WO2017183557A1 - 温度計測システム - Google Patents
温度計測システム Download PDFInfo
- Publication number
- WO2017183557A1 WO2017183557A1 PCT/JP2017/015178 JP2017015178W WO2017183557A1 WO 2017183557 A1 WO2017183557 A1 WO 2017183557A1 JP 2017015178 W JP2017015178 W JP 2017015178W WO 2017183557 A1 WO2017183557 A1 WO 2017183557A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical member
- temperature
- luminance
- imaging device
- wavelength band
- Prior art date
Links
- 238000009529 body temperature measurement Methods 0.000 title claims abstract description 57
- 230000003287 optical effect Effects 0.000 claims abstract description 122
- 238000003384 imaging method Methods 0.000 claims abstract description 60
- 238000005259 measurement Methods 0.000 claims description 70
- 230000035945 sensitivity Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 description 22
- 238000004364 calculation method Methods 0.000 description 10
- 230000008859 change Effects 0.000 description 10
- 238000002834 transmittance Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000000903 blocking effect Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000003331 infrared imaging Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 241000234479 Narcissus Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003330 mid-infrared imaging Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
Definitions
- the present invention relates to a temperature measurement system, for example, a temperature measurement system that images an observation object with an infrared camera and measures the temperature near the observation object.
- Patent Document 1 and Non-Patent Document 1 propose a technique for detecting the presence of a gaseous substance by utilizing the fact that the intensity of radiated electromagnetic waves from the object surface in the background changes depending on the gaseous substance. .
- Electromagnetic waves radiated from the object surface are acquired in the form of images by an infrared camera having sensitivity mainly in the infrared wavelength region.
- the data obtained by the infrared camera is luminance data representing the intensity of the electromagnetic wave radiated from the object surface.
- luminance data representing the electromagnetic wave intensity corresponding to the temperature data is required. That is, it is necessary to convert the temperature data into luminance data.
- the temperature is measured using a thermometer, and a conversion formula is used to convert the measured temperature data into luminance data.
- thermometers since there are general errors in thermometers, variations of about 0.1 ° C to 0.5 ° C occur between aircraft. In addition, since there are variations in the characteristics of the infrared camera to be used, an error occurs in the conversion process using the conversion formula from temperature data to luminance data. For this reason, the conventional technology cannot accurately convert the temperature data into luminance data.
- the present invention has been made in view of such circumstances, and an object thereof is to provide a temperature measurement system capable of acquiring temperature data as luminance data with high accuracy.
- the temperature measurement system is sensitive to electromagnetic waves in a specific wavelength band among electromagnetic waves radiated or reflected from a subject surface, and comprises the electromagnetic waves in the specific wavelength band.
- the imaging device uses the luminance information of the subject image acquired without passing through the optical member and the luminance information of the subject image acquired through the optical member, and a black body corresponding to the temperature in the specific wavelength band.
- the radiance is calculated.
- the temperature measurement system is the temperature measurement system according to the first aspect, wherein the luminance information used for the calculation of the black body radiance is the same as the measurement point where the luminance of the electromagnetic wave in the specific wavelength band on the subject surface is the same. It is acquired.
- the temperature measurement system is the temperature measurement system according to the first aspect, wherein the luminance information used for the calculation of the black body radiance is at least two different from each other in luminance of the electromagnetic waves in the specific wavelength band on the subject surface. It is obtained for two measurement points.
- the temperature measurement system is the temperature measurement system according to any one of the first to third aspects, wherein a normal line of an optical surface through which an electromagnetic wave constituting the subject image is transmitted in the optical member is light of the imaging device. It is characterized by being non-parallel to the axis.
- thermometer since no thermometer is used, there is no temperature information error caused by a difference in temperature meter or an error in the data conversion process. Therefore, it is possible to realize a temperature measurement system capable of acquiring temperature data as luminance data with high accuracy.
- the schematic block diagram which shows embodiment of a temperature measurement system.
- the flowchart which shows the specific example 1 of the measurement procedure by embodiment of a temperature measurement system.
- the flowchart which shows the specific example 2 of the measurement procedure by embodiment of a temperature measurement system.
- the schematic sectional drawing which shows embodiment of the temperature measurement system of an optical member movement type.
- the top view which shows the to-be-photographed object surface and brightness
- FIG. 5 is a plan view showing a subject surface and luminance measurement points before and after an optical member is inserted into the field of view in the temperature measurement system of FIG. 4 as viewed from the imaging apparatus side in two regions having different radiances.
- Sectional drawing which shows embodiment of the temperature measurement system by which the optical member was arrange
- FIG. 1 schematically shows a schematic cross-sectional structure of a temperature measurement system T0 according to an embodiment of the present invention.
- the temperature measurement system T0 includes an imaging device DU, an optical member OE, and the like.
- the imaging device DU has sensitivity to an electromagnetic wave in a specific wavelength band among electromagnetic waves radiated or reflected by a subject surface (object surface) HS having an absolute temperature of zero degrees or more, and captures a subject image made up of an electromagnetic wave in a specific wavelength band. It is acquired as luminance information.
- the optical member OE disposed in front of the field of view of the imaging device DU has the same temperature as the air temperature, and can transmit electromagnetic waves in a specific wavelength band (that is, the transmittance for electromagnetic waves in the specific wavelength band is 0). % And less than 100% optical properties).
- a typical example of the electromagnetic waves in the specific wavelength band is infrared rays
- a specific example of the imaging device DU is an infrared imaging device (that is, an infrared camera having sensitivity in the infrared wavelength region). More specifically, there is an infrared imaging device capable of detecting at least a part of the wavelength band of 1 to 16 ⁇ m, for example, an uncooled far infrared imaging device that detects 8 to 16 ⁇ m, and 3 to 5 ⁇ m. And a cooling type mid-infrared imaging device. That is, a specific wavelength range may be set in accordance with the observation target and the purpose of use, and an imaging device having detection sensitivity in the specific wavelength range may be selected.
- the optical member OE examples include electromagnetic wave absorbing materials such as glass plates and plastic plates.
- the transmittance of the optical member OE with respect to the electromagnetic wave in the specific wavelength band may be larger than 0% and smaller than 100%, and the transmittance with respect to the electromagnetic wave in the specific wavelength band is preferably 50%, for example. That is, as the optical member OE, it is preferable to use a translucent plate having a transmittance (for example, infrared transmittance) with respect to electromagnetic waves in a specific wavelength band of 50%. Further, in order to reduce reflection on the surface of the optical member OE, it is preferable to provide unevenness smaller than the observation wavelength on the surface or to apply a non-reflective coating.
- the imaging device DU includes a lens unit LU that optically captures a subject image and outputs it as an electrical signal for still image shooting and moving image shooting of the subject surface HS.
