WO2017183112A1 - 血圧計 - Google Patents

血圧計 Download PDF

Info

Publication number
WO2017183112A1
WO2017183112A1 PCT/JP2016/062410 JP2016062410W WO2017183112A1 WO 2017183112 A1 WO2017183112 A1 WO 2017183112A1 JP 2016062410 W JP2016062410 W JP 2016062410W WO 2017183112 A1 WO2017183112 A1 WO 2017183112A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
cuff
pump
blood pressure
Prior art date
Application number
PCT/JP2016/062410
Other languages
English (en)
French (fr)
Inventor
隆介 藏地
雅也 玉村
吉岡 正人
宏行 戸村
あまね 井上
実 中川原
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2018512685A priority Critical patent/JP6717374B2/ja
Priority to EP16899386.3A priority patent/EP3446627A4/en
Priority to PCT/JP2016/062410 priority patent/WO2017183112A1/ja
Publication of WO2017183112A1 publication Critical patent/WO2017183112A1/ja
Priority to US16/138,586 priority patent/US11045097B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • A61B5/02241Occluders specially adapted therefor of small dimensions, e.g. adapted to fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0235Valves specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02422Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation within occluders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02141Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits

Definitions

  • the present invention relates to a sphygmomanometer.
  • Various blood pressure monitors are known. For example, it is known to measure the blood pressure of a measurement subject according to a differential pressure between a variable pressure in a pressure chamber of a finger probe and a constant pressure between a pair of solenoid valves (see, for example, Patent Document 1). . In addition, after increasing the pressure inside the pressure vessel with a pump, air pressure is discharged from the pressure vessel that connects the pressure vessel and the cuff to the cuff and measurement of blood pressure is started. It is known to shorten (see, for example, Patent Document 2).
  • first pressure sensor and the second pressure sensor are connected to the supply path to the cuff, and the supply value connected to the cuff is compared by comparing the detection value of the first pressure sensor and the detection value of the second pressure sensor. It is known to detect torsion of an industrial hose (see, for example, Patent Document 3). Also, when the cuff pressure detected by a single pressure sensor is higher than a predetermined threshold pressure, the outlet valve is opened to lower the cuff pressure, and when the cuff pressure is lower than the predetermined threshold pressure, the inlet valve It is known to increase the cuff pressure by opening the valve (see, for example, Patent Documents 4 to 6).
  • a diaphragm type air pump As a pressure source, a diaphragm type air pump is generally used. However, since the diaphragm pump pressure and flow rate output include ripples, high-speed control of the relief valve changes the ripple pressure in addition to the arterial pressure. Need to follow. From these backgrounds, several techniques for performing high-speed pressure control for volume compensation are known.
  • a high-speed response of the piezoelectric element is used to control the air pressure relief amount of the pressure source at high speed (see, for example, Patent Document 8).
  • Two solenoid valves are used, the cuff pressure is measured with one pressure sensor, the pressure supply is controlled with one solenoid valve, and the escape amount is controlled with the other solenoid valve so that this pressure becomes the control target value. (See, for example, Patent Document 9).
  • the discharge amount characteristic of the pump that pressurizes air into the cuff is Since it fluctuates, it is not easy to control the cuff pressure to a desired pressure.
  • an object is to provide a sphygmomanometer that can easily control cuff pressure when continuously measuring the blood pressure of a measurement subject.
  • the sphygmomanometer includes a pump, a cuff attached to a blood pressure measurement site of the measurement subject, a first valve, a second valve, a first pressure sensor, a second pressure sensor, and an arterial volume. It has an information detection sensor, a valve opening adjustment, and a blood pressure measurement unit.
  • a 1st valve is arrange
  • the first pressure sensor detects the discharge pressure of the pump
  • the second pressure sensor detects the cuff pressure
  • the arterial volume information detection sensor detects arterial volume information related to the volume of the artery at the blood pressure measurement site of the measurer.
  • the valve opening adjustment the discharge pressure and the cuff pressure and the arterial volume information are acquired, and the first valve is adjusted so that the discharge pressure becomes the control target value by acquiring the arterial volume information, and the cuff pressure becomes the control target value.
  • the opening degree of the second valve is adjusted.
  • the blood pressure measurement unit measures the blood pressure of the measurement subject based on the cuff pressure.
  • the ripple of the pump when the cuff pressure is numerically controlled, and when continuously measuring the blood pressure of the measurement subject, the ripple of the pump without using an electric control valve having high-speed response that is expensive to control the cuff pressure.
  • high-speed cuff pressure control that follows fluctuations in arterial pressure becomes possible.
  • FIG. 1 is a perspective view of the pump connection member shown in FIG. 4
  • FIG. 4 is a perspective view of the first cuff connection member shown in FIG.
  • FIG. 4 is a partial front view of the sphygmomanometer shown in FIG. It is. It is a flowchart of the blood-pressure measurement process by the sphygmomanometer shown in FIG. It is a flowchart which shows the more detailed process of the process shown to S104 shown in FIG. It is a flowchart which shows the more detailed process of the process shown to S106 shown in FIG. It is a figure which shows an example of operation
  • FIG. 1 is a schematic configuration diagram of a related sphygmomanometer.
  • a signal path is indicated by a one-dot chain line.
  • the sphygmomanometer 900 includes a pump 901, a cuff 902, an electromagnetic valve 903, a pressure sensor 904, a connection member 905, a light amount detection sensor 906, and a control device 907.
  • the pump 901 takes in atmospheric air and pressurizes it, and discharges the pressurized air to the cuff 902 via the connecting member 905.
  • the cuff 902 includes a blood pressure measurement site such as a finger, and includes a fluid bag that expands when air as a pressure medium is pressed from the pump 901 and contracts when air is discharged.
  • the electromagnetic valve 903 is connected to the cuff 902 via the connecting member 905, and is opened when an opening instruction signal is input from the control device 907, and is closed when a closing instruction signal is input from the control device 907. .
  • the pressure sensor 904 is connected to the cuff 902 via the connection member 905, detects a cuff pressure that is an internal pressure of the cuff, and outputs a cuff pressure signal indicating the cuff pressure to the control device 907.
  • the connection member 105 is a tubular member formed of a flexible material such as synthetic resin, and pressurizes air from the pump 901 into the cuff 902, and when the electromagnetic valve 903 is opened, the pump 901 and the cuff 902 are connected. From the air to the electromagnetic valve 903.
  • the light quantity detection sensor 906 is a photoelectric sensor having a light emitting element and a light receiving element (not shown), and detects the light quantity, that is, the arterial volume when the artery of the blood pressure measurement site to which the cuff 902 is attached is irradiated with light.
  • a light amount signal indicating the detected arterial volume is output to the control device 907.
  • the control device 907 includes a storage unit, a processing unit, and an interface circuit, and measures the blood pressure of the measurement subject by the volume compensation method.
  • the volume compensation method is to maintain the arterial volume constant (volume compensation) by making the external pressure applied from the outside by the cuff 902 and the human internal blood pressure constantly changing the same value (balance), and the cuff pressure at that time is the blood pressure value.
  • the volume vibration method is used to determine that the external pressure and the internal pressure are constant.
  • the control device 907 opens and closes the electromagnetic valve 903 to adjust the cuff pressure so that the arterial volume at the blood pressure measurement site where the cuff 902 is attached is constant based on the amount of light corresponding to the arterial volume, and from the cuff pressure. Measure the blood pressure of the person being measured.
  • the control device 907 varies the discharge pressure of the pump 901 between approximately 50 mmHg and 250 mmHg when measuring the blood pressure of the measurement subject by the volume compensation method.
  • the fluctuation frequency is required to be about 20 [Hz]. Furthermore, it is necessary to suppress the ripple pressure fluctuation generated from the pump 901.
  • FIG. 2 is a diagram showing the pressure / discharge rate characteristics of the pump 901.
  • the horizontal axis indicates the discharge pressure [mmHg]
  • the vertical axis indicates the discharge amount [l (liter) / min].
  • a curve 201 is a pressure / discharge amount curve generally shown, which is obtained by averaging the ripple components of the diaphragm pump.
  • a curve 202 represents the pressure / discharge amount characteristic at the maximum flow rate when the pump is exhausted.
  • a curve 203 represents the pressure / discharge amount characteristic at the minimum flow rate during intake of the pump.
  • FIG. 3 is a diagram for explaining problems of the sphygmomanometer 900.
  • the horizontal axis indicates the discharge pressure [mmHg]
  • the vertical axis indicates the discharge amount [l / min].
  • the curve 301 shows the pressure / discharge amount characteristic obtained by averaging the ripple components of the pump.
  • the curve 302 indicates the pressure / discharge amount characteristic when the pump is exhausted at the maximum flow rate.
  • a curve 303 indicates the pressure / discharge amount characteristic when the pump is at the minimum flow rate during intake, as with the curve 203.
  • a straight line 304 shows a load straight line corresponding to the curve 301 when the pump 901 is an electromagnetic valve 903 when the discharge pressure is 50 [mmHg], and a straight line 305 is when the discharge pressure of the pump 901 is 250 [mmHg].
  • the load straight line corresponding to the curve 301 of the electromagnetic valve 903 is shown.
  • the solenoid valve 903 When the solenoid valve 903 is controlled so that the discharge pressure of the pump 901 becomes 50 mmHg and the load valve 304 is in the state, the intersection of the curve 302 and the straight line 304 is obtained when the pump shifts to the pressure / discharge amount characteristic 302 during exhaust. As shown, the discharge pressure is 50 [mmHg] or more. On the other hand, when the pump shifts during intake, the discharge pressure becomes 50 mmHg or less as indicated by the intersection of the curve 303 and the straight line 304. In order to keep the discharge pressure constant at 50 [mmHg] without being affected by the ripple fluctuation of the pump, it is necessary to control the discharge amount of the electromagnetic valve 903 and change the inclination angle of the load straight line 304 between 304a and 304b.
  • the ripple frequency of the pump is determined by the rotational speed and structure of the motor and may be 100 Hz or more. Therefore, the electromagnetic valve 903 needs to realize a change in the inclination of the load straight line 304a to 304b at a speed of 100 [Hz] or more. Further, the larger the angle formed by the load straight lines 304a and 304b, the higher the speed required for the electromagnetic valve 903.
  • the discharge pressure of the pump 901 is 250 [mmHg]
  • the load straight line to be controlled by the electromagnetic valve 903 is 305.
  • the angle formed between 305a and 305b is narrower than that in the case of 5 [mmHg]. That is, the high speed performance required for the electromagnetic valve 903 is relaxed as the pressure increases.
