WO2017181813A1 - 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备 - Google Patents

低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备 Download PDF

Info

Publication number
WO2017181813A1
WO2017181813A1 PCT/CN2017/078013 CN2017078013W WO2017181813A1 WO 2017181813 A1 WO2017181813 A1 WO 2017181813A1 CN 2017078013 W CN2017078013 W CN 2017078013W WO 2017181813 A1 WO2017181813 A1 WO 2017181813A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
low
gas
fischer
hydrogen
Prior art date
Application number
PCT/CN2017/078013
Other languages
English (en)
French (fr)
Inventor
赖波
石友良
许莉
杨伟光
赵焘
周彦杰
明卫星
付俊华
胡安安
陈绪川
Original Assignee
武汉凯迪工程技术研究总院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉凯迪工程技术研究总院有限公司 filed Critical 武汉凯迪工程技术研究总院有限公司
Publication of WO2017181813A1 publication Critical patent/WO2017181813A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil

Definitions

  • the invention relates to a diesel production technology, in particular to a method and a device for co-hydrogenating low-temperature Fischer-Tropsch synthetic oil with inferior feedstock oil to produce high-quality diesel oil.
  • Fischer-Tropsch synthesis technology has been used to produce high-clean fuels by using raw materials such as coal, natural gas and biomass. attention. Fischer-Tropsch synthesis technology is divided into high-temperature Fischer-Tropsch synthesis technology and low-temperature Fischer-Tropsch synthesis technology according to the reaction temperature. The composition of the Fischer-Tropsch synthesis product is quite different from that of petroleum.
  • the product is mainly a complex mixture of C 4 -C 70 hydrocarbons and a small amount of oxygen compounds, with no sulfur, no Nitrogen, no metal, low aromatics, etc., wherein the low temperature Fischer-Tropsch synthesis product is mainly composed of linear alkanes and olefins, and contains a small amount of oxygen-containing organic compounds.
  • the low-temperature Fischer-Tropsch synthesis product contains nearly 40% wax. Although the cetane number exceeds 70, the pour point is too high and the cold flow performance is too poor to be directly used as transportation fuel.
  • One of the main purposes of Fischer-Tropsch synthesis technology is to produce high-quality diesel oil.
  • the low temperature Fischer-Tropsch synthesis product has the characteristics of high linear alkane, high freezing point and low density, so that the hydrogenated diesel fraction has high freezing point and low density and cannot be directly sold as commercial diesel.
  • the inferior secondary processing diesel contains a large amount of aromatic hydrocarbons, the density is high, but the cetane number is very low, and the secondary processing diesel such as catalytic diesel and coking diesel has higher content.
  • the content of impurities such as sulfur, nitrogen and aromatics, and the gas impurities such as H 2 S and NH 3 reacted during the hydrogenation process compete for adsorption on the active center of the catalyst surface, which has a large effect on hydrocracking and isomerization. Inhibition, the reaction temperature required for hydrocracking will be high, which will affect the catalyst life, energy consumption and operating costs.
  • a method for distilling oil wherein the at least part of the synthetic oil is hydrocracked, and then the coal diesel fraction is separated, the tail oil is hydrocracked, and the coal diesel fraction in the product is separated, wherein the diesel fraction density is 0.78.
  • the g/cm 3 and the freezing point are -28 to 0 ° C.
  • the disadvantage of this method is that the density of the diesel fraction is low, which does not reach the diesel index of the vehicle.
  • the object of the present invention is to provide a method for co-hydrogenating low-temperature Fischer-Tropsch synthetic oil with inferior feedstock oil to produce high-quality diesel oil, which has the same density of diesel and high cetane number.
  • the method for jointly producing low-quality Fischer-Tropsch synthetic oil and low-quality feedstock oil for producing high-quality diesel oil comprises the following steps:
  • the inferior raw material oil and the Fischer-Tropsch wax oil are mixed at a ratio of 1:3.5 to 2:1.
  • the operating conditions of the hydrotreating reaction are: a reaction temperature of 260 to 400 ° C, a reaction pressure of 2.0 to 15.0 MPa, a volumetric space velocity of 0.4 to 3 h -1 , and hydrogen.
  • the oil volume ratio is 100 to 1000.
  • the operating conditions of the hydrocracking and isomerization reaction are: a reaction temperature of 300 to 420 ° C, a reaction pressure of 2.0 to 15.0 MPa, and a volumetric space velocity of 0.4 to 3 h at a liquid hour. -1 , the hydrogen oil volume ratio is 100 to 1000.
  • the operating conditions of the hydrotreating reaction are: a reaction temperature of 320 to 380 ° C, a reaction pressure of 4.0 to 10 MPa, a volumetric space velocity of 0.5 to 2.0 h -1 , and hydrogen.
  • the oil volume ratio is 150 to 550.
  • the operating conditions of the hydrocracking and isomerization reaction are: a reaction temperature of 330 to 390 ° C, a reaction pressure of 4.0 to 10 MPa, and a liquid hourly space velocity of 0.5 to 2.0 h. -1 , the hydrogen oil volume ratio is 150 to 550.
  • the operating conditions of the hydrotreating reaction are: a reaction temperature of 260 to 400 ° C, a reaction pressure of 2.0 to 15.0 MPa, and a liquid hourly space velocity of 1.5 to 7.0 h -1 .
  • the operating conditions of the hydrotreating reaction are: a reaction temperature of 320 to 380 ° C, a reaction pressure of 4.0 to 10 MPa, and a liquid hourly space velocity of 2.0 to 5.0 h -1 .
  • the inferior raw material oil and the Fischer-Tropsch wax oil are mixed at a ratio of 1:2 to 1.7:1.
  • inferior feedstock oil is secondary processed diesel oil.
  • the secondary processing diesel oil is one or more of catalytic cracking diesel oil, coking diesel oil and coal tar diesel oil, and the aromatic hydrocarbon weight content is 25-75%.
  • the secondary processed diesel has an aromatic hydrocarbon content of 30 to 60% by weight.
  • the hydrotreating catalyst comprises a carrier and a hydrogenation active metal
  • the carrier is alumina or silicon-containing alumina
  • the hydrogenation active metal is a group VIB and/or Group VIII metal.
