WO2017187710A1 - 振動波形センサ及び脈波検出装置 - Google Patents

振動波形センサ及び脈波検出装置 Download PDF

Info

Publication number
WO2017187710A1
WO2017187710A1 PCT/JP2017/004690 JP2017004690W WO2017187710A1 WO 2017187710 A1 WO2017187710 A1 WO 2017187710A1 JP 2017004690 W JP2017004690 W JP 2017004690W WO 2017187710 A1 WO2017187710 A1 WO 2017187710A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration waveform
pair
spacer
substrate
waveform sensor
Prior art date
Application number
PCT/JP2017/004690
Other languages
English (en)
French (fr)
Inventor
啓一 小林
隆 石黒
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to US16/096,076 priority Critical patent/US11395600B2/en
Priority to CN201780026146.5A priority patent/CN109069029A/zh
Priority to JP2018514128A priority patent/JPWO2017187710A1/ja
Publication of WO2017187710A1 publication Critical patent/WO2017187710A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0265Measuring blood flow using electromagnetic means, e.g. electromagnetic flowmeter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H11/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties
    • G01H11/06Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means
    • G01H11/08Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by detecting changes in electric or magnetic properties by electric means using piezoelectric devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger

Definitions

  • the present invention relates to a vibration waveform sensor that measures waveforms of various vibrations such as a pulse and a pulse wave detection device using the vibration waveform sensor, and more specifically, a countermeasure against hum noise in a sensor using a piezoelectric element, and a pulse wave detection device It relates to facilitating the measurement of.
  • Patent Document 1 there is an arteriosclerosis evaluation apparatus described in Patent Document 1 below.
  • first detection means for detecting a pulse wave transmitted through an artery in one place of a living body
  • second detection means for measuring a blood flow velocity of the artery of the living body
  • a first waveform specifying means for specifying the first waveform based on the blood flow velocity obtained by the means, and a second waveform obtained by subtracting the first waveform from the pulse wave detected by the first detecting means.
  • an arteriosclerosis evaluation apparatus comprising: a second waveform determining unit that obtains the above and an evaluation unit that evaluates the degree of arteriosclerosis from the amplitude intensity of the first waveform and the second waveform. And it is disclosed that a piezoelectric transducer is used as the first detecting means.
  • the method using a piezoelectric element has the advantage that it is easy to find a pulse wave and a waveform with high resolution can be obtained, but on the other hand, it is easy to pick up hum noise (noise caused by the frequency of the AC power supply) from the power line. was there. The generation of this hum noise is inevitable as long as there is an AC power supply, and it is inevitable that it will be affected by the use of a highly sensitive piezoelectric sensor.
  • a conductive shield has been conventionally used. Specifically, a countermeasure has been taken by attaching a conductive sheet around the sensor.
  • a sheet cannot be applied to the upper surface of the piezoelectric element due to the structure, and therefore sufficient hum noise countermeasures cannot be taken.
  • the reason why the conductive shield cannot be applied to the upper surface of the piezoelectric element is to prevent the subject from feeling pain in order to maintain the moisture resistance and waterproofness of the sensor or to capture the pulse wave vibration by directly hitting the finger.
  • the present invention pays attention to the above points, and its purpose is to suppress the generation of hum noise and to improve the reliability of the vibration waveform sensor using a piezoelectric element while preventing the occurrence of hum noise. It is.
  • Another object is to provide a pulse wave detection device that can more easily measure a pulse wave using the vibration waveform sensor.
  • the vibration waveform sensor of the present invention is formed on a substrate, a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and the piezoelectric body.
  • a covering portion that continuously covers the piezoelectric element and the pair of conductive pads is provided.
  • the spacer has an H-shaped or M-shaped cross section perpendicular to the substrate.
  • the spacer is formed so as to surround the piezoelectric element and the pair of conductive pads.
  • the spacer has a frame shape or a ring shape, and the covering portion is provided on an inner peripheral surface of the frame or the ring.
  • the region surrounded by the spacer is filled with silicon resin.
  • the spacer includes a pair of spacer members disposed so as to sandwich the piezoelectric element and the pair of conductive pads, and the covering portion provided over the pair of spacer members. It is characterized by comprising. Still another embodiment is characterized in that the region sandwiched between the spacers is filled with silicon resin. Still another embodiment is characterized in that a conductive film is formed in a region on the substrate other than the portion where the spacer and the covering portion are provided.
  • a vibration waveform sensor is formed on a substrate, a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and the piezoelectric body.
  • the spacer is formed so as to surround the piezoelectric element and the pair of conductive pads.
  • the spacer has a frame shape or a ring shape.
  • the insulating resin and the conductive layer are formed in a region surrounded by the spacer.
  • a conductive film is formed in a region on the substrate other than the region where the spacer and the insulating resin are provided.
  • Still another embodiment is characterized in that the conductive layer is a resin containing conductive particles. Still another embodiment is characterized in that the spacer has an outer surface formed of a conductor.
  • the pulse wave detection device of the present invention is provided between any one of the vibration waveform sensors, a housing having a receiving portion in which the vibration waveform sensor is disposed, and between the vibration waveform sensor and the receiving portion, And a support means having elasticity for supporting the vibration waveform sensor at a receiving portion of the housing.
  • One of the main forms is characterized in that the support means supports the vibration waveform sensor on a side surface of the substrate.
  • One of the other forms is characterized in that the support means supports the entire circumference of the side surface of the substrate.
  • Still another embodiment is characterized in that the supporting means supports the side surface of the substrate at a plurality of locations.
  • the substrate, the pair of conductive pads formed on the substrate, the pair of external conductors drawn from each of the pair of conductive pads, the piezoelectric body, and the piezoelectric body A pair of terminal electrodes formed, each of the pair of terminal electrodes being connected to the pair of conductive pads, mounted on the substrate, and on the substrate, the piezoelectric element And a conductive spacer formed higher than the mounting height of the piezoelectric element around the pair of conductive pads, and the spacer is at a position lower than the edge on the opposite side of the substrate.
  • a covering portion that continuously covers the piezoelectric element and the pair of conductive pads is provided. For this reason, the hum noise can be blocked more reliably, and it is hard to be damaged and the reliability is improved.
  • a substrate a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and the piezoelectric body A pair of terminal electrodes formed on the substrate, each of the pair of terminal electrodes connected to the pair of conductive pads, mounted on the substrate, and on the substrate, the piezoelectric element A spacer formed higher than the mounting height of the piezoelectric element around the element and the pair of conductive pads, and an insulating resin formed on the substrate so as to cover the piezoelectric element and the pair of conductive pads And a conductive layer formed to cover the insulating resin.
  • the vibration waveform sensor according to any one of the above is supported on the receiving portion of the housing via the elastic support means, With a simple operation of pressing the fingertip against the vibration waveform sensor, there is an effect that the pulse wave can be easily detected because the fingertip is in close contact with the sensor while it is hanging.
  • FIG. 1 It is a figure which shows the vibration waveform sensor of Example 1 of this invention and a prior art example, (A) is sectional drawing of Example 1, (B) is an assembly drawing of Example 1, (C) is Example 1 board
  • FIG. 6 is a diagram showing a modification of the first embodiment, in which (A) to (E) show other configuration examples of the vibration waveform sensor, and (F) shows an example of attachment of the vibration waveform sensor.
  • (A) is sectional drawing
  • (B) is an assembly drawing
  • (C) is the top view seen from the mounting surface side of the board
  • FIG. It is a figure which shows an example of the hum noise in the vibration waveform sensor of a prior art example, and the vibration waveform sensor of Example 2.
  • FIG. It is a figure which shows the modification of the said Example 2.
  • Example 3 It is a figure which shows Example 3 of this invention, (A) is sectional drawing of a vibration waveform sensor (sensor module), (B) is an assembly drawing of a vibration waveform sensor, (C) is a vibration waveform sensor from the main surface side. A plan view, (D) is a cross-sectional view of the pulse wave detection device as seen from the arrow direction by cutting (B) along line # A- # A. It is a figure which shows the whole structure of the said Example 3 and the pulse-wave detection apparatus by a prior art, (A) shows the pulse-wave detection apparatus of Example 3, (B) shows the conventional pulse-wave detection apparatus. It is a figure which shows the modification of the said Example 3. FIG.
  • FIGS. 1A to 1C are diagrams showing this embodiment, where FIG. 1A is a sectional view of a vibration waveform sensor, FIG. 1B is an exploded view, and FIG. 1C is a view from the mounting surface side of the substrate. It is a top view.
  • FIG. 1D is a cross-sectional view of a conventional vibration waveform sensor.
  • FIG. 2 is a diagram showing a system configuration using the vibration waveform sensor of the present embodiment, (A) is a diagram showing the overall device configuration, and (B) and (C) are diagrams showing a circuit configuration.
  • FIG. 1A is a sectional view of a vibration waveform sensor
  • FIG. 1B is an exploded view
  • FIG. 1C is a view from the mounting surface side of the substrate. It is a top view.
  • FIG. 1D is a cross-sectional view of a conventional vibration waveform sensor.
  • FIG. 2 is a diagram showing a system configuration using the vibration waveform sensor of the present embodiment, (A)
  • FIG. 3 is a diagram illustrating a state of pulse motion and skin vibration.
  • FIG. 4 is a diagram illustrating an example of hum noise in the vibration waveform sensor of the conventional example and the vibration waveform sensor of the present embodiment.
  • the vibration waveform sensor 10 has a configuration in which a piezoelectric element 30 is disposed on a main surface 20A of a substrate 20 and the periphery of the piezoelectric element 30 is covered with a spacer 40.
  • the spacer 40 has a substantially ring shape, and includes a ring portion 42 and a substantially disc-shaped covering portion 44 provided at a substantially central portion in the height direction of the ring portion 42. . That is, the spacer 40 is substantially H-shaped in a cross section orthogonal to the substrate 20 as shown in FIG. In the illustrated example, a space surrounded by the substrate 20, the ring portion 42, and the covering portion 44 is filled with silicon resin 46 so as to cover the piezoelectric element 30. A silicon resin 46 is also provided in the space formed by the edge side of the ring portion 42 and the covering portion 44.
  • the substrate 20 is used for fixing and supporting the piezoelectric element 30 and for drawing out the electrodes and amplifying the signal, and is formed of glass epoxy or ceramic.
  • An example of the dimensions of the substrate 20 is about 12 mm square and about 1 mm thick.
  • a pair of conductive pads 22 and 23 are arranged at appropriate intervals in the vicinity of the center, and a conductive film 24 is formed around the pair.
  • a piezoelectric element 30 is connected to both the conductive pads 22 and 23.
  • the conductive pads 22 and 23 are led out to the other main surface 20B of the substrate 20 through through holes 22A and 23A penetrating the substrate 20 in the thickness direction, and are connected to a pair of external conductors (not shown).
  • the piezoelectric element 30 has a rectangular shape in the illustrated example, and has a piezoelectric body and a pair of terminal electrodes (not shown) formed on the piezoelectric body. Each of the pair of terminal electrodes is joined to the pair of conductive pads 22 and 23 by solder or the like and mounted on one main surface 20A of the substrate 20.
  • the piezoelectric element 30 is connected to the amplifier (described later) provided on the other main surface 20B side of the substrate 20 by the conductive pads 22, 23, the through holes 22A, 23A, and the external conductor (not shown). ing.
  • the piezoelectric element 30 for example, PZT (lead zirconate titanate) is used, but a material having appropriate sensitivity (piezoelectric constant, capacity) can be used regardless of the material.
  • the piezoelectric element 30 may be any one having a size of about 0.6 ⁇ 0.3 mm to 3.2 ⁇ 1.6 mm. Also good.
  • a ring-shaped spacer 40 is provided around the piezoelectric element 30 so as to surround the piezoelectric element 30 and the pair of conductive pads 22, 23. It is electrically joined to the film 24.
  • the conductive film 24 is drawn out to the other main surface 20B side of the substrate 20 through the through holes 24A and 24B.
  • the spacer 40 is made of, for example, stainless steel and has electrical conductivity.
  • the spacer 40 has a common ground potential with the human skin that comes into contact with the spacer 40, introduces vibration of the skin, and the like. It functions as a vibration introducing body to be introduced into the substrate 20.
  • the vibration of the skin is transmitted to the spacer 40 and from the spacer 40 to the substrate 20.
  • the substrate 20 also functions as a vibrating body, and the vibration transmitted from the spacer 40 is transmitted to the piezoelectric element 30.
  • the spacer 40 is not limited to metal as long as it is hard and conductive, and for example, the surface of a hard plastic may be subjected to metal plating. By sandwiching the spacer 40 which is hard and conductive in this way, the pulse wave vibration can be reliably transmitted and the electric noise can be released to the ground, so that a pulse wave signal with higher quality can be obtained.
  • the piezoelectric element 30 detects this vibration, converts it into a voltage, and outputs it as a pulse wave signal to an analyzer or the like.
  • the basic structure of the vibration waveform sensor 10 is as described above, in this embodiment, in order to cope with humidity in the air and perspiration from the body, between the piezoelectric body 30 and the covering portion 44 of the spacer 40.
  • the space between the end portion 42A side of the ring portion 42 and the covering portion 44 is filled with a highly insulating silicon resin 46, respectively.
  • the amount of the silicon resin 46 to be filled is not limited as long as the end portion 42A is exposed.
  • the reason why the silicon resin 46 is used is that it is naturally necessary not to short-circuit between components to be coated (piezoelectric elements, conductive pads and spacers).
  • FIGS Provide electromagnetic shielding to suppress the generation of hum noise.
  • the amount of the silicon resin 46 filled in the end portion 42A may be as long as the end portion 42A is exposed. However, as shown in FIG. This is preferable because the subject does not feel pain when wearing the sensor and does not affect the acquisition of the pulse wave.
  • the vibration waveform sensor 10 as described above is mounted at an appropriate position such as a human finger so that the spacer 40 hits the human skin BD with a medical fixing tape 12 or the like.
  • the part where the vibration waveform sensor 10 is mounted may be an arm, and the mounting method may be wound using a hook-and-loop fastener.
  • FIGS. 3A to 3C show how a pulse wave is transmitted through a blood vessel BV in a human body.
  • a pulse wave refers to a volume change caused by the inflow of blood into a certain part of body tissue accompanying the heartbeat as a waveform from the body surface.