  • the sphygmomanometer of the volume compensation method or the like detects a discharge pressure of the pump, a first valve that adjusts the discharge amount of air that is press-fitted from the pump into the cuff, a second valve that adjusts the cuff pressure inside the cuff, and the pump. It has a 1st pressure sensor and a 2nd pressure sensor which detects cuff pressure.
  • the sphygmomanometer according to the embodiment can adjust the discharge amount of the pump with the first valve, thereby reducing fluctuations in the discharge amount characteristic of the pump and preventing the cuff pressure from deviating from a desired pressure.
  • FIG. 4 is a schematic configuration diagram of a sphygmomanometer according to the embodiment.
  • the signal path is indicated by a one-dot chain line.
  • the sphygmomanometer 1 includes a pump 11, a cuff 12, a first valve 13, a first pressure sensor 14, a pump connection member 15, a first cuff connection member 16, a second cuff connection member 17, and a light amount detection sensor. 18, a second valve 23, a second pressure sensor 24, and a control device 30.
  • the pump 11 is a diaphragm pump in one example, takes in air in the atmosphere, pressurizes it, and discharges the pressurized air to the cuff 12 via the first valve 13 and the like. The pump 11 is started when a start instruction signal indicating a start instruction of the pump 11 is received, and is stopped when a pump stop instruction signal indicating a stop instruction of the pump 11 is received.
  • FIG. 5 is a diagram showing a state in which the cuff 12 is worn on the finger of the person to be measured.
  • the cuff 12 has a belt part 121, a cuff fixing part 122, and a contraction fluid bag 123 contained in the belt part, and encloses the index finger 2 of the person to be measured which is a blood pressure measurement part.
  • the belt unit 121 further includes a light amount detection sensor 18 having a light emitting element 181 and a light receiving element 182.
  • the cuff fixing part 122 is a member that can be rotated between an open position and a fixed position. The index finger 2 of the person to be measured can be inserted when the cuff fixing part 122 is in the open position. Hold index finger 2.
  • the contraction fluid bag 123 expands when air, which is a pressure medium, is press-fitted from the pump 11 through a second cuff connection member 26 that is a tubular member formed of a flexible material such as synthetic resin. On the other hand, the contraction fluid bag 123 contracts when air is discharged.
  • FIG. 6 is a schematic configuration diagram of the first valve 13.
  • arrows A and A ′ indicate the flow of air
  • arrow C indicates the moving direction of the actuator 132 of the first valve 13 when a current is supplied to the electromagnetic coil.
  • the first valve 13 is an electromagnetic valve having an electromagnetic coil 131, an actuator 132, a valve seat 133, and a current acquisition unit 134.
  • the electromagnetic coil 131 generates a magnetic field according to a current input from a power supply device (not shown) via the current acquisition unit 134.
  • the generated magnetic field acts so that the magnetic circuit formed by the valve seat 133 and the actuator 132 is closed, and the actuator 132 moves in the closing direction indicated by the arrow C.
  • the actuator 132 moves in the closing direction and comes into full contact with the valve seat 133, the first valve is closed.
  • the electromagnetic supply to the electromagnetic coil 131 is cut off, the actuator 132 moves in the opening direction opposite to the closing direction indicated by the arrow C by the force of the air flowing in the arrow A.
  • the opening degree of the first valve 13 is adjusted by the control device 30 so that the first pressure sensor 14 becomes a set pressure.
  • the first valve 13 functions as a throttle valve that adjusts so that the amount of air discharged from the pump 11 to the cuff 12 is always constant regardless of load fluctuations.
  • the opening degree of the second valve 23 is adjusted by the control device 30 so that the second pressure sensor 24 becomes a set pressure. Therefore, it functions as a valve that adjusts the cuff pressure by discharging air at a constant flow rate supplied from the first valve and air from the cuff 12.
  • the first pressure sensor 14 is, for example, a strain gauge type pressure sensor including a piezoresistive element.
  • the first pressure sensor 14 detects the pressure inside the pump connection member 15 disposed between the pump 11 and the first valve.
  • the pressure inside the pump connection member 15 is the discharge pressure of the pump 11.
  • the discharge pressure of the pump 11 is determined by the discharge flow rate of the pump 11 and the flow rate resistance of the first valve 13.
  • the first pressure sensor 14 outputs a discharge pressure signal indicating the detected discharge pressure to the control device 30.
  • the second pressure sensor 24 is, for example, a strain gauge type pressure sensor including a piezoresistive element, like the first pressure sensor 14.
  • the second pressure sensor 24 detects the cuff pressure inside the cuff 12 via the first cuff connection member 16 and the second cuff connection member 17.
  • the cuff pressure is determined by the constant flow rate air supplied from the first valve 13 and the flow rate resistance of the valve of the second valve 23.
  • the second pressure sensor 24 outputs a cuff pressure signal indicating the detected cuff pressure to the control device 30.
  • FIG. 7 (a) is a perspective view of the pump connection member 15
  • FIG. 7 (b) is a perspective view of the first cuff connection member 16
  • FIG. 7 (c) is a partial front view of the sphygmomanometer 1.
  • the pump connecting member 15 has a pressure chamber 150 formed therein, and a first through-hole 151, a second through-hole 152, and a third through-hole 153 each penetrating from the outer wall 155 to the pressure chamber 150.
  • the pump 11 is inserted into the first through hole 151, the first valve 13 is inserted into the second through hole 152, and the first pressure sensor 14 is inserted into the third through hole 153.
  • the first cuff connecting member 16 has a pressure chamber 160 formed therein, and the first through-hole 161, the second through-hole 162, the third through-hole 163, and the fourth through each through the outer wall 165 to the pressure chamber 160.
  • a through hole 164 is formed.
  • the first valve 13 is inserted into the first through hole 161, the second cuff connecting member 17 is inserted into the second through hole 162, the second valve 23 is inserted into the third through hole 163, and the fourth through hole 164 is The second pressure sensor 24 is inserted.
  • the second cuff connecting member 17 is a tubular member formed of a flexible material such as synthetic resin, and one end is connected to the cuff 12 and the other end is inserted into the second through hole of the first cuff connecting member 16.
  • the total capacity of the inside of the cuff 12, the pressure chamber 160 of the first cuff connecting member 16, and the inside of the second cuff connecting member 17 is 20 [ml] or less.
  • the light quantity detection sensor 18 is a photoelectric sensor having a light emitting element 181 and a light receiving element 182, and detects the light quantity when light is applied to the artery of the blood pressure measurement site to which the cuff 902 is attached.
  • the light receiving element 182 of the light amount detection sensor 18 receives a light amount corresponding to the amount of hemoglobin flowing through the artery from the light emitting element 181, and outputs a light amount signal indicating the received light amount to the control device 30.
  • the light quantity detected by the light quantity detection sensor 18 is arterial volume information related to the arterial volume in the index finger 2 of the measurement subject who is a blood pressure measurement site.
  • the light amount detection sensor 18 is an arterial volume information detection sensor that detects arterial volume information related to the arterial volume in the index finger 2 of the measurement subject.
  • the control device 30 includes an interface unit 31, a storage unit 32, an input unit 33, an output unit 34, a bus 35, and a processing unit 40.
  • the bus 35 connects the storage unit 32, the input unit 33, the output unit 34, and the processing unit 40 so that they can communicate with each other.
  • the interface unit 31 includes a first AD converter 311, a second AD converter 312, a third AD converter 313, a first transmission circuit 314, a second transmission circuit 315, and a third transmission circuit 316.
  • the first AD converter 311 converts the discharge pressure signal input from the first pressure sensor 14 from an analog signal to a digital signal, and outputs the signal to the processing unit 40 via the bus 35.
  • the second AD converter 312 converts the cuff pressure signal input from the second pressure sensor 24 from an analog signal to a digital signal, and outputs the converted signal to the processing unit 40 via the bus 35.
  • the third AD converter 313 converts the light amount signal input from the light amount detection sensor 18 from an analog signal to a digital signal and outputs the converted signal to the processing unit 40 via the bus 35.
  • the first transmission circuit 314 amplifies the start instruction signal and the pump stop instruction signal and transmits them to the pump 11.
  • the second transmission circuit 315 transmits the first valve closing instruction signal and the first valve opening instruction signal to the first valve 13.
  • the first valve closing instruction signal indicates that the opening degree of the first valve 13 is decreased by the changed opening degree, and the first valve opening instruction signal indicates that the opening degree of the first valve 13 is increased by the predetermined changing opening degree. It is a signal to show.
  • the third transmission circuit 316 transmits the second valve close instruction signal and the second valve open instruction signal to the second valve 23.
  • the second valve closing instruction signal indicates that the opening degree of the second valve 23 is decreased, and the second valve opening instruction signal indicates that the opening degree of the second valve 23 is increased.
  • the storage unit 32 includes, for example, a semiconductor memory, and stores a driver program, an operating system program, an application program, data, and the like used for arithmetic processing by the processing unit 40.
  • the storage unit 32 stores a first set pressure 321, a second set pressure 322, and a set light amount 323.
  • the set light amount 323 is determined from the difference between the light amount detected by the light amount detection sensor 18 and the volume compensation value determined by the volume vibration method, and the first set pressure 321 is set as a target value in order to obtain the set light amount 323.
  • the first set pressure 321 is 450 [mmHg].
  • the second set pressure 322 is a target value of the cuff pressure when the processing unit 40 measures the blood pressure of the measurement subject, and is changed according to the light amount detected by the light amount detection sensor 18.
  • the storage unit 32 stores a blood pressure measurement program for measuring the blood pressure of the measurement subject as an application program.
  • the computer program may be installed in the storage unit 32 using a known setup program or the like from a computer-readable portable recording medium such as a CD-ROM or DVD-ROM.
  • the input unit 33 may be any device that can input data, such as a touch panel and a keyboard.
  • the measurement subject can input characters, numbers, symbols, and the like using the input unit 33.
  • the input unit 33 When the input unit 33 is operated by the measurement subject, the input unit 33 generates a signal corresponding to the operation. And the produced
  • the output unit 34 may be any device as long as it can display images, images, and the like, and is, for example, a liquid crystal display or an organic EL (Electro-Luminescence) display.
  • the output unit 34 displays a video corresponding to the video data supplied from the processing unit 40, an image corresponding to the image data, and the like.
  • the processing unit 40 includes one or a plurality of processors and their peripheral circuits.
  • the processing unit 40 executes various arithmetic processes, and is, for example, a CPU (Central ⁇ ⁇ ⁇ Processing Unit).