  • the weight content of the Group VIB metal oxide is 10 to 30% by weight of the hydrogenated active metal oxide, and the weight content of the Group VIII metal oxide It is 5 to 15%.
  • the hydrocracking and isomerization catalyst is a hydroisomerization catalyst containing a ⁇ -type molecular sieve, the carrier of which is amorphous silicon aluminum, and the hydrogenation active metal is a VIB group metal and / or Group VIII metals.
  • the hydrocracking and isomerization catalyst comprises a ⁇ -type molecular sieve, a support and a hydrogenation active metal, the support is amorphous silicon aluminum, and the hydrogenation active metal is W and Ni, Based on the total weight of the hydrogen cracking and isomerization catalyst, the weight content of WO 3 is 10 to 35%, the weight of NiO is 5 to 15%, and the weight of ⁇ zeolite is based on the hydrogenation active metal oxide. 8 to 30%.
  • the invention relates to a device for synthesizing high-quality diesel oil by combining low-temperature Fischer-Tropsch synthetic oil and inferior feedstock oil designed to realize the above method, comprising a hydrogen-mixing tank, a liquid phase hydrogenation reactor, a gas-liquid countercurrent reactor and a fractionator, and the characteristics thereof
  • the hydrogen-mixing tank is provided with a Fischer-Tropsch diesel inlet, a circulating hydrogen inlet and a saturated hydrogen-hydrogen diesel outlet, and the saturated hydrogen-hydrogen diesel outlet is connected to an oil inlet of the liquid phase hydrogenation reactor
  • the liquid countercurrent reactor comprises a hydrotreating reaction zone at the top and a hydrocracking and isomerization reaction zone at the bottom, the top end of the gas-liquid countercurrent reactor having an oil inlet and an outlet, the gas-liquid countercurrent reactor The bottom end is provided with a hydrogen inlet and an oil outlet, and an oil outlet of the liquid phase hydrogenation reactor is connected to an oil inlet of the gas-liquid countercurrent reactor, and the oil outlet of the
  • the gas-liquid inlet of the gas-liquid separator is connected to an outlet of the gas-liquid countercurrent reactor, and the gas outlet of the gas-liquid separator is respectively connected to the hydrogen-mixing tank
  • the circulating hydrogen inlet and the hydrogen inlet of the gas-liquid countercurrent reactor are connected.
  • tail oil outlet of the fractionator is connected to the oil inlet of the gas-liquid countercurrent reactor.
  • the present invention has the following advantages:
  • the present invention is directed to the deficiencies of the prior art and the characteristics of the low temperature Fischer-Tropsch synthetic oil and the inferior feedstock oil, and provides a combination of liquid phase hydrogenation and vapor-liquid countercurrent hydrogenation to Fischer-Tropsch synthetic oil and The process of processing high quality diesel oil by inferior diesel oil, obtaining diesel oil with high density and high cetane number, and solving the diesel component density obtained after hydrotreating, hydrocracking and isomerization of low temperature Fischer-Tropsch synthetic oil It is difficult to meet the technical problems of the vehicle diesel standard.
  • the invention not only provides a reliable production method for the Fischer-Tropsch synthetic oil qualified diesel, but also provides a way for the inferior raw material oil.
  • inferior feedstock oils such as catalytic cracking diesel, coking diesel, coal tar diesel and other secondary processing diesel oils contain high levels of sulfur, nitrogen and aromatics, etc.
  • the reaction produces H 2 S, NH 3 and other gas impurities compete for adsorption on the active center of the catalyst surface, which has a greater inhibitory effect on the reaction process such as hydrocracking and isomerization.
  • the reaction temperature required for hydrocracking will be high, and Influencing the service life of the catalyst, increasing the energy consumption and operating cost, the present invention avoids the H 2 gas by using the upward flowing hydrogen to remove the gas impurities such as H 2 S and NH 3 generated by the reaction by the gas-liquid countercurrent hydrogenation method. Inhibition of hydrocracking and isomerization catalysts by gaseous impurities such as S and NH 3 .
  • the present invention combines a liquid phase hydrogenation mode with a vapor-liquid countercurrent hydrogenation process, and the liquid phase cycle hydrogenation process relies on the dissolved hydrogen carried into the reaction system when the liquid phase product is largely circulated to provide a hydrogenation reaction.
  • Hydrogen not only has low hydrogen consumption, but also reduces equipment investment and operating costs, while the gas-liquid countercurrent hydrogenation process requires less hydrogen oil. Therefore, the method of the invention can greatly reduce the load of the circulating compressor, and has low energy consumption and process. The process is simple.
  • Figure 1 is a schematic diagram showing the connection structure of a low-temperature Fischer-Tropsch synthetic oil combined with inferior feedstock oil to produce high-quality diesel.
  • Figure 1 shows the equipment for co-hydrogenation of low-temperature Fischer-Tropsch synthetic oil with inferior feedstock oil to produce high-quality diesel oil, including hydrogen-mixing tank 1, liquid phase hydrogenation reactor 2, gas-liquid countercurrent reactor 3, fractionator 4, and the mixture
  • the hydrogen tank 1 is provided with a Fischer-Tropsch diesel inlet 1-1, a circulating hydrogen inlet 1-2 and a saturated hydrogen-hydrogen diesel outlet 1-3, and the saturated hydrogen-hydrogen diesel outlet 1-3 is reacted with the liquid phase hydrogenation reaction.
  • the oil inlet counter 2-1 of the vessel 2 is connected; the gas-liquid countercurrent reactor 3 comprises a hydrotreating reaction zone 3-1 at the top and a hydrocracking and isomerization reaction zone 3-2 at the bottom, the gas liquid
  • the top end of the countercurrent reactor 3 is provided with an oil inlet 3-3 and an outlet port 3-4, and the bottom end of the gas-liquid countercurrent reactor 3 is provided with a hydrogen inlet 3-5 and an oil outlet 3-6.
  • the oil outlet 2-2 of the phase hydrogenation reactor 2 is connected to the oil inlet 3-3 of the gas-liquid countercurrent reactor 3, the oil outlet 3-6 of the gas-liquid countercurrent reactor 3 and the fractionation