- the lens unit LU in order from the object (that is, subject) side, electrically captures an imaging lens LN (AX: optical axis) that forms an optical image (that is, subject image) of the object and the optical image formed by the imaging lens LN.
- an image sensor SR that converts the signal into a simple signal.
- the imaging device DU includes a signal processing unit 1, an operation control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the lens unit LU.
- the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like as required by the signal processing unit 1 and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disk, etc.) Via a cable or converted into an infrared signal or the like, it is transmitted to another device by a communication function.
- the arithmetic control unit 2 is composed of a microcomputer, and centrally performs control of functions such as a luminance information processing function, a photographing function, and an image reproduction function; control of a moving mechanism of the imaging lens LN and the optical member OE.
- the display unit 5 is a part including a display such as a liquid crystal monitor, and displays an image using an image signal or recorded image information converted by the imaging sensor SR.
- the operation unit 4 is a part including operation members such as operation buttons, and transmits information input by the operator to the calculation control unit 2.
- the imaging device DU uses the luminance information of the subject image acquired without passing through the optical member OE and the luminance information of the subject image acquired through the optical member OE in a specific wavelength band. It is configured to calculate the black body radiance corresponding to the temperature.
- FIG. 2 and 3 show specific examples 1 and 2 of the measurement procedure by the temperature measurement system T0, respectively. Since the temperature of the optical member OE greatly affects the measurement of the air temperature, first, the temperature of the optical member OE is set to be the same as the air temperature. In Specific Example 1 (FIG. 2), the temperature of the optical member OE is made equal to the air temperature by waiting until a predetermined time elapses after the measurement is started (# 10). The predetermined time is obtained in advance by calculation simulation or experiment in consideration of the heat capacity of the optical member OE, the surface area of the optical member OE, and the like. In the specific example 2 (FIG.
- the temperature of the optical member OE becomes the same as the temperature by waiting until the change with time of the temperature of the optical member OE falls within the allowable range (near the temperature change zero). (# 05, # 15).
- the temperature measurement (# 05) of the optical member OE is performed using, for example, a temperature measuring device such as a thermocouple.
- step 1 and 2 of the measurement procedure when the optical member OE is adjusted to the same temperature as the air temperature (# 10; # 05, # 15), the luminance information of the subject image is acquired without passing through the optical member OE. (Step 1 in # 20), luminance information of the subject image is acquired through the optical member OE (step 2 in # 30), and the black body corresponding to the temperature in the specific wavelength band is obtained using the luminance information acquired in steps 1 and 2. Radiance is calculated (# 40) and the measurement is terminated. Note that the order of step 1 and step 2 may be reversed.
- the subject surface serving as the background It is necessary to configure an optical path through which an electromagnetic wave from HS does not pass through the optical member OE.
- the configuration of the embodiment for that purpose will be described with reference to two types of temperature measurement systems T1 and T2.
- FIG. 4 shows an optical member moving type temperature measurement system T1.
- the temperature measurement system T1 includes a background member HE that constitutes the subject surface HS.
- FIG. 5 shows the subject surface HS composed of the background member HE and the luminance measurement points P1 and P2 thereon as viewed from the imaging device DU side.
- 4 (A) and 5 (A) show the state when the luminance information is acquired in step 1
- FIGS. 4 (B) and 5 (B) show the state when the luminance information is acquired in step 2. Indicates the state.
- the temperature measurement system T1 is configured to retract the optical member OE out of the field of view of the imaging device DU (FIG. 4A) and insert the optical member OE into the field of view of the imaging device DU (FIG. 4B).
- the insertion / extraction mechanism 10 for performing switching is provided.
- FIG. 4A when the optical member OE is retracted out of the field of view of the imaging device DU, the optical member OE is completely removed from the field of view of the imaging device DU, so that the luminance of the subject image does not pass through the optical member OE. Information can be acquired.
- the optical member OE When the optical member OE is inserted into the field of view of the image pickup apparatus DU as shown in FIG. 4B, the optical member OE completely covers the field of view of the image pickup apparatus DU, so that the luminance information of the subject image is acquired through the optical member OE. be able to.
- An example of the insertion / extraction mechanism 10 is one that moves the optical member OE linearly. Moreover, the optical member OE is disposed on the rotating member, and the rotating member is rotated to place the optical member OE into or out of the field of view of the imaging device DU.
- FIG. 6 shows an optical member fixed type temperature measurement system T2.
- the temperature measurement system T2 includes a background member HE that constitutes the subject surface HS.
- FIG. 7 shows the subject surface HS composed of the background member HE and the luminance measurement points P1 and P2 thereon as viewed from the imaging device DU side.
- the optical member OE is disposed so as to cover a part of the field of view of the imaging device DU, and within the field of view, the luminance information is acquired in step 1 in the region where there is no optical member OE.
- the measurement is performed at the measurement point P1, and the luminance information is acquired in step 2 at the luminance measurement point P2 in the region where the optical member OE is present.
- the subject surface HS imaged by the imaging device DU is the background of the air that is the target of temperature measurement.
- the background member HE which comprises it, the surface emissivity shall be about 100% (less than 100%), and the temperature-controlled electromagnetic wave radiation member shall be used.
- the surface emissivity is reduced to about 100% by utilizing the properties of the material constituting the background member HE, or by subjecting the background member HE to surface treatment such as formation of uneven surfaces and spraying of paint (eg, black body spray). It is possible to adjust.
- the surface emissivity becomes smaller than 100% when the amount of reflection of electromagnetic waves incident from the surroundings increases. However, when the surface emissivity is 100%, no reflection occurs even when electromagnetic waves enter from the surroundings.
- the background member HE is disposed in front of the imaging device DU, and the optical member OE is disposed or can be disposed between the background member HE and the imaging device DU.
- the transmittance of the optical member OE (glass plate or the like) in the specific wavelength region is known, and the measurement is performed at the luminance measurement points P1 and P2 according to the specific example 1 or the specific example 2 (FIG. 2 or 3) of the measurement procedure described above. .
- the process 1 and the process 2 (# 20, # 30) are performed using the temperature measurement system T1 or the temperature measurement system T2 (FIG. 4 or FIG. 6).
- the calculation of black body radiance corresponding to the temperature (# 40) is performed as follows.
- the luminance values obtained in steps 1 and 2 are I 1 and I 2 , respectively.
- the luminance measurement point may be an arbitrary point in the field of view of the imaging device DU. That is, both pieces of luminance information used for calculation of the black body radiance need only be acquired for measurement points where the luminance of electromagnetic waves in a specific wavelength band on the subject surface HS is the same. However, here, as shown in FIG. 5, measurement points P1 and P2 at the same position (on the optical axis AX in FIG. 4) are assumed.
- the optical member OE overlaps the subject surface HS in the vicinity of the outer periphery of the optical member OE within the field of view of the imaging device DU.
