WO2017181762A1 - 颗粒物浓度检测方法 - Google Patents

颗粒物浓度检测方法 Download PDF

Info

Publication number
WO2017181762A1
WO2017181762A1 PCT/CN2017/073967 CN2017073967W WO2017181762A1 WO 2017181762 A1 WO2017181762 A1 WO 2017181762A1 CN 2017073967 W CN2017073967 W CN 2017073967W WO 2017181762 A1 WO2017181762 A1 WO 2017181762A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
concentration
light
pmx
particles
Prior art date
Application number
PCT/CN2017/073967
Other languages
English (en)
French (fr)
Inventor
陈威
佐藤俊一
冯立辉
黄艺贤
Original Assignee
夏普株式会社
陈威
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 陈威 filed Critical 夏普株式会社
Publication of WO2017181762A1 publication Critical patent/WO2017181762A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means

Definitions

  • the present invention relates to a particulate matter concentration detecting technique, and more particularly to a particulate matter concentration detecting method capable of detecting a particulate matter concentration more quickly.
  • the present disclosure proposes a method for detecting the concentration of particulate matter, which is low in cost and capable of rapidly detecting the concentration of particulate matter.
  • a particle concentration detecting method comprising: irradiating light onto a reference gas containing a known concentration of at least one particulate matter, generating a light scattering effect, and detecting the light using a photodetector a scattering intensity at at least one light scattering angle as a reference value for the at least one particulate matter; causing the same intensity of light to be irradiated to the package And a photodetector detecting a scattering intensity of the light at the at least one light scattering angle as a measured value of the at least one particulate matter; And calculating a concentration of the at least one particulate matter based on the reference value and the measured value according to a particle scattering principle.
  • the number of light scattering angles to be measured is equal to or greater than the number of said at least one particulate matter.
  • the at least one particulate matter comprises a particulate matter X having a concentration of D PMX
  • the reference value of the particulate matter X detected by the photodetector A at a light scattering angle is P A — PMX
  • the particulate matter X having an unknown concentration assuming that the concentration of the particulate matter X is C PMX , and the measured value detected by the photodetector A is D A , then there is
  • the concentration C PMX of the particulate matter X can be calculated.
  • the at least one particulate matter comprises two particles X and Y at concentrations D PPMX and D PMY , respectively, and the particles X and Y detected by photodetectors A and B are at two light scattering angles
  • the reference values are P A_PMX , P A_PMY , P B_PMX , and P B_PMY , for particles X and Y of unknown concentration, assuming the concentrations of particles X and Y are C PMX and C PMY , respectively, the photodetectors A and B.
  • the measured values are D A and D B respectively , then there are
  • the concentrations of the particles X and Y, C PMX and C PMY can be calculated according to the above formula.
  • the at least one particulate matter is a large particulate having a diameter of about 10 um.
  • the at least one particulate matter is a small particulate having a diameter of about 2.5 um.
  • the photodetector is a photodiode.
  • the method before irradiating the light onto the reference particulate matter comprising the at least one particulate matter of a known concentration, the method further comprises: charging the reference gas into the region to be measured.
  • the method before irradiating the same intensity of light onto the gas to be tested containing the at least one particulate matter of unknown concentration, the method further comprises: filling the region to be measured with the to-be-measured region Measure the gas.
  • the particle concentration detecting method according to the embodiment of the present invention improves the performance of the particle detecting, and at least includes:
  • the concentration of the particulate matter is calculated by using the reference value and the measured value, so that the particulate matter concentration can be quickly detected.
  • FIG. 1 is a flow chart showing a method of detecting a concentration of particulate matter according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing an apparatus in which a particle concentration detecting method according to an embodiment of the present invention can be used.
  • FIG. 1 is a flow chart showing a particulate matter concentration detecting method 100 in accordance with an embodiment of the present invention.
  • the particle concentration detecting method utilizes the principle of light scattering and the principle of particle scattering. The method begins when it is desired to detect the concentration of particles of unknown concentration.