  • the oil inlet 4-1 of the gas-liquid countercurrent reactor 3 is connected to the gas-liquid separator 5, and the gas outlet 3-4 of the gas-liquid countercurrent reactor 3 is connected.
  • the gas-liquid inlet 5-1 of the gas-liquid separator 5 is connected, and the gas outlet 5-2 of the gas-liquid separator 5 is respectively reacted with the circulating hydrogen inlet 1-2 of the hydrogen-mixing tank 1 and the gas-liquid countercurrent reaction.
  • the hydrogen inlet 3-5 of the separator 3 is connected; the tail oil outlet 4-2 of the fractionator 4 is connected to the oil inlet 3-3 of the gas-liquid countercurrent reactor 3.
  • Fischer-Tropsch diesel and circulating hydrogen are respectively fed from the Fischer-Tropsch diesel inlet 1-1 and the circulating hydrogen inlet 1- on the hydrogen-containing tank 1.
  • Fischer-Tropsch wax oil and inferior feedstock oil enter the hydrotreating reaction zone 3-1 together with Fischer-Tropsch diesel oil after saturated hydrogen storage for hydrofining reaction, and then, add The liquid phase effluent after the hydrogen refining reaction enters the hydrocracking and isomerization reaction zone 3-2 for hydrocracking and isomerization reaction, wherein the hydrogen is introduced from the hydrogen inlet 3-5 at the bottom of the gas-liquid countercurrent reactor 3 , liquid phase product after hydrocracking and isomerization reaction from gas-liquid countercurrent reactor 3 After the oil port 3-6 flows out, it enters the fractionator 4 through the oil inlet 4-1 of the fractionator 4 to be fractionated, and obtains high-quality diesel, dry gas and tail oil, and the diesel oil of the high-quality diesel, dry gas and tail oil respectively from the fractionator 4
  • the outlet 4-3, the dry gas outlet 4-4 and the tail oil outlet 4-2 are discharged, and the tail oil is recycled to the gas-liquid countercurrent reactor 3 through the oil inlet 3-3 at the top of the gas
  • the gas phase product produced after the hydrogenation reaction in the gas-liquid countercurrent reactor 3 is discharged from the gas outlet 3-4 at the top of the gas-liquid countercurrent reactor 3, and then enters the gas-liquid separation through the gas-liquid inlet 5-1 of the gas-liquid separator 5.
  • the device 5 performs purification treatment, and the hydrogen separated by the gas-liquid separator 5 enters the circulating hydrogen system to supply hydrogen gas to the hydrogen-hydrogen tank 1 and the gas-liquid countercurrent reactor 3.
  • the hydrofinishing catalyst used in the hydrorefining reaction zone 3-1 of the liquid phase hydrogenation reactor 2 and the gas-liquid countercurrent reactor 3 may be a conventional commercially available hydrotreating catalyst, and the hydrotreating catalyst is alumina.
  • the hydrogenation active metal is VIB and/or VIII metal
  • the Group VIB metal is generally Mo and/or W
  • the Group VIII metal is generally Co and/or Ni, based on the total weight of the catalyst.
  • the hydrofinishing catalyst used in the configuration reaction zone 3-2 may also be a conventional commercially available hydrocracking and isomerization catalyst which is a hydroisomerization catalyst containing a ⁇ -type molecular sieve, a carrier
  • the hydrogenation active metal component is a group VIB metal element molybdenum, tungsten, a group VIII metal element cobalt, nickel, and a W-Ni metal combination is used, and the hydrocracking catalyst is based on the total weight of the catalyst. , calculated as the oxide, by weight of active metals WO 3 An amount of 10 to 35% by weight of NiO content is 5 to 15%, by weight of ⁇ -zeolite content of 8-30%.
  • Examples 1-4 the diesel fuel produced by the combination of the low-temperature Fischer-Tropsch synthetic oil and the inferior feedstock oil shown in FIG. 1 was used to produce high-quality diesel oil, wherein the feedstock oils in Examples 1 to 4 were both Fischer-Tropsch diesel and Fischer-Tropsch wax.
  • the oil and inferior raw material oil mixture, the properties of the raw material oil used are shown in the following Table 1; the mixing ratio of the Fischer-Tropsch wax oil and the inferior raw material oil used in Examples 1 to 4 and the specific process conditions are shown in Table 2 below; the evaluation results of Examples 1 to 4 can be found. Table 3 below.
  • Comparative Example 1 The raw material oil entering the gas-liquid countercurrent reactor was not mixed with inferior raw material oil, and the wax oil was separately charged. That is, the raw material oil was Fischer-Tropsch diesel and Fischer-Tropsch wax oil.
  • the properties of the raw material oil are shown in Table 1 below; The process conditions are shown in Table 2 below; the evaluation results are shown in Table 3 below.
  • Comparative Example 2 and Example 2 used the same raw materials, and the control conversion rate was consistent, wherein the raw material oil of Comparative Example 2 was a mixture of Fischer-Tropsch diesel oil and Fischer-Tropsch wax oil and inferior raw material oil, and the properties of the raw material oil used are shown in Table 1 below; Comparative Example 2 adopts the traditional gas-liquid cocurrent process. The mixing ratio of the Fischer-Tropsch wax oil and the inferior raw material oil and the specific process conditions are shown in Table 2 below; the evaluation results are shown in Table 3 below.
  • the raw material oils used in Examples 1 to 4, Comparative Example 1 and Comparative Example 2 were Fischer-Tropsch diesel, Fischer-Tropsch wax oil, catalytic cracking diesel oil and coking diesel oil.
  • the relevant properties of these raw material oils are shown in Table 1 below:
  • Example 2 As can be seen from the above Table 3, the low-condensation high-quality, high cetane-value diesel oil can be obtained by the method of the present invention, and the density of the diesel oil is greatly improved.
  • Example 2 Comparative Example 2
  • the reaction temperature of the hydrocracking and isomerization catalyst was 20 ° C lower than that of Comparative Example 2, so that it can be seen that the method of the present invention can effectively reduce operating costs, energy consumption and the like.
  • Comparative Example 1 when the feedstock oil is only Fischer-Tropsch diesel and Fischer-Tropsch wax oil, the density of the produced diesel fuel is low, only 0.7585 g/cm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