- the measurement point P1 that is not present and the measurement point P2 where the optical member OE overlaps the subject surface HS are selected, the luminance value obtained in step 1 at the measurement point P1 is I 1 , and the luminance value obtained in step 2 at the measurement point P2 Let the value be I 2 .
- both pieces of luminance information used for the calculation of the black body radiance need only be acquired at the measurement point where the luminance of the electromagnetic wave in the specific wavelength band on the subject surface HS is the same. Therefore, it is preferable to set the measurement point P1 and the measurement point P2 so that they are close to each other.
- the background member HE constituting the subject surface HS is temperature-controlled, the radiance is stable. That is, it is possible to reduce the change with time of the background radiance. Therefore, if the above method is adopted, the temperature-equivalent radiance I air can be obtained with high measurement accuracy.
- the subject surface HS imaged by the imaging device DU may be configured with a natural background.
- the natural member may be used instead of the background member HE, and the optical member OE may be arranged between the natural background and the imaging device DU or may be arranged. If this method is adopted, since a natural background is used, it is not necessary to prepare a member as a background, and the measurement equipment can be downsized. Further, by arranging the optical member OE in the vicinity of the natural background, the temperature in the vicinity of the natural background can be measured, and the measurement accuracy can be further improved.
- the subject image including electromagnetic waves in a specific wavelength band is used as the luminance information. Since the temperature information can be obtained using the imaging device DU to be acquired, the step of converting the output of the thermometer into luminance is not necessary. Since no thermometer is used, there is no temperature information error due to temperature difference between the thermometers or errors in the data conversion process. Therefore, it is possible to acquire temperature data as luminance data with high accuracy. Furthermore, by observing and calculating the object surface HS with the imaging device DU through the optical member OE adapted to the temperature, the temperature data can be directly acquired as luminance data more easily.
- the background member HE that constitutes the background imaged by the imaging device DU
- two types of electromagnetic wave radiation members having a surface emissivity of about 100% (less than 100%) and temperature controlled are used to constitute the background member HE.
- the two types of electromagnetic wave radiating members have different electromagnetic wave radiances. Examples of methods for realizing different radiances include a method for setting different temperatures (for example, temperature control using a Peltier element), a method for setting different emissivities, and the like.
- the background member HE composed of the two types of electromagnetic wave emitting members is disposed in front of the imaging device DU, and the optical member OE is disposed or can be disposed between the background member HE and the imaging device DU.
- measurement is performed at luminance measurement points P1A, P1B, P2A, and P2B described below.
- the process 1 and the process 2 are performed using the temperature measurement system T1 or the temperature measurement system T2 (FIG. 4 or FIG. 6).
- FIG. 8 shows a subject surface HS composed of a background member HE composed of two types of electromagnetic wave radiating members and luminance measurement points P1A, P1B, P2A, and P2B thereon as seen from the imaging device DU side.
- FIG. 8A shows a state when the luminance information is acquired in step 1
- FIG. 8B shows a state when the luminance information is acquired in step 2.
- FIG. 9 shows a subject surface HS composed of a background member HE made of two types of electromagnetic wave radiation members and luminance measurement points P1A, P1B, P2A, and P2B thereon as viewed from the imaging device DU side.
- the optical member OE is disposed so as to cover a part of the field of view of the imaging device DU, and in the field of view, the luminance information is acquired in step 1 by measuring the luminance in a region where the optical member OE is not present.
- the luminance information is acquired at points P1A and P1B, and the luminance information in step 2 is acquired at the luminance measurement points P2A and P2B in the region where the optical member OE is present.
- the luminance values obtained in the steps 1 and 2 at arbitrary points in the region RA are I 1A and I 2A , respectively.
- the luminance values obtained in steps 1 and 2 are I 1B and I 2B , respectively.
- the luminance measurement point may be an arbitrary point in each of the regions RA and RB. That is, both pieces of luminance information used for calculation of the black body radiance may be acquired from at least two measurement points at which the luminance of electromagnetic waves in a specific wavelength band on the subject surface HS is different from each other.
- measurement points P1A, P1B, P2A, and P2B at positions equidistant from the boundaries of the regions RA and RB are assumed.
- the optical member OE overlaps the subject surface HS in the vicinity of the outer periphery of the optical member OE within the field of view of the imaging device DU.
- the measurement point P1A in the region RA and the optical member OE overlap the subject surface HS, and the measurement point P2A in the region RA and the optical member OE do not overlap the subject surface HS and are in the region RB.
- the measurement point P1B and the measurement point P2B in which the optical member OE overlaps the subject surface HS and in the region RB are selected, and the luminance value obtained in step 1 at the measurement point P1A is I 1A , and the process at the measurement point P2A.
- the luminance value obtained in 2 is I 2A
- the luminance value obtained in step 1 at the measurement point P1B is I 1B
- the luminance value obtained in step 2 at the measurement point P2B is I 2B .
- both pieces of luminance information used for calculating the black body radiance may be obtained from at least two measurement points at which the luminance of electromagnetic waves in a specific wavelength band on the subject surface HS is different from each other. Therefore, it is preferable to set the measurement points P1A, P1B, P2A, and P2B so as to be close to each other.
- the background member HE constituting the subject surface HS is temperature-controlled, the radiance is stable. That is, it is possible to reduce the change with time of the background radiance. Therefore, if the above method is adopted, the temperature-equivalent radiance I air can be obtained with high measurement accuracy.
- the subject surface HS is constituted by the background member HE composed of two or more kinds of electromagnetic wave radiation members as described above, it is not necessary to know the transmittance T of the optical member OE in advance, so that the optical member OE is deteriorated over time or damaged. It is possible to measure with high accuracy even if there is a variation in transmittance due to.
- the luminance information used for the calculation of the black body radiance is both at least two different from each other in the luminance of electromagnetic waves in a specific wavelength band on the subject surface HS. What was acquired about a measurement point should just be.
- the subject surface HS to be imaged by the imaging device DU is displayed as a natural background (regions RA, (Natural background with RB).
- the natural member may be used instead of the background member HE, and the optical member OE may be arranged between the natural background and the imaging device DU or may be arranged. If this method is adopted, since a natural background is used, it is not necessary to prepare a member as a background, and the measurement equipment can be downsized. Further, by arranging the optical member OE in the vicinity of the natural background, the temperature in the vicinity of the natural background can be measured, and the measurement accuracy can be further improved.
- an optical surface that transmits electromagnetic waves for constituting a subject image is perpendicular to the optical axis AX of the imaging device DU. . That is, an optical surface having a normal line parallel to the optical axis AX exists in the optical member OE. For this reason, the surface reflection on the optical surface may adversely affect the temperature measurement. Therefore, as shown in FIG. 10, it is preferable to arrange the optical member OE obliquely.