  • a reference value of a particulate matter of a known concentration is measured. Specifically, the light is irradiated onto a reference gas containing a known concentration of at least one particulate matter, and a light detector is used to detect the scattering intensity of the light at at least one light scattering angle as a reference for the at least one particulate matter value.
  • a measurement value of the particulate matter of unknown concentration is measured. Specifically, light of the same intensity is irradiated onto a gas to be measured containing the at least one particle having an unknown concentration, and the photodetector detects a scattering intensity of the light at the at least one light scattering angle as A measure of the at least one particulate matter. Then, at step S130, an unknown concentration is calculated. Specifically, the root According to the principle of particle scattering, the concentration of the at least one particulate matter is calculated based on the reference value and the measured value.
  • the number of light scattering angles to be measured may be configured to be equal to or greater than the number of the at least one particulate matter.
  • the reference gas may be made to contain the two kinds of particles of a known concentration, and a photodetector may be arranged on at least two scattering angles to detect light scattering of the two kinds of particles. strength.
  • the at least one particulate matter comprises a particulate matter X having a concentration of D PMX
  • the reference value of the particulate matter X detected by the photodetector A at a light scattering angle is P A — PMX
  • a particulate matter of unknown concentration X assuming that the concentration of the particulate matter X is C PMX , and the measured value detected by the photodetector A is D A , then there is
  • the concentration C PMX of the particulate matter X can be calculated.
  • the at least one particulate matter comprises two particles X and Y at concentrations D PPMX and D PMY , respectively, and the particles X and Y detected by photodetectors A and B are at two light scattering angles
  • the reference values above are P A_PMX , P A_PMY , P B_PMX , and P B_PMY , for the particles X and Y whose concentration is unknown, assuming that the concentrations of the particles X and Y are C PMX and C PMY , respectively, the photodetector A
  • the measured values detected by B and B are D A and D B , respectively.
  • the concentrations of the particles X and Y, C PMX and C PMY can be calculated according to the above formula.
  • the concentration of large particles such as particles having a diameter of about 10 um can be detected.
  • the particle concentration detecting method of the embodiment of the present invention it is also possible to detect the concentration of small particles such as particles having a diameter of about 2.5 um.
  • the photodetector can be a photodiode or other detector.
  • the apparatus includes a through hole (shown as a circle) for use as an inlet for receiving a reference gas or a gas to be measured; a light source for illuminating; and two photodetectors disposed at two Light scattering angle.
  • the reference gas is charged into the area to be measured through the through hole.
  • the light source emits light and illuminates the area to be measured.
  • Two photodetectors detect a reference value of a known concentration of particulate matter in the reference gas.
  • the area to be measured is filled with a gas to be tested containing particulate matter of unknown concentration.
  • the area to be measured is illuminated with light of the same intensity, and the two photodetectors detect the measured values of the particles of unknown concentration.
  • the processor (not shown) of the instrument can then calculate the concentration of the particulate matter based on the particle scattering principle based on the reference value and the measured value.
  • the two photodetectors A and B detect the light scattering intensities of the particulate matter X and the particulate matter Y, respectively, and the reference values of the particles X and Y detected by the photodetectors A and B at two light scattering angles are P A_PMX , P A_PMY , respectively.
  • the measured values detected by the photodetector are D A and D B , respectively . Then according to
  • embodiments of the invention may be implemented as software programs, software and hardware on a computer device, or as separate software and/or separate circuits.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种颗粒物浓度检测方法,包括:使光照射到包含已知浓度的至少一种颗粒物的参考气体上,产生光散射效应,并使用光检测器检测所述光在至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的参考值;使相同强度的光照射到包含浓度未知的所述至少一种颗粒物的待测气体上,并且所述光检测器检测所述光在所述至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的测量值;以及根据颗粒物散射原理,基于所述参考值和所述测量值,计算所述至少一种颗粒物的浓度。该颗粒物浓度检测方法的成本较低,且能够迅速地检测颗粒物浓度。