  • FIG. 3 the structure of the vibration waveform sensor 10 is simplified for easy understanding.
  • a portion where the volume of the blood vessel BV is large is indicated as HP, and a pulse wave is transmitted from the left side to the right side.
  • the pulse wave is transmitted to the spacer 40 of the vibration waveform sensor 10 through the skin BD.
  • the vibration of the spacer 40 further vibrates the substrate 20 and is transmitted to the piezoelectric element 30. Then, the piezoelectric element 30 is displaced, and the vibration of the pulse wave is converted into an electric signal. This is amplified and output by the amplifier of the substrate 20.
  • the output waveform signal is mainly based on the displacement of the piezoelectric element 30 in the long side direction (long side direction).
  • FIG. 4B shows an example of hum noise in the vibration waveform sensor of this embodiment.
  • FIG. 2 (A) to 2C show an example of a waveform analysis system using the vibration waveform sensor 10 of the present embodiment.
  • FIG. 2 (A) shows the overall configuration.
  • the vibration waveform sensor 10 is connected to a main board 50.
  • the main board 50 has a USB (Universal Serial Bus) dongle 60 for wireless communication. Via the waveform analyzer 100.
  • USB Universal Serial Bus
  • Fig. 2 (B) shows the circuit configuration of each part.
  • the output side of the piezoelectric element 30 described above is connected to the input side of an instrumentation amplifier (high input impedance operational amplifier) 26 provided on the back surface (main surface 20B) side of the substrate 20.
  • the output of the instrumentation amplifier 26 becomes the output of the vibration waveform sensor 10 and is connected to the input side of the main board 50.
  • a programmable amplifier 52 is provided on the input side of the main board 50, and its output side is connected to the transmission module 54 via the A / D converter 53. That is, the pulse wave waveform signal amplified by the programmable amplifier 52 is converted into a digital signal by the A / D converter 53 and transmitted from the transmission module.
  • the transmission module 54 a module compatible with various known short-range wireless communication standards using radio waves or infrared rays can be used. For example, a standard capable of communication with low power such as BLE (Bluetooth (registered trademark) Low Energy) is used.
  • the main board 50 is provided with a power source 58 such as a button battery, from which driving power is supplied to each part of the main board 50, and driving power is also supplied to the vibration waveform sensor 10.
  • the USB dongle 60 is used by the waveform analysis apparatus 100 to capture the signal transmitted from the main board 50, and includes a reception module 62 and a USB interface 64. Note that the USB dongle 60 is not necessary if the waveform analyzer 100 can directly receive the signal transmitted from the main board 50. The USB dongle 60 is also used for operation control of the main board 50 by the waveform analysis apparatus 100.
  • the waveform analysis apparatus 100 includes a PC (personal computer), a smartphone, a tablet PC, and the like, and includes a CPU 102, a data memory 110, a program memory 120, and a display 104 as shown in FIG. ing.
  • the program stored in the program memory 120 is executed by the CPU 102.
  • data stored in the data memory 110 is referred to.
  • the calculation result is stored in the data memory 110 and displayed on the display 104.
  • Such basic operations are general and well known.
  • the waveform data 112 received by the USB dongle 60 is stored.
  • calculation data 114 which is a calculation result by the CPU 102 is also stored.
  • a noise removal program 122 is prepared in the program memory 120.
  • a waveform analysis program 124 is prepared in the case of a smartphone.
  • an arrhythmia detection program 126 is prepared in the case of a smartphone.
  • the noise removal program 122 is a program for removing noise included in the waveform data 112, and it is assumed that a disturbance has occurred when the peak value of the pulse wave exceeds a preset threshold value.
  • the signal processing for reducing the influence of disturbance is performed by peak-holding the waveform.
  • the waveform analysis program 124 applies Pb / Pa, Pc / Pa, Pd / Pa, Pe / Pa, (Pb ⁇ Pc ⁇ Pd ⁇ Pe) / Pa (Pa) to Pa to Pe waves included in the pulse wave waveform. Calculate the analysis value such as Aging (Index).
  • the arrhythmia detection program 126 detects a missing pulse as an arrhythmia from the pulse interval in the pulse wave.
  • the alert program 128 outputs a warning to that effect when the result of analysis by the waveform analysis program 124 exceeds a preset threshold value, or when an arrhythmia is detected by the arrhythmia detection program 126.
  • An acceleration pulse wave is obtained by first-order differentiation of the pulse wave (velocity pulse wave) detected by the piezoelectric element 30 of the present embodiment.
  • the acceleration pulse wave has an amplitude on the vertical axis and time on the horizontal axis.
  • the pulse waveform includes Pa to Pe waves.
  • the waveform analysis program 124 performs calculations based on the first-order differentiation and the Pa to Pe waves. The significance of the Pa to Pe waves is as follows.
  • Pa wave initial positive contraction wave (frontal component of systolic volume pulse wave)
  • Pb wave initial contraction negative wave (same as above)
  • Pc wave Middle systolic re-rising wave (backward systolic component of finger plethysmogram)
  • Pd wave Late systolic re-falling wave (same as above)
  • Pe wave positive initial positive wave (diastolic component of finger plethysmogram)
  • the waveform analysis program 124 calculates an average waveform of the acceleration pulse wave, and uses the wave height components of a plurality of waveforms included in the acceleration pulse wave, so that the wave height ratios Pb / Pa, Pc / Pa, Pd / Pa, Pe / Calculations such as Pa and (Pb-Pc-Pd-Pe) / Pa are performed.
  • the significance of the calculation result is described in the following documents, for example.
  • the arrhythmia detection program 126 determines the arrhythmia when the pulse interval is observed and there is no pulse at a desired position.
  • 2A and the display 104 of the waveform analysis apparatus 100 display, for example, a detected pulse wave, a result obtained by analyzing the detected pulse wave, and the like.
  • the pulse wave signal output from the piezoelectric element 30 is amplified by the instrumentation amplifier 26 and then input to the main board 50.
  • the signal is further amplified by the programmable amplifier 52, converted into a digital signal by the A / D converter 53, and then transmitted from the transmission module 54.
  • the transmitted pulse wave signal is received by the reception module 62 of the USB dongle 60 and input to the waveform analysis apparatus 100 from the USB interface 64.
  • input data is stored as waveform data 112 in the data memory 110.
  • the noise removal program 122 is executed by the CPU 102
  • the waveform data 112 has a disturbance exceeding a preset threshold
  • the waveform is peak-held to remove noise.
  • the waveform analysis program 124 is executed by the CPU 102
  • Pa to Pe waves are detected from the waveform, and the above-described Pb / Pa, Pc / Pa, Pd / Pa, Pe / Pa, (Pb-Pc-Pd-Pe). ) / Pa and the like, and the calculation result is stored in the data memory 110 as calculation data 114 and displayed on the display 104.
  • the CPU 102 executes the arrhythmia detection program 126 to detect arrhythmia.
  • the alert program 128 outputs a warning to that effect as light or sound.
  • FIG. 4 shows hum noise caused by the vibration waveform sensors of the conventional product and the product of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents hum noise level (output voltage).
  • the structure of the conventional product is as shown in FIG. 1 (D), and the vibration waveform sensor 10 'has a structure in which the cover portion 44 is not provided on the spacer 40.
  • the hum noise of this conventional product is shown in FIG. 4 (A).
  • Is shown in FIG. 4B shows hum noise in the vibration waveform sensor of this embodiment. Comparing these hum noises, in the vibration waveform sensor 10 of the present embodiment, the covering portion 44 is provided inside the spacer 40 and the upper surface of the piezoelectric element 30 is covered with a continuous conductive surface. It can be confirmed that the hum noise from the upper surface of the glass is well blocked.
  • a pair of conductive pads 22 and 23 provided on the substrate 20 and the periphery of the piezoelectric element 30 to which a terminal electrode is connected are surrounded by a conductive spacer 40, and the ring portion 42 of the spacer 40.
  • a disc-shaped covering portion 44 is provided on the inside of the substrate so as to cover the pair of conductive pads 22 and 23 and the piezoelectric element 30.
  • the conductive film 24 covers portions other than the spacer 40 and the covering portion 44 on the substrate 20, more reliable electromagnetic shielding is possible.
  • the spacer 40 is made of metal, electrical noise can be released to the ground, and a pulse wave signal with higher quality can be obtained.
  • the region surrounded by the spacer 40 is filled with the silicon resin 46, it is possible to protect the piezoelectric element 30 and reduce irritation when using the sensor. Also, moisture resistance and water resistance are improved.
  • the silicon resin 46 can be a pure silicon resin that is not blended with a powder such as carbon, it is hard to be damaged even if it contacts a finger many times and has high reliability.
  • the silicon resin 46 is filled inside the spacer 40 on the upper and lower sides of the covering portion 44.
  • the filling of the silicon resin 46 in the space between the covering portion 44 and the piezoelectric element 30 may be omitted.
  • the vibration waveform sensor 10B shown in FIG. 5B the filling of the silicon resin 46 on the end portion 42A side of the covering portion 44 and the ring portion 42 may be omitted, or FIG.
  • the silicon resin 46 may not be filled at all inside the spacer 40.
  • the cross-section is not necessarily a perfect H shape, and the covering portion is formed so as to form a recess that deepens from the ring portion 42 side toward the center.
  • the outer peripheral side of 48 may have a curved shape, that is, a substantially M-shaped cross section. Also in this case, whether or not the silicon resin is provided on both sides of the covering portion 48 can be appropriately changed as necessary.
  • the ring-shaped spacer 40 is used.
  • a pair of plate-like spacers 202 and 204 are erected on the substrate 20 so as to sandwich the pair of conductive pads 22 and 23 and the piezoelectric element 30.
  • a rectangular covering portion 206 is provided between them to cover the piezoelectric element 30 and the conductive pads 22 and 23.
  • silicon resin 46 is filled between the piezoelectric element 30 and the covering portion 206 and between the covering portion 206 and the end portions of the pair of spacers 202, 204.
  • the presence / absence of filling of the silicon resin may be appropriately changed as necessary.
  • an H-shape is formed by the spacers 202 and 204 and the covering portion 206 in a cross section orthogonal to the substrate 20 and the pair of spacers 202 and 204.
  • the vibration waveform sensor 220 in FIG. 5 (F) is an example provided in an electronic device such as a smartphone or a tablet PC.
  • the vibration waveform sensor 220 is fixed by a waterproof / dustproof seal material 234 so that the ring-shaped spacer 232 on the substrate 230 is exposed from the housing 222 of the electronic device.
  • the substrate 230 is supported by a solder bump 226 to be vibrated with respect to a motherboard 224 of an electronic device.
  • the wave waveform signal of the vibration waveform sensor 220 is taken into a circuit on the motherboard 224.
  • FIGS. 6A and 6B are diagrams showing the present embodiment, in which FIG. 6A is a sectional view of a vibration waveform sensor, FIG. 6B is an exploded view, and FIG. 6C is a plan view seen from the mounting surface side of the substrate.
  • symbol shall be used for the component which is the same as that of Example 1 mentioned above, or respond
  • FIG. 7 is a diagram illustrating an example of hum noise in the vibration waveform sensor of the conventional example and the vibration waveform sensor of the present embodiment.
  • the vibration waveform sensor 70 has a piezoelectric element 30 disposed on the main surface 20A of the substrate 20, the periphery of the piezoelectric element 30 is covered with a spacer 72, and a cavity formed inside the spacer 72.
  • the insulating resin 76 and the conductive resin 78 are provided in 74.
  • the substrate 20 is used for fixing and supporting the piezoelectric element 30 and for drawing out the electrodes and amplifying the signal, and is formed of glass epoxy or ceramic.
  • An example of the dimensions of the substrate 20 is about 12 mm square and about 1 mm thick.
  • a pair of conductive pads 22 and 23 are arranged at appropriate intervals in the vicinity of the center, and a conductive film 24 is formed around the pair.
  • a piezoelectric element 30 is connected to both the conductive pads 22 and 23.
  • the conductive pads 22 and 23 are led out to the other main surface 20B of the substrate 20 through through holes 22A and 23A penetrating the substrate 20 in the thickness direction, and are connected to a pair of external conductors (not shown).
  • the piezoelectric element 30 has a rectangular shape in the illustrated example, and has a piezoelectric body and a pair of terminal electrodes (not shown) formed on the piezoelectric body. Each of the pair of terminal electrodes is joined to the pair of conductive pads 22 and 23 by solder or the like and mounted on one main surface 20A of the substrate 20.
  • the piezoelectric element 30 is connected to the amplifier (described later) provided on the other main surface 20B side of the substrate 20 by the conductive pads 22, 23, the through holes 22A, 23A, and the external conductor (not shown). ing.
  • the piezoelectric element 30 for example, PZT (lead zirconate titanate) is used, but a material having appropriate sensitivity (piezoelectric constant, capacity) can be used regardless of the material.
  • the piezoelectric element 30 may be any one having a size of about 0.6 ⁇ 0.3 mm to 3.2 ⁇ 1.6 mm. Also good.
  • a ring-shaped spacer 72 is provided around the piezoelectric element 30 so as to surround the piezoelectric element 30 and the pair of conductive pads 22, 23. It is electrically joined to the film 24.
  • the conductive film 24 is drawn out to the other main surface 20B side of the substrate 20 through through holes 24A and 24B (see FIG. 1A).
  • the spacer 72 is made of, for example, stainless steel and has conductivity, and a ground potential is shared with the skin of the human body that is in contact with the same, and vibrations of the skin and the like are introduced. It functions as a vibration introducing body to be introduced into the substrate 20.
  • the vibration of the skin is transmitted to the spacer 72 and from the spacer 72 to the substrate 20.
  • the substrate 20 also functions as a vibrating body, and the vibration transmitted from the spacer 72 is transmitted to the piezoelectric element 30.
  • a cavity 74 is formed by the spacer 72 as shown in FIG.
  • the spacer 72 is not limited to metal as long as it is hard and conductive, and for example, the surface of a hard plastic may be subjected to metal plating. By sandwiching the hard and conductive spacer 72 in this manner, the pulse wave vibration can be reliably transmitted and the electrical noise can be released to the ground, so that a pulse wave signal with higher quality can be obtained. As shown in FIG.
  • the oscillating artery wave is transmitted to the piezoelectric element 30 via the substrate 20 through the conductive spacer 72.
  • the piezoelectric element 30 detects this vibration, converts it into a voltage, and outputs it as a pulse wave signal to an analyzer or the like.
  • the basic structure of the vibration waveform sensor 70 is as described above.
  • an insulating resin 76 such as silicon is used between the piezoelectric body 30 and the spacer 72. Buried. At this time, the amount of the insulating resin 76 to be filled is not limited as long as the end of the spacer 72 is exposed.
  • the insulating resin 76 a material such as silicon having high insulating properties is usually used. This is because, of course, it is necessary not to short-circuit between components to be coated (piezoelectric elements, conductive pads and spacers). Further, since the configuration as it is affected by hum noise, as shown in FIGS. 6A to 6C, a conductive film 24 is provided to electromagnetically shield to suppress generation of hum noise.
  • the resin portion in the cavity 74 has a double structure as shown in FIG. That is, a conductive resin 78 is provided on the insulating resin 76.