- the normal NL of the optical surface through which the electromagnetic waves constituting the subject image are transmitted is not parallel to the optical axis AX of the imaging device DU. According to this arrangement example, reflection of the imaging device DU itself (so-called narcissus phenomenon) due to surface reflection slightly present in the optical member OE can be prevented, and measurement accuracy can be increased.
- the surface facing the imaging device DU easily guides unnecessary light to the imaging sensor SR (FIG. 1), and therefore the normal line NL is not relative to the optical axis AX. It is preferable to be parallel.
- the direction of the normal line NL on the surface of the optical member OE is preferably downward from the horizontal line. By doing so, it is possible to avoid the possibility of reflection of the sun, particularly when measuring outdoors, and to improve the measurement accuracy.
- the optical member OE constituting the temperature measurement systems T0, T1, and T2 described above, there is nothing that blocks electromagnetic waves incident from the surroundings. Therefore, surface reflection at the optical member OE is likely to occur. Therefore, as shown in FIGS. 11 and 12, it is preferable to dispose the electromagnetic wave shielding members B1, B2, B3 around the optical member OE.
- An electromagnetic wave shielding member B1 is arranged below the optical member OE shown in FIG. 11A, and electromagnetic wave shielding members B1 and B2 are arranged above and below the optical member OE shown in FIG. Yes.
- an electromagnetic wave shielding member B3 is disposed around the optical member OE shown in FIG. 12 so as to surround the optical member OE.
- the electromagnetic wave blocking member B1, B2 or B3 is further surrounded by the electromagnetic wave blocking member B1, B2 or B3, more effective and highly accurate measurement is possible.
- the emissivity of the surface facing the optical member OE is increased (reduction of reflection on the inner surface), and the emissivity of the opposite surface is decreased ( It is preferable to increase reflection on the outer surface. By doing so, it is possible to suppress adverse effects due to the temperature rise of the electromagnetic wave shielding members B1, B2, B3 themselves.
- T0, T1, T2 Temperature measurement system DU Imaging device LU Lens unit LN Imaging lens SR Imaging sensor OE Optical member HE Background member HS Subject surface (background)
- Electromagnetic wave blocking member 1 Signal processing unit 2 Arithmetic control unit 3 Memory 4 Operation unit 5 Display unit 10 Insertion / extraction mechanism
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Radiation Pyrometers (AREA)
Abstract
温度計測システムは、撮像装置と光学部材を有する。撮像装置は、被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、特定波長帯の電磁波からなる被写体像を輝度情報として取得する。光学部材は、特定波長帯の電磁波を透過可能であり、温度が気温と同じである。撮像装置は、光学部材を通さずに取得した被写体像の輝度情報と、光学部材を通して取得した被写体像の輝度情報と、を用いて、特定波長帯における気温相当の黒体放射輝度を算出する。
Description
本発明は温度計測システムに関するものであり、例えば、赤外線カメラで観測対象体の撮像を行うと共に観測対象体付近の気温の測定を行う温度計測システムに関するものである。
近年、各種の測定,診断,検知等には、絶対温度が零度以上の物体表面から絶対温度に応じた強度で放射される電磁波(主に赤外線領域の波長の電磁波)を検知して可視化する技術が用いられている。例えば、建物外壁表面の温度変化に伴ってその表面から放射される電磁波が変化することを利用して、その経時変化を計測することにより、外壁内面の剥離や水漏れの診断が行われている。また、工場における配管等の設備の表面から放射される電磁波の経時変化を計測することにより、設備の異常状態を検知することが行われている。例えば特許文献1や非特許文献1では、ガス状物質によって、その背景の物体表面からの放射電磁波の強度が変化することを利用して、ガス状物質の存在を検知する技術が提案されている。
Harig, R., Matz, G., Rusch, P., Gerhard, J.-H., Schafer, K., Jahn, C., Schwengler, P., Beil, A.: "Remote Detection of Methane by Infrared Spectrometry for Airborne Pipeline Surveillance: First Results of Ground-Based Measurements", SPIE 5235, 435-446, 2004.
いずれの技術も、観測対象体の温度変化を鋭敏に測定する必要があるが、屋外で実施されることが多いため、外乱の影響を受けやすいという問題がある。特に気温は観測対象体の温度変化に大きな影響を与えるため、外乱排除のために正確な気温情報の測定が必要となる。
物体表面から放射される電磁波は、主に赤外線波長域に感度を持つ赤外線カメラによって、画像の形で取得される。ここで赤外線カメラによって得られるデータは、物体表面から放射される電磁波の強度を表した輝度データである。この輝度データを用いて行う各種の測定,診断,検知等に気温情報を加味するには、気温データに対応する電磁波強度を表す輝度データが必要になる。つまり、気温データを輝度データに変換する必要がある。一般に、気温は気温計を用いて計測され、計測された気温データを輝度データに変換するには変換式が用いられる。