一种低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备,该方法包括以下步骤:1)将费托柴油进行混氢处理,饱和溶氢后采用液相循环加氢方式进行加氢精制;2)将步骤1)得到的加氢精制反应物与劣质原料油及费托蜡油进行混合,得到混合油,然后采用气液逆流加氢方式对所述混合油进行加氢精制;3)采用气液逆流加氢方式将步骤2)得到的加氢精制反应物进行加氢裂化与异构化反应;4)将步骤3)所得液相生产油进行分馏,得到优质柴油。本方法将液相加氢与汽液逆流加氢相结合对费托合成油和劣质柴油进行加工,得到了密度合格、十六烷值高的柴油。

Description

低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备 技术领域
本发明涉及柴油生产技术,具体地指一种低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备。
背景技术
随着石油资源的紧缺以及世界各国越来越严格的环保法规,清洁替代能源技术开发逐渐受到重视,其中费托合成技术因可以利用煤、天然气、生物质等原料来生产高清洁燃料而备受关注。费托合成技术根据反应温度的高低,分为高温费托合成技术和低温费托合成技术。费托合成产物的组成和石油相差较大,因受Anderson-Schulz-Flory规则的限制,其产物主要是含C4-C70的烃类和少量含氧化合物的复杂混合物,具有无硫、无氮、无金属、低芳烃等特点,其中,低温费托合成产物主要由直链烷烃和烯烃组成,并含有少量的含氧有机化合物。低温费托合成产物产物中含近40%的蜡,十六烷值虽然超过70,但凝点倾点过高,冷流性能太差,不能直接用作运输燃油。费托合成技术的主要目的之一是生产出高品质的柴油,费托合成产物中的各个馏分需经过相应的加氢提质,才能得到合格的产品。而低温费托合成产物因具有直链烷烃高、凝点高、密度低等特点,使得加氢后的柴油馏分凝点高、密度低,无法直接作为商品柴油出售。与此同时,在炼厂加工流程中,劣质二次加工柴油中含有大量的芳烃,密度较高,但十六烷值很低,而且催化柴油、焦化柴油等二次加工柴油由于含有较高的硫、氮及芳烃等杂质含量,在加氢工艺过程中反应生成的H2S、NH3等气体杂质竞争吸附在催化剂表面的活性中心上,对加氢裂化与异构化等有较大的抑制作用,加氢裂化所需的反应温度会很高,进而会影响催化剂使用寿命、能耗及操作成本。
现有技术中有一些关于如何利用低温费托合成产物生产柴油的报道,如:中国专利CN10313468A公开了一种低温费托合成油加氢精制和/或加氢异构裂化工艺方法,该方法为加氢精制或加氢裂化单元采用液相加氢和下进料方式,该方法不足之处为所得到的柴油密度较低,仅0.7586g/cm3;美国专利US6858127中公开了一种生产中间馏分油的方法,该方法为将至少部分合成油进行加氢裂化,然后分离出其中的煤柴油馏分,尾油再进行加氢裂化,再分离产物中的煤柴油馏分,其中柴油馏分密度为0.78g/cm3、凝点为 -28~0℃,该方法不足之处为柴油馏分密度较低,达不到车用柴油指标。
发明内容
本发明的目的就是要提供一种低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,该方法得到的柴油密度合格,十六烷值高。
为实现上述目的,本发明所设计的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,包括以下步骤:
1)将费托柴油进行混氢处理,饱和溶氢后采用液相循环加氢方式进行加氢精制;
2)将步骤1)得到的加氢精制反应物与劣质原料油及费托蜡油进行混合,得到混合油,然后采用气液逆流加氢方式对所述混合油进行加氢精制;
3)继续采用气液逆流加氢方式将步骤2)得到的加氢精制反应物进行加氢裂化与异构化反应;
4)将步骤3)所得液相生产油进行分馏,得到优质柴油。
进一步地,所述步骤2)中,所述劣质原料油与所述费托蜡油按1∶3.5~2∶1的比例进行混合。
进一步地,所述步骤2)中,所述加氢精制反应的操作条件为:反应温度为260~400℃,反应压力为2.0~15.0MPa,液时体积空速为0.4~3h-1,氢油体积比100~1000。
进一步地,所述步骤3)中,所述加氢裂化与异构化反应的操作条件为:反应温度为300~420℃,反应压力为2.0~15.0MPa,液时体积空速为0.4~3h-1,氢油体积比为100~1000。
进一步地,所述步骤2)中,所述加氢精制反应的操作条件为:反应温度为320~380℃,反应压力为4.0~10MPa,液时体积空速为0.5~2.0h-1,氢油体积比为150~550。
进一步地,所述步骤3)中,所述加氢裂化与异构化反应的操作条件为:反应温度为330~390℃,反应压力为4.0~10MPa,液时体积空速为0.5~2.0h-1,氢油体积比为150~550。