  • a conductive resin 78 for example, KE3494 made of Shin-Etsu silicone is used.
  • the KE3493 is obtained by dispersing conductive carbon in normal silicon and exhibits electrical conductivity after curing.
  • the conductive resin 78 shown here is an example, and various known materials can be used as long as a soft conductive film can be formed.
  • the amount of the conductive resin 78 embedded in the cavity 74 is not limited as long as the end of the spacer 72 is exposed. However, as shown in FIG.
  • the conductive resin 78 is provided on the insulating resin 76.
  • the conductive resin 78 is formed in a convex shape since the subject does not feel pain when wearing the sensor and does not affect the acquisition of the pulse wave.
  • the vibration waveform sensor 70 as described above is mounted so that the spacer 72 hits the human skin BD in the same manner as in the first embodiment.
  • the basic operation of the vibration waveform sensor 70 is as described with reference to FIGS. 3A to 3C in the first embodiment.
  • the structure, circuit configuration, and overall operation of the waveform analysis system using the vibration waveform sensor 70 of the present embodiment are the same as those of the first embodiment described above.
  • FIG. 7 shows hum noise in the vibration waveform sensors of the conventional product and the present invention.
  • the horizontal axis represents time, and the vertical axis represents the hum noise level.
  • the structure of the conventional product is a structure obtained by removing the insulating resin 76 and the conductive resin 78 from the vibration waveform sensor 70 shown in FIG. 6 (A).
  • the hum noise of this conventional product is shown in FIG. 7 (A).
  • FIG. 7B shows hum noise in the vibration waveform sensor of this embodiment. Comparing these hum noises, in the vibration waveform sensor 70 of this embodiment, the insulating resin 76 and the conductive resin 78 are provided inside the spacer 72 to cover the upper surface of the piezoelectric element. It can be confirmed that the hum noise from is well blocked.
  • Example 2 there are the following effects.
  • a pair of conductive pads 22 and 23 provided on the substrate 20 and the periphery of the piezoelectric element 30 to which a terminal electrode is connected are surrounded by a conductive spacer 72, and a cavity inside the spacer 72.
  • 74 is provided with an insulating resin 76 so as to cover the pair of conductive pads 22 and 23 and the piezoelectric element 30, and further provided with a conductive resin 78 so as to cover the insulating resin 76.
  • the conductive resin 78 blocks the hum noise from the upper surface of the piezoelectric element 30 and the insulation of the circuit around the piezoelectric element 30 can be obtained. Therefore, the hum noise is reduced without destroying (short-circuiting) the circuit.
  • the ring-shaped spacer 72 is used. However, this is also an example, and a square frame-shaped spacer may be used. If it is, it may be a prism with only two opposing sides bonded.
  • a pair of plate-like spacers 302 and 304 are erected on the substrate 20 so as to sandwich the pair of conductive pads 22 and 23 and the piezoelectric element 30.
  • An insulating resin 76 and a conductive resin 78 are provided between them to cover the conductive pads 22 and 23 and the piezoelectric element 30.
  • a plate-like or rod-like spacer 312 is erected on the substrate 20 and a piezoelectric element 30 is arranged in the vicinity thereof, so that the conductive pads 22 and 23 and the piezoelectric element are connected.
  • the element 30 may be covered with the insulating resin 76, and the insulating resin 76 may be covered with the conductive resin 78.
  • the spacer may have any shape as long as the spacer contacts the object and the vibration is transmitted to the substrate 20.
  • the conductive pads 22 and 23 and the piezoelectric element 30 are covered with the two layers of the insulating resin 76 and the conductive resin 78.
  • the vibration waveform sensor 70A shown in FIG. an insulating resin 80 such as silicon may be provided so as to have a three-layer structure and further cover the conductive resin 78.
  • the vibration waveform sensor of the present embodiment may also be provided in an electronic device such as a smartphone or a tablet PC as shown in FIG. 5 (F) in the first embodiment.
  • FIG. 9A is a sectional view of the vibration waveform sensor (sensor module)
  • FIG. 9B is an assembly portion of the vibration waveform sensor
  • FIG. 9C is a plan view seen from the main surface side of the vibration waveform sensor.
  • 9 (D) is a cross-sectional view of the pulse wave detection device as seen from the arrow direction by cutting (B) along line # A- # A.
  • FIG. 10 is a diagram showing the overall configuration of the pulse wave detection device according to the third embodiment and the prior art, (A) shows the pulse wave detection device of the third embodiment, and (B) shows the conventional pulse wave detection device. Show.
  • the vibration waveform sensor 10 of the first embodiment is used as a sensor module of the pulse wave detection device 400. Since the structure of the vibration waveform sensor 10 is the same as that of the first embodiment, description thereof is omitted.
  • the vibration waveform sensor 10 as described above is configured such that the spacer 40 hits the skin BD of the fingertip at an appropriate position such as a finger of a human body with a medical fixing tape 12 or the like. It is attached to. Then, as shown in FIG. 10B, the measurement was performed in a “hanging state”. However, in such measurement, it takes time to mount the vibration waveform sensor 10 in a hanging state, and the pulse wave cannot be easily measured.
  • the vibration waveform sensor 10 picks up the vibration of a heavier thing (in this case, the desk) and accurately detects the pulse wave. Cannot be detected.
  • the receiving portion 404 provided in the casing 402 of the pulse wave detection device 400 is vibrated via an elastic support means 406.
  • the waveform sensor 10 is attached in a suspended state.
  • support means 406 made of, for example, rubber that is an elastic body is joined to the entire circumference of the side surfaces 20C to 20F of the square substrate 20 with an adhesive, and the support means 406 is further connected to the casing. It is joined to the receiving portion 404 of 402 by an adhesive.
  • the support means 406 functions as a suspension member because of its elasticity, and the vibration waveform sensor 10 does not pick up the vibration of the table even when the housing 402 is placed on the table and the fingertip is pressed against the vibration waveform sensor 10. Can detect a pulse wave.
  • the pulse wave waveform obtained in this way was equivalent to the conventional measurement method shown in FIG.
  • the member used as the support means 406 can be used as long as it has elasticity other than rubber.
  • the spring constant (spring rate) is 0.5 to 7.0 N / mm.
  • the support means of the present invention can be used as long as the same effect can be obtained even if it is out of this range. Is available as For example, a sheet in which the material itself has elasticity may be used, or a metal spring that functions as an elastic body depending on the shape can be used.
  • the basic operation of the vibration waveform sensor 10 as described above, the overall configuration of the waveform analysis system using the pulse wave detection device 400, and the circuit configuration of each part are the same as in the first embodiment.
  • the vibration waveform sensor 10 of the pulse wave detection device 400 When the measurement subject presses a finger against the vibration waveform sensor 10 of the pulse wave detection device 400 installed on the table as shown in FIG. 10A, the pulse wave passes through the spacer 40 and the substrate 20. This is transmitted to the piezoelectric element 30. At this time, since the vibration waveform sensor 10 is supported by the receiving portion 404 of the housing 402 by the support body 406 made of an elastic body, the vibration waveform sensor 10 is pressed without picking up vibration of the installation table or the like. The pulse wave transmitted from the fingertip is detected. The waveform analysis processing procedure after the piezoelectric element 30 outputs the transmitted vibration as a pulse wave signal is the same as in the first embodiment.
  • the third embodiment has the following effects.
  • (1) The vibration waveform sensor 10 including the substrate 20, the piezoelectric element 30, and the spacer 40 is supported in a suspended state on the receiving unit 404 of the casing 402 of the pulse wave detection device 400 via the support means 406 made of an elastic material. It was decided. For this reason, since the fingertip comes in close contact with the sensor while being suspended by a simple operation in which the measurement subject presses the fingertip against the vibration waveform sensor 10, there is an effect that the pulse wave can be easily detected.
  • the vibration waveform sensor 10 of the first embodiment is used as the sensor module.
  • the vibration of the second embodiment is used as in the pulse wave detection device 400A shown in FIG.
  • the waveform sensor 70 may be used.
  • the supporting means 406 supports the entire circumference of the side surfaces 20C to 20F of the substrate 20.
  • this is also an example, and it is designed as appropriate within the range where the same effect can be obtained. It can be changed.
  • the side edge of the circular substrate 420 of the vibration waveform sensor 410 may be supported by the support means 430 at three points. Further, the supporting positions and number can be changed / increased as necessary within the range where the same effect can be obtained.
  • the support means 406 supports the side surface of the substrate 20 of the vibration waveform sensor 10, but this is also an example, and a pulse wave detection device 400C shown in FIG.
  • the edge portion of the main surface 20B of the substrate 20 may be supported by the support means 406, or the main surface 20B of the substrate 20 and the bottom surface 403 of the housing 102 as in the pulse wave detection device 400D shown in FIG.
  • the vibration waveform sensor 10 may be supported by providing a support means 440 therebetween.
  • the pulse wave is an object to be measured, but the object to be measured by the vibration waveform sensor of the present invention is not limited to the pulse wave.
  • Waveforms may be targeted.
  • the vibration waveform of an engine or motor is analyzed.
  • the vibration waveform sensor 10 and the main board 50 are separated, but both may be integrated, and the waveform analyzer 100 may also be integrated.
  • transmission / reception by BLE is performed using a USB dongle.
  • the waveform analyzer has a function of transmitting / receiving a signal to / from the main board, the USB dongle is not necessary.
  • transmission / reception of signals is not limited to BLE, and various standards may be applied.
  • the calculation formula for waveform analysis shown in the above embodiment is also an example, and various calculations may be performed as necessary.
  • the metal spacer 40 is used.
  • the spacer is not necessarily made of metal as long as it is hard and conductive.
  • a conductive film may be provided on the surface of an insulator such as resin or ceramic.
  • general PZT is used as the piezoelectric body, but the piezoelectric body is not limited to this, and any piezoelectric body having appropriate sensitivity (piezoelectric constant, capacitance) that exhibits the same effect may be used. .
  • the shape and dimensions of the piezoelectric element 30 may be changed as appropriate according to the application.
  • the glass epoxy resin is used as the substrate 20 in the above embodiment, this is also an example, and a harder material such as ceramic may be used.
  • the silicon resin 46 is filled inside the ring-shaped spacer 40. However, the thickness of the silicon resin 46 can be changed as appropriate and may be in the form of a film.
  • the conductive resin 78 is a resin in which conductive carbon is dispersed in silicon. However, this is also an example, and it is conductive and soft. If it exists, you may use other well-known various conductive materials. In consideration of metal allergies, those using non-metallic conductive carbon are preferable.
  • the conductive resin 78 is filled inside the ring-shaped spacer 72. However, the thickness of the conductive resin 78 can be changed as appropriate and may be in the form of a film. .
  • the shape, dimensions, and materials shown in the third embodiment are also examples, and can be appropriately changed within a range that provides the same effect.
  • the substrate 20 is rectangular, but it may be circular.
  • the main board 50 is provided outside the housing 402.
  • the main board 50 may be provided inside the housing 402.
  • the vibration waveform sensor (sensor module) is provided in the case placed on the table.
  • the handle gripped by the measurement subject has elasticity. Even if the vibration waveform sensor is provided through the same, the same effect can be obtained.
  • rubber which is an elastic material
  • the support means 406 is used as the support means 406.
  • the spring constant (spring rate) is preferably in the range of 0.5 to 7.0 N / mm.
  • the support means of the present invention can be used as long as the same effect can be obtained even if it is outside this range.
  • the rubber support means 406 is adhered to the side surfaces 20C to 20F of the substrate 20 of the vibration waveform sensor 10 and the inner peripheral edge of the receiving portion 404 of the housing 402 with an adhesive.
  • this is also an example, and various known joining methods such as screwing may be used. From the viewpoint of not applying weight to the substrate 20, bonding with an adhesive is convenient.
  • a substrate a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and a pair formed on the piezoelectric body
  • Each of the pair of terminal electrodes is connected to the pair of conductive pads, the piezoelectric element is mounted on the substrate, and the piezoelectric element and the pair of pairs are on the substrate.
  • a conductive spacer formed higher than the mounting height of the piezoelectric element around the conductive pad, and the spacer is located at a position lower than the edge on the opposite side of the substrate.
  • a covering portion that continuously covers the pair of conductive pads.
  • a substrate a pair of conductive pads formed on the substrate, a pair of external conductors drawn from each of the pair of conductive pads, a piezoelectric body, and the piezoelectric body are formed.
  • a pair of terminal electrodes each of the pair of terminal electrodes being connected to the pair of conductive pads, mounted on the substrate, and on the substrate, the piezoelectric element and the pair of terminals A spacer formed higher than the mounting height of the piezoelectric element around the conductive pad, an insulating resin formed on the substrate so as to cover the piezoelectric element and the pair of conductive pads, and the insulation And a conductive layer formed so as to cover the conductive resin.
  • the conductive layer blocks the hum noise from the upper surface of the piezoelectric element and provides insulation around the piezoelectric element, the hum noise can be reduced without breaking the circuit (short circuit). Applicable. In particular, since it does not feel pain even when touched by coating with a resin, it is suitable for applications such as a pulse wave sensor that directly contacts the skin.
  • the vibration waveform sensor including the substrate, the piezoelectric element, and the vibration introducing body is supported in a floating state on the receiving portion of the housing via the support means formed of an elastic body. Since the fingertip is in close contact with the sensor while being suspended by a simple operation in which the measurement subject presses the fingertip against the sensor, the pulse wave can be easily detected and can be applied to pulse wave measurement. In particular, it is suitable for applications of stationary pulse wave detection devices and analysis systems.
  • Vibration waveform sensor 12 Medical fixing tape 20: Substrate 20A, 20B: Main surface 20C-20F: Side surface 22, 23: Conductive pad 22A, 23A: Through hole 24: Conductive film 24A, 24B: Through-hole 26: Instrumentation amplifier 30: Piezoelectric element 40: Spacer 42: Ring part 42A: End part 44, 48: Cover part 46: Silicon resin 50: Main board 52: Programmable amplifier 53: A / D conversion Device 54: Transmission module 58: Power supply 60: USB dongle 62: Reception module 64: USB interface 70, 70A: Vibration waveform sensor 72: Spacer 74: Cavity 76, 80: Insulating resin 78: Conductive resin 100: Waveform analysis device 102: CPU 104: Display 110: Data memory 112: Waveform data 114: Calculation data 120: Program memory 122: Waveform data 114: Calculation data 120: Program memory 122: Waveform data 114: Calculation data 120: Program memory 122: Waveform data 114: Calculation data 120: Program memory 122:

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Hematology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

圧電素子を用いた高感度な振動波形センサにおいて、短絡することなくハムノイズの発生を抑制するとともに、信頼性の向上を図るため、基板(20)上に一対の導電パッド(22,23)と、これらに端子電極が接続された圧電素子(30)を設け、これらの周囲を、導電性を有するリング状のスペーサ(40)で囲う。前記スペーサ(40)の内側には、前記一対の導電パッド(22,23)及び前記圧電素子(30)を覆うように、略円板状の被覆部(44)が設けられている。スペーサ(40)は、基板(20)と直交する断面形状が略H型となっている。前記スペーサ(40)の内側には必要に応じてシリコン樹脂(46)が充填される。前記被覆部(44)が、圧電素子(30)の上面からのハムノイズを連続した面で遮断するため、ハムノイズが低減する。前記基板(20)上であって前記スペーサ(40)で囲まれた領域以外には導電膜(24)が設けられる。

Description

振動波形センサ及び脈波検出装置
 本発明は、脈拍などの各種の振動の波形を計測する振動波形センサとそれを利用した脈波検出装置に関し、更に具体的には、圧電素子を利用したセンサにおけるハムノイズ対策と、脈波検出装置の測定の容易化に関するものである。
 脈波の連続測定による健康管理をうたい文句にしたセンサデバイスの中で、圧電素子を利用した振動波形センサというものが考案されている。圧電素子を利用した振動波形センサとしては、例えば、下記特許文献1に記載の動脈硬化評価装置がある。前記特許文献1には、生体の1箇所において動脈を伝わる脈波を検出する第1の検出手段と、前記生体の動脈の血流速度を測定する第2の検出手段と、前記第2の検出手段で得られた血流速度に基づいて第1の波形を特定する第1波形特定手段と、前記第1の検出手段によって検出された脈波から前記第1の波形を差し引いて第2の波形を得る第2の波形決定手段と、前記第1の波形及び第2の波形の振幅強度から動脈硬化度を評価する評価手段と、を備えた動脈硬化評価装置が開示されている。そして、前記第1の検出手段として、圧電トランスジューサを用いることが開示されている。
国際公開第2010/024417号パンフレット
 しかしながら、圧電素子を用いた方式では、脈波が探しやすく分解能の高い波形が得られるなどの特長がある反面、電灯線からのハムノイズ(交流電源の周波数を起因とするノイズ)を拾いやすいといった課題があった。このハムノイズの発生は、交流電源がある限り避けられず、また、高感度な圧電センサを用いる以上、その影響を受けるのも避けられなかった。
 そこで、ハムノイズの発生を避けるための対策として、従来は、導電シールドを施していた。具体的には、導電性のシートをセンサ周りに貼り付けることで対策していた。しかし、この方法では、圧電素子の上面に対しては、構造上シートを貼ることができないため、十分なハムノイズ対策ができなかった。圧電素子の上面に対して導電シールドを施せない理由は、この部分は、センサの耐湿性や防水性を維持するために、あるいは直接指に当たって脈波振動を捉えるため被験者が痛みを感じないようにするために、樹脂でコーティングする必要があり、また、圧電素子の回りは回路の短絡を防ぐために絶縁性が要求されるからである。つまり、従来構造では、圧電素子の上面は絶縁性の樹脂でコーティングされることが必須で、これは言い換えると、この部分には導電シールドを施せないことになる。
 一方、圧電素子を使用した方式のセンサで、動脈壁からの脈波振動を検出するには、その微弱な振動を他のノイズなどと切り離して検知する必要があるため、センサモジュール全体にかかる重量への制約が大きい。具体的には、モジュール全体で5g以下程度に抑える必要がある。また、測定の際には、テープで指先に巻き付けるなどして「ぶら下げた」状態にする必要があった。このような測定の仕方は、測定作業の煩わしさからして測定に困難を生じていた。
 本発明は、以上のような点に着目したもので、その目的は、圧電素子を用いた高感度な振動波形センサにおいて、ハムノイズの発生を抑制するとともに、損傷しにくく信頼性の向上を図ることである。
 他の目的は、前記振動波形センサを用いて、より簡便に脈波を測定可能な脈波検出装置を提供することである。
 本発明の振動波形センサは、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、前記基板上にあって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成された導電性を有するスペーサと、を備えるとともに、前記スペーサは、前記基板と反対側の縁部よりも低い位置に、前記圧電素子及び前記一対の導電パッドの上方を連続的に覆う被覆部を有することを特徴とする。
 主要な形態の一つは、前記スペーサは、前記基板と直交する断面の形状が、H型ないしM型であることを特徴とする。他の形態の一つは、前記スペーサが、前記圧電素子及び前記一対の導電パッドの周囲を囲むように形成されたことを特徴とする。更に他の形態は、前記スペーサは、枠状またはリング状であって、枠またはリングの内周面に前記被覆部を有することを特徴とする。あるいは、前記スペーサで囲まれた領域内に、シリコン樹脂を充填したことを特徴とする。
 更に他の形態の一つは、前記スペーサが、前記圧電素子及び前記一対の導電パッドを挟むように配置された一対のスペーサ部材と、該一対のスペーサ部材に架けて設けられた前記被覆部と、からなることを特徴とする。更に他の形態の一つは、前記スペーサで挟まれた領域内に、シリコン樹脂を充填したことを特徴とする。更に他の形態の一つは、前記基板上の、前記スペーサ及び被覆部が設けられた部分以外の領域に、導電膜が形成されていることを特徴とする。
 他の発明の振動波形センサは、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、前記基板上であって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、前記基板上に、前記圧電素子及び前記一対の導電パッドを覆うように形成された絶縁性樹脂と、前記絶縁性樹脂を覆うように形成された導電層と、を備えたことを特徴とする。
 主要な形態の一つは、前記スペーサが、前記圧電素子及び前記一対の導電パッドの周囲を囲むように形成されたことを特徴とする。他の形態の一つは、前記スペーサは、枠状またはリング状であることを特徴とする。更に他の形態の一つは、前記絶縁性樹脂及び前記導電層が、前記スペーサで囲まれた領域内に形成されていることを特徴とする。更に他の形態の一つは、前記基板上の、前記スペーサ及び前記絶縁性樹脂が設けられた領域以外の領域に、導電膜が形成されていることを特徴とする。
 更に他の形態の一つは、前記導電層が、導電性粒子を含む樹脂であることを特徴とする。更に他の形態の一つは、前記スペーサは、外面が導電体で形成されていることを特徴とする。
 本発明の脈波検出装置は、前記いずれかの振動波形センサと、該振動波形センサが配置される受部を有する筐体と、前記振動波形センサと前記受部の間に設けられており、前記振動波形センサを、前記筐体の受部において支持する弾性を有する支持手段と、を備えたことを特徴とする。
 主要な形態の一つは、前記支持手段が、前記振動波形センサを、前記基板の側面で支持することを特徴とする。他の形態の一つは、前記支持手段が、前記基板の側面の全周を支持することを特徴とする。更に他の形態の一つは、前記支持手段が、前記基板の側面を複数箇所で支持することを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。
 本発明の振動波形センサによれば、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、前記基板上にあって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成された導電性を有するスペーサと、を備えるとともに、前記スペーサは、前記基板と反対側の縁部よりも低い位置に、前記圧電素子及び前記一対の導電パッドの上方を連続的に覆う被覆部を有することとした。このため、より確実にハムノイズの遮断が可能になるとともに、損傷しにくく信頼性が向上する。
 他の発明の振動波形センサによれば、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、前記基板上であって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、前記基板上に、前記圧電素子及び前記一対の導電パッドを覆うように形成された絶縁性樹脂と、前記絶縁性樹脂を覆うように形成された導電層と、を備えることとした。このため、導電層が圧電素子の上面からのハムノイズを遮断しながら、圧電素子周りの回路の絶縁性は得られるため、回路破壊(短絡)することなく、ハムノイズを低減できる振動波形センサが得られる。
 更に、本発明の脈波検出装置によれば、前記いずれかに記載の振動波形センサを、筐体の受部に、弾性を有する支持手段を介して支持することとしたので、被測定者が指先を振動波形センサに押し付けるといった簡便な動作で、ぶら下がった状態でありながらセンサに指先が密着するため、簡単に脈波を検出することができるという効果がある。
本発明の実施例1及び従来例の振動波形センサを示す図であり、(A)は実施例1の断面図,(B)は実施例1の組立図,(C)は実施例1を基板の実装面側から見た平面図,(D)は比較例の振動波形センサの断面図である。 前記実施例1の振動波形センサを用いたシステム構成を示す図であり、(A)は全体の装置構成を示しており、(B)及び(C)は回路構成を示す図である。 脈の動きと皮膚の振動の様子を示す図である。 従来例の振動波形センサと実施例1の振動波形センサにおけるハムノイズの一例を示す図である。 前記実施例1の変形例を示す図であり、(A)~(E)は振動波形センサの他の構成例を示し、(F)は振動波形センサの取付例を示す。 本発明の実施例2の振動波形センサを示す図であり、(A)は断面図,(B)は組立図,(C)は基板の実装面側から見た平面図である。 従来例の振動波形センサと実施例2の振動波形センサにおけるハムノイズの一例を示す図である。 前記実施例2の変形例を示す図である。 本発明の実施例3を示す図であり、(A)は振動波形センサ(センサモジュール)の断面図,(B)は振動波形センサの組立図,(C)は振動波形センサを主面側からみた平面図,(D)は前記(B)を#A-#A線に沿って切断し矢印方向から見た脈波検出装置の断面図である。 前記実施例3と従来技術による脈波検出装置の全体構成を示す図であり、(A)は実施例3の脈波検出装置を示し、(B)は従来の脈波検出装置を示す。 前記実施例3の変形例を示す図である。
 以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。
 最初に、図1~図4を参照しながら本発明の実施例1を説明する。本実施例は、本発明の振動波形センサを、脈波センサに適用した例である。図1(A)~(C)は、本実施例を示す図であり、(A)は振動波形センサの断面図,(B)は分解図,(C)は基板の実装面側から見た平面図である。図1(D)は、従来例の振動波形センサの断面図である。図2は、本実施例の振動波形センサを用いたシステム構成を示す図であり、(A)は全体の装置構成を示す図,(B)及び(C)は回路構成を示す図である。図3は、脈の動きと皮膚の振動の様子を示す図である。図4は、従来例の振動波形センサと本実施例の振動波形センサにおけるハムノイズの一例を示す図である。これらの図において、振動波形センサ10は、基板20の主面20A上に圧電素子30が配置されており、この圧電素子30の周囲をスペーサ40で覆った構成となっている。
 本実施例では、スペーサ40は、略リング状であって、リング部42と、該リング部42の高さ方向のほぼ中央部に設けられた略円板状の被覆部44を有している。すなわち、スペーサ40は、基板20と直交する断面において、図1(A)に示すように、略H型となっている。図示の例では、前記基板20とリング部42と被覆部44によって囲まれた空間には、圧電素子30を覆うようにシリコン樹脂46が充填されている。また、前記リング部42の縁部側と被覆部44で形成された空間にも、シリコン樹脂46が設けられている。
 以上の各部のうち、前記基板20は、圧電素子30を固定支持するとともに、その電極の引出や信号増幅を行うためのもので、ガラスエポキシやセラミックなどによって形成されている。前記基板20の寸法の一例を示すと、12mm角で厚さ1mm程度である。前記基板20の一方の主面には、中央付近に一対の導電パッド22,23が適宜間隔で配置されており、その周囲には導電膜24が形成されている。前記導電パッド22,23の双方に、圧電素子30が接続している。前記導電パッド22,23は、前記基板20を厚み方向に貫通するスルーホール22A,23Aによって、前記基板20の他方の主面20Bに引き出され、図示しない一対の外部導体に接続されている。前記圧電素子30は、図示の例では長方形をしており、圧電体と該圧電体に形成された一対の図示しない端子電極を有している。そして、前記一対の端子電極の各々が、ハンダ等によって前記一対の導電パッド22,23に接合され、前記基板20の一方の主面20A上に実装されている。