しかしながら、気温計には一般的な誤差があるため、機体ごとに0.1℃~0.5℃程度のバラツキが生じる。また、用いる赤外線カメラの特性バラツキも存在するため、気温データから輝度データへの変換式を使った変換工程にも誤差が生じる。このため、従来の技術では気温データを正確に輝度データに変換することができない。
本発明はこのような状況に鑑みてなされたものであって、その目的は、気温データを高精度に輝度データとして取得することの可能な温度計測システムを提供することにある。
上記目的を達成するために、第1の発明の温度計測システムは、被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を有し、
前記撮像装置が、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出することを特徴とする。
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を有し、
前記撮像装置が、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出することを特徴とする。
第2の発明の温度計測システムは、上記第1の発明において、前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が同じ測定点について取得したものであることを特徴とする。
第3の発明の温度計測システムは、上記第1の発明において、前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであることを特徴とする。
第4の発明の温度計測システムは、上記第1~第3のいずれか1つの発明において、前記光学部材において前記被写体像を構成する電磁波が透過する光学面の法線が、前記撮像装置の光軸に対して非平行であることを特徴とする。
本発明によれば、気温計を介さないため、気温計の機体差やデータ変換工程の誤差に起因する気温情報の誤差が生じない。したがって、気温データを高精度に輝度データとして取得することの可能な温度計測システムを実現することができる。
以下、本発明を実施した温度計測システム等を、図面を参照しつつ説明する。なお、各実施の形態等の相互で同一の部分や相当する部分には同一の符号を付して重複説明を適宜省略する。
図1に、本発明の実施の形態に係る温度計測システムT0の概略断面構造を模式的に示す。この温度計測システムT0は、図1に示すように、撮像装置DU,光学部材OE等で構成されている。撮像装置DUは、絶対温度が零度以上の被写体表面(物体表面)HSが放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、特定波長帯の電磁波からなる被写体像を輝度情報として取得するものである。また、撮像装置DUの視野の前方に配置されている光学部材OEは、温度が気温と同じであり、特定波長帯の電磁波を透過可能である(つまり、特定波長帯の電磁波に対する透過率が0%より大きく100%より小さい光学特性を有する。)。
上記特定波長帯の電磁波として代表的なものは赤外線であり、撮像装置DUの具体例としては赤外線撮像装置(つまり、赤外線波長域に感度を持つ赤外線カメラ)が挙げられる。より具体的には、波長1~16μmの波長帯の少なくとも一部の波長を検知できる赤外線撮像装置が挙げられ、例えば、8~16μmを検知する非冷却型遠赤外線撮像装置、3~5μmを検知する冷却型中赤外線撮像装置等が挙げられる。つまり、観測対象や利用目的に合わせて特定波長域を設定し、その特定波長域において検知感度がある撮像装置を選択すればよい。
光学部材OEの例としては、ガラス板,プラスチック板等の電磁波吸収素材が挙げられる。光学部材OEの特定波長帯の電磁波に対する透過率は、0%より大きく100%より小さければよく、特定波長帯の電磁波に対する透過率が例えば50%であることが好ましい。つまり、光学部材OEとして、特定波長帯の電磁波に対する透過率(例えば、赤外線透過率)が50%の半透明板を用いることが好ましい。また、光学部材OEの表面での反射を少なくするために、観測波長よりも小さな凹凸を表面に設けたり無反射コートを施したりすることが好ましい。
撮像装置DUは、被写体表面HSの静止画撮影や動画撮影のために、被写体像を光学的に取り込んで電気的な信号として出力するレンズユニットLUを備えている。レンズユニットLUは、物体(すなわち被写体)側から順に、物体の光学像(すなわち被写体像)を形成する撮像レンズLN(AX:光軸)と、その撮像レンズLNにより形成された光学像を電気的な信号に変換する撮像センサーSRと、を備えている。
撮像装置DUは、レンズユニットLUの他に、信号処理部1,演算制御部2,メモリー3,操作部4,表示部5等を備えている。撮像センサーSRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、ケーブルを介したり赤外線信号等に変換されたりして、通信機能により他の機器に伝送される。演算制御部2はマイクロコンピューターからなっており、輝度情報処理機能,撮影機能,画像再生機能等の機能の制御;撮像レンズLNや光学部材OEの移動機構の制御等を集中的に行う。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像センサーSRによって変換された画像信号や記録画像情報を用いて画像表示を行う。操作部4は、操作ボタン等の操作部材を含む部分であり、操作者が操作入力した情報を演算制御部2に伝達する。
被写体表面HSから絶対温度に応じた強度で放射される赤外線等の電磁波を検知して可視化する場合、被写体表面HSの温度変化に気温が大きな影響を与えるため、正確な気温情報の測定が必要になる。そこで、温度計測システムT0では、撮像装置DUが、光学部材OEを通さずに取得した被写体像の輝度情報と、光学部材OEを通して取得した被写体像の輝度情報と、を用いて、特定波長帯における気温相当の黒体放射輝度を算出する構成になっている。
図2,図3に、温度計測システムT0による測定手順の具体例1,2をそれぞれ示す。光学部材OEの温度は気温の測定に大きく影響するため、最初に光学部材OEの温度が気温と同じになるようにする。具体例1(図2)では、測定開始後、所定の時間が経過するまで待機することにより、光学部材OEの温度が気温と同じになるようにする(#10)。この所定の時間は、光学部材OEの熱容量,光学部材OEの表面積等を考慮し、予め計算シミュレーション又は実験により求めておいたものである。具体例2(図3)では、測定開始後、光学部材OEの温度の経時変化が許容範囲内(温度変化ゼロ近傍)に収まるまで待機することにより、光学部材OEの温度が気温と同じになるようにする(#05,#15)。光学部材OEの温度測定(#05)は、例えば、熱電対等の温度計測機を用いて行う。
測定手順の具体例1,2において、光学部材OEが気温と同じ温度になるようになじんだら(#10;#05,#15)、光学部材OEを通さずに被写体像の輝度情報を取得し(#20の工程1)、光学部材OEを通して被写体像の輝度情報を取得し(#30の工程2)、工程1,2で取得した輝度情報を用いて、特定波長帯における気温相当の黒体放射輝度を算出し(#40)、測定を終了する。なお、工程1,工程2は順序が逆になっても構わない。
工程1(#20)で光学部材OEを通さずに被写体像の輝度情報を取得し、工程2(#30)で光学部材OEを通して被写体像の輝度情報を取得するために、背景となる被写体表面HSからの電磁波が光学部材OEを通らない光路と通る光路を構成する必要がある。そのための実施の形態の構成を、2つのタイプの温度計測システムT1,T2を挙げて説明する。
図4に、光学部材移動タイプの温度計測システムT1を示す。この温度計測システムT1は、被写体表面HSを構成する背景部材HEを備えている。図5に、背景部材HEで構成された被写体表面HSとその上の輝度測定点P1,P2を、撮像装置DU側から見た状態で示す。図4(A),図5(A)は工程1で輝度情報を取得するときの状態を示しており、図4(B),図5(B)は工程2で輝度情報を取得するときの状態を示している。
この温度計測システムT1は、撮像装置DUの視野外への光学部材OEの退避と(図4(A))、撮像装置DUの視野内への光学部材OEの挿入と(図4(B))、の切り替えを行うための挿抜機構10を備えている。図4(A)に示すように撮像装置DUの視野外へ光学部材OEを退避させると、光学部材OEは撮像装置DUの視野から完全に外れるため、光学部材OEを通さずに被写体像の輝度情報を取得することができる。図4(B)に示すように撮像装置DUの視野内に光学部材OEを挿入すると、光学部材OEは撮像装置DUの視野を完全に覆うため、光学部材OEを通して被写体像の輝度情報を取得することができる。