  • the processing unit 40 controls the interface unit 31 and the like so that various arithmetic processes are executed in an appropriate procedure according to a program and the like stored in the storage unit 32.
  • the processing unit 40 executes processing based on programs (driver program, operating system program, application program, etc.) stored in the storage unit 32.
  • the processing unit 40 can execute a plurality of programs (such as application programs) in parallel.
  • the processing unit 40 includes a blood pressure measurement instruction determination unit 41, a valve opening adjustment unit 42, and a blood pressure measurement unit 43.
  • the valve opening adjustment unit 42 includes a discharge pressure acquisition unit 51, a first valve opening adjustment unit 52, a light amount acquisition unit 53, a second set pressure determination unit 54, a cuff pressure acquisition unit 55, and a second valve. And an opening adjustment unit 56.
  • Each of these units included in the processing unit 40 is a functional module implemented by a program executed on a processor included in the processing unit 40.
  • these units included in the processing unit 40 may be mounted on the sphygmomanometer 1 as an independent integrated circuit, a microprocessor, or firmware.
  • FIG. 8 is a flowchart of blood pressure measurement processing by the sphygmomanometer 1.
  • the blood pressure measurement process shown in FIG. 8 is mainly executed by the processing unit 40 in cooperation with each element of the sphygmomanometer 1 based on a program stored in the storage unit 32 in advance.
  • the blood pressure measurement instruction determination unit 41 determines whether or not a blood pressure measurement start instruction has been acquired from the measurement subject via the input unit 33 (S101).
  • the blood pressure measurement instruction determination unit 41 repeats the process of S101 until it is determined that a blood pressure measurement start instruction has been acquired (S101—YES).
  • the blood pressure measurement instruction determination unit 41 transmits an activation instruction signal indicating the activation instruction of the pump 11 to the pump 11 via the first transmission circuit 314.
  • the pump 11 is instructed to start (S102).
  • the pump 11 is activated when it receives the activation instruction signal.
  • the blood pressure measurement instruction determination unit 41 determines whether or not a blood pressure measurement end instruction has been acquired from the measurement subject via the input unit 33 (S103).
  • the valve opening degree adjustment unit 42 adjusts the opening degree of the first valve 13 and the second valve 23.
  • the valve opening adjustment unit 42 acquires the discharge pressure of the pump 11 and adjusts the opening of the first valve 13 so that the acquired discharge pressure coincides with the first set pressure (S104).
  • valve opening adjustment unit 42 adjusts the opening of the second valve 23 so that the arterial volume obtained from the light quantity acquisition unit 53 matches the volume compensation value (S105).
  • the blood pressure measurement unit 43 estimates the cuff pressure when the opening of the second valve 23 is adjusted in S105 as the blood pressure of the measurement subject (S106), and outputs the measured blood pressure via the output unit 34. To do.
  • the blood pressure measurement instruction determination unit 41 determines that the blood pressure measurement end instruction has been acquired (S103-YES)
  • the blood pressure measurement instruction determination unit 41 transmits a stop instruction signal indicating a stop instruction of the pump 11 to the pump 11 via the first transmission circuit 314. By transmitting, the pump 11 is instructed to stop (S102).
  • the pump 11 receives the stop instruction signal, the pump 11 stops.
  • FIG. 9 is a flowchart showing more detailed processing of the processing shown in S104.
  • the discharge pressure acquisition unit 51 acquires the discharge pressure of the pump 11 corresponding to the discharge pressure signal transmitted from the first pressure sensor 14 via the first AD converter 311 (S201).
  • the first valve opening adjustment unit 52 determines whether or not the acquired discharge pressure matches the first set pressure 321 stored in the storage unit 32 (S202). If the first valve opening adjustment unit 52 determines that the acquired discharge pressure does not match the first set pressure 321 stored in the storage unit 32 (S202—NO), the acquired discharge pressure is stored in the storage unit 32. It is determined whether or not it is less than the first set pressure 321 (S203).
  • the first valve opening adjustment unit 52 transmits a first valve opening instruction signal to the second transmission. This is transmitted to the first valve 13 via the circuit 315 (S204).
  • the first valve 13 increases the opening by a predetermined change opening, and the process returns to S201.
  • the first valve opening adjustment unit 52 determines that the acquired discharge pressure is larger than the first set pressure 321 stored in the storage unit 32 (S203—NO)
  • the first valve opening adjustment unit 52 outputs the first valve closing instruction signal to the second It transmits to the 1st valve
  • the first valve 13 decreases the opening by a predetermined change opening, and the process returns to S201.
  • the processes of S201 to S205 are repeated until it is determined that the acquired discharge pressure matches the first set pressure 321 stored in the storage unit 32 (S202—YES).
  • the first valve opening degree adjustment unit 52 causes the opening degree of the first valve 13 so that the discharge pressure of the pump 11 matches the first set pressure stored in the storage unit 32. Adjust. If the first valve opening adjustment unit 52 determines that the discharge pressure of the pump 11 matches the first set pressure 321 stored in the storage unit 32 (S202—YES), the process is performed while maintaining the first valve opening. Return to S201.
  • FIG. 10 is a flowchart showing more detailed processing of the processing shown in S105.
  • the light quantity acquisition unit 53 acquires the light quantity corresponding to the light quantity signal transmitted from the light quantity detection sensor 18 via the third AD converter 313 (S301).
  • the second valve opening adjustment unit 56 determines whether or not the light amount acquired in S301 matches the set light amount 323 stored in the storage unit 32 (S302). If the second valve opening adjustment unit 56 determines that the light amount acquired in S301 does not match the set light amount 323 stored in the storage unit 32 (S302—NO), the light amount acquired in S301 is stored in the storage unit 32. It is determined whether or not the set light amount is less than 323 stored in (S303).
  • the second valve opening adjustment unit 56 determines that the acquired light amount is less than the set light amount 323 stored in the storage unit 32 (S303—YES)
  • the second valve opening instruction signal is sent to the third transmission circuit 316.
  • the second valve 23 receives the second valve opening instruction signal
  • the second valve 23 increases the opening by a predetermined change opening.
  • the cuff pressure acquisition unit 55 acquires the cuff pressure inside the cuff 12 corresponding to the cuff pressure signal transmitted from the second pressure sensor 24 via the second AD converter 312 (S311), and the acquired cuff pressure is It is determined whether or not it matches the predetermined opening (second set pressure 322) (S307). If they match, the process returns to step S301.
  • the second valve opening adjustment unit 56 determines that the acquired light amount is larger than the set light amount 323 stored in the storage unit 32 (S303—NO)
  • the second valve closing instruction signal is transmitted to the third transmission circuit 316.
  • the second valve 23 receives the second valve close instruction signal
  • the second valve 23 decreases the opening by a predetermined change opening.
  • the cuff pressure acquisition unit 55 acquires the cuff pressure inside the cuff 12 corresponding to the cuff pressure signal transmitted from the second pressure sensor 24 via the second AD converter 312 (S310). It is determined whether the acquired cuff pressure matches a predetermined opening (second set pressure) (S306). If they match, the process returns to step S301.
  • FIG. 11 is a diagram showing an example of the operation of the sphygmomanometer 1.
  • the horizontal axis indicates the elapsed time t [s]
  • the vertical axis indicates the cuff pressure Pc [mmHg] inside the cuff 12.
  • the blood pressure measurement instruction determination unit 41 determines that a blood pressure measurement start instruction has been acquired from the measurement subject (S101), and instructs the pump 11 to start (S102).
  • the pump 11 is activated when it receives the activation instruction signal.
  • the cuff pressure Pc inside the cuff 12 increases rapidly on the vertical axis.
  • the valve opening adjustment unit 42 acquires the discharge pressure of the pump 11, and adjusts the opening of the first valve 13 so that the acquired discharge pressure matches the first set pressure (S104). .
  • a period t3 between time t1 and time t2 is a preparation period until the sphygmomanometer 1 starts blood pressure measurement processing.
  • a period t4 after t2 is a blood pressure measurement period in which the sphygmomanometer 1 continuously measures the blood pressure of the measurement subject.
  • the processes of S103 to S106 are repeated, so that the cuff pressure Pc varies according to the pulse of the measurement subject.
  • the sphygmomanometer 1 becomes a constant flow output by maintaining the discharge pressure of the pump 11 in the vicinity of the first set pressure.
  • the fluctuation of the discharge amount of the pump 11 due to the ripple of the pump can be reduced, and the second valve 23 can be dedicated to cuff pressure control. That is, in the sphygmomanometer 1, high-speed control of the cuff pressure required when continuously measuring the blood pressure of the measurement subject can be realized even by using a general-purpose electromagnetic valve.
  • FIG. 12 is a diagram showing the pressure / discharge rate characteristics of the pump 11.
  • the horizontal axis indicates the discharge pressure [mmHg]
  • the vertical axis indicates the discharge amount [l / min].
  • a curve 1301 indicates the curve 301 shown in FIG. 3
  • a curve 1302 indicates the curve 302 shown in FIG. 3
  • a curve 1303 indicates the curve 303 shown in FIG.
  • Curves 1301 to 1303 indicate the pressure / discharge amount characteristics of the pump 901 of the sphygmomanometer 900 described with reference to FIGS.
  • the discharge pressure of the pump 11 is adjusted to 450 [mmHg] by the first valve 13, the discharge amount of the pump 11 becomes constant at about 0.18 [ml] as shown in FIG. .
  • the load straight line of the first valve 13 used here falls within the range 1306, and the angle formed by the two load straight lines is narrow, which can be realized by a relatively low speed electromagnetic valve.
  • the cuff pressure to be changed following the change in the arterial pressure of the human needs only to have a followability of about 20 [Hz].
  • the range of the load straight line of the second valve 23 when the cuff pressure is varied in the range of 50 [mmHg] to 250 [mmHg] is wide, but the followability within this range is required to be about 20 Hz.
  • the range of the load straight line of the second valve 23 is the load straight line range 1304 at the cuff pressure 50 [mmHg] and the load straight line 1305 at the cuff pressure 250 [mmHg]. In either case, the angle formed by the two load straight lines is narrow, and a valve with a relatively slow response speed can be used as the second valve 23, so that the cost can be reduced.
  • the sphygmomanometer 1 is connected to the cuff 12 via the first cuff connection member 16 in which the first valve 13, the second cuff connection member 17, the second valve 23, and the second pressure sensor 24 are inserted into the four through holes. Since the first valve 13 is connected, the volume to which the cuff pressure is applied can be reduced. In the sphygmomanometer 1, since the volume to which the cuff pressure is applied is small, a large change in the cuff pressure can be realized by a small change in the discharge amount of the pump 11.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Dentistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