进一步地,所述步骤1)中,所述加氢精制反应的操作条件为:反应温度为260~400℃,反应压力为2.0~15.0MPa,液时体积空速为1.5~7.0h-1
进一步地,所述步骤1)中,所述加氢精制反应的操作条件为:反应温度为320~380℃,反应压力为4.0~10MPa,液时体积空速为2.0~5.0h-1
进一步地,所述步骤2)中,所述劣质原料油与所述费托蜡油按1∶2~1.7∶1的比例进行混合。
进一步地,所述劣质原料油为二次加工柴油。
进一步地,所述二次加工柴油为催化裂化柴油、焦化柴油、煤焦油柴油中的一种或几种,其芳烃重量含量为25~75%。
进一步地,所述二次加工柴油的芳烃重量含量为30~60%。
进一步地,所述步骤1)和步骤2)中,加氢精制催化剂包括载体和加氢活性金属,所述载体为氧化铝或含硅氧化铝,所述加氢活性金属为VIB族和/或VIII族金属。
进一步地,以所述氢精制催化剂的总重量为基准,以加氢活性金属氧化物计,所述VIB族金属氧化物的重量含量为10~30%,所述VIII族金属氧化物的重量含量为5~15%。
进一步地,所述步骤3)中,所述加氢裂化与异构化催化剂为含有β型分子筛的加氢异构催化剂,其载体为无定形硅铝,其加氢活性金属为VIB族金属和/或VIII族金属。
更进一步地,所述加氢裂化与异构化催化剂包括β型分子筛、载体和加氢活性金属,所述载体为无定形硅铝,所述加氢活性金属为W和Ni,以所述加氢裂化与异构化催化剂的总重量为基准,以加氢活性金属氧化物计,WO3的重量含量为10~35%,NiO的重量含量为5~15%,β型分子筛的重量含量为8~30%。
本发明为实现上述方法而设计的低温费托合成油与劣质原料油联合加氢生产优质柴油的设备,包括混氢罐、液相加氢反应器、气液逆流反应器、分馏器,其特征在于:所述混氢罐上开有费托柴油进口、循环氢进口及饱和溶氢柴油出口,所述饱和溶氢柴油出口与所述液相加氢反应器的进油口连接;所述气液逆流反应器包括顶部的加氢精制反应区与底部的加氢裂化与异构化反应区,所述气液逆流反应器的顶端开有进油口和出气口,所述气液逆流反应器的底端开有氢气进口和出油口,所述液相加氢反应器的出油口与所述气液逆流反应器的进油口连接,所述气液逆流反应器的出油口与所述分馏器的进油口连接。
进一步地,它还包括气液分离器,所述气液分离器的气液进口与所述气液逆流反应器的出气口连接,所述气液分离器的出气口分别与所述混氢罐的循环氢进口及所述气液逆流反应器的氢气进口连接。
更进一步地,所述分馏器的尾油出口与所述气液逆流反应器的进油口连接。
与现有技术相比,本发明具有以下优点:
其一,本发明针对现有技术的不足之处以及低温费托合成油与劣质原料油各自的特点,提供了一种将液相加氢与汽液逆流加氢相结合对费托合成油和劣质柴油进行加工生产优质柴油的工艺方法,得到了密度合格、十六烷值高的柴油,解决了低温费托合成油经过加氢处理和加氢裂化与异构化后得到的柴油组分密度较低,难以满足车用柴油标准的技术问题,本发明既为费托合成油产合格柴油提供了一种可靠的生产方法,同时又为劣质原料油提供了出路。
其二,劣质原料油如催化裂化柴油、焦化柴油、煤焦油柴油等二次加工柴油由于含有较高含量的硫、氮及芳烃等杂质,在现有的加氢工艺过程中,反应生成的H2S、NH3等气体杂质竞争吸附在催化剂表面的活性中心上,对加氢裂化与异构化等反应过程有较大的抑制作用,加氢裂化所需的反应温度会很高,进而会影响催化剂使用寿命、增加能耗及操作成本,而本发明则通过气液逆流加氢方式,利用向上流动的氢气将反应生成的H2S、NH3等气体杂质带走,从而避免了H2S、NH3等气体杂质对加氢裂化与异构化催化剂的抑制作用。
其三,本发明将液相加氢方式与汽液逆流加氢方式相结合,液相循环加氢工艺依靠液相产品大量循环时携带进反应系统的溶解氢来为加氢反应提供所需要的氢气,不但氢耗小,而且降低了设备投资和操作费用,而气液逆流加氢工艺则所需氢油比较小,因此本发明方法可以大幅降低循环压缩机的负荷、且能耗低、工艺流程简单。
附图说明
图1为一种低温费托合成油与劣质原料油联合加氢生产优质柴油的设备连接结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明,便于更清楚地了解本发明,但它们不对本发明构成限定。
图1所示低温费托合成油与劣质原料油联合加氢生产优质柴油的设备,包括混氢罐1、液相加氢反应器2、气液逆流反应器3、分馏器4,所述混氢罐1上开有费托柴油进口1-1、循环氢进口1-2及饱和溶氢柴油出口1-3,所述饱和溶氢柴油出口1-3与所述液相加氢反应 器2的进油口2-1连接;所述气液逆流反应器3包括顶部的加氢精制反应区3-1与底部的加氢裂化与异构化反应区3-2,所述气液逆流反应器3的顶端开有进油口3-3和出气口3-4,所述气液逆流反应器3的底端开有氢气进口3-5和出油口3-6,所述液相加氢反应器2的出油口2-2与所述气液逆流反应器3的进油口3-3连接,所述气液逆流反应器3的出油口3-6与所述分馏器4的进油口4-1连接;所述气液逆流反应器3的出气口3-4上连有气液分离器5,所述气液逆流反应器3的出气口3-4与所述气液分离器5的气液进口5-1连接,所述气液分离器5的出气口5-2分别与所述混氢罐1的循环氢进口1-2及所述气液逆流反应器3的氢气进口3-5连接;所述分馏器4的尾油出口4-2与所述气液逆流反应器3的进油口3-3连接。