挿抜機構10の例としては、光学部材OEを直線状に移動させるものが挙げられる。また、回動部材に光学部材OEを配置し、回動部材を回転させることにより、光学部材OEを撮像装置DUの視野に入れたり視野から外したりするものが挙げられる。
図6に、光学部材固定タイプの温度計測システムT2を示す。この温度計測システムT2は、被写体表面HSを構成する背景部材HEを備えている。図7に、背景部材HEで構成された被写体表面HSとその上の輝度測定点P1,P2を、撮像装置DU側から見た状態で示す。この温度計測システムT2では、光学部材OEが撮像装置DUの視野の一部を覆うように配置されており、その視野内において、工程1での輝度情報の取得は光学部材OEが無い領域の輝度測定点P1で行われ、工程2での輝度情報の取得は光学部材OEがある領域の輝度測定点P2で行われる。
次に、工程1,2で取得した輝度情報を用いて、特定波長帯における気温相当の黒体放射輝度を算出する方法(#40)を説明する。撮像装置DUで撮像する被写体表面HSは、温度計測の対象となる空気の背景となる。そして、それを構成する背景部材HEとして、表面放射率が約100%(100%未満)であって温度制御された電磁波放射部材を用いるものとする。背景部材HEを構成する素材の性質を利用したり、凹凸表面の形成,塗料の吹き付け(例えば、黒体スプレー)等の表面処理を背景部材HEに施すことにより、表面放射率を約100%に調整することが可能である。なお、周囲から入射する電磁波の反射量が増えると表面放射率は100%より小さくなるが、表面放射率100%では周囲から電磁波が入射しても反射しない状態になる。
背景部材HEを撮像装置DUの前方に配置し、背景部材HEと撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能とする。特定波長域における光学部材OE(ガラス板等)の透過率は既知とし、前述した測定手順の具体例1又は具体例2(図2又は図3)に従って輝度測定点P1,P2での測定を行う。その際、工程1及び工程2(#20,#30)は、温度計測システムT1又は温度計測システムT2(図4又は図6)を用いて行う。そして、気温相当の黒体放射輝度の算出(#40)は、以下のようにして行う。
温度計測システムT1(図4)で工程1,2を実施する場合、工程1,2で得られた輝度値をそれぞれI1,I2とする。被写体表面HSにおける特定波長帯の電磁波の輝度が同じであれば、輝度測定点は撮像装置DUの視野内の任意の点でよい。つまり、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が同じ測定点について取得したものであればよい。ただし、ここでは図5に示すように、同じ位置(図4の光軸AX上)の測定点P1,P2を想定している。
温度計測システムT2(図6)で工程1,2を実施する場合、図7に示すように、撮像装置DUの視野内における光学部材OEの外周近傍において、光学部材OEが被写体表面HSに重なっていない測定点P1と光学部材OEが被写体表面HSに重なっている測定点P2とを選び、測定点P1における工程1で得られた輝度値をI1、測定点P2における工程2で得られた輝度値をI2とする。なお、この場合も、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が同じ測定点について取得したものであればよい。したがって、測定点P1と測定点P2とが近くに位置するように設定するのが好ましい。
光学部材OEの透過率をTとし、気温相当の黒体放射輝度をIairとすると、
(I1-Iair)・T=I2-Iair
が成り立つ。
Iair-Iair・T=I2-I1・T
Iair(1-T)=I2-I1・T
となるので、以下の式(F1)が得られる。
Iair=(I2-I1・T)/(1-T) …(F1)
上記式(F1)に従って、気温相当の黒体放射輝度Iairを算出する。
(I1-Iair)・T=I2-Iair
が成り立つ。
Iair-Iair・T=I2-I1・T
Iair(1-T)=I2-I1・T
となるので、以下の式(F1)が得られる。
Iair=(I2-I1・T)/(1-T) …(F1)
上記式(F1)に従って、気温相当の黒体放射輝度Iairを算出する。
被写体表面HSを構成する背景部材HEは温度制御がなされているため、放射輝度は安定している。つまり、背景放射輝度の経時変化を少なくすることが可能である。したがって、上記方法を採用すれば、気温相当放射輝度Iairを高い測定精度で得ることができる。
また、撮像装置DUによって撮像する被写体表面HSを自然背景で構成してもよい。つまり、背景部材HEの代わりに自然背景を用いて、自然背景と撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能としてもよい。この方法を採用すれば、自然背景を利用しているため、背景となる部材の準備が不要となり、測定機材の小型化を図ることができる。また、光学部材OEを自然背景の近傍に配置することで、自然背景近辺の気温を測定でき、より一層測定精度を向上させることができる。
温度計測システムT0,T1,T2によれば、被写体表面HSの輝度情報と気温情報を利用して各種の測定,診断,検知等を行う際、特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置DUを用いて、気温情報が得られるようになっているため、気温計の出力を輝度に変換する工程は不要となる。気温計を介さないため、気温計の機体差やデータ変換工程の誤差に起因する気温情報の誤差は生じない。したがって、気温データを高精度に輝度データとして取得することが可能である。さらに、気温になじんだ光学部材OEを通して被写体表面HSを撮像装置DUで観測し演算することで、より簡単に気温データを直接輝度データとして取得することが可能となる。
次に、少なくとも2種類の電磁波放射部材からなる背景部材HEを用いて、黒体放射輝度を算出する方法を説明する。撮像装置DUで撮像する背景を構成する背景部材HEとして、表面放射率が約100%(100%未満)であって温度制御された電磁波放射部材を2種類用いるものとし、背景部材HEを構成する2種類の電磁波放射部材は相異なる電磁波放射輝度を有するものとする。相異なる放射輝度を実現する方法としては、相異なる温度に設定する方法(例えば、ペルチェ素子を用いた温度制御)、相異なる放射率に設定する方法等が挙げられる。
上記2種類の電磁波放射部材からなる背景部材HEを撮像装置DUの前方に配置し、背景部材HEと撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能とする。前述した測定手順の具体例1又は具体例2(図2又は図3)に従って、以下に説明する輝度測定点P1A,P1B,P2A,P2Bでの測定を行う。その際、工程1及び工程2(#20,#30)は、温度計測システムT1又は温度計測システムT2(図4又は図6)を用いて行う。
図8に、2種類の電磁波放射部材からなる背景部材HEで構成された被写体表面HSとその上の輝度測定点P1A,P1B,P2A,P2Bを、撮像装置DU側から見た状態で示す。図8(A)は工程1で輝度情報を取得するときの状態を示しており、図8(B)は工程2で輝度情報を取得するときの状態を示している。
図9に、2種類の電磁波放射部材からなる背景部材HEで構成された被写体表面HSとその上の輝度測定点P1A,P1B,P2A,P2Bを、撮像装置DU側から見た状態で示す。この温度計測システムT2では、光学部材OEが撮像装置DUの視野の一部を覆うように配置されており、視野内において、工程1での輝度情報の取得は光学部材OEが無い領域の輝度測定点P1A,P1Bで行われ、工程2での輝度情報の取得は光学部材OEがある領域の輝度測定点P2A,P2Bで行われる。
気温相当の黒体放射輝度の算出(#40)は、以下のようにして行う。まず、図8,図9に示すように、2種類の電磁波放射部材からなる背景部材HEにおいて、相異なる放射輝度の領域をRA,RBとする。
温度計測システムT1(図4)で工程1,2を実施する場合、領域RA内の任意の点において工程1,2で得られた輝度値をそれぞれI1A,I2Aとし、領域RB内の任意の点において工程1,2で得られた輝度値をそれぞれI1B,I2Bとする。被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なれば、輝度測定点は各領域RA,RB内の任意の点でよい。つまり、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであればよい。ただし、ここでは図8に示すように、領域RA,RBの境界から等距離の位置(図4の光軸AXに関して対称位置)の測定点P1A,P1B,P2A,P2Bを想定している。