連続して血圧測定するときにポンプのリップルの影響を軽減しカフ圧力の高速制御を汎用の電磁バルブで実現する。 血圧計1は、ポンプ11と、被測定者の血圧測定部位に装着されたカフ12と、第1バルブ13と、第1圧力センサ14と、検出センサ18と、第2バルブ23と、第2圧力センサ24とを有する。血圧計1は、バルブ開度調整部42と血圧測定部43とを更に有する。第1バルブ13はポンプ11の吐出量を調整し、第2バルブ23はカフ12の内部のカフ圧力を調整する。第1圧力センサ14はポンプ11の吐出圧力を検出し、第2圧力センサ24はカフ圧力を検出し、検出センサ18は測定者の血圧測定部位における動脈の容積に関連する光量を検出する。バルブ開度調整部42は、吐出圧力、カフ圧力及び光量を取得し、第1バルブ13及び第2バルブ23の開度を調整する。血圧測定部43はカフ圧力に基づいて被測定者の血圧を測定する。

Description

血圧計
 本発明は、血圧計に関する。
 種々の血圧計が知られている。例えば、指プローブの圧力チャンバ内の可変圧と、一対のソレノイド弁の間の一定圧との差圧に応じて被測定者の血圧を測定することが知られる(例えば、特許文献1を参照)。また、ポンプで圧力容器の内部の圧力を高めた後に圧力容器とカフとを連通させる圧力容器からカフに空気を吐出して血圧の測定を開始することで、カフ圧力を高くするまでの時間を短くすることが知られる(例えば、特許文献2を参照)。また、第1圧力センサ及び第2圧力センサをカフへの給気経路に接続し、第1圧力センサの検出値と第2圧力センサの検出値を比較することにより、カフに接続された給気用ホースのねじれを検出することが知られる(例えば、特許文献3を参照)。また、単一の圧力センサが検出したカフ圧力が所定のしきい値圧力よりも高いときに出口弁を開いてカフ圧力を下げ、カフ圧力が所定のしきい値圧力よりも低いときに入口弁を開いてカフ圧力を上げることが知られている(例えば、特許文献4~6を参照)。また、複数のカフのそれぞれの内部のカフ圧力を検出し、検出したカフ圧力に応じて電磁弁を制御して複数のカフのそれぞれのカフ圧力を調整することが知られている(例えば、特許文献7を参照)。また、一心拍毎に連続計測が可能な手法として容積補償法がある。この容積補償法を実現する為には、動脈血管内の圧力変化に追随すべくカフ圧の高速制御が必要とされる。このカフ圧制御には、取扱が容易な空気が用いられ、圧力源から生じる空気圧を逃し弁の流量を電気的に制御することによりカフ圧の高速制御を実現している。圧力源としては、一般的にダイヤフラム式の空気ポンプが用いられるが、ダイヤフラム式ポンプの圧及び流量の出力にはリップルが含まれる為、逃し弁の高速制御には動脈圧に加えリップルの圧変化にも追随させる必要がある。これらの背景より、容積補償法の為の高速圧制御を実施する技術が幾つか知られている。圧電素子の高速応答性を用い、圧力源の空気圧の逃がし量を高速制御するもの(例えば特許文献8を参照)。電磁弁を2個用い、カフ圧を一つの圧センサで計測し、この圧が制御目標値となる様に、圧力供給量を一方の電磁弁で制御し、他方の電磁弁で逃がし量を制御するもの(例えば特許文献9を参照)。
特表2000-515789号公報 特開2015-188646公報 特開2012-205719号公報 特表2007-508872号公報 特開平5-49605号公報 特開昭63-29616号公報 特開平8-332173号公報 米国特許第4406289号明細書 米国特許第6669648号明細書
 しかしながら単一のバルブを開閉させることでカフ圧力を被測定者の脈拍に応じて変化させて、被測定者の血圧を連続して測定する場合、カフに空気を圧入するポンプの吐出量特性が変動するため、所望の圧力にカフ圧力を制御することは容易ではない。
 一実施形態では、被測定者の血圧を連続して測定するときにカフ圧力の制御が容易な血圧計を提供することを目的とする。
 1つの態様では、血圧計は、ポンプと、被測定者の血圧測定部位に装着されたカフと、第1バルブと、第2バルブと、第1圧力センサと、第2圧力センサと、動脈容積情報検出センサと、バルブ開度調整と、血圧測定部とを有する。第1バルブはポンプとカフとの間に配置され、開度を調整することでポンプの吐出量を調整し、第2バルブは開度を調整することでカフの内部のカフ圧力を調整する。第1圧力センサはポンプの吐出圧力を検出し、第2圧力センサはカフ圧力を検出し、動脈容積情報検出センサは測定者の血圧測定部位における動脈の容積に関連する動脈容積情報を検出する。バルブ開度調整は、吐出圧力及びカフ圧力、並びに動脈容積情報を取得、並びに動脈容積情報を取得し吐出圧力が制御目標値となる様に第1バルブを調整しカフ圧が制御目標値となる様に第2バルブの開度を調整する。血圧測定部は、カフ圧力に基づいて被測定者の血圧を測定する。
 一実施形態では、カフ圧を数値制御する場合、並びに被測定者の血圧を連続して測定するときにカフ圧力の制御が高価な高速応答性を有する電気的制御バルブを用いることなくポンプのリップル及び動脈圧の変動に追従する高速カフ圧制御が可能になる。
関連する血圧計の概略構成図である。 図1に示すポンプの吐出量特性を示す図である。 図1に示す血圧計の問題点を説明するための図である。 実施形態に係る血圧計の概略構成図である。 図4に示すカフを被測定者の指に装着した状態を示す図である。 図4に示す第1バルブの概略構成図である。 (a)は図4に示すポンプ接続部材の斜視図であり、(b)は図4に示す第1カフ接続部材の斜視図であり、(c)は図4に示す血圧計の部分正面図である。 図4に示す血圧計による血圧測定処理のフローチャートである。 図8に示すS104に示す処理のより詳細な処理を示すフローチャートである。 図8に示すS106に示す処理のより詳細な処理を示すフローチャートである。 図4に示す血圧計の動作の一例を示す図である。 図4に示す各バルブの動作をポンプの圧力・吐出量特性上に示した図である。
 以下、図面を参照しつつ、実施形態に係る血圧計について説明する。ただし、本発明は図面又は以下に記載される実施形態には限定されないことを理解されたい。
 (関連する血圧計の構成及び機能)
 図1は、関連する血圧計の概略構成図である。図1において、信号の経路は一点鎖線で示される。
 血圧計900は、ポンプ901と、カフ902と、電磁バルブ903と、圧力センサ904と、接続部材905と、光量検出センサ906と、制御装置907とを有する。ポンプ901は大気中の空気を取り込んで加圧して、加圧した空気を接続部材905を介してカフ902に吐出する。カフ902は、指等の血圧測定部位を包持し、圧力媒体である空気がポンプ901から圧入されると膨張し、空気を排出すると収縮する流体袋を内包する。電磁バルブ903は、接続部材905を介してカフ902に接続され、制御装置907から開指示信号が入力されると開状態になり、制御装置907から閉指示信号が入力されると閉状態になる。圧力センサ904は、接続部材905を介してカフ902に接続され、カフの内部圧力であるカフ圧力を検出し、カフ圧力を示すカフ圧力信号を制御装置907に出力する。接続部材105は、合成樹脂等の可撓性材料で形成された管状部材であり、ポンプ901からカフ902に空気を圧入すると共に、電磁バルブ903が開状態になったときにポンプ901及びカフ902から電磁バルブ903に空気を排出する。光量検出センサ906は、不図示の発光素子及び受光素子を有する光電センサであり、カフ902が装着された血圧測定部位の動脈に光を照射したときの光量即ち動脈容積を検出する。検出した動脈容積を示す光量信号を制御装置907に出力する。制御装置907は、記憶部と、処理部と、インタフェース回路とを有し、容積補償法により被測定者の血圧を測定する。容積補償法とは、カフ902によって外から加える外圧と常に変化する人間の血管内圧を同じ値(均衡)にさせることで動脈の容積を一定に保ち(容積補償)、その時のカフ圧を血圧値として測定するものである。つまり血圧変化に伴う動脈容積の変化に追従させてカフ圧を変化させる必要がある。また、外圧と内圧が一定になったことの判別には容積振動法を用いる。制御装置907は、電磁バルブ903を開閉して、動脈容積に対応する光量に基づいてカフ902が装着された血圧測定部位における動脈容積が一定になるようにカフ圧力を調整すると共に、カフ圧力から被測定者の血圧を測定する。
