WO2017181335A1 - 一种旋转式压缩机 - Google Patents

一种旋转式压缩机 Download PDF

Info

Publication number
WO2017181335A1
WO2017181335A1 PCT/CN2016/079630 CN2016079630W WO2017181335A1 WO 2017181335 A1 WO2017181335 A1 WO 2017181335A1 CN 2016079630 W CN2016079630 W CN 2016079630W WO 2017181335 A1 WO2017181335 A1 WO 2017181335A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
hole
sliding
cylinder
eccentrically oriented
Prior art date
Application number
PCT/CN2016/079630
Other languages
English (en)
French (fr)
Inventor
彭力丰
Original Assignee
彭力丰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭力丰 filed Critical 彭力丰
Priority to PCT/CN2016/079630 priority Critical patent/WO2017181335A1/zh
Publication of WO2017181335A1 publication Critical patent/WO2017181335A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to the field of compressors, and more particularly to a rotary compressor, which is an improved technique of a rotary compressor.
  • the conventional rotary compressor has the advantages of simple and compact structure and few parts, but also has the following problems:
  • the axial seal formed between the two outer end faces of the rolling rotor and the inner end face of the front end cover and the inner end face of the rear end cover is an equally spaced gap seal between the plane and the plane, the gap is relatively easy to be controlled and is favorable for formation.
  • the oil layer is effectively sealed, but since the lubricating and sealing of the other seals inside the compressor are supplied by these sealing gaps, the airtightness of these seals is limited by the presence of the gap.
  • volumetric efficiency of the exhaust mechanism Since the clearance volume of the exhaust mechanism is relatively large, the volumetric efficiency of the compressor is relatively low.
  • An object of the present invention is to provide a rotary compressor having a good radial sealing performance between a rolling rotor outer circle and a cylinder block cylinder wall in order to overcome at least one of the above-mentioned deficiencies of the prior art.
  • a rotary compressor including a cylinder block and front and rear cylinder heads respectively fixed to a front end surface and a rear end surface of the cylinder block, the cylinder body a cylinder having a cylinder wall having a cylindrical surface is provided, and a cylinder of the cylinder is provided with a biasing rolling rotary compression device
  • the deflection rolling rotary compression device comprises a main shaft, a rolling rotor, and an eccentrically oriented sleeve shaft
  • the spindle includes The front end shaft, the directional sliding shaft and the rear end shaft are connected in sequence, and the eccentrically oriented sleeve shaft is internally provided with an eccentrically oriented sliding hole, and the eccentrically oriented sleeve shaft is arranged outside the directional sliding shaft on the main shaft through the eccentrically oriented sliding hole thereof, and is eccentric
  • the directional sleeve can reciprocally slide in a direction perpendicular to the axis line of the main shaft
  • the front end shaft of the main shaft is set in the shaft hole of the front cylinder head, and the rear end shaft of the main shaft is set in the shaft hole of the rear cylinder head.
  • the cylinder wall of the cylinder is provided with a sliding slot, and the sliding slot is provided with energy.
  • a sliding device for reciprocating sliding in the sliding groove, and an end portion of the sliding device is pressed against an outer circumference of the rolling rotor, the rolling rotor being capable of rolling and rotating on the cylinder wall of the cylinder, and being in the cylinder during rolling rotation
  • a high-pressure gas chamber and a low-pressure gas chamber are formed, and a side wall of the high-pressure gas chamber is provided with an exhaust mechanism, and the low-pressure air chamber is provided with an air inlet.
  • the main shaft drives the eccentrically oriented sleeve shaft to rotate, so that the rolling rotor pressure rolls and rotates on the cylinder wall of the cylinder, because the eccentrically oriented sliding hole of the eccentrically oriented sleeve shaft is eccentric, and the eccentrically oriented sliding hole in the eccentrically oriented sleeve shaft
  • An elastic member is arranged between the directional sliding shaft of the main shaft, so that the rolling rotor can be biased against the cylinder wall of the cylinder under the elastic force of the elastic member, and the rolling rotor pressed against the cylinder wall of the cylinder even if
  • the outer circle can always maintain close contact with the cylinder wall of the cylinder to eliminate the gap between the outer circle of the rolling rotor and the cylinder wall of the cylinder, and improve the outer circumference of the rolling rotor and the cylinder.