Description

颗粒物浓度检测方法 技术领域
本发明涉及颗粒物浓度检测技术,更具体地,涉及一种能够更加迅速地检测颗粒物浓度的颗粒物浓度检测方法。
背景技术
随着中国经济的持续发展,人们的生活标准也逐步改善。但是,环境污染问题日益突出。PM2.5(直径小于2.5um的颗粒物)与人们的健康密切相关。PM2.5的增加将引起各种呼吸道的疾病。由于空气质量越来越差,空气净化技术和净化产生发展非常迅速。当前,小颗粒物的检测方法主要有以下几种:
1)吸入谱扫描方法,这种测量方法的精度较高,并且可以区分不同直径颗粒物的浓度。但是,这种测量方法的成本较高,并且局限于特殊的测量设备。因此,该测量方法并不适用于日常的使用。
2)简单的光散射原理和热空气动力学的原理。通过对空气进行加热以产生热对流,小颗粒物流动到检测光区域,从而被检测。这种检测方法的成本较低,并因此被广泛采用。但是,该检测方法会引起较大的功耗。此外,较大的设备通常使用切割设备来区分颗粒物尺寸。切割设备的成本通常较高,并且较大,因此这种检测方法也不适用于日常的使用。
因此,需要一种能够适合于低成本的迅速地检测颗粒物浓度的颗粒物浓度检测方法。
发明内容
本公开提出了一种颗粒物浓度检测方法,成本较低且能够迅速地检测颗粒物浓度。
根据本发明的一个方面,提出了一种颗粒物浓度检测方法,包括:使光照射到包含已知浓度的至少一种颗粒物的参考气体上,产生光散射效应,并使用光检测器检测所述光在至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的参考值;使相同强度的光照射到包 含浓度未知的所述至少一种颗粒物的待测气体上,并且所述光检测器检测所述光在所述至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的测量值;以及根据颗粒物散射原理,基于所述参考值和所述测量值,计算所述至少一种颗粒物的浓度。
根据实施例,要测量的光散射角度的数量等于或大于所述至少一种颗粒物的数量。
根据实施例,所述至少一种颗粒物包括颗粒物X,其浓度为DPMX,且光检测器A检测到的颗粒物X在一个光散射角度上的参考值为PA_PMX,,针对浓度未知的颗粒物X,假定颗粒物X的浓度为CPMX,所述光检测器A检测到的测量值为DA,则有
Figure PCTCN2017073967-appb-000001
根据上述公式可以计算出颗粒物X的浓度CPMX
根据实施例,所述至少一种颗粒物包含两种颗粒物X和Y,其浓度分别为DPMX和DPMY,且光检测器A和B检测到的颗粒物X和Y在两个光散射角度上的参考值分别为PA_PMX、PA_PMY,、PB_PMX,和PB_PMY,针对浓度未知的颗粒物X和Y,假定颗粒物X和Y的浓度分别为CPMX和CPMY,所述光检测器A和B检测到的测量值分别为DA和DB,则有
Figure PCTCN2017073967-appb-000002
Figure PCTCN2017073967-appb-000003
根据上述公式可以计算出颗粒物X和Y的浓度CPMX和CPMY
根据实施例,所述至少一种颗粒物是大颗粒物,其直径为约10um。
根据实施例,所述至少一种颗粒物是小颗粒物,其直径为约2.5um。
根据实施例,所述光检测器是光电二极管。
根据实施例,在使光照射到包含已知浓度的至少一种颗粒物的参考颗粒物上之前,还包括:将参考气体充入待测量区域。
根据实施例,在使相同强度的光照射到包含浓度未知的所述至少一种颗粒物的待测气体上之前,还包括:使待测量区域填充有所述待 测气体。
与现有技术不同,根据本发明实施例的颗粒物浓度检测方法改善了颗粒物检测的性能,至少包括:
1.通过光学方法区分不同直径的颗粒物,因此成本较低;
2.通过利用参考值和测量值来计算颗粒物的浓度,因此可以迅速地检测颗粒物浓度。
附图说明
通过下面结合附图说明本发明的优选实施例,将使本发明的上述及其它目的、特征和优点更加清楚,其中:
图1是示出了根据本发明实施例的颗粒物浓度检测方法的流程图;
图2是示出了可以使用根据本发明实施例的颗粒物浓度检测方法的仪器的示意图。
具体实施方式
以下参照附图,对本发明的示例实施例进行详细描述。在以下描述中,一些具体实施例仅用于描述目的,而不应该理解为对本发明有任何限制,而只是本发明的示例。在可能导致对本发明的理解造成混淆时,将省略常规结构或构造。