 制御装置907は、容積補償法により被測定者の血圧を測定するとき、おおよそ50mmHgと250mmHgとの間でポンプ901の吐出圧力を変動させる。吐出圧力が動脈圧の変化に追従するにはその変動周波数は、20〔Hz〕程度が必要とされる。更にポンプ901から生じるリップル圧変動も抑制する必要がある。
 図2は、ポンプ901の圧力・吐出量特性を示す図である。図2において、横軸は吐出圧力〔mmHg〕を示し、縦軸は吐出量〔l(リットル)/min〕を示す。また、曲線201は、一般に示される圧力・吐出量曲線で、ダイヤフラムポンプが有するリップル成分を平均化したものである。曲線202は、ポンプが排気時の最大流量時の圧力・吐出量特性を示す。曲線203は、ポンプの吸気時の最小流量時の圧力・吐出量特性を示す。
 図3は、血圧計900の問題点を説明するための図である。図3において、横軸は吐出圧力〔mmHg〕を示し、縦軸は吐出量〔l/min〕を示す。また、曲線301は、曲線201と同様に、ポンプが有するリップル成分を平均化した圧力・吐出量特性を示す。曲線302は、曲線202と同様に、ポンプが排気時の最大流量時の圧力・吐出量特性を示す。曲線303は、曲線203と同様に、ポンプが吸気時の最小流量時の圧力・吐出量特性を示す。直線304はポンプ901が吐出圧力が50〔mmHg〕とした時の電磁バルブ903であるときの曲線301に対応した負荷直線を示し、直線305はポンプ901の吐出圧力が250〔mmHg〕とした時の電磁バルブ903の曲線301に対応した負荷直線を示す。
 ポンプ901の吐出圧力が50〔mmHg〕となる様に負荷直線304の状態に電磁バルブ903が制御されたときにポンプが排気時の圧力・吐出量特性302に移行すると曲線302と直線304の交点に示すように吐出圧力は50〔mmHg〕以上となる。一方ポンプが吸気時に移行すると曲線303と直線304の交点に示すように吐出圧力は50〔mmHg〕以下となる。このポンプのリップル変動に影響されることなく吐出圧力を50〔mmHg〕一定に保つためには電磁バルブ903の吐出量を制御し負荷直線304の傾斜角度を304a~304bの間で変化させる必要がある。一方ポンプのリップル周波数はモータの回転数と構造で決まり100Hz以上になることもある。従って電磁バルブ903は、その負荷直線が304a~304bの傾斜変化を100〔Hz〕以上の速度で実現する必要がある。また負荷直線304aと304bとのなす角が大きいほど、電磁バルブ903には高速性能が要求される。ポンプ901の吐出圧力が250〔mmHg〕とした場合の電磁バルブ903が制御すべき負荷直線が305であり、リップル成分の影響を除くには、負荷直線を305a~305bの範囲で変化させる必要があることが示されている。また305aと305bのなす角は5〔mmHg〕の場合より狭くなる。即ち電磁バルブ903に要求される高速性能は圧力が高いほど緩和される。
 (実施形態に係る血圧計の概要)
 実施形態に係る容積補償法等の血圧計に於いてカフ圧制御を安価な汎用電磁バルブを用いてダイヤフラムポンプのリップルを含む高速圧力制御を実現するものである。実施形態に係る血圧計は、ポンプからカフの内部に圧入される空気の吐出量を調整する第1バルブと、カフの内部のカフ圧力を調整する第2バルブと、ポンプの吐出圧力を検出する第1圧力センサと、カフ圧力を検出する第2圧力センサとを有する。実施形態に係る血圧計は、第1バルブでポンプの吐出量を調整することで、ポンプの吐出量特性の変動を低減し、カフ圧が所望の圧力から乖離することを防止ができる。
 図4は、実施形態に係る血圧計の概略構成図である。図4において、信号の経路は一点鎖線で示される。
 血圧計1は、ポンプ11と、カフ12と、第1バルブ13と、第1圧力センサ14と、ポンプ接続部材15と、第1カフ接続部材16と、第2カフ接続部材17、光量検出センサ18と、第2バルブ23と、第2圧力センサ24と、制御装置30とを有する。ポンプ11は、一例ではダイフラムポンプであり、大気中の空気を取り込んで加圧して、加圧した空気を第1バルブ13等を介してカフ12に吐出する。ポンプ11は、ポンプ11の起動指示を示す起動指示信号を受信したときに起動し、ポンプ11の停止指示を示すポンプ停止指示信号を受信したときに停止する。
 図5は、カフ12を被測定者の指に装着した状態を示す図である。
 カフ12は、ベルト部121と、カフ固定部122と、ベルト部に内包される収縮流体袋123とを有し、血圧測定部位である被測定者の人差指2を包持する。ベルト部121は、発光素子181及び受光素子182を有する光量検出センサ18を更に内包する。カフ固定部122は、開放位置と固定位置との間で回動可能な部材であり、開放位置にあるときに被測定者の人差指2が挿入可能であり、固定値あるときに被測定者の人差指2を包持する。収縮流体袋123は、合成樹脂等の可撓性材料で形成された管状部材である第2カフ接続部材26を介してポンプ11から圧力媒体である空気が圧入されると膨張する。一方、収縮流体袋123は、空気を排出すると収縮する。
 図6は、第1バルブ13の概略構成図である。図6において、矢印A及びA‘は空気の流れを示し、矢印Cは電磁コイルに電流が供給されたときの第1バルブ13のアクチュエータ132の移動方向を示す。
 第1バルブ13は、電磁コイル131と、アクチュエータ132と、弁座133と、電流取得部134とを有する電磁バルブである。電磁コイル131は、電流取得部134を介して不図示の電源装置から入力される電流に応じて磁界を発生する。発生した磁界は弁座133とアクチュエータ132より形成される磁気回路が閉じる様に作用しアクチュエータ132は矢印Cで示す閉方向に移動する。アクチュエータ132が閉方向に移動して弁座133と完全に接触すると、第1バルブは閉状態になる。また、アクチュエータ132は、電磁コイル131への電磁供給を断つと矢印Aの空気の流れる力により矢印Cで示す閉方向と反対の開方向に移動する。
 血圧計1が動作するとき、第1バルブ13の開度は、第1圧力センサ14が設定された圧力となるように制御装置30によって調整される。第1バルブ13は、ポンプ11からカフ12に吐出される空気の吐出量が負荷の変動に関係なく常に一定となる様に調整する絞り弁として機能する。
 第2バルブ23の構成は、第1バルブ13の構成と同一又はより簡便な構造のバルブが利用可能なので、第2バルブ23の構成の詳細な説明は、ここでは省略する。第2バルブ23の開度は、第2圧力センサ24が設定された圧力となる様に制御装置30によって調整される。従って第1バルブから供給される定流量の空気及びカフ12からの空気を排出してカフ圧を調整する弁として機能する。
 第1圧力センサ14は、一例では、ピエゾ抵抗素子を含む歪ゲージ型の圧力センサである。第1圧力センサ14は、ポンプ11と第1バルブとの間に配置されるポンプ接続部材15の内部の圧力を検出する。ポンプ接続部材15の内部の圧力は、ポンプ11の吐出圧力である。ポンプ11の吐出圧力は、ポンプ11の吐出流量と第1バルブ13の流量抵抗により決まる。第1圧力センサ14は、検出した吐出圧力を示す吐出圧力信号を制御装置30に出力する。
 第2圧力センサ24は、一例では、第1圧力センサ14と同様に、ピエゾ抵抗素子を含む歪ゲージ型の圧力センサである。第2圧力センサ24は、カフ12の内部のカフ圧力を第1カフ接続部材16及び第2カフ接続部材17を介して検出する。カフ圧力は、第1バルブ13から供給される定流量空気と第2バルブ23のバルブの流量抵抗とにより決まる。第2圧力センサ24は、検出したカフ圧力を示すカフ圧力信号を制御装置30に出力する。
 図7(a)はポンプ接続部材15の斜視図であり、図7(b)は第1カフ接続部材16の斜視図であり、図7(c)は血圧計1の部分正面図である。
 ポンプ接続部材15は、内部に圧力室150が形成されると共に、それぞれが外壁155から圧力室150まで貫通する第1貫通孔151、第2貫通孔152及び第3貫通孔153が形成される。第1貫通孔151はポンプ11が挿入され、第2貫通孔152は第1バルブ13が挿入され、第3貫通孔153は第1圧力センサ14が挿入される。