  • the radial sealing performance between the cylinder walls and the high efficiency guarantee the completion of the entire compression process.
  • the exhaust mechanism includes a valve guide hole and a slave valve which are opened on the inner end surface of the rear cylinder head or on the inner end surface of the front cylinder head.
  • the guide hole opens to the outside of the exhaust groove and the valve device installed in the valve guide hole, and the end face of the cylinder covers the upper side of the exhaust groove
  • the valve device includes a valve and a valve spring, the valve peripheral wall and the valve
  • the hole wall of the guide hole is matched, and the valve can reciprocate in the valve guide hole, and the valve spring is disposed between the valve and the bottom of the valve guide hole, so that the front end surface of the valve can be pressed against the cylinder under the elastic force of the valve spring
  • the end face of the body seals the cylinder from the exhaust groove.
  • the end surface of the cylinder body is provided with a pressure storage chamber at a position corresponding to the front end surface of the valve, or the front side end surface of the valve is provided with a pressure storage chamber.
  • the wall of the valve guide hole is provided with a through hole.
  • the eccentrically oriented sleeve shaft can smoothly slide back and forth on the directional sliding shaft of the main shaft, and that the eccentrically oriented sleeve shaft can drive the rolling rotor pressure to roll and rotate on the cylinder wall of the cylinder and the rolling rotor is continuously pressurized even in the high pressure air chamber. In the high case, it is still able to keep rolling on the cylinder wall of the cylinder until the entire compression process is completed.
  • the elastic member is a compression spring
  • the outer peripheral shaft surface of the directional sliding shaft of the main shaft includes an upper shaft surface, a lower shaft surface, a left shaft surface, and a right shaft surface, wherein the left shaft surface and the right shaft surface are mutually parallel planes
  • the lower shaft surface is provided with at least one pressure spring fixing hole
  • the inner peripheral hole surface of the eccentrically oriented slide hole inside the shaft includes an upper side hole surface, a lower side hole surface, a left side hole surface, and a right side hole surface, wherein the left side hole surface and the right side hole surface are mutually parallel planes
  • the center plane between the left side hole surface and the right side hole surface is offset from the outer center of the eccentrically oriented sleeve shaft
  • the eccentrically oriented sleeve shaft is disposed outside the directional sliding shaft on the main shaft through the eccentrically oriented sliding hole, and is eccentrically oriented
  • the hole surface on the left side of the hole is matched with the left shaft surface
  • a lower side gap which can move the eccentrically oriented sleeve shaft relative to the directional sliding shaft is reserved, one end of the pressure spring
  • the pressure spring is placed in the fixed hole of the directional sliding shaft, and the other end of the pressure spring is pressed against the lower hole surface of the eccentrically oriented sliding hole of the eccentrically oriented sleeve shaft, and the eccentrically oriented sleeve shaft can be parallel to the left axial surface of the oriented sliding shaft.
  • the plane distance between the left side hole surface and the right side hole surface of the eccentrically oriented slide hole of the eccentrically oriented sleeve shaft and the spindle The plane distance between the left axis plane of the directional sliding shaft and the right shaft plane is equal, and the eccentrically oriented slide hole of the eccentrically oriented sleeve shaft is set on the directional sliding shaft of the spindle, and the left side of the eccentrically oriented slide hole
  • the center plane between the hole face and the right face face coincides with the center plane between the left axis face of the oriented slide axis and the right axis face.
  • a second rolling bearing assembly is disposed between the front end shaft of the main shaft and the hole wall of the shaft hole of the front cylinder head;
  • a second rolling bearing assembly is disposed between the end shaft and the bore wall of the shaft bore of the rear cylinder head.
  • the high-pressure gas of the high-pressure air chamber is reduced to flow back to the low-pressure air chamber through the gap between the sliding plate and the front cylinder head and the rear cylinder head, and the external high-pressure gas is prevented from passing between the sliding plate groove and the sliding piece.
  • the sliding device is recirculated to the inside.