图1是示出了根据本发明实施例的颗粒物浓度检测方法100的流程图。根据本发明实施例的颗粒物浓度检测方法利用光散射原理和颗粒物散射原理。在需要检测浓度未知的颗粒的浓度时,该方法开始。首先,在步骤S110处,测量得到已知浓度的颗粒物的参考值。具体地,使光照射到包含已知浓度的至少一种颗粒物的参考气体上,并使用光检测器检测所述光在至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的参考值。然后,在步骤S120处,测量得到未知浓度的颗粒物的测量值。具体地,使相同强度的光照射到包含浓度未知的所述至少一种颗粒物的待测气体上,并且所述光检测器检测所述光在所述至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的测量值。然后,在步骤S130处,计算未知的浓度。具体地,根 据颗粒物散射原理,基于所述参考值和所述测量值,计算所述至少一种颗粒物的浓度。
为了能够精确地检测气体中包含的各种直径的颗粒物,可以将要测量的光散射角度的数量配置为等于或大于所述至少一种颗粒物的数量。
例如,如果要测量空气中包含的两种颗粒物的浓度,可以使得参考气体包含已知浓度的这两种颗粒物,并且在至少两个散射角上布置光检测器来检测这两种颗粒物的光散射强度。
在一个示例中,所述至少一种颗粒物包括颗粒物X,其浓度为DPMX,且光检测器A检测到的颗粒物X在一个光散射角度上的参考值为PA_PMX,,针对浓度未知的颗粒物X,假定颗粒物X的浓度为CPMX,所述光检测器A检测到的测量值为DA,则有
Figure PCTCN2017073967-appb-000004
根据上述公式可以计算出颗粒物X的浓度CPMX
在另一个示例中,所述至少一种颗粒物包含两种颗粒物X和Y,其浓度分别为DPMX和DPMY,且光检测器A和B检测到的颗粒物X和Y在两个光散射角度上的参考值分别为PA_PMX、PA_PMY,、PB_PMX,和PB_PMY,针对浓度未知的颗粒物X和Y,假定颗粒物X和Y的浓度分别为CPMX和CPMY,所述光检测器A和B检测到的测量值分别为DA和DB,则有
Figure PCTCN2017073967-appb-000005
Figure PCTCN2017073967-appb-000006
根据上述公式可以计算出颗粒物X和Y的浓度CPMX和CPMY
根据本发明实施例的颗粒物浓度检测方法,可以检测大颗粒物的浓度,例如直径为约10um的颗粒物。
根据本发明实施例的颗粒物浓度检测方法,还可以检测小颗粒物的浓度,例如直径为约2.5um的颗粒物。
根据本发明的实施例,光检测器可以是光电二极管或其他检测器。
图2是示出了可以使用根据本发明实施例的颗粒物浓度检测方法的仪器的示意图。如图所示,该仪器包括一个通孔(图中示出为圆),用作接收参考气体或待测气体的入口;一个光源,用于发光;以及两个光检测器,布置在两个光散射角上。在工作中,首先,将参考气体通过通孔充入待测量区域。然后,光源发出光,照射到待测量区域上。两个光检测器检测参考气体中已知浓度的颗粒物的参考值。然后,使待测量区域填充有包含浓度未知的颗粒物的待测气体。使用相同强度的光照射待测量区域,并且两个光检测器检测浓度未知的颗粒物的测量值。然后,该仪器的处理器(未示出)可以根据颗粒物散射原理,基于所述参考值和所述测量值,计算所述颗粒物的浓度。
作为示例,假定需要测量两种颗粒物X和Y的浓度。在参考气体中,颗粒物X的浓度为DPMX=20mg/m3,颗粒物Y的浓度为DPMX=20mg/m3。两个光检测器A和B分别检测颗粒物X和颗粒物Y的光散射强度,光检测器A和B检测到的颗粒物X和Y在两个光散射角度上的参考值分别为PA_PMX、PA_PMY,、PB_PMX,和PB_PMY,其中PA_PMY=0.6mV,PA_PMX=5mV,PB_PM2Y=0.5mV,PB_PMX=4.75mV。此时,如果将具有浓度未知的颗粒物X和Y的待测气体充入待测量区域,并且
光检测器检测到的测量值分别为DA和DB。则根据
Figure PCTCN2017073967-appb-000007
Figure PCTCN2017073967-appb-000008
将参考值和测量值代入上述公式有
132=0.6xCPMY+5xCPMX
121=0.5xCPMY+4.75xCPMX
计算得到颗粒物X和颗粒物Y的浓度分别为
CPMX=18.86mg/m3
CPMY=62.86mg/m3
应该理解,严格地讲,本发明的实施例可以实现为计算机设备上的软件程序、软件和硬件、或者单独的软件和/或单独的电路。
应当注意的是,在以上的描述中,仅以示例的方式,示出了本发明的技术方案,但并不意味着本发明局限于上述步骤和单元结构。在可能的情形下,可以根据需要对步骤和单元结构进行调整和取舍。因此,某些步骤和单元并非实施本发明的总体发明思想所必需的元素。因此,本发明所必需的技术特征仅受限于能够实现本发明的总体发明思想的最低要求,而不受以上具体实例的限制。
至此已经结合优选实施例对本发明进行了描述。应该理解,本领域技术人员在不脱离本发明的精神和范围的情况下,可以进行各种其它的改变、替换和添加。因此,本发明的范围不局限于上述特定实施例,而应由所附权利要求所限定。