上述低温费托合成油与劣质原料油联合加氢产优质柴油的设备的工作过程如下:费托柴油和循环氢分别从混氢罐1上的费托柴油进口1-1和循环氢进口1-2进入混氢罐1进行混氢处理,饱和溶氢后进入装有加氢精制催化剂的液相加氢反应器2在液相循环加氢条件下进行加氢精制反应,加氢精制反应产物从液相加氢反应器2的出油口2-2流出,经气液逆流反应器3的进油口3-3进入气液逆流反应器3,同时,从气液逆流反应器3的进油口3-3引入费托蜡油和劣质原料油,费托蜡油、劣质原料油与饱和溶氢后的费托柴油一起进入加氢精制反应区3-1进行加氢精制反应,然后,加氢精制反应后的液相流出物进入加氢裂化与异构化反应区3-2进行加氢裂化与异构化反应,其中,氢气由气液逆流反应器3底端的氢气进口3-5引入,加氢裂化与异构化反应后的液相产物从气液逆流反应器3的出油口3-6流出后经分馏器4的进油口4-1进入分馏器4进行分馏,得到优质柴油、干气及尾油,优质柴油、干气及尾油分别从分馏器4的柴油出口4-3、干气出口4-4及尾油出口4-2流出,尾油经气液逆流反应器3顶端的进油口3-3循环回流至气液逆流反应器3。另外,气液逆流反应器3中加氢反应后产生的气相产物从气液逆流反应器3顶端的出气口3-4排出后经气液分离器5的气液进口5-1进入气液分离器5进行净化处理,气液分离器5分离出的氢气进入循环氢系统,为混氢罐1和气液逆流反应器3循环提供氢气。其中,液相加氢反应器2和气液逆流反应器3的加氢精制反应区3-1中使用的加氢精制催化剂可以是常规市售加氢精制催化剂,该加氢精制催化剂是以氧化铝或含硅氧化铝为载体,加氢活性金属为VIB和/或VIII族金属,第VIB族金属一般为Mo和/或W,第VIII族金属一般为Co和/或Ni,以催化剂的总重量为基准,以氧化物计,第VIB族金属含氧化物的含量为10~30%,第VIII族金属含氧化物的含量为5~15%;气液逆流反应器3的加氢裂化与异构化反应区3-2使用的加氢精制催化剂也可以是常规市售加氢裂化与异构化催化剂,该加氢裂化与异构化催 化剂为含有β型分子筛的加氢异构催化剂,载体为无定形硅铝,加氢活性金属组分为VIB族金属元素钼、钨,VIII族金属元素钴、镍,多采用W-Ni金属组合,所述加氢裂化催化剂以催化剂的总重量为基准,以氧化物计,活性金属WO3的重量含量为10~35%,NiO的重量含量为5~15%,β型分子筛的重量含量为8~30%。
实施例1~4
实施例1~4均采用图1所示低温费托合成油与劣质原料油联合加氢产优质柴油的设备生产柴油,其中,实施例1~4中原料油均采用费托柴油与费托蜡油和劣质原料油混合物,所用原料油性质见下表1;实施例1~4所用费托蜡油与劣质原料油混合比例及具体工艺条件见下表2;实施例1~4的评价结果见下表3。
对比例1
对比例1进入气液逆流反应器的原料油中不掺入劣质原料油,单独进费托蜡油,即:原料油采用费托柴油与费托蜡油,原料油性质见下表1;具体工艺条件见下表2;评价结果见下表3。
对比例2
对比例2与实施例2采用相同的原料、且控制转化率一致,其中,对比例2的原料油采用费托柴油与费托蜡油和劣质原料油混合物,所用原料油性质见下表1;对比例2采用传统的气液并流工艺,所用费托蜡油与劣质原料油混合比例及具体工艺条件见下表2;评价结果见下表3。
实施例1~4、对比例1及对比例2中用到的原料油有费托柴油、费托蜡油、催化裂化柴油及焦化柴油,这些原料油的相关性质参数见下表1:
表1
Figure PCTCN2017078013-appb-000001
实施例1~4、对比例1及对比例2的具体工艺条件见下表2:
表2
Figure PCTCN2017078013-appb-000002
实施例1~4、对比例1及对比例2生产得到的柴油性能评价结果见下表3:
表3
Figure PCTCN2017078013-appb-000003
从上表3可知,通过本发明方法能得到低凝优质、高十六烷值的柴油,而且柴油的密度得到大幅度提高。另外,将实施例2与对比例2进行比较对照,从表2和表3可以看出,实施例2与对比例2的比较能看出,当处理相同原料、控制相同的转化率时,采用本发明方法的实施例2,其加氢裂化与异构化催化剂的反应温度与对比例2要低20℃,从而可以看出,本发明方法能有效地降低操作成本及能耗等。而从对比例1也可以看出,当原料油仅为费托柴油和费托蜡油时,其生产得到的柴油密度较低,仅为0.7585g/cm3