  • the sliding device includes a sliding piece, a first sliding piece seal, and a second sliding piece sealing.
  • the side wall of the sliding piece is provided with a first sliding piece sealing groove and a second sliding piece sealing groove.
  • the first sliding vane sealing groove is formed around the four side end faces of the sliding piece at a middle position of the sliding piece, and the second sliding piece sealing groove is disposed closer to the rolling rotor than the position of the first sliding piece sealing groove.
  • the second sliding vane sealing groove comprises a first portion of the second sliding vane sealing groove and a second portion of the second sliding vane sealing groove, the first portion of the second sliding vane sealing groove is formed around the four side end faces of the sliding piece, and the second portion is second sliding
  • the sheet seal grooves respectively extend from the first portion of the second vane sealing groove toward the end surface of the sliding rotor to the end surface of the sliding piece adjacent to the sliding piece, and the first sliding piece seals.
  • the shape of the sliding vane sealing groove is matched, the shape of the second sliding vane seal is matched with the shape of the second sliding vane sealing groove, the first sliding vane seal is embedded in the first sliding vane sealing groove, and the second The slider seal is embedded in the second vane sealing groove.
  • the high-pressure gas of the high-pressure air chamber is reduced from the gap between the rolling rotor and the front and rear cylinder heads, and the outer end faces of the rolling rotor are respectively opened at positions close to the outer circumference thereof.
  • An annular rolling rotor end face sealing groove is embedded in the rolling rotor end face sealing groove with a rolling rotor end face sealing ring, and the shape of the rolling rotor end face sealing ring matches the shape of the rolling rotor end face sealing groove.
  • the rolling rotor end face sealing ring is disposed close to the outer circumference of the rolling rotor, and can also reduce the residual amount of high pressure gas stored in the high pressure air chamber after the exhaust is completed, thereby improving the air compression efficiency of the compressor.
  • the inner side end surface of the rear cylinder head is provided with a rear side cylinder cover corresponding to the low pressure air chamber side.
  • the shaft hole opening leads to the oil supply groove of the cylinder, the oil supply passage is opened in the main shaft, and the oil supply groove is connected with the oil supply passage; or the shaft of the front cylinder head is opened on the inner side end surface of the front cylinder head corresponding to the low pressure air chamber side.
  • the hole opening leads to the oil supply groove of the cylinder, and an oil supply passage is opened in the main shaft, and the oil supply groove is connected with the oil supply passage.
  • a first rolling bearing assembly is disposed between the inner circumference of the rolling rotor and the outer circumference of the eccentrically oriented sleeve shaft.
  • the present invention has the following advantages:
  • the seal is reliable and the air tightness is good.
  • FIG. 1 is a schematic view showing the radial structure inside a compressor according to a first embodiment of the present invention.
  • Fig. 2 is a schematic view showing the axial structure inside the compressor of the first embodiment of the present invention.
  • FIG. 3 is a schematic exploded perspective view of a deflection rolling rotary compression device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic exploded perspective view of a deflection rolling rotary compression device according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic exploded perspective view of the slider device according to Embodiment 1 of the present invention.
  • Fig. 6 is an exploded perspective view showing the axial structure of the exhaust mechanism, the cylinder block and the rear cylinder head according to Embodiment 1 of the present invention.
  • Fig. 7 is a perspective exploded perspective view showing the exhaust mechanism and the rear cylinder head according to Embodiment 1 of the present invention.
  • Fig. 8 is a schematic exploded perspective view showing the compressor of the first embodiment of the present invention.
  • Figure 9 is a schematic view of the cycle working principle of the present invention.
  • Figure 10 is a schematic view showing the axial structure of a vertical structure of a compressor according to Embodiment 2 of the present invention.
  • the rotary compressor of the present embodiment has the structure shown in FIGS. 1 to 9, and includes a cylinder block 100 and a front cylinder head 200 and a rear cylinder head 300 which are respectively fixed to the front side end surface 160 and the rear side end surface 150 of the cylinder block 100,
  • the cylinder 100 is provided with a cylinder 140 having a cylindrical surface of the cylinder wall 130, an intake port 110 communicating with the cylinder 140, and a vane slot 120.
  • the cylinder 140 of the