Claims (9)

  1. 一种颗粒物浓度检测方法,包括:
    使光照射到包含已知浓度的至少一种颗粒物的参考气体上,产生光散射效应,并使用光检测器检测所述光在至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的参考值;
    使相同强度的光照射到包含浓度未知的所述至少一种颗粒物的待测气体上,并且所述光检测器检测所述光在所述至少一个光散射角度上的散射强度,作为所述至少一种颗粒物的测量值;以及
    根据颗粒物散射原理,基于所述参考值和所述测量值,计算所述至少一种颗粒物的浓度。
  2. 根据权利要求1所述的颗粒物浓度检测方法,其中,要测量的光散射角度的数量等于或大于所述至少一种颗粒物的数量。
  3. 根据权利要求2所述的颗粒物浓度检测方法,其中,所述至少一种颗粒物包括颗粒物X,其浓度为DPMX,且光检测器A检测到的颗粒物X在一个光散射角度上的参考值为PA_PMX,,针对浓度未知的颗粒物X,假定颗粒物X的浓度为CPMX,所述光检测器A检测到的测量值为DA,则有
    Figure PCTCN2017073967-appb-100001
    根据上述公式可以计算出颗粒物X的浓度CPMX
  4. 根据权利要求2所述的颗粒物浓度检测方法,其中,所述至少一种颗粒物包含两种颗粒物X和Y,其浓度分别为DPMX和DPMY,且光检测器A和B检测到的颗粒物X和Y在两个光散射角度上的参考值分别为PA_PMX、PA_PMY,、PB-PMX,和PB_PMY,针对浓度未知的颗粒物X和Y,假定颗粒物X和Y的浓度分别为CPMX和CPMY,所述光检测器A和B检测到的测量值分别为DA和DB,则有
    Figure PCTCN2017073967-appb-100002
    Figure PCTCN2017073967-appb-100003
    根据上述公式可以计算出颗粒物X和Y的浓度CPMX和CPMY
  5. 根据权利要求3-4之一所述的颗粒物浓度检测方法,其中,所述至少一种颗粒物是大颗粒物,其直径为约10um。
  6. 根据权利要求3-4之一所述的颗粒物浓度检测方法,其中,所述至少一种颗粒物是小颗粒物,其直径为约2.5um。
  7. 根据权利要求1-4之一所述的颗粒物浓度检测方法,其中,所述光检测器是光电二极管。
  8. 根据权利要求1所述的颗粒物浓度检测方法,在使光照射到包含已知浓度的至少一种颗粒物的参考颗粒物上之前,还包括:
    将参考气体充入待测量区域。
  9. 根据权利要求1所述的颗粒物浓度检测方法,在使相同强度的光照射到包含浓度未知的所述至少一种颗粒物的待测气体上之前,还包括:
    使待测量区域填充有所述待测气体。
PCT/CN2017/073967 2016-04-20 2017-02-17 颗粒物浓度检测方法 WO2017181762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610248232.8A CN107305179A (zh) 2016-04-20 2016-04-20 颗粒物浓度检测方法
CN201610248232.8 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017181762A1 true WO2017181762A1 (zh) 2017-10-26

