connected to the second branch pipe, and is divided into the two up and down leeward heat transfer pipes adjacent to the second branch pipe. After passing through a large number of leeward side heat transfer tubes, it moves to the windward side heat transfer tube, joins at the third branch pipe provided in the windward side heat transfer tube, passes through the third pipe and reaches the bottom of the heat exchanger Flow from the fourth pipe to the fourth branch pipe after moving to the windward heat transfer pipe, while the second The refrigerant that has flowed to the lower part of the heat exchanger by the pipe is connected to the fifth branch pipe, and after the refrigerant is flown by dividing it into the two leeward heat transfer pipes in the upper and lower directions adjacent to the fifth branch pipe, After flowing through the heat pipe, it moves to the windward heat transfer pipe, joins at the sixth branch pipe provided in the windward heat transfer pipe, and is located between the heat exchanger upper part and the heat exchanger lower part via the fifth pipe. It flows to the leeward heat transfer tube in the center of the heat exchanger, moves to the windward heat transfer tube, reaches the fourth branch pipe from the sixth pipe, merges with the refrigerant on the fourth pipe side, and discharges the refrigerant. Air conditioner to do.
JP2013252678A 2013-12-06 2013-12-06 Air conditioner Pending JP2015108495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013252678A JP2015108495A (en) 2013-12-06 2013-12-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013252678A JP2015108495A (en) 2013-12-06 2013-12-06 Air conditioner

Publications (1)

Publication Number Publication Date
JP2015108495A true JP2015108495A (en) 2015-06-11

Family

ID=53438961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013252678A Pending JP2015108495A (en) 2013-12-06 2013-12-06 Air conditioner

Country Status (1)

Country Link
JP (1) JP2015108495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106871496A (en) * 2017-04-01 2017-06-20 青岛海尔空调器有限总公司 Indoor heat exchanger and air-conditioner
TWI634305B (en) * 2016-04-26 2018-09-01 日立江森自控空調有限公司 Heat exchanger and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634305B (en) * 2016-04-26 2018-09-01 日立江森自控空調有限公司 Heat exchanger and air conditioner
CN106871496A (en) * 2017-04-01 2017-06-20 青岛海尔空调器有限总公司 Indoor heat exchanger and air-conditioner
CN106871496B (en) * 2017-04-01 2019-12-31 青岛海尔空调器有限总公司 Indoor heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
CN202083049U (en) Air conditioner and heat radiation device thereof
CN102927715B (en) Multiple-on-line heat pump air-conditioning system and method for controlling multiple-on-line heat pump air-conditioning system
CN101031754B (en) Air conditioner and method of producing air conditioner
CN103062851B (en) Air-conditioning system and dehumanization method thereof
JP5581671B2 (en) Air conditioner outdoor unit
US9587886B2 (en) Outdoor unit and refrigeration cycle device
CN202133205U (en) Efficient defrosting device of an air-source heat pump water-heater set
CN203980456U (en) Heating and air conditioner
JP5079857B2 (en) Air conditioner indoor unit
JP2015108495A (en) Air conditioner
CN203595309U (en) Control cabinet
CN102767895A (en) Air conditioner used thin finned tube heat exchanger
JP2010216692A (en) Heat exchange device for outdoor unit of air conditioning system
JP6102724B2 (en) Heat exchanger
CN203671790U (en) Air conditioner and heat exchange system thereof
JP6885857B2 (en) Air conditioner
CN106871496A (en) Indoor heat exchanger and air-conditioner
JP5465193B2 (en) Air conditioner unit and air conditioner
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
JP6466047B1 (en) Heat exchanger and air conditioner
CN202532683U (en) Small-caliber finned tube type heat exchanger for air conditioner
CN106016547B (en) Combined heat exchange system
CN202066251U (en) Multi-section heat exchanger and cabinet air conditioner with same
CN201281443Y (en) Splicing structure for air-conditioner heat exchanger
CN102235735B (en) Heat exchanger for heat pump system