 第1カフ接続部材16は、内部に圧力室160が形成されると共に、それぞれが外壁165から圧力室160まで貫通する第1貫通孔161、第2貫通孔162、第3貫通孔163及び第4貫通孔164が形成される。第1貫通孔161は第1バルブ13が挿入され、第2貫通孔162は第2カフ接続部材17が挿入され、第3貫通孔163は第2バルブ23が挿入され、第4貫通孔164は第2圧力センサ24が挿入される。
 第2カフ接続部材17は、合成樹脂等の可撓性材料で形成された管状部材であり、一端がカフ12に接続され、他端が第1カフ接続部材16の第2貫通孔に挿入される。
 カフ12の内部、第1カフ接続部材16の圧力室160及び第2カフ接続部材17の内部の合計の容量は20〔ml〕以下である。
 光量検出センサ18は、発光素子181及び受光素子182を有する光電センサであり、カフ902が装着された血圧測定部位の動脈に光を照射したときの光量を検出する。光量検出センサ18の受光素子182は、動脈を流れるヘモグロビンの量に応じた光量を発光素子181から受光し、受光した光量を示す光量信号を制御装置30に出力する。光量検出センサ18が検出する光量は、血圧測定部位である被測定者の人差指2における動脈の容積に関連する動脈容積情報である。光量検出センサ18は、被測定者の人差指2における動脈の容積に関連する動脈容積情報を検出する動脈容積情報検出センサである。
 制御装置30は、インタフェース部31と、記憶部32と、入力部33と、出力部34と、バス35と、処理部40とを有する。バス35は、記憶部32、入力部33、出力部34及び処理部40を相互に通信可能に接続する。
 インタフェース部31は、第1ADコンバータ311と、第2ADコンバータ312と、第3ADコンバータ313と、第1送信回路314と、第2送信回路315と、第3送信回路316とを有する。
 第1ADコンバータ311は、第1圧力センサ14から入力される吐出圧力信号をアナログ信号からデジタル信号に変換して、バス35を介して処理部40に出力する。第2ADコンバータ312は、第2圧力センサ24から入力されるカフ圧力信号をアナログ信号からデジタル信号に変換して、バス35を介して処理部40に出力する。第3ADコンバータ313は、光量検出センサ18から入力される光量信号をアナログ信号からデジタル信号に変換して、バス35を介して処理部40に出力する。
 第1送信回路314は、起動指示信号及びポンプ停止指示信号を増幅してポンプ11に送信する。第2送信回路315は、第1バルブ閉指示信号及び第1バルブ開指示信号を第1バルブ13に送信する。第1バルブ閉指示信号は第1バルブ13の開度を変更開度だけ小さくすることを示し、第1バルブ開指示信号は第1バルブ13の開度を所定の変更開度だけ大きくすることを示す信号である。第3送信回路316は、第2バルブ閉指示信号及び第2バルブ開指示信号を第2バルブ23に送信する。第2バルブ閉指示信号は第2バルブ23の開度を小さくすることを示し、第2バルブ開指示信号は第2バルブ23の開度を大きくすることを示す。
 記憶部32は、例えば、半導体メモリを有し、処理部40による演算処理に用いられるドライバプログラム、オペレーティングシステムプログラム、アプリケーションプログラム、データ等を記憶する。記憶部32は、第1設定圧力321と、第2設定圧力322と、設定光量323とを記憶する。光量検出センサ18が検出した光量と容積振動法により決まった容積補償値との差から設定光量323が決められ、その設定光量323にするために第1設定圧力321が目標値とされる。第1設定圧力321は、一例では450〔mmHg〕である。第2設定圧力322は、処理部40が被測定者の血圧を測定するときのカフ圧力の目標値であり、光量検出センサ18が検出した光量に応じて変更される。
 また、記憶部32は、アプリケーションプログラムとして、被測定者の血圧を測定する血圧測定プログラム等を記憶する。コンピュータプログラムは、例えばCD-ROM、DVD-ROM等のコンピュータ読み取り可能な可搬型記録媒体から、公知のセットアッププログラム等を用いて記憶部32にインストールされてもよい。
 入力部33は、データの入力が可能であればどのようなデバイスでもよく、例えば、タッチパネル、キーボード等である。被測定者は、入力部33を用いて、文字、数字、記号等を入力することができる。入力部33は、被測定者により操作されると、その操作に対応する信号を生成する。そして、生成された信号は、被測定者の指示として、処理部40に供給される。
 出力部34は、映像や画像等の表示が可能であればどのようなデバイスでもよく、例えば、液晶ディスプレイ又は有機EL(Electro-Luminescence)ディスプレイ等である。出力部34は、処理部40から供給された映像データに応じた映像や、画像データに応じた画像等を表示する。
 処理部40は、一又は複数個のプロセッサ及びその周辺回路を有する。処理部40は、種々の演算処理を実行するものであり、例えば、CPU(Central Processing Unit)である。処理部40は、各種演算処理が記憶部32に記憶されているプログラム等に応じて適切な手順で実行されるように、インタフェース部31等を制御する。処理部40は、記憶部32に記憶されているプログラム(ドライバプログラム、オペレーティングシステムプログラム、アプリケーションプログラム等)に基づいて処理を実行する。また、処理部40は、複数のプログラム(アプリケーションプログラム等)を並列に実行することができる。
 処理部40は、血圧測定指示判定部41と、バルブ開度調整部42と、血圧測定部43とを有する。バルブ開度調整部42は、吐出圧力取得部51と、第1バルブ開度調整部52と、光量取得部53と、第2設定圧力決定部54と、カフ圧力取得部55と、第2バルブ開度調整部56とを有する。処理部40が有するこれらの各部は、処理部40が有するプロセッサ上で実行されるプログラムによって実装される機能モジュールである。あるいは、処理部40が有するこれらの各部は、独立した集積回路、マイクロプロセッサ、又はファームウェアとして血圧計1に実装されてもよい。
 (実施形態に係る血圧計による血圧測定処理)
 図8は、血圧計1による血圧測定処理のフローチャートである。図8に示す血圧測定処理は、予め記憶部32に記憶されているプログラムに基づいて、主に処理部40により、血圧計1の各要素と協働して実行される。
 まず、血圧測定指示判定部41は、血圧測定の開始指示を被測定者から入力部33を介して取得したか否かを判定する(S101)。血圧測定指示判定部41は、血圧測定の開始指示を取得したと判定する(S101-YES)まで、S101の処理を繰り返す。血圧測定指示判定部41は、血圧測定の開始指示を取得したと判定する(S101-YES)と、ポンプ11の起動指示を示す起動指示信号を第1送信回路314を介してポンプ11に送信することで、ポンプ11に起動を指示する(S102)。ポンプ11は、起動指示信号を受信すると、起動する。
 次いで、血圧測定指示判定部41は、血圧測定の終了指示を被測定者から入力部33を介して取得したか否かを判定する(S103)。血圧測定の終了指示を取得していないと判定される(S103-NO)と、バルブ開度調整部42は、第1バルブ13及び第2バルブ23の開度を調整する。まず、バルブ開度調整部42は、ポンプ11の吐出圧力を取得し、取得した吐出圧力が第1設定圧力に一致するように第1バルブ13の開度を調整する(S104)。
 次いで、バルブ開度調整部42は、光量取得部53より得られた動脈容積が容積補償値に一致するように第2バルブ23の開度を調整する(S105)。
 次いで、血圧測定部43は、S105で第2バルブ23の開度が調整されたときのカフ圧力を被測定者の血圧と推定し(S106)、測定された血圧を出力部34を介して出力する。
 次いで、処理はS103に戻り、血圧測定指示判定部41が血圧測定の終了指示を取得したと判定する(S103-YES)まで、S103~S106の処理が繰り返されることで、血圧計1、被測定者の血圧を連続して測定する。
 そして、血圧測定指示判定部41は、血圧測定の終了指示を取得したと判定する(S103-YES)と、ポンプ11の停止指示を示す停止指示信号を第1送信回路314を介してポンプ11に送信することで、ポンプ11に停止を指示する(S102)。ポンプ11は、停止指示信号を受信すると、停止する。
 図9は、S104に示す処理のより詳細な処理を示すフローチャートである。