 このように、導電パッド22,23と、スルーホール22A,23Aと、図示しない外部導体によって、基板20の他方の主面20B側に設けられたアンプ(後述)などと圧電素子30とが接続されている。圧電素子30としては、例えば、PZT(チタン酸ジルコン酸鉛)が使用されるが、特に材質は問わず、適切な感度(圧電定数、容量)を持つものが使用できる。例えば、上記基板20が12mm角の大きさの場合、前記圧電素子30としては、0.6×0.3mm~3.2×1.6mm程度のものであれば、どのようなものであってもよい。
 次に、前記圧電素子30の周囲には、該圧電素子30と前記一対の導電パッド22,23の周囲を囲うように、リング状のスペーサ40が設けられており、該スペーサ40は、前記導電膜24と電気的に接合している。また、導電膜24は、スルーホール24A,24Bによって基板20の他方の主面20B側に引き出されている。前記スペーサ40は、例えば、ステンレスによって形成されて導電性を有しており、接触する人体の皮膚等との間でグランド電位を共通にするとともに、前記皮膚等の振動を導入して、更に、前記基板20に導入する振動導入体として機能する。
 皮膚の振動は、前記スペーサ40に伝達されるとともに、スペーサ40から基板20に伝達される。基板20は、振動体としても機能し、スペーサ40から伝達された振動は、圧電素子30に伝達されるようになっている。前記スペーサ40は、硬質で導電性を有するものであれば、金属に限定されるものではなく、例えば、硬質プラスチックの表面に金属めっきを施したものであってもよい。このように硬質で導電性を有するスペーサ40をはさむことによって、脈波振動が確実に伝わるとともに、電気的ノイズをグランドに逃がすことができるため、より品位の高い脈波信号が得られる。これが振動波形センサの基本的な構造であり、振動脈波は、図3に簡略化して示すように、導電性を有するスペーサ40を通して基板20経由で圧電素子30に伝わる。前記圧電素子30は、この振動を検知して電圧に変換し、脈波信号として解析装置等に出力する。
 振動波形センサ10の基本的な構造は以上の通りであるが、本実施例では、空気中の湿度や体内からの発汗に対処するために、圧電体30とスペーサ40の被覆部44の間と、リング部42の端部42A側と被覆部44の間を、それぞれ絶縁性の高いシリコン樹脂46で埋めている。この際、前記端部42Aが露出してさえいれば、埋めるシリコン樹脂46の量は問わない。シリコン樹脂46を使用するのは、当然、コートする部品間(圧電素子及び導電パッドとスペーサ)をショートさせない必要があるからである。また、スペーサ40のリング部42と被覆部44が設けられている部分以外の領域がハムノイズの影響を受けるのを避けるために、図1(A)~(C)に示すように、導電膜24を設けて電磁的にシールドを行い、ハムノイズの発生を抑える。
 なお、前記シリコン樹脂46を前記端部42A側に充填する量は、前記端部42Aが露出していればよいが、図1(A)に示すように、前記シリコン樹脂46が凸状に盛られる形にすると、被験者がセンサの装着の際に痛みを感じず、なおかつ脈波の取得には影響を与えないので好ましい。
 以上のような振動波形センサ10は、図2(A)に示すように、人体の指などの適宜位置に、医療用固定テープ12等によって、前記スペーサ40が人体の皮膚BDに当たるように装着される。なお、振動波形センサ10を装着する部位は、腕であってもよく、装着方法も、面ファスナーを利用して巻きつけるようにしてもよい。
 次に、図3を参照して、振動波形センサ10の基本的な動作を説明する。図3(A)~(C)は、人体中の血管BVを脈波が伝達する様子が示されている。脈波とは、心臓の拍動に伴って身体組織のある部分への血液の流入によって生じる容積変化を体表面から波形として捉えたものをいう。なお、図3では、理解を容易にするために、振動波形センサ10の構造を簡略化して示している。前記図3では、血管BVの容積が大きい部分をHPとして示しており、左側から右側に脈波が伝達している。前記脈波は、皮膚BDを介して振動波形センサ10のスペーサ40に伝わる。スペーサ40の振動は、更に、基板20を振動させ、これが圧電素子30に伝達される。すると、圧電素子30が変位し、脈波の振動が電気信号に変換される。これが、基板20のアンプにより増幅されて出力される。なお、出力される波形信号は、主に圧電素子30の長辺方向(長辺方向)の変位に基づくものである。図4(B)には、本実施例の振動波形センサにおけるハムノイズの一例が示されている。
 図2(A)~(C)には、本実施例の振動波形センサ10を使用した波形解析システムの一例が示されている。図2(A)には、全体の構成が示されており、前記振動波形センサ10はメインボード50に接続されており、メインボード50は、無線通信用のUSB(Universal Serial Bus)ドングル60を介して波形解析装置100に接続されている。
 図2(B)には、各部の回路構成が示されている。振動波形センサ10は、上述した圧電素子30の出力側が、基板20の裏面(主面20B)側に設けられたインスツルメンテーションアンプ(高入力インピーダンスの作動増幅器)26の入力側に接続されており、このインスツルメンテーションアンプ26の出力が振動波形センサ10の出力となって、メインボード50の入力側に接続されている。
 メインボード50の入力側にはプログラマブルアンプ52が設けられており、その出力側は、A/D変換器53を介して送信モジュール54に接続されている。すなわち、プログラマブルアンプ52によって増幅された脈波の波形信号がA/D変換器53でデジタル信号に変換されて、送信モジュールから送信されるようになっている。送信モジュール54としては、電波や赤外線を利用した公知の各種の近距離無線通信の規格に対応したものが利用できる。例えば、BLE(Bluetooth(登録商標) Low Energy)のような低電力で通信が可能な規格を利用する。メインボード50には、ボタン電池などの電源58が設けられており、これからメインボード50の各部に駆動用の電力が供給されるとともに、振動波形センサ10にも駆動電力が供給されている。
 USBドングル60は、前記メインボード50から送信された信号を波形解析装置100が取り込むためのもので、受信モジュール62とUSBインターフェイス64を備えている。なお、前記メインボード50から送信された信号を波形解析装置100が直接受信できれば、USBドングル60は不要である。なお、USBドングル60は、波形解析装置100によるメインボード50の動作制御にも利用される。
 次に、波形解析装置100は、PC(パソコン),スマートフォン,タブレット型PCなどによって構成されており、図2(C)に示すように、CPU102,データメモリ110,プログラムメモリ120,ディスプレイ104を備えている。プログラムメモリ120に格納されているプログラムはCPU102で実行される。このとき、データメモリ110に格納されているデータが参照される。演算結果は、データメモリ110に格納されるとともに、ディスプレイ104に表示される。このような基本的な動作は、一般的なものでいずれも公知である。
 データメモリ110には、USBドングル60で受信した波形データ112が格納される。また、CPU102による演算結果である演算データ114も格納される。プログラムメモリ120には、ノイズ除去プログラム122,波形解析プログラム124,不整脈検出プログラム126,アラートプログラム128が用意されている。スマートフォンの場合は、これらのプログラムはアプリとして用意される。
 これらのうち、ノイズ除去プログラム122は、波形データ112に含まれているノイズを除去するためのプログラムで、脈波のピーク値が予め設定したしきい値を超えたときに、外乱が発生したとして、波形をピークホールドすることによって、外乱の影響を低減する信号処理を行う。波形解析プログラム124は、脈波の波形中に含まれるPa~Pe波に対して、Pb/Pa,Pc/Pa,Pd/Pa,Pe/Pa,(Pb-Pc-Pd-Pe)/Pa(Aging Index)などの解析値の演算を行う。不整脈検出プログラム126は、脈波におけるパルス間隔からパルスの抜けを不整脈として検出する。アラートプログラム128は、前記波形解析プログラム124による解析結果が予め設定したしきい値を超えたとき、前記不整脈検出プログラム126によって不整脈が検出されたときなどに、その旨を警報として出力する。
 本実施例の圧電素子30によって検出された脈波(速度脈波)を1階微分すると加速度脈波が得られるが、この加速度脈波の振幅を縦軸にし、横軸を時間にして表したパルス波形には、Pa~Pe波が含まれる。前記波形解析プログラム124は、前記1階微分や、前記Pa~Pe波に基づく演算を行う。なお、前記Pa~Pe波の意義は次のとおりである。
Pa波:収縮初期陽性波(指突容積脈波の収縮期前方成分)
Pb波:収縮初期陰性波(同上)
Pc波:収縮中期再上昇波(指突容積脈波の収縮期後方成分)
Pd波:収縮後期再下降波(同上)
Pe波:拡張初期陽性波(指突容積脈波の拡張期成分)
 また、波形解析プログラム124では、加速度脈波の平均波形を算出し、加速度脈波に含まれる複数の波形の波高成分を用いて、波高比Pb/Pa,Pc/Pa,Pd/Pa,Pe/Paや、(Pb-Pc-Pd-Pe)/Paなどの演算が行われる。前記演算結果の意義は、例えば、以下の文献に記述されている。
a, Takazawa et al, 「Assessment of Vasoactive Agents and Vascular Aging by the Second Derivative of Photoplethsmogram Waveform」 Hypertension., August 1998
b, Junichiro Hashimoto et al, 「Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors」 Journal of Hypertention 2002, Vol 20 No 12
 不整脈検出プログラム126は、パルス間隔をみて、あるべき位置にパルスが存在しないときに、不整脈と判断する。また、図2(A)のスマートフォンディスプレイや、波形解析装置100のディスプレイ104には、例えば、検出脈波や、これを前記波形解析装置で解析した結果等が表示される。
 次に、本実施例の全体の動作を説明する。圧電素子30から出力された脈波信号は、インスツルメンテーションアンプ26で増幅された後、メインボード50に入力される。メインボード50では、プログラマブルアンプ52で更に信号が増幅された後、A/D変換器53でデジタル信号に変換された後、送信モジュール54から送信される。送信された脈波信号は、USBドングル60の受信モジュール62で受信され、USBインターフェイス64から波形解析装置100に入力される。
 波形解析装置100では、入力データがデータメモリ110に波形データ112として格納される。CPU102でノイズ除去プログラム122が実行されると、波形データ112に対して、予め設定したしきい値を超える外乱があったときは、波形をピークホールドしてノイズを除去する。CPU102で波形解析プログラム124が実行されると、波形からPa~Pe波が検出されるとともに、上述したPb/Pa,Pc/Pa,Pd/Pa,Pe/Pa,(Pb-Pc-Pd-Pe)/Paなどの演算が行われ、演算結果は演算データ114としてデータメモリ110に格納されるとともに、ディスプレイ104に表示される。また、CPU102で不整脈検出プログラム126が実行され、不整脈が検出される。更に、前記演算結果がしきい値を超えていたり、不整脈が検出されたりしたときは、アラートプログラム128によってその旨の警報が、光や音として出力される。
 図4には、従来品と本発明品の振動波形センサによるハムノイズが示されている。図4の横軸は時間、縦軸はハムノイズレベル(出力電圧)である。従来品の構造は、図1(D)に示す通りであり、振動波形センサ10´は、スペーサ40に被覆部44が設けられていない構造であり、この従来品のハムノイズが図4(A)に示されている。図4(B)は本実施例の振動波形センサにおけるハムノイズである。これらのハムノイズを比べると、本実施例の振動波形センサ10では、スペーサ40の内側に被覆部44を設けて、圧電素子30の上面を連続する導電性の面で覆っているため、圧電素子30の上面からのハムノイズを良好に遮断していることが確認できる。
 このように、実施例1によれば、次のような効果がある。