Family

ID=60115628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073967 WO2017181762A1 (zh) 2016-04-20 2017-02-17 颗粒物浓度检测方法

Country Status (2)

Country Link
CN (1) CN107305179A (zh)
WO (1) WO2017181762A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111504870B (zh) * 2020-05-15 2021-01-29 中国计量科学研究院 检测样品中聚集体颗粒在目标粒径下浓度的非标记方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030075697A1 (en) * 2001-10-19 2003-04-24 Fuji Photo Film Co., Ltd. Measuring method and apparatus using attenuation in total internal reflection
CN104263837A (zh) * 2014-10-13 2015-01-07 江南大学 基于三重信标修饰的金纳米粒子三聚体的表面增强拉曼散射效应检测水溶液中Hg2+和/或Ag+的方法
CN204479442U (zh) * 2015-04-10 2015-07-15 中国石油大学(北京) 输气管道内颗粒与液滴的在线检测装置
WO2015128271A1 (fr) * 2014-02-25 2015-09-03 Commissariat à l'énergie atomique et aux énergies alternatives Procede pour determiner une concentration en lipides dans un micro-organisme
CN105486617A (zh) * 2015-11-27 2016-04-13 易轩 细颗粒物快速检测仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030075697A1 (en) * 2001-10-19 2003-04-24 Fuji Photo Film Co., Ltd. Measuring method and apparatus using attenuation in total internal reflection
WO2015128271A1 (fr) * 2014-02-25 2015-09-03 Commissariat à l'énergie atomique et aux énergies alternatives Procede pour determiner une concentration en lipides dans un micro-organisme
CN104263837A (zh) * 2014-10-13 2015-01-07 江南大学 基于三重信标修饰的金纳米粒子三聚体的表面增强拉曼散射效应检测水溶液中Hg2+和/或Ag+的方法
CN204479442U (zh) * 2015-04-10 2015-07-15 中国石油大学(北京) 输气管道内颗粒与液滴的在线检测装置
CN105486617A (zh) * 2015-11-27 2016-04-13 易轩 细颗粒物快速检测仪

Also Published As

Publication number Publication date
CN107305179A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
MacArthur Dust sensitivity of absorption-line indices
US7682426B2 (en) Method and device for the detection, characterization and/or elimination of suspended particles
CN108205867A (zh) 一种具备干扰粒子识别能力的早期火灾烟雾探测方法
US20150153275A1 (en) Portable apparatus for estimating air quality and methods of operating the same
WO2018006514A1 (zh) 一种pm2.5检测装置
Zhao et al. A novel real-time carbon dioxide analyzer for health and environmental applications
WO2016019648A1 (zh) 一种评价电子烟烟雾量的方法
JP2004037370A (ja) 顕微鏡的微粒子を定量および定性測定用に素早く検出して同定する方法および装置
CN106645708A (zh) 一种基于荧光免疫层析技术的定量检测计算方法
CN106769721A (zh) 一种颗粒污染物浓度光散射测量装置及测量方法
WO2017181762A1 (zh) 颗粒物浓度检测方法
CN205826469U (zh) Pm2.5激光传感器
CN211927622U (zh) 便携式油烟检测仪
CN108387504A (zh) 凝聚合颗粒计数器
TW202012913A (zh) 表面濕潤性檢測系統及表面濕潤性檢測方法
CN105310697B (zh) 测量血氧饱和度的方法及装置
RU2610942C1 (ru) Способ оптического измерения счетной концентрации дисперсных частиц в жидких средах и устройство для его осуществления
Saputra et al. Digital pulse analyzer for simultaneous measurement of pulse height, pulse width, and interval time on an optical particle counter
CN207717626U (zh) 一种荧光免疫层析分析仪
CN114487190B (zh) 一种基于光pid传感器的医用人体呼出voc气体检测装置
JP2636051B2 (ja) 粒子測定方法および装置
JP2010243374A (ja) ナノ粒子の粒径測定装置及びナノ粒子の粒径測定方法
CN107024419A (zh) 一种pm2.5传感器
CN207439928U (zh) 室内甲醛气体检测装置
Benalcazar et al. Design of an electronic device for turbidity detection in blood serum in newborns

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785248

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785248

Country of ref document: EP

Kind code of ref document: A1