 まず、吐出圧力取得部51は、第1圧力センサ14から第1ADコンバータ311を介して送信された吐出圧力信号に対応するポンプ11の吐出圧力を取得する(S201)。
 次いで、第1バルブ開度調整部52は、取得した吐出圧力が記憶部32に記憶される第1設定圧力321と一致するか否かを判定する(S202)。第1バルブ開度調整部52は、取得した吐出圧力が記憶部32に記憶される第1設定圧力321と一致しないと判定する(S202-NO)と、取得した吐出圧力が記憶部32に記憶される第1設定圧力321未満であるか否かを判定する(S203)。
 第1バルブ開度調整部52は、取得した吐出圧力が記憶部32に記憶される第1設定圧力321未満であると判定する(S203-YES)と、第1バルブ開指示信号を第2送信回路315を介して第1バルブ13に送信する(S204)。第1バルブ13は、第1バルブ開指示信号を受信すると、開度を所定の変更開度だけ大きくし、処理はS201に戻る。
 一方、第1バルブ開度調整部52は、取得した吐出圧力が記憶部32に記憶される第1設定圧力321より大きいと判定する(S203-NO)と、第1バルブ閉指示信号を第2送信回路315を介して第1バルブ13に送信する(S205)。第1バルブ13は、第1バルブ閉指示信号を受信すると、開度を所定の変更開度だけ小さくし、処理はS201に戻る。
 取得した吐出圧力が記憶部32に記憶される第1設定圧力321と一致すると判定される(S202-YES)まで、S201~S205の処理が繰り返される。S201~S205の処理が繰り返されることで、第1バルブ開度調整部52は、ポンプ11の吐出圧力が記憶部32に記憶される第1設定圧力に一致するように第1バルブ13の開度を調整する。第1バルブ開度調整部52がポンプ11の吐出圧力が記憶部32に記憶される第1設定圧力321と一致すると判定する(S202-YES)と、第1バルブ開度を維持したまま処理はS201に戻る。
 図10は、S105に示す処理のより詳細な処理を示すフローチャートである。
 まず、光量取得部53は、光量検出センサ18から第3ADコンバータ313を介して送信された光量信号に対応する光量を取得する(S301)。
 次いで、第2バルブ開度調整部56は、S301で取得された光量が記憶部32に記憶される設定光量323と一致するか否かを判定する(S302)。第2バルブ開度調整部56は、S301で取得された光量が記憶部32に記憶される設定光量323と一致しないと判定する(S302-NO)と、S301で取得された光量が記憶部32に記憶される設定光量323未満であるか否かを判定する(S303)。
 第2バルブ開度調整部56は、取得した光量が記憶部32に記憶される設定光量323未満であると判定する(S303-YES)と、第2バルブ開指示信号を第3送信回路316を介して第2バルブ23に送信する(S305)。第2バルブ23は、第2バルブ開指示信号を受信すると、開度を所定の変更開度だけ大きくする。次いで、カフ圧力取得部55は、第2圧力センサ24から第2ADコンバータ312を介して送信されたカフ圧力信号に対応するカフ12の内部のカフ圧力を取得する(S311)、取得したカフ圧が所定開度分(第2設定圧力322)に一致するか判定する(S307)。一致していたら処理S301に戻る。一致していないと判定する(S307-NO)と第2設定圧力322未満であるか否か判定し、未満(S309-YES)である場合処理S304に戻る。大きい場合(S309-NO)は処理S305に戻る。
 一方、第2バルブ開度調整部56は、取得した光量が記憶部32に記憶される設定光量323より大きいと判定する(S303-NO)と、第2バルブ閉指示信号を第3送信回路316を介して第2バルブ23に送信する(S304)。第2バルブ23は、第2バルブ閉指示信号を受信すると、開度を所定の変更開度だけ小さくする。次いで、カフ圧力取得部55は、第2圧力センサ24から第2ADコンバータ312を介して送信されたカフ圧力信号に対応するカフ12の内部のカフ圧力を取得する(S310)。取得したカフ圧が所定開度分(第2設定圧力)に一致するか判定する(S306)。一致していたら処理S301に戻る。一致していないと判定する(S306-NO)と第2設定圧力322未満であるか否か判定し、未満(S308-YES)である場合処理S304に戻る。大きい場合(S308-NO)は処理S305に戻る。
 取得した光量が記憶部32に記憶される設定光量323と一致すると判定する(S302-YES)と、処理はS301に戻る。
 図11は、血圧計1の動作の一例を示す図である。図11において、横軸は経過時間t〔s〕を示し、縦軸はカフ12の内部のカフ圧力Pc〔mmHg〕を示す。
 まず、時間t1において、血圧測定指示判定部41は、被測定者から血圧測定の開始指示を取得したと判定して(S101)、ポンプ11に起動を指示する(S102)。ポンプ11は、起動指示信号を受信すると、起動する。ポンプ11が起動すると、縦軸はカフ12の内部のカフ圧力Pcは急激に上昇する。
 次いで、時間t2において、バルブ開度調整部42は、ポンプ11の吐出圧力を取得し、取得した吐出圧力が第1設定圧力に一致するように第1バルブ13の開度を調整する(S104)。時間t1と時間t2との間の期間t3は、血圧計1が血圧測定処理を開始するまでの準備期間である。
 t2以降の期間t4は、血圧計1が被測定者の血圧を連続して測定する血圧測定期間である。期間t4では、S103~S106の処理が繰り返されることにより、カフ圧力Pcは、被測定者の脈拍に応じて変動する。
 (実施形態に係る血圧計の作用効果)
 血圧計1は、ポンプ11の吐出圧力を第1設定圧力の近傍で維持することにより定流量出力となる。第1バルブ13でポンプ11の吐出量を調整することで、ポンプが有するリップルに伴うポンプ11の吐出量の変動を低減し、第2バルブ23はカフ圧制御に専念出来る。すなわち、血圧計1では、被測定者の血圧を連続して測定するときに要求されるカフ圧力の高速制御が汎用電磁バルブを用いても実現可能とする。
 図12は、ポンプ11の圧力・吐出量特性を示す図である。図12において、横軸は吐出圧力〔mmHg〕を示し、縦軸は吐出量〔l/min〕を示す。また、曲線1301は図3に示す曲線301を示し、曲線1302は図3に示す曲線302を示し、曲線1303は図3に示す曲線303を示す。曲線1301~1303は、図1~3を参照して説明した血圧計900のポンプ901の圧力・吐出量特性を示す。
 血圧計1では、第1バルブ13によりポンプ11の吐出圧力は450〔mmHg〕に調整されるので、ポンプ11の吐出量は図12に示される様に0.18〔ml〕程度で一定となる。ここで使用される第1バルブ13の負荷直線は範囲1306におさまり、2本の負荷直線のなす角は狭く、比較的低速度の電磁バルブで実現できる。血圧計1では、人間の動脈圧変化に追従して変化させるカフ圧は20〔Hz〕程度の追従性があればよい。カフ圧力を50〔mmHg〕~250〔mmHg〕の範囲で変動させたときの第2バルブ23の負荷直線の範囲は広いが、この範囲の追従性が前述の20Hz程度の速度が要求される。一方ポンプ11のリップルの影響を除くために第2バルブ23の負荷直線の範囲はカフ圧50〔mmHg〕に於いての負荷直線範囲1304、カフ圧250〔mmHg〕に於いての負荷直線1305となり、何れも2本の負荷直線のなす角は狭く、第2バルブ23に応答速度が比較的遅いバルブを利用することができるので、コストの低減が可能になる。
 また、血圧計1は、4つの貫通孔に第1バルブ13、第2カフ接続部材17、第2バルブ23及び第2圧力センサ24が挿入された第1カフ接続部材16を介してカフ12と第1バルブ13を接続するため、カフ圧力が印加される容積を小さくできる。血圧計1では、カフ圧力が印加される容積が小さいので、ポンプ11の吐出量の小さな変化で、カフ圧力の大きな変化が実現可能である。
 1  血圧計
 11  ポンプ
 12  カフ
 13  第1バルブ
 14  第1圧力センサ
 15  ポンプ接続部材
 16  第1カフ接続部材
 17  第2カフ接続部材
 18  光量検出センサ(動脈容積情報検出センサ)
 23  第2バルブ
 24  第2圧力センサ
 30  制御装置
 31  インタフェース部
 32  記憶部
 40  処理部
 41  血圧測定指示判定部
 42  バルブ開度調整部
 43  血圧測定部