温度計測システムT2(図6)で工程1,2を実施する場合、図9に示すように、撮像装置DUの視野内における光学部材OEの外周近傍において、光学部材OEが被写体表面HSに重なっておらずかつ領域RA内の測定点P1Aと、光学部材OEが被写体表面HSに重なっておりかつ領域RA内の測定点P2Aと、光学部材OEが被写体表面HSに重なっておらずかつ領域RB内の測定点P1Bと、光学部材OEが被写体表面HSに重なっておりかつ領域RB内の測定点P2Bと、を選び、測定点P1Aにおける工程1で得られた輝度値をI1A、測定点P2Aにおける工程2で得られた輝度値をI2A、測定点P1Bにおける工程1で得られた輝度値をI1B、測定点P2Bにおける工程2で得られた輝度値をI2Bとする。なお、この場合も、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであればよい。したがって、測定点P1A,P1B,P2A,P2Bが互いに近くに位置するように設定するのが好ましい。
前記式(F1)と同様に、輝度値の関係から以下の式(F2)が得られる。
Iair=(I1A・I2B-I2A・I1B)/{(I1A-I2A)-(I1B-I2B)} …(F2)
上記の式(F2)に従って、気温相当の黒体放射輝度Iairを算出する。なお、2種類の電磁波放射部材からなる背景温度に対して光学部材OEの有無があることから、得られる4点情報により透過率Tの項は消えることになる。
Iair=(I1A・I2B-I2A・I1B)/{(I1A-I2A)-(I1B-I2B)} …(F2)
上記の式(F2)に従って、気温相当の黒体放射輝度Iairを算出する。なお、2種類の電磁波放射部材からなる背景温度に対して光学部材OEの有無があることから、得られる4点情報により透過率Tの項は消えることになる。
被写体表面HSを構成する背景部材HEは温度制御がなされているため、放射輝度は安定している。つまり、背景放射輝度の経時変化を少なくすることが可能である。したがって、上記方法を採用すれば、気温相当放射輝度Iairを高い測定精度で得ることができる。また、上記のように2種類以上の電磁波放射部材からなる背景部材HEで被写体表面HSを構成すれば、光学部材OEの透過率Tを予め知る必要がないため、光学部材OEの経年劣化や汚損による透過率変動があっても精度良く測定することが可能である。背景部材HEとして2種類以上の電磁波放射部材を用いる場合に限らず、黒体放射輝度の算出に用いられる輝度情報が両方とも、被写体表面HSにおける特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであればよい。
上記のように少なくとも2種類の電磁波放射部材からなる背景部材HEを用いて黒体放射輝度を算出する場合でも、撮像装置DUによって撮像する被写体表面HSを自然背景(相異なる放射輝度の領域RA,RBを有する自然背景)で構成してもよい。つまり、背景部材HEの代わりに自然背景を用いて、自然背景と撮像装置DUとの間に光学部材OEを配置するか、あるいは配置可能としてもよい。この方法を採用すれば、自然背景を利用しているため、背景となる部材の準備が不要となり、測定機材の小型化を図ることができる。また、光学部材OEを自然背景の近傍に配置することで、自然背景近辺の気温を測定でき、より一層測定精度を向上させることができる。
前述した温度計測システムT0,T1,T2を構成している光学部材OEでは、被写体像を構成するための電磁波を透過させる光学面が、撮像装置DUの光軸AXに対して垂直になっている。つまり、光軸AXに対して平行な法線を有する光学面が、光学部材OEに存在している。このため、その光学面での表面反射が気温の測定に悪影響を及ぼすおそれがある。そこで、図10に示すように、光学部材OEを斜めに配置することが好ましい。
図10に示す光学部材OEにおいて、被写体像を構成する電磁波が透過する光学面の法線NLは、撮像装置DUの光軸AXに対して非平行になっている。この配置例によれば、光学部材OEにわずかに存在する表面反射による、撮像装置DU自身の写り込み(いわゆるナルシサス現象)を防ぐことができ、測定精度を上げることができる。
光学部材OEが有する光学面のなかでも、撮像装置DUに面している表面は、撮像センサーSR(図1)へと不要光を導きやすいので、その法線NLが光軸AXに対して非平行となるようにするのが好ましい。また、光学部材OE表面の法線NLの向きは、水平線よりも下向きであることが好ましい。そのようにすることで、特に屋外で測定する場合における太陽の写り込みの可能性を避けることができ、測定精度を向上させることが可能となる。
前述した温度計測システムT0,T1,T2を構成している光学部材OEでは、その周囲から入射してくる電磁波を遮るものが存在しない。そのため、光学部材OEでの表面反射が発生しやすくなっている。そこで、図11や図12に示すように、電磁波遮断部材B1,B2,B3を光学部材OEの周囲に配置することが好ましい。
図11(A)に示す光学部材OEの下方向には電磁波遮断部材B1が配置されており、図11(B)に示す光学部材OEの上下方向には電磁波遮断部材B1,B2が配置されている。また、図12に示す光学部材OEの周囲には、電磁波遮断部材B3が光学部材OEを囲むように配置されている。電磁波遮断部材B1,B2,B3を単独で又は組み合わせて、光学部材OEの周辺に設けることにより、光学部材OEにわずかに存在する表面反射による周囲電磁波の撮像装置DUへの写り込みを防止することができる。したがって、周囲電磁波が撮像装置DUに混入するのを防ぐことができるので、精度良い測定が可能となる。
電磁波遮断部材B1,B2又はB3の周りを、更に電磁波遮断部材B1,B2又はB3で囲むように、2重の遮断構造にすれば、より一層効果的な高精度の測定が可能となる。また、電磁波遮断部材B1,B2,B3において、光学部材OEに面している側の面の放射率を高くし(内側面の反射を減らす)、その反対側の面の放射率を低くする(外側面の反射を増やす)ことが好ましい。そのようにすれば、電磁波遮断部材B1,B2,B3自体の温度上昇による悪影響を抑えることができる。
T0,T1,T2 温度計測システム
DU 撮像装置
LU レンズユニット
LN 撮像レンズ
SR 撮像センサー
OE 光学部材
HE 背景部材
HS 被写体表面(背景)
AX 光軸
P1,P2,P1A,P1B,P2A,P2B 測定点
RA,RB 領域
NL 法線
B1,B2,B3 電磁波遮断部材
1 信号処理部
2 演算制御部
3 メモリー
4 操作部
5 表示部
10 挿抜機構
DU 撮像装置
LU レンズユニット
LN 撮像レンズ
SR 撮像センサー
OE 光学部材
HE 背景部材
HS 被写体表面(背景)
AX 光軸
P1,P2,P1A,P1B,P2A,P2B 測定点
RA,RB 領域
NL 法線
B1,B2,B3 電磁波遮断部材
1 信号処理部
2 演算制御部
3 メモリー
4 操作部
5 表示部
10 挿抜機構
Claims (4)
- 被写体表面が放射又は反射する電磁波のうち、特定波長帯の電磁波に対して感度を有し、前記特定波長帯の電磁波からなる被写体像を輝度情報として取得する撮像装置と、
前記特定波長帯の電磁波を透過可能であり、温度が気温と同じである光学部材と、を有し、
前記撮像装置が、前記光学部材を通さずに取得した前記被写体像の輝度情報と、前記光学部材を通して取得した前記被写体像の輝度情報と、を用いて、前記特定波長帯における気温相当の黒体放射輝度を算出することを特徴とする温度計測システム。 - 前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が同じ測定点について取得したものであることを特徴とする請求項1記載の温度計測システム。
- 前記黒体放射輝度の算出に用いられる輝度情報が両方とも、前記被写体表面における前記特定波長帯の電磁波の輝度が互いに異なる少なくとも2つの測定点について取得したものであることを特徴とする請求項1記載の温度計測システム。
- 前記光学部材において前記被写体像を構成する電磁波が透過する光学面の法線が、前記撮像装置の光軸に対して非平行であることを特徴とする請求項1~3のいずれか1項に記載の温度計測システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018513145A JP6969542B2 (ja) | 2016-04-20 | 2017-04-13 | 温度計測システム及び温度計測方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016084295 | 2016-04-20 | ||
JP2016-084295 | 2016-04-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017183557A1 true WO2017183557A1 (ja) | 2017-10-26 |
Family