(1)基板20上に設けられた一対の導電パッド22,23と、これらに端子電極が接続された圧電素子30の周囲を、導電性を有するスペーサ40で囲い、前記スペーサ40のリング部42の内側に、前記一対の導電パッド22,23及び前記圧電素子30の上方を覆うように、円板状の被覆部44を設けることとした。このため、前記被覆部44が、圧電素子30の上面からのハムノイズをより確実に遮断しつつ、圧電素子30回りの回路の絶縁性が得られるため、回路を破壊(短絡)することなく、ハムノイズが低減される。また、基板20上の前記スペーサ40及び被覆部44以外の部分を導電膜24で覆っているため、より確実な電磁シールドが可能となる。
(2)前記スペーサ40が金属で形成されているため、電気的ノイズをグランドに逃がすことができ、より品位の高い脈波信号が得られる。
(3)前記スペーサ40で囲まれた領域内にシリコン樹脂46を充填することとしたので、圧電素子30を保護するとともに、センサ使用時の刺激を低減することができる。また、耐湿性や耐水性も向上する。更に、前記シリコン樹脂46として、カーボン等の粉体を配合していない純粋なシリコン樹脂を用いることができるため、指などに多くの回数接触しても損傷しにくく信頼性が高い。
 <変形例>・・・次に、図5を参照して、本実施例の変形例を説明する。上述した実施例では、スペーサ40の内側に、被覆部44の上下にシリコン樹脂46を充填することとしたが、これも一例であり、例えば、図5(A)に示す振動波形センサ10Aのように、被覆部44と圧電素子30の間の空間のシリコン樹脂46の充填を省略してもよい。また、図5(B)に示す振動波形センサ10Bのように、被覆部44とリング部42の端部42A側のシリコン樹脂46の充填を省略するようにしてもよいし、図5(C)に示す振動波形センサ10Cのように、スペーサ40の内側にシリコン樹脂46を全く充填しなくてもよい。本実施例では、被覆部44により電磁的のみならず、物理的に圧電素子30の上面が遮蔽されるため、必ずしもシリコン樹脂によるコートは必要ではなくなる。従って、いずれの形態とするかは、想定される使用環境等に応じて適宜設計すればよい。更に、図5(D)に示す振動波形センサ10Dのように、断面が必ずしも完全なH型である必要はなく、リング部42側から中央に向けて深くなる窪みを形成するように、被覆部48の外周側が湾曲した形状,すなわち、断面略M字型としてもよい。この場合も、被覆部48の両側にシリコン樹脂を設けるか否かは、必要に応じて適宜設計変更可能である。
 更に、上述した実施例では、リング状のスペーサ40を用いることとしたが、これも一例であり、角枠状のスペーサとしてもよいし、直接皮膚等に触れられる構造を取っていれば対向する2辺のみを接着した角柱であってもよい。図5(E)に示す振動波形センサ200では、基板20上に、一対の板状のスペーサ202,204が、一対の導電パッド22,23及び圧電素子30を挟むように立設されており、これらの間に長方形の被覆部206を設けて、圧電素子30及び導電パッド22,23の上方を被覆している。図示の例では、圧電素子30と被覆部206の間と、被覆部206と一対のスペーサ202,204の端部側に、それぞれシリコン樹脂46が充填されているが、これも、図5(A)~(C)に示す例と同様に、シリコン樹脂の充填の有無は、必要に応じて適宜変更してよい。本例の振動波形センサ200も、基板20及び一対のスペーサ202,204に直交する断面において、スペーサ202,204及び被覆部206によりH型が形成されている。
 図5(F)の振動波形センサ220は、スマートフォンやタブレットPCなどの電子機器に設けた例である。振動波形センサ220は、基板230上のリング状のスペーサ232が電子機器の筐体222から露出するように、防水・防塵シール材234によって固定されている。前記基板230は、電子機器のマザーボード224に対して、はんだバンプ226によって振動可能に支持されている。振動波形センサ220の波動波形信号は、マザーボード224上の回路に取り込まれる。
 次に、図6及び図7を参照しながら本発明の実施例2を説明する。本実施例も、本発明の振動波形センサを、脈波センサに適用した例である。図6は、本実施例を示す図であり、(A)は振動波形センサの断面図,(B)は分解図,(C)は基板の実装面側から見た平面図である。なお、上述した実施例1と同一又は対応する構成要素には、同一の符号を用いることとする(以下の実施例についても同様)。図7は、従来例の振動波形センサと本実施例の振動波形センサにおけるハムノイズの一例を示す図である。これらの図において、振動波形センサ70は、基板20の主面20A上に圧電素子30が配置されており、この圧電素子30の周囲をスペーサ72で覆い、該スペーサ72の内側に形成されたキャビティ74内に、絶縁性樹脂76と導電性樹脂78を設けた構成となっている。
 以上の各部のうち、前記基板20は、圧電素子30を固定支持するとともに、その電極の引出や信号増幅を行うためのもので、ガラスエポキシやセラミックなどによって形成されている。前記基板20の寸法の一例を示すと、12mm角で厚さ1mm程度である。前記基板20の一方の主面には、中央付近に一対の導電パッド22,23が適宜間隔で配置されており、その周囲には導電膜24が形成されている。前記導電パッド22,23の双方に、圧電素子30が接続している。前記導電パッド22,23は、前記基板20を厚み方向に貫通するスルーホール22A,23Aによって、前記基板20の他方の主面20Bに引き出され、図示しない一対の外部導体に接続されている。前記圧電素子30は、図示の例では長方形をしており、圧電体と該圧電体に形成された一対の図示しない端子電極を有している。そして、前記一対の端子電極の各々が、ハンダ等によって前記一対の導電パッド22,23に接合され、前記基板20の一方の主面20A上に実装されている。
 このように、導電パッド22,23と、スルーホール22A,23Aと、図示しない外部導体によって、基板20の他方の主面20B側に設けられたアンプ(後述)などと圧電素子30とが接続されている。圧電素子30としては、例えば、PZT(チタン酸ジルコン酸鉛)が使用されるが、特に材質は問わず、適切な感度(圧電定数、容量)を持つものが使用できる。例えば、上記基板20が12mm角の大きさの場合、前記圧電素子30としては、0.6×0.3mm~3.2×1.6mm程度のものであれば、どのようなものであってもよい。
 次に、前記圧電素子30の周囲には、該圧電素子30と前記一対の導電パッド22,23の周囲を囲うように、リング状のスペーサ72が設けられており、該スペーサ72は、前記導電膜24と電気的に接合している。また、導電膜24は、スルーホール24A,24B(図1(A)参照)によって基板20の他方の主面20B側に引き出されている。前記スペーサ72は、例えば、ステンレスによって形成されて導電性を有しており、接触する人体の皮膚等との間でグランド電位を共通にするとともに、前記皮膚等の振動を導入して、更に、前記基板20に導入する振動導入体として機能する。
 皮膚の振動は、前記スペーサ72に伝達されるとともに、スペーサ72から基板20に伝達される。基板20は、振動体としても機能し、スペーサ72から伝達された振動は、圧電素子30に伝達されるようになっている。このスペーサ72によって図6(C)に示すように、キャビティ74が形成されている。前記スペーサ72は、硬質で導電性を有するものであれば、金属に限定されるものではなく、例えば、硬質プラスチックの表面に金属めっきを施したものであってもよい。このように硬質で導電性を有するスペーサ72をはさむことによって、脈波振動が確実に伝わるとともに、電気的ノイズをグランドに逃がすことができるため、より品位の高い脈波信号が得られる。振動脈波は、前記実施例1において図3に示した通り、導電性を有するスペーサ72を通して基板20を経由して、圧電素子30に伝わる。前記圧電素子30は、この振動を検知して電圧に変換し、脈波信号として解析装置等に出力する。
 振動波形センサ70の基本的な構造は以上の通りであるが、空気中の湿度や体内からの発汗に対処するために、圧電体30とスペーサ72の間を、シリコンなどの絶縁性樹脂76で埋めている。この際、前記スペーサ72の端部が露出してさえいれば、埋める絶縁性樹脂76の量は問わない。前記絶縁性樹脂76は、通常は絶縁性の高いシリコンなどの物質が使われる。これは、当然、コートする部品間(圧電素子及び導電パッドとスペーサ)をショートさせない必要があるからである。また、このままの構成ではハムノイズの影響を受けるため、図6(A)~(C)に示すように、導電膜24を設けて電磁的にシールドを行い、ハムノイズの発生を抑える。
 本発明では、更にハムノイズの発生を抑えるために、前記キャビティ74内の樹脂部の構成を、図6(A)に示すように二重構造としている。すなわち、前記絶縁性樹脂76の上に、導電性樹脂78を設けた構造となっている。前記導電性樹脂78は、例えば、信越シリコーン製のKE3494などが用いられる。前記KE3493は、通常のシリコン中に、導電性のカーボンが分散されたもので、硬化後は電気的に導電性を示す。なお、ここで示した導電性樹脂78は一例であり、軟質の導電膜を形成できるものであれば、公知の各種の材料を用いることができる。なお、前記導電性樹脂78を前記キャビティ74に埋める量は、前記スペーサ72の端部が露出していればよいが、図6(A)に示すように、前記絶縁性樹脂76の上に設けたときに、導電性樹脂78が凸状に盛られる形にすると、被験者がセンサの装着の際に痛みを感じず、なおかつ脈波の取得には影響を与えないので好ましい。
 以上のような振動波形センサ70は、前記実施例1と同様の方法で、人体の皮膚BDにスペーサ72が当たるように装着される。振動波形センサ70の基本的な動作は、前記実施例1において図3(A)~(C)を用いて説明した通りである。本実施例の振動波形センサ70を用いた波形解析システムの構造や回路構成、全体の動作も、上述した実施例1と同様である。
 図7には、従来品と本発明品の振動波形センサにおけるハムノイズが示されている。図7の横軸は時間、縦軸はハムノイズレベルである。従来品の構造は、図6(A)に示す振動波形センサ70から、絶縁性樹脂76と導電性樹脂78を除いた構造であり、この従来品のハムノイズが図7(A)に示されている。図7(B)は本実施例の振動波形センサにおけるハムノイズである。これらのハムノイズを比べると、本実施例の振動波形センサ70では、スペーサ72の内側に絶縁性樹脂76と導電性樹脂78を設けて、圧電素子の上面を覆っているため、圧電素子30の上面からのハムノイズを良好に遮断していることが確認できる。
 このように、実施例2によれば、次のような効果がある。
(1)基板20上に設けられた一対の導電パッド22,23と、これらに端子電極が接続された圧電素子30の周囲を、導電性を有するスペーサ72で囲い、前記スペーサ72の内側のキャビティ74に、前記一対の導電パッド22,23及び前記圧電素子30を覆うように、絶縁性樹脂76を設け、更に、絶縁性樹脂76を覆うように導電性樹脂78を設けることとした。このため、前記導電性樹脂78が圧電素子30の上面からのハムノイズを遮断しつつ、圧電素子30回りの回路の絶縁性は得られるため、回路を破壊(短絡)することなく、ハムノイズが低減される。
(2)前記スペーサ72が金属で形成されているため、電気的ノイズをグランドに逃がすことができ、より品位の高い脈波信号が得られる。
 <変形例>・・・次に、図8を参照して、本実施例の変形例を説明する。前記図6及び図7に示した実施形態では、リング状のスペーサ72を用いることとしたが、これも一例であり、角枠状のスペーサとしてもよいし、直接皮膚等に触れられる構造を取っていれば対向する2辺のみを接着した角柱であってもよい。図8(A)に示す振動波形センサ300では、基板20上に、一対の板状のスペーサ302,304が、一対の導電パッド22,23及び圧電素子30を挟むように立設されており、これらの間に絶縁性樹脂76と導電性樹脂78を設けて、前記導電パッド22,23及び圧電素子30を覆っている。また、図8(B)に示す振動波形センサ310のように、板状ないし棒状のスペーサ312を基板20に立設するとともに、その近傍に圧電素子30を配置し、導電パッド22,23と圧電素子30を絶縁性樹脂76で覆い、更に、絶縁性樹脂76を導電性樹脂78で覆う構成としてもよい。このように、スペーサが対象物に接触してその振動が基板20に伝達されれば、スペーサはどのような形状であってもよい。
 前記実施例では、導電パッド22,23及び圧電素子30を、絶縁性樹脂76と導電性樹脂78の2層の樹脂で覆うこととしたが、例えば、図8(C)に示す振動波形センサ70Aのように、3層構造とし、前記導電性樹脂78を更に覆うように、シリコンなどの絶縁性樹脂80を設けてもよい。この場合、前記導電性樹脂78は、直接触れることはないため、金属粒子を含むものであっても、金属アレルギーの人が使用することができる。本実施例の振動波形センサも、前記実施例1において、図5(F)に示したように、スマートフォンやタブレットPCなどの電子機器に設けるようにしてもよい。
 次に、図9及び図10を参照しながら本発明の実施例3を説明する。図9(A)は振動波形センサ(センサモジュール)の断面図,図9(B)は振動波形センサの組立部,図9(C)は振動波形センサの主面側から見た平面図,図9(D)は前記(B)を#A-#A線に沿って切断し矢印方向から見た脈波検出装置の断面図である。図10は、実施例3と従来技術による脈波検出装置の全体構成を示す図であり、(A)は実施例3の脈波検出装置を示し、(B)は従来の脈波検出装置を示す。