Claims (19)

  1. 一种低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:包括以下步骤:
    1)将费托柴油进行混氢处理,饱和溶氢后采用液相循环加氢方式进行加氢精制;
    2)将步骤1)得到的加氢精制反应物与劣质原料油及费托蜡油进行混合,得到混合油,然后采用气液逆流加氢方式对所述混合油进行加氢精制;
    3)继续采用气液逆流加氢方式将步骤2)得到的加氢精制反应物进行加氢裂化与异构化反应;
    4)将步骤3)所得液相生产油进行分馏,得到优质柴油。
  2. 根据权利要求1所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤2)中,所述劣质原料油与所述费托蜡油按1∶3.5~2∶1的比例进行混合。
  3. 根据权利要求1所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤2)中,所述加氢精制反应的操作条件为:反应温度为260~400℃,反应压力为2.0~15.0MPa,液时体积空速为0.4~3h-1,氢油体积比100~1000。
  4. 根据权利要求1所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤3)中,所述加氢裂化与异构化反应的操作条件为:反应温度为300~420℃,反应压力为2.0~15.0MPa,液时体积空速为0.4~3h-1,氢油体积比为100~1000。
  5. 根据权利要求1至4中任一项所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤2)中,所述加氢精制反应的操作条件为:反应温度为320~380℃,反应压力为4.0~10MPa,液时体积空速为0.5~2.0h-1,氢油体积比为150~550。
  6. 根据权利要求1至4中任一项所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤3)中,所述加氢裂化与异构化反应的操作条件为:反应温度为330~390℃,反应压力为4.0~10MPa,液时体积空速为0.5~2.0h-1,氢油体积比为150~550。
  7. 根据权利要求1至4中任一项所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤1)中,所述加氢精制反应的操作条件为:反应温度为260~400℃,反应压力为2.0~15.0MPa,液时体积空速为1.5~7.0h-1
  8. 根据权利要求7所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤1)中,所述加氢精制反应的操作条件为:反应温度为320~380℃,反应压力为4.0~10MPa,液时体积空速为2.0~5.0h-1
  9. 根据权利要求1所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤2)中,所述劣质原料油与所述费托蜡油按1∶2~1.7∶1的比例进行混合。
  10. 根据权利要求1至4中任一项所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述劣质原料油为二次加工柴油。
  11. 根据权利要求10所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述二次加工柴油为催化裂化柴油、焦化柴油、煤焦油柴油中的一种或几种,其芳烃重量含量为25~75%。
  12. 根据权利要求11所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述二次加工柴油的芳烃重量含量为30~60%。
  13. 根据权利要求1所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的 方法,其特征在于:所述步骤1)和步骤2)中,加氢精制催化剂包括载体和加氢活性金属,所述载体为氧化铝或含硅氧化铝,所述加氢活性金属为VIB族和/或VIII族金属。
  14. 根据权利要求13所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:以所述氢精制催化剂的总重量为基准,以加氢活性金属氧化物计,所述VIB族金属氧化物的重量含量为10~30%,所述VIII族金属氧化物的重量含量为5~15%。
  15. 根据权利要求1所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述步骤3)中,所述加氢裂化与异构化催化剂为含有β型分子筛的加氢异构催化剂,其载体为无定形硅铝,其加氢活性金属为VIB族金属和/或VIII族金属。
  16. 根据权利要求15所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的方法,其特征在于:所述加氢裂化与异构化催化剂包括β型分子筛、载体和加氢活性金属,所述载体为无定形硅铝,所述加氢活性金属为W和Ni,以所述加氢裂化与异构化催化剂的总重量为基准,以加氢活性金属氧化物计,WO3的重量含量为10~35%,NiO的重量含量为5~15%,β型分子筛的重量含量为8~30%。
  17. 一种为实现权利要求1所述方法而设计的低温费托合成油与劣质原料油联合加氢生产优质柴油的设备,包括混氢罐(1)、液相加氢反应器(2)、气液逆流反应器(3)、分馏器(4),其特征在于:所述混氢罐(1)上开有费托柴油进口(1-1)、循环氢进口(1-2)及饱和溶氢柴油出口(1-3),所述饱和溶氢柴油出口(1-3)与所述液相加氢反应器(2)的进油口(2-1)连接;所述气液逆流反应器(3)包括顶部的加氢精制反应区(3-1)与底部的加氢裂化与异构化反应区(3-2),所述气液逆流反应器(3)的顶端开有进油口(3-3)和出气口(3-4),所述气液逆流反应器(3)的底端开有氢气进口(3-5)和出油口(3-6),所述液相加氢反应器(2)的出油口(2-2)与所述气液逆流反应器(3)的进油口(3-3)连接,所述气液逆流反应器(3)的出油口(3-6)与所述分馏器(4)的进油口(4-1) 连接。
  18. 根据权利要求17所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的设备,其特征在于:它还包括气液分离器(5),所述气液分离器(5)的气液进口(5-1)与所述气液逆流反应器(3)的出气口(3-4)连接,所述气液分离器(5)的出气口(5-2)分别与所述混氢罐(1)的循环氢进口(1-2)及所述气液逆流反应器(3)的氢气进口(3-5)连接。
  19. 根据权利要求17所述的低温费托合成油与劣质原料油联合加氢生产优质柴油的设备,其特征在于:所述分馏器(4)的尾油出口(4-2)与所述气液逆流反应器(3)的进油口(3-3)连接。
PCT/CN2017/078013 2016-04-18 2017-03-24 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备 WO2017181813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610238808.2 2016-04-18
CN201610238808.2A CN105778995B (zh) 2016-04-18 2016-04-18 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备

Publications (1)

Publication Number Publication Date
WO2017181813A1 true WO2017181813A1 (zh) 2017-10-26

Family

ID=56396855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078013 WO2017181813A1 (zh) 2016-04-18 2017-03-24 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备

Country Status (2)