ID=60115969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015178 WO2017183557A1 (ja) | 2016-04-20 | 2017-04-13 | 温度計測システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6969542B2 (ja) |
WO (1) | WO2017183557A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62106328A (ja) * | 1985-11-01 | 1987-05-16 | Tokyo Electric Power Co Inc:The | 放射温度計 |
JPH03115820A (ja) * | 1989-09-28 | 1991-05-16 | Mazda Motor Corp | 空気温度計測方法 |
JPH07225156A (ja) * | 1994-02-14 | 1995-08-22 | Nippon Avionics Co Ltd | 気体流の可視化方法 |
JP2007183207A (ja) * | 2006-01-10 | 2007-07-19 | Yamatake Corp | 放射温度センサおよび放射温度計測装置 |
US20140008526A1 (en) * | 2012-07-06 | 2014-01-09 | Providence Photonics, Llc | Calibration and quantification method for gas imaging camera |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2320155B (en) * | 1996-12-03 | 2000-11-01 | Chelsea Instr Ltd | Method and apparatus for the imaging of gases |
JP4209877B2 (ja) * | 2005-09-01 | 2009-01-14 | ホーチキ株式会社 | ガス監視装置 |
JP5125544B2 (ja) * | 2008-01-24 | 2013-01-23 | 日本電気株式会社 | ガス測定装置およびガス測定方法 |
US7939804B2 (en) * | 2008-11-26 | 2011-05-10 | Fluke Corporation | System and method for detecting gas leaks |
WO2015199911A1 (en) * | 2014-06-23 | 2015-12-30 | Exxonmobil Upstream Research Company | Methods and systems for detecting a chemical species |
JP6492612B2 (ja) * | 2014-12-16 | 2019-04-03 | コニカミノルタ株式会社 | 漏洩ガス検出装置および漏洩ガス検出方法 |
-
2017
- 2017-04-13 WO PCT/JP2017/015178 patent/WO2017183557A1/ja active Application Filing
- 2017-04-13 JP JP2018513145A patent/JP6969542B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62106328A (ja) * | 1985-11-01 | 1987-05-16 | Tokyo Electric Power Co Inc:The | 放射温度計 |
JPH03115820A (ja) * | 1989-09-28 | 1991-05-16 | Mazda Motor Corp | 空気温度計測方法 |
JPH07225156A (ja) * | 1994-02-14 | 1995-08-22 | Nippon Avionics Co Ltd | 気体流の可視化方法 |
JP2007183207A (ja) * | 2006-01-10 | 2007-07-19 | Yamatake Corp | 放射温度センサおよび放射温度計測装置 |
US20140008526A1 (en) * | 2012-07-06 | 2014-01-09 | Providence Photonics, Llc | Calibration and quantification method for gas imaging camera |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017183557A1 (ja) | 2019-03-14 |
JP6969542B2 (ja) | 2021-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101167260B1 (ko) | 비냉각 마이크로 볼로미터 검출기를 사용하는 방사 측정 | |
US7422365B2 (en) | Thermal imaging system and method | |
US10965889B2 (en) | Thermal imager that analyzes temperature measurement calculation accuracy | |
US9255846B1 (en) | Digital temperature determination using a radiometrically calibrated and a non-calibrated digital thermal imager | |
US10788372B2 (en) | Infrared imaging detector | |
CN106979822A (zh) | 一种红外成像过耗故障探测仪 | |
WO2022023748A1 (en) | A thermal imaging system and method | |
KR102220654B1 (ko) | 측정온도 보정시스템 | |
JP6969542B2 (ja) | 温度計測システム及び温度計測方法 | |
JP6750672B2 (ja) | ガス観測方法 | |
JP6766671B2 (ja) | ガス検知装置 | |
KR101794554B1 (ko) | 온도 프로파일 구현 장치 | |
RU2727349C1 (ru) | Способ термографирования удаленного объекта | |
KR20170004039U (ko) | 열화상 오버레이 모니터링 장치 | |
TW202126996A (zh) | 熱健康監測感測器 | |
KR102322871B1 (ko) | 필터 어레이, 이를 포함하는 이미지 센서 및 적외선 카메라 | |
Jiang et al. | Uncooled infrared detector and imager development at DALI Technology | |
dos Santos et al. | Importance of frame rate during longwave infrared focal plane array evaluation | |
Kienitz | Thermal imaging as a modern form of pyrometry | |
KR101257749B1 (ko) | 적외선 방사 온도계 관측시스템 | |
Kreveld | Thermal imagers: Taking hot pictures | |
Novoselov et al. | Study of Temperature Remote Diagnostics Systems of Industrial Electrical Installations | |
Dall’O’ et al. | Infrared Audit | |
KR101022529B1 (ko) | 열상 검출기의 다이나믹 레인지 조절 장치 및 방법 | |
Cao et al. | Research on NETD test system of medical infrared thermal imager based on CCD imaging technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17785896 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018513145 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17785896 Country of ref document: EP Kind code of ref document: A1 |