 これらの図において、脈波検出装置400のセンサモジュールとして、前記実施例1の振動波形センサ10を用いている。振動波形センサ10の構造は、実施例1の通りのため説明を省略する。以上のような振動波形センサ10は、従来は、図10(B)に示すように、人体の指などの適宜位置に、医療用固定テープ12等によって、前記スペーサ40が指先の皮膚BDに当たるように装着される。そして、図10(B)に示すように「ぶら下げた状態」で測定を行っていた。しかしながら、このような計測では、振動波形センサ10をぶら下げ状態に装着する手間がかかり、簡易に脈波を測定することができない。また、仮に、振動波形センサ10を机の上などにおいて、指先を押し付けたとしても、振動波形センサ10は、より重量の重いもの(この場合は机)の振動を拾ってしまい、脈波を正確に検出することができない。
 そこで、本発明では、図9(D)及び図10(A)に示すように、脈波検出装置400の筐体402に設けた受部404に、弾性を有する支持手段406を介して、振動波形センサ10を宙づり状態に取り付ける。本実施例では、正方形の基板20の側面20C~20Fの全周に、例えば、弾性体であるゴムからなる支持手段406を、接着剤により接合し、更に、前記支持手段406を、前記筐体402の受部404に、接着剤により接合している。前記支持手段406は、弾性を有するためサスペンション部材として機能し、筐体402を台に置いて指先を振動波形センサ10に押し付けたときでも、振動波形センサ10が台の振動を拾うことなく、指先から脈波を検出することができる。
 すなわち、被測定者が、人差し指を、この筐体402上に乗った振動波形センサ10に強く押し付けることで、振動波形センサ10は、ぶら下がった状態でありながら、スペーサ40との間に十分な密着力を得られる。このようにして得られた脈波波形は、図10(B)に示す従来の計測方法と同等であった。前記支持手段406として使用する部材は、ゴム以外でも弾性力のあるものであれば使用可能である。好ましくは、バネ定数(スプリングレート)で0.5~7.0N/mmであるとよいが、この範囲を外れるものであっても、同様の効果を奏するものであれば、本発明の支持手段として利用可能である。例えば、素材自体が弾力性を有するシートを用いてもよいし、形状により弾性体として機能する金属スプリングなどが使用可能である。以上のような振動波形センサ10の基本的な動作、脈波検出装置400を用いた波形解析システムの全体構成や各部の回路構成は、上述した実施例1と同様である。
 次に、本実施例の全体の動作を説明する。被測定者が、台の上に設置された脈波検出装置400の振動波形センサ10に、図10(A)に示すように指を押し当てると、脈波がスペーサ40及び基板20を介して圧電素子30に伝達する。このとき、振動波形センサ10が、弾性体からなる支持体406により筐体402の受部404に支持されているため、振動波形センサ10は、設置台などの振動を拾うことなく、押し付けられた指先から伝わる脈波を検出する。圧電素子30が、伝達された振動を脈波信号として出力した後の波形解析処理手順は、上述した実施例1と同様である。
 このように実施例3によれば、次のような効果がある。
(1)基板20,圧電素子30及びスペーサ40からなる振動波形センサ10を、脈波検出装置400の筐体402の受部404に、弾性材料からなる支持手段406を介して宙づり状態で支持することとした。このため、被測定者が、指先を振動波形センサ10に押し付けるといった簡便な動作で、ぶら下がった状態ながらセンサに指先が密着するため、簡単に脈波を検出することができるという効果がある。
(2)基板20の側面部分を、支持手段406により支持することとしたので、基板20に重量がかからず、振動波形センサ10に接触するもの以外の振動を拾いにくくなり、脈波を確実に検出することができる。
(3)前記スペーサ40が金属で形成されているため、電気的ノイズをグランドに逃がすことができ、より品位の高い脈波信号が得られる。
 <変形例>・・・次に、図11を参照して実施例3の変形例を説明する。上述した形態は、センサモジュールとして実施例1の振動波形センサ10を用いることとしたが、これも一例であり、図11(A)に示す脈波検出装置400Aのように、実施例2の振動波形センサ70を利用してもよい。また、図9及び図10の例では、支持手段406が、基板20の側面20C~20Fの全周を支持することとしたが、これも一例であり、同様の効果を奏する範囲内で適宜設計変更可能である。例えば、図11(B)に示す脈波検出装置400Bのように、振動波形センサ410の円形の基板420の側縁を3点で、支持手段430により支持してもよい。また支持する位置や数も、同様の効果を奏する範囲内で、必要に応じて変更・増減が可能である。
 また、前記実施形態では、振動波形センサ10の基板20の側面を支持手段406が支持することとしたが、これも一例であり、図11(C)に示す脈波検出装置400Cのように、基板20の主面20Bの縁部分を支持手段406により支持してもよいし、図11(D)に示す脈波検出装置400Dのように、基板20の主面20Bと筐体102の底面403の間に支持手段440を設けて、前記振動波形センサ10を支持してもよい。
 なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
  (1)前記実施例1及び実施例2では、脈波を測定対象としたが、本発明の振動波形センサの測定対象は脈波に限定されるものではなく、呼吸や他の公知の各種の波形を対象としてよい。例えば、エンジンやモータの振動波形を解析するといった具合である。
  (2)前記実施例1では、振動波形センサ10とメインボード50とを分けたが、両者を一体としてもよいし、更には波形解析装置100も一体の構成としてよい。また、前記実施例では、USBドングルを使用してBLEによる送受信を行ったが、波形解析装置がメインボードとの間で信号を送受信できる機能を備えていれば、USBドングルは不要である。また、信号の送受信は、BLEに限らず、各種の規格を適用してよい。
  (3)前記実施例で示した波形解析の演算式も一例であり、必要に応じて各種の演算を行ってよい。
 (4)前記実施例1では、金属製のスペーサ40を用いることとしたが、これも一例であり、スペーサは硬質で導電性を有するものであれば、金属製でなくてもよい。例えば、樹脂やセラミックなどの絶縁体の表面に導電膜を設けたものであってもよい。実施例2及び実施例3についても同様である。
  (5)前記実施例では、圧電体は一般的なPZTを用いたが、これに限定されるものではなく、同様の効果を奏する適切な感度(圧電定数,容量)を有するものであればよい。また、前記圧電素子30の形状や寸法も、用途等に応じて適宜変更してよい。
  (6)前記実施例では、基板20としてガラスエポキシ樹脂を利用したが、これも一例であり、セラミックのような更に硬質のものであってもよい。
  (7)前記実施例1では、シリコン樹脂46を、リング状のスペーサ40の内側に充填することとしたが、その厚さは適宜変更可能であり、被膜のような形態であってもよい。
 (8)前記実施例2では、導電性樹脂78として、シリコン中に導電性のカーボンが分散されたものを使用したが、これも一例であり、導電性を有し、かつ、軟質のものであれば、他の公知の各種の導電性材料を用いてよい。なお、金属アレルギー等を考慮すると、非金属の導電性のカーボンを用いたものが好適である。
  (9)前記実施例2では、導電性樹脂78を、リング状のスペーサ72の内側に充填することとしたが、その厚さは適宜変更可能であり、被膜のような形態であってもよい。
 (10)前記実施例3で示した形状,寸法,材質も一例であり、同様の効果を奏する範囲内で適宜変更可能である。例えば、前記実施例では、基板20を四角形としたが、円形としてもよい。
  (11)前記実施例3では、筐体402の外側にメインボード50を設けることとしたが、これも一例であり、筐体402の内部に設けてもよい。
  (12)前記実施例3では、卓上に置く筐体に振動波形センサ(センサモジュール)を設けることとしたが、これも一例であり、例えば、被測定者が握るハンドルに、弾性を有する支持手段を介して前記振動波形センサを設けるようにしても、同様の効果が得られる。
 (13)前記実施例3では、支持手段406として弾性材料であるゴムを用いることとしたが、これも一例であり、金属スプリングや弾性体シートなど、弾性を有するものであれば、ゴム以外のものを用いてよい。例えば、バネ定数(スプリングレート)で0.5~7.0N/mmの範囲とすると好ましいが、この範囲を外れるものであっても、同様の効果を奏するものであれば、本発明の支持手段として利用可能である。
  (14)前記実施例3では、ゴム製の支持手段406を接着剤によって、振動波形センサ10の基板20の側面20C~20Fと、筐体402の受部404の内周縁のそれぞれに接着することとしたが、これも一例であり、例えば、ネジ止めのように、公知の各種の接合方法を用いてよい。なお、基板20に重量をかけないという観点からは、接着剤による接合が好都合である。
 本発明によれば、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、前記基板上にあって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成された導電性を有するスペーサと、を備えるとともに、前記スペーサは、前記基板と反対側の縁部よりも低い位置に、前記圧電素子及び前記一対の導電パッドの上方を連続的に覆う被覆部を有することとした。これにより、より確実にハムノイズの遮断が可能になるとともに、損傷しにくく信頼性が向上するため、振動波形センサの用途に適用できる。特に、皮膚に直に接触させるような脈波センサ等の用途に好適である。
 他の発明によれば、基板と、前記基板上に形成された一対の導電パッドと、前記一対の導電パッドの各々から引き出された一対の外部導体と、圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、前記基板上であって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、前記基板上に、前記圧電素子及び前記一対の導電パッドを覆うように形成された絶縁性樹脂と、前記絶縁性樹脂を覆うように形成された導電層と、を備えることとした。
 このため、導電層が圧電素子の上面からのハムノイズを遮断しながら、圧電素子回りの絶縁性は得られるため、回路破壊(短絡)することなく、ハムノイズが低減できるため、振動波形センサの用途に適用できる。特に、樹脂でコーティングすることで接触しても痛みを感じないことから、皮膚に直に接触させるような脈波センサ等の用途に好適である。
 更に他の発明によれば、基板,圧電素子及び振動導入体からなる振動波形センサを、筐体の受部に、弾性体により形成される支持手段を介して浮遊状態で支持することとしたので、被測定者が指先をセンサに押し付けるといった簡便な動作で、ぶら下がった状態ながらセンサに指先が密着するため、簡単に脈波を検出することができるため、脈波計測の用途に適用できる。特に、据え置き型の脈波検出装置や解析システムの用途に好適である。
 10,10´,10A~10D:振動波形センサ
 12:医療用固定テープ
 20:基板
 20A,20B:主面
 20C~20F:側面
 22,23:導電パッド
 22A,23A:スルーホール
 24:導電膜
 24A,24B:スルーホール
 26:インスツルメンテーションアンプ
 30:圧電素子
 40:スペーサ
 42:リング部
 42A:端部
 44,48:被覆部
 46:シリコン樹脂
 50:メインボード
 52:プログラマブルアンプ
 53:A/D変換器
 54:送信モジュール
 58:電源
 60:USBドングル
 62:受信モジュール
 64:USBインターフェイス
 70,70A:振動波形センサ
 72:スペーサ
 74:キャビティ
 76,80:絶縁性樹脂
 78:導電性樹脂
100:波形解析装置
102:CPU
104:ディスプレイ
110:データメモリ
112:波形データ
114:演算データ
120:プログラムメモリ
122:ノイズ除去プログラム
124:波形解析プログラム
126:不整脈検出プログラム
128:アラートプログラム
200:振動波形センサ
202,204:スペーサ
206:被覆部
220:振動波形センサ
222:筐体
224:マザーボード
226:はんだバンプ
230:基板
232:スペーサ
234:防水・防塵シール材
300:振動波形センサ
302,304:スペーサ
310:振動波形センサ
312:スペーサ
400,400A~400D:脈波検出装置
402,402A:筐体
403:底面
404,404A:受部
406:支持手段
410:振動波形センサ
420:基板
430,440:支持手段
BD:皮膚
BV:血管
HP:脈波