Country Link
CN (1) CN105778995B (zh)
WO (1) WO2017181813A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216338A (zh) * 2021-04-15 2022-10-21 中国石油化工股份有限公司 一种焦化全馏分油加工方法
CN115466628A (zh) * 2021-06-10 2022-12-13 中国石油化工股份有限公司 一种液相加氢反应装置、系统和烃油液相加氢方法
CN115785993A (zh) * 2021-09-10 2023-03-14 中国石油化工股份有限公司 一种柴油加氢方法及装置
CN115785995A (zh) * 2021-09-10 2023-03-14 中国石油化工股份有限公司 一种劣质柴油加氢处理方法及装置
CN115895719A (zh) * 2023-01-04 2023-04-04 中国石油大学(华东) 一种高芳烃催化裂化柴油深度加氢转化的工艺方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105778995B (zh) * 2016-04-18 2018-03-20 武汉凯迪工程技术研究总院有限公司 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备
CN108003935B (zh) * 2017-12-15 2020-06-16 神华集团有限责任公司 一种费托合成轻、重产品组合生产洁净柴油的方法
CN109988636B (zh) * 2017-12-29 2021-07-09 中国石油化工股份有限公司 灵活单段加氢裂化工艺
CN109988621B (zh) * 2017-12-29 2021-07-09 中国石油化工股份有限公司 灵活加氢裂化工艺
CN109988618B (zh) * 2017-12-29 2021-05-04 中国石油化工股份有限公司 一种灵活单段两剂加氢裂化工艺
CN116064131A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种费托合成油加氢处理装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177624A (zh) * 2007-03-26 2008-05-14 中科合成油技术有限公司 费-托合成油的加氢裂化方法
CN101928600A (zh) * 2009-06-25 2010-12-29 中国石油化工股份有限公司 一种生产柴油或柴油调合组分的方法
CN102911722A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种费托合成油加氢提质方法
CN102911729A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种由费托合成油生产柴油的方法
CN103805240A (zh) * 2012-11-07 2014-05-21 中国石油化工股份有限公司 一种低成本组合加氢精制工艺方法
CN104611056A (zh) * 2015-02-11 2015-05-13 武汉凯迪工程技术研究总院有限公司 一种低温费托合成产物的加氢处理方法
CN105778995A (zh) * 2016-04-18 2016-07-20 武汉凯迪工程技术研究总院有限公司 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7354507B2 (en) * 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
CN101230291B (zh) * 2007-01-23 2012-02-29 中国石油化工股份有限公司 一种低能耗的费托合成产物的加工方法
CN101942333B (zh) * 2009-07-09 2013-08-28 中国石油化工股份有限公司 页岩油一段串联加氢裂化工艺方法
CN103146426B (zh) * 2013-03-20 2015-01-28 中科合成油工程有限公司 一种将费托合成产物转化为石脑油、柴油和液化石油气的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177624A (zh) * 2007-03-26 2008-05-14 中科合成油技术有限公司 费-托合成油的加氢裂化方法
CN101928600A (zh) * 2009-06-25 2010-12-29 中国石油化工股份有限公司 一种生产柴油或柴油调合组分的方法
CN102911722A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种费托合成油加氢提质方法
CN102911729A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种由费托合成油生产柴油的方法
CN103805240A (zh) * 2012-11-07 2014-05-21 中国石油化工股份有限公司 一种低成本组合加氢精制工艺方法
CN104611056A (zh) * 2015-02-11 2015-05-13 武汉凯迪工程技术研究总院有限公司 一种低温费托合成产物的加氢处理方法
CN105778995A (zh) * 2016-04-18 2016-07-20 武汉凯迪工程技术研究总院有限公司 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216338A (zh) * 2021-04-15 2022-10-21 中国石油化工股份有限公司 一种焦化全馏分油加工方法
CN115216338B (zh) * 2021-04-15 2023-10-10 中国石油化工股份有限公司 一种焦化全馏分油加工方法
CN115466628A (zh) * 2021-06-10 2022-12-13 中国石油化工股份有限公司 一种液相加氢反应装置、系统和烃油液相加氢方法
CN115466628B (zh) * 2021-06-10 2023-12-12 中国石油化工股份有限公司 一种液相加氢反应装置、系统和烃油液相加氢方法
CN115785993A (zh) * 2021-09-10 2023-03-14 中国石油化工股份有限公司 一种柴油加氢方法及装置
CN115785995A (zh) * 2021-09-10 2023-03-14 中国石油化工股份有限公司 一种劣质柴油加氢处理方法及装置
CN115785993B (zh) * 2021-09-10 2024-05-31 中国石油化工股份有限公司 一种柴油加氢方法及装置
CN115895719A (zh) * 2023-01-04 2023-04-04 中国石油大学(华东) 一种高芳烃催化裂化柴油深度加氢转化的工艺方法
CN115895719B (zh) * 2023-01-04 2024-05-28 中国石油大学(华东) 一种高芳烃催化裂化柴油深度加氢转化的工艺方法

Also Published As

Publication number Publication date
CN105778995B (zh) 2018-03-20
CN105778995A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2017181813A1 (zh) 低温费托合成油与劣质原料油联合加氢生产优质柴油的方法及其设备
RU2650190C1 (ru) Способ гидрообработки продукта низкотемпературного синтеза фишера-тропша
CN100590182C (zh) 一种煤焦油生产清洁油品的方法
CN111117701B (zh) 一种最大量生产重石脑油和喷气燃料组分的加氢方法
CN103013559B (zh) 一种选择性增产航煤的加氢裂化方法
CN103773464B (zh) 一种多产优质喷气燃料的加氢裂化方法
EP3266854B1 (en) Diesel oil and jet fuel production system and method utilizing fischer-tropsch synthetic oil
CN103146411A (zh) 用于制造芳烃的包括至少一个液化步骤的煤炭转化方法
TW201930572A (zh) 一種蠟油加氫裂化方法和系統
JP2007511634A (ja) フィッシャー・トロプシュ法の生成物の品質を向上させるための方法
CN103773466A (zh) 加氢裂化-异构脱蜡组合生产润滑油基础油方法
CN101230291B (zh) 一种低能耗的费托合成产物的加工方法
CN109988609B (zh) 一种灵活页岩油加氢裂化工艺
CN109988606B (zh) 一种灵活反序加氢裂化工艺
CN109988641B (zh) 灵活页岩油加氢裂化工艺
CN109988623B (zh) 灵活反序加氢裂化工艺
CN111378493B (zh) 一种费托合成油生产api ⅲ+基础油的加氢工艺
CN111378495B (zh) 一种费托合成油生产api ⅲ+基础油的加氢方法
CN109988621B (zh) 灵活加氢裂化工艺
CN103773463A (zh) 一种两段加氢裂化方法
CN110540873B (zh) 一种环烷基油的处理方法
CN109988618B (zh) 一种灵活单段两剂加氢裂化工艺
CN109988636B (zh) 灵活单段加氢裂化工艺
CN109988647B (zh) 灵活单段两剂加氢裂化工艺
CN114736708B (zh) 一种蜡油液相加氢处理方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785298

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 01/04/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17785298

Country of ref document: EP

Kind code of ref document: A1