Claims (4)

  1.  ポンプと、
     被測定者の血圧測定部位に装着されたカフと、
     前記ポンプと前記カフとの間に配置され、開度を調整することで前記ポンプの吐出量を調整可能な第1バルブと、
     開度を調整することで前記カフの内部のカフ圧力を調整可能な第2バルブと、
     前記ポンプの吐出圧力を検出する第1圧力センサと、
     前記カフ圧力を検出する第2圧力センサと、
     被測定者の前記血圧測定部位における動脈の容積に関連する動脈容積情報を検出する動脈容積情報検出センサと、
     前記吐出圧力及び前記カフ圧力、並びに前記動脈容積情報を取得し、第1バルブ及び第2バルブの開度を調整するとバルブ開度調整部と、
     前記カフ圧力に基づいて被測定者の血圧を測定する血圧測定部と、
     を有する血圧計。
  2.  前記バルブ開度調整部は、前記吐出圧力が第1設定圧力に一致するように前記第1バルブの開度を調整する第1バルブ開度調整部を有する、請求項1に記載の血圧計。
  3.  前記バルブ開度調整部は、
     前記血圧測定部位における動脈の容積が一定になるように第2設定圧力を決定する第2設定圧力決定部と、
     前記カフ圧力が第2設定圧力に一致するように前記第2バルブの開度を調整する第2バルブ開度調整部と、を更に有する、請求項2に記載の血圧計。
  4.  内部に圧力室が形成されると共に、それぞれが外壁から前記圧力室まで貫通する第1貫通孔、第2貫通孔、第3貫通孔、及び第4貫通孔が形成された第1カフ接続部材と、
     前記第1カフ接続部材と前記カフとを接続する第2カフ接続部材と、を更に有し、
     前記第1貫通孔は前記第1バルブが挿入され、
     前記第2貫通孔は前記第2カフ接続部材が挿入され、
     前記第3貫通孔は前記第2バルブが挿入され、
     前記第4貫通孔は前記第2圧力センサが挿入された、請求項1~3の何れか一項に記載の血圧計。
PCT/JP2016/062410 2016-04-19 2016-04-19 血圧計 WO2017183112A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018512685A JP6717374B2 (ja) 2016-04-19 2016-04-19 血圧計
EP16899386.3A EP3446627A4 (en) 2016-04-19 2016-04-19 MONITOR
PCT/JP2016/062410 WO2017183112A1 (ja) 2016-04-19 2016-04-19 血圧計
US16/138,586 US11045097B2 (en) 2016-04-19 2018-09-21 Blood pressure meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062410 WO2017183112A1 (ja) 2016-04-19 2016-04-19 血圧計

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/138,586 Continuation US11045097B2 (en) 2016-04-19 2018-09-21 Blood pressure meter

Publications (1)

Publication Number Publication Date
WO2017183112A1 true WO2017183112A1 (ja) 2017-10-26

Family

ID=60115756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062410 WO2017183112A1 (ja) 2016-04-19 2016-04-19 血圧計

Country Status (4)

Country Link
US (1) US11045097B2 (ja)
EP (1) EP3446627A4 (ja)
JP (1) JP6717374B2 (ja)
WO (1) WO2017183112A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI611103B (zh) * 2016-02-03 2018-01-11 研能科技股份有限公司 適用於壓電致動泵浦之驅動電路之控制方法及其驅動電路
WO2024077254A1 (en) * 2022-10-07 2024-04-11 Edwards Lifesciences Corporation Systems and methods for responsive damping of pressure

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406289A (en) 1980-09-12 1983-09-27 Nederlandse Centrale Organisatie Voor Toegepast-Natuurwetenschappelijk Device for the indirect, non-invasive and continuous measurement of blood pressure
JPS6141434A (ja) * 1984-08-02 1986-02-27 コーリン電子株式会社 非観血式連続血圧測定装置
JPS61119238A (ja) * 1984-11-14 1986-06-06 コーリン電子株式会社 血圧測定装置
JPS6329616A (ja) 1986-07-23 1988-02-08 中根 央 連続的血圧測定装置
JPH01201231A (ja) * 1988-02-05 1989-08-14 Gakken Co Ltd 光電容積脈波法による非侵襲的連続血圧測定装置
JPH0549605A (ja) 1992-01-18 1993-03-02 Colleen Denshi Kk 非観血式連続血圧測定装置
JPH08332173A (ja) 1995-06-07 1996-12-17 Hioki Ee Corp 非観血式血圧計による血圧測定方法
JP2000515789A (ja) * 1996-07-30 2000-11-28 イタマール メディカル(シー.エム)1997 リミテッド 末梢動脈音の監視による医学的状態の非侵襲検査方法および装置
US6669648B1 (en) 1999-03-30 2003-12-30 Cnsystems Medizintechnik Gmbh Continuous non-invasive sphygmomanometer
JP2007503223A (ja) * 2003-08-22 2007-02-22 エプコール,インク. 非侵襲的血圧監視装置および方法
JP2012205719A (ja) 2011-03-29 2012-10-25 Fukuda Denshi Co Ltd 血圧計
JP2015188646A (ja) 2014-03-28 2015-11-02 テルモ株式会社 血圧計

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8104879A (nl) * 1981-10-28 1983-05-16 Tno Werkwijze en inrichting voor het regelen van de manchetdruk bij het meten van de vingerbloeddruk met een foto-electrische plethysmograaf.
NL8105381A (nl) * 1981-11-27 1983-06-16 Tno Werkwijze en inrichting voor het corrigeren van de manchetdruk bij het meten van de bloeddruk in een lichaamsdeel met behulp van een plethysmograaf.
AT412702B (de) 2003-10-21 2005-06-27 Cnsystems Medizintechnik Gmbh Vorrichtung und verfahren zur regelung des druckes in einer aufblasbaren manschette eines blutdruckmessgerätes
EP2375970B1 (en) * 2008-10-29 2014-12-03 Bmeye B.V. A blood pressure measurement device and a front end
EP2319408A1 (en) * 2009-10-15 2011-05-11 Finapres Medical Systems B.V. Device for controlling the pressure in an inflatable pressure pad
JP2012210374A (ja) * 2011-03-31 2012-11-01 Omron Healthcare Co Ltd 血圧情報測定装置用カフおよびこれを備えた血圧情報測定装置
EP2732759A1 (en) * 2012-11-19 2014-05-21 Jerusalem College of Technology System and method of measurement of systolic blood pressure
US10945612B2 (en) * 2014-04-03 2021-03-16 The Regents Of The University Of California Assessing endothelial function using a blood pressure cuff

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406289A (en) 1980-09-12 1983-09-27 Nederlandse Centrale Organisatie Voor Toegepast-Natuurwetenschappelijk Device for the indirect, non-invasive and continuous measurement of blood pressure
JPS6141434A (ja) * 1984-08-02 1986-02-27 コーリン電子株式会社 非観血式連続血圧測定装置
JPS61119238A (ja) * 1984-11-14 1986-06-06 コーリン電子株式会社 血圧測定装置
JPS6329616A (ja) 1986-07-23 1988-02-08 中根 央 連続的血圧測定装置
JPH01201231A (ja) * 1988-02-05 1989-08-14 Gakken Co Ltd 光電容積脈波法による非侵襲的連続血圧測定装置
JPH0549605A (ja) 1992-01-18 1993-03-02 Colleen Denshi Kk 非観血式連続血圧測定装置
JPH08332173A (ja) 1995-06-07 1996-12-17 Hioki Ee Corp 非観血式血圧計による血圧測定方法
JP2000515789A (ja) * 1996-07-30 2000-11-28 イタマール メディカル(シー.エム)1997 リミテッド 末梢動脈音の監視による医学的状態の非侵襲検査方法および装置
US6669648B1 (en) 1999-03-30 2003-12-30 Cnsystems Medizintechnik Gmbh Continuous non-invasive sphygmomanometer
JP2007503223A (ja) * 2003-08-22 2007-02-22 エプコール,インク. 非侵襲的血圧監視装置および方法
JP2012205719A (ja) 2011-03-29 2012-10-25 Fukuda Denshi Co Ltd 血圧計
JP2015188646A (ja) 2014-03-28 2015-11-02 テルモ株式会社 血圧計

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3446627A4

Also Published As

Publication number Publication date
EP3446627A1 (en) 2019-02-27
US11045097B2 (en) 2021-06-29
JP6717374B2 (ja) 2020-07-01
JPWO2017183112A1 (ja) 2019-02-28
EP3446627A4 (en) 2019-10-09
US20190014998A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP3495348B2 (ja) 脈波伝播速度情報測定装置
US6869403B2 (en) Blood-pressure determining apparatus
US8905940B2 (en) Flow rate control valve and blood pressure information measurement device including the same
US9072436B2 (en) Device for measuring information regarding blood pressure
EP0818176A1 (en) Pressure pulse wave detecting apparatus
JPH0614892A (ja) 指カフキャリブレーション装置を備えた血圧モニタ装置
EP3430980A1 (en) An apparatus for measuring a physiological parameter using a wearable sensor
JP2007007075A (ja) 血圧測定装置
JP2013507210A (ja) インフレータブル圧力パッドにおける圧力制御用装置
JP6370186B2 (ja) 生体情報測定装置
WO2017047541A1 (ja) 生体情報測定装置、生体情報測定方法、及び生体情報測定プログラム
WO2019054254A1 (ja) 表示制御装置およびプログラム
WO2017183112A1 (ja) 血圧計
US6802814B2 (en) Pressure-pulse-wave detecting apparatus
US6520919B1 (en) Inferior-and-superior-limb blood-pressure-index measuring apparatus
JPH04256727A (ja) 血圧検出器
JP2021501658A (ja) 非侵襲的な血圧測定装置
US6808497B2 (en) Blood-pressure measuring apparatus and inferior-and-superior-limb blood-pressure-index measuring apparatus
JP2006247221A (ja) 脈波検出装置
US20040171941A1 (en) Blood flow amount estimating apparatus
JP2011104208A (ja) 脈波伝播速度測定装置
JPS58127634A (ja) オシロメトリック式自動血圧測定装置
US7056291B2 (en) Arteriosclerosis evaluating apparatus
JP3530893B2 (ja) 動脈硬化評価装置
EP1464275A2 (en) Pulse wave measuring apparatus with correction unit

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512685

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016899386

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016899386

Country of ref document: EP

Effective date: 20181119

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899386

Country of ref document: EP

Kind code of ref document: A1