Claims (19)

  1.  基板と、
     前記基板上に形成された一対の導電パッドと、
     前記一対の導電パッドの各々から引き出された一対の外部導体と、
     圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、
     前記基板上にあって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成された導電性を有するスペーサと、
    を備えるとともに、
     前記スペーサは、前記基板と反対側の縁部よりも低い位置に、前記圧電素子及び前記一対の導電パッドの上方を連続的に覆う被覆部を有することを特徴とする振動波形センサ。
  2.  前記スペーサは、
     前記基板と直交する断面の形状が、H型ないしM型であることを特徴とする請求項1記載の振動波形センサ。
  3.  前記スペーサが、
     前記圧電素子及び前記一対の導電パッドの周囲を囲むように形成されたことを特徴とする請求項1又は2記載の振動波形センサ。
  4.  前記スペーサは、枠状またはリング状であって、枠またはリングの内周面に前記被覆部を有することを特徴とする請求項3記載の振動波形センサ。
  5.  前記スペーサで囲まれた領域内に、シリコン樹脂を充填したことを特徴とする請求項3又は4記載の振動波形センサ。
  6.  前記スペーサが、
     前記圧電素子及び前記一対の導電パッドを挟むように配置された一対のスペーサ部材と、
     該一対のスペーサ部材に架けて設けられた前記被覆部と、
    からなることを特徴とする請求項1又は2記載の振動波形センサ。
  7.  前記スペーサで挟まれた領域内に、シリコン樹脂を充填したことを特徴とする請求項6記載の振動波形センサ。
  8.  前記基板上の、前記スペーサ及び被覆部が設けられた部分以外の領域に、導電膜が形成されていることを特徴とする請求項1~7のいずれか一項に記載の振動波形センサ。
  9.  基板と、
     前記基板上に形成された一対の導電パッドと、
     前記一対の導電パッドの各々から引き出された一対の外部導体と、
     圧電体と該圧電体に形成された一対の端子電極とを有し、前記一対の端子電極の各々が前記一対の導電パッドに接続され、前記基板上に実装された圧電素子と、
     前記基板上であって、前記圧電素子及び前記一対の導電パッドの周辺に、前記圧電素子の実装高さよりも高く形成されたスペーサと、
     前記基板上に、前記圧電素子及び前記一対の導電パッドを覆うように形成された絶縁性樹脂と、
     前記絶縁性樹脂を覆うように形成された導電層と、
    を備えたことを特徴とする振動波形センサ。
  10.  前記スペーサが、
     前記圧電素子及び前記一対の導電パッドの周囲を囲むように形成されたことを特徴とする請求項9記載の振動波形センサ。
  11.  前記スペーサは、枠状またはリング状であることを特徴とする請求項10記載の振動波形センサ。
  12.  前記絶縁性樹脂及び前記導電層が、前記スペーサで囲まれた領域内に形成されていることを特徴とする請求項10又は11記載の振動波形センサ。
  13.  前記基板上の、前記スペーサ及び前記絶縁性樹脂が設けられた領域以外の領域に、導電膜が形成されていることを特徴とする請求項9~12のいずれか一項に記載の振動波形センサ。
  14.  前記導電層が、導電性粒子を含む樹脂であることを特徴とする請求項9~13のいずれか一項に記載の振動波形センサ。
  15.  前記スペーサは、外面が導電体で形成されていることを特徴とする請求項1~14のいずれか一項に記載の振動波形センサ。
  16.  請求項1~15のいずれか一項に記載の振動波形センサと、
     該振動波形センサが配置される受部を有する筐体と、
     前記振動波形センサと前記受部の間に設けられており、前記振動波形センサを、前記筐体の受部において支持する弾性を有する支持手段と、
    を備えたことを特徴とする脈波検出装置。
  17.  前記支持手段が、前記振動波形センサを、前記基板の側面で支持することを特徴とする請求項16記載の脈波検出装置。
  18.  前記支持手段が、前記基板の側面の全周を支持することを特徴とする請求項17記載の脈波検出装置。
  19.  前記支持手段が、前記基板の側面を複数箇所で支持することを特徴とする請求項17記載の脈波検出装置。
PCT/JP2017/004690 2016-04-28 2017-02-09 振動波形センサ及び脈波検出装置 WO2017187710A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/096,076 US11395600B2 (en) 2016-04-28 2017-02-09 Vibration waveform sensor and pulse wave detection device
CN201780026146.5A CN109069029A (zh) 2016-04-28 2017-02-09 振动波形传感器和脉搏波检测装置
JP2018514128A JPWO2017187710A1 (ja) 2016-04-28 2017-02-09 振動波形センサ及び脈波検出装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016090079 2016-04-28
JP2016-090079 2016-04-28
JP2016159758 2016-08-16
JP2016-159758 2016-08-16
JP2016225514 2016-11-18
JP2016-225514 2016-11-18

Publications (1)

Publication Number Publication Date
WO2017187710A1 true WO2017187710A1 (ja) 2017-11-02

Family

ID=60160236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004690 WO2017187710A1 (ja) 2016-04-28 2017-02-09 振動波形センサ及び脈波検出装置

Country Status (5)

Country Link
US (1) US11395600B2 (ja)
JP (1) JPWO2017187710A1 (ja)
CN (1) CN109069029A (ja)
TW (1) TW201738573A (ja)
WO (1) WO2017187710A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203852A (ja) * 2018-05-25 2019-11-28 太陽誘電株式会社 圧電振動センサ
WO2020049934A1 (ja) * 2018-09-03 2020-03-12 ヤマハ株式会社 生体センサ
WO2021191948A1 (ja) * 2020-03-23 2021-09-30 太陽誘電株式会社 振動測定用基板モジュール及び振動検出装置
JP2022042920A (ja) * 2020-09-03 2022-03-15 Ssst株式会社 生体情報演算システム
WO2023167171A1 (ja) * 2022-03-01 2023-09-07 ミネベアミツミ株式会社 脈波センサ
WO2023167172A1 (ja) * 2022-03-04 2023-09-07 ミネベアミツミ株式会社 脈波センサ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI642421B (zh) * 2018-01-05 2018-12-01 富伯生醫科技股份有限公司 可固定感應器的手指動作感應手套
CN108968929A (zh) * 2018-08-01 2018-12-11 中国科学院深圳先进技术研究院 脉搏检测装置及其制作方法
CN110255491A (zh) * 2019-06-27 2019-09-20 中国科学院微电子研究所 Mems压力传感器封装结构及封装方法
CN110916627B (zh) * 2019-12-24 2020-09-18 北京建筑大学 一种远程诊脉传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234593U (ja) * 1975-09-02 1977-03-11
JPS5234592U (ja) * 1975-09-02 1977-03-11
JPH03186247A (ja) * 1989-12-16 1991-08-14 Koorin Denshi Kk 脈波検出装置
JP2003153389A (ja) * 2001-11-16 2003-05-23 Seiko Instruments Inc 圧電トランスデューサ、圧電トランスデューサの製造方法、及び脈波検出装置
US20110288436A1 (en) * 2010-05-20 2011-11-24 Tronics MedTech Materials and methods for insulating electronic components and services
JP2014042579A (ja) * 2012-08-24 2014-03-13 Bifristec Kk 検体情報検出ユニット
JP2015025769A (ja) * 2013-07-29 2015-02-05 ビフレステック株式会社 検体情報検出ユニット、検体情報処理装置、及び検体情報検出ユニットの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926890B1 (ja) * 1970-12-04 1974-07-12
FR2542552B1 (fr) * 1983-03-07 1986-04-11 Thomson Csf Transducteur electroacoustique a diaphragme piezo-electrique
FR2572616A1 (fr) * 1984-10-30 1986-05-02 Thomson Csf Transducteur electro-acoustique a diaphragme piezoelectrique
CN1083340A (zh) * 1992-08-31 1994-03-09 林秀列 电子诊脉装置及方法
CN100398058C (zh) * 2000-04-21 2008-07-02 陆渭明 无创伤测量血压的装置
US6950695B2 (en) * 2003-07-30 2005-09-27 Yu-Yu Chen Watch-typed heartbeat sensing device
US6781814B1 (en) * 2003-11-03 2004-08-24 Texas Instruments Incorporated Capacitive pressure transducer
JP5016717B2 (ja) 2008-09-01 2012-09-05 学校法人同志社 動脈硬化評価装置
CN101726387B (zh) * 2008-10-27 2013-06-19 京乐产业.株式会社 振动检测装置
KR101577342B1 (ko) * 2009-05-07 2015-12-15 삼성전자주식회사 혈압 측정 장치 및 방법
CN104507384A (zh) * 2012-07-30 2015-04-08 三菱化学控股株式会社 检体信息检测单元、检体信息处理装置、电动牙刷装置、电动剃须刀装置、检体信息检测装置、老龄化度评价方法及老龄化度评价装置
TWI631930B (zh) * 2013-04-01 2018-08-11 美盛醫電股份有限公司 生理訊號感測裝置
CN104764481B (zh) * 2015-04-08 2017-01-25 合肥工业大学 一种全柔性电容‑电阻双模式接近觉传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234593U (ja) * 1975-09-02 1977-03-11
JPS5234592U (ja) * 1975-09-02 1977-03-11
JPH03186247A (ja) * 1989-12-16 1991-08-14 Koorin Denshi Kk 脈波検出装置
JP2003153389A (ja) * 2001-11-16 2003-05-23 Seiko Instruments Inc 圧電トランスデューサ、圧電トランスデューサの製造方法、及び脈波検出装置
US20110288436A1 (en) * 2010-05-20 2011-11-24 Tronics MedTech Materials and methods for insulating electronic components and services
JP2014042579A (ja) * 2012-08-24 2014-03-13 Bifristec Kk 検体情報検出ユニット
JP2015025769A (ja) * 2013-07-29 2015-02-05 ビフレステック株式会社 検体情報検出ユニット、検体情報処理装置、及び検体情報検出ユニットの製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203852A (ja) * 2018-05-25 2019-11-28 太陽誘電株式会社 圧電振動センサ
JP7019510B2 (ja) 2018-05-25 2022-02-15 太陽誘電株式会社 圧電振動センサ
WO2020049934A1 (ja) * 2018-09-03 2020-03-12 ヤマハ株式会社 生体センサ
CN112638243A (zh) * 2018-09-03 2021-04-09 雅马哈株式会社 生物体传感器
WO2021191948A1 (ja) * 2020-03-23 2021-09-30 太陽誘電株式会社 振動測定用基板モジュール及び振動検出装置
JP2022042920A (ja) * 2020-09-03 2022-03-15 Ssst株式会社 生体情報演算システム
JP7083185B2 (ja) 2020-09-03 2022-06-10 Ssst株式会社 生体情報演算システム
WO2023167171A1 (ja) * 2022-03-01 2023-09-07 ミネベアミツミ株式会社 脈波センサ
WO2023167172A1 (ja) * 2022-03-04 2023-09-07 ミネベアミツミ株式会社 脈波センサ

Also Published As

Publication number Publication date
TW201738573A (zh) 2017-11-01
US20190133463A1 (en) 2019-05-09
CN109069029A (zh) 2018-12-21
JPWO2017187710A1 (ja) 2019-03-07
US11395600B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2017187710A1 (ja) 振動波形センサ及び脈波検出装置
WO2016167202A1 (ja) 振動波形センサ及び波形解析装置
US20070049837A1 (en) Acoustic sensor
JP2013508029A (ja) 複数の検出素子を有する音響呼吸監視センサ
US20140221772A1 (en) Body surface sensors
WO2006055666A9 (en) Ultrasonic monitor for measuring blood flow and pulse rates
WO2018180398A1 (ja) 着座センサ,座席,及び波形解析装置
WO2017124772A1 (zh) 胎心胎动监测带、胎心胎动监测装置及系统
US20220257188A1 (en) Attachable sensing pod comprising a piezoelectric unit
US5864066A (en) Vibration detecting sensor with temperature compensating piezoelectric element
CA2482043A1 (en) Piezoelectric vibration sensor
JP5467265B2 (ja) 体導音センサ
JP6742797B2 (ja) 振動波形センサ
GB2192460A (en) Movement sensing apparatus
WO2019163740A1 (ja) 生体振動信号検出装置
KR101871285B1 (ko) 호흡 센싱 디바이스 및 이를 포함하는 호흡 모니터링 시스템
KR100948941B1 (ko) 인덕티브 전극을 이용한 심장박동신호 측정 장치 및 그방법
JP7019510B2 (ja) 圧電振動センサ
JP2024035754A (ja) 電子機器
JPH01269400A (ja) 振動センサ
JP2019174122A (ja) 圧電振動センサ及びその製造方法
JPH0737104U (ja) 脈波検出装置
JP2024027214A (ja) 電子機器
JP2010141382A (ja) 骨伝導を用いた送話装置
TW201825908A (zh) 振動波形感測器及波形解析裝置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788999

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.02.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17788999

Country of ref document: EP

Kind code of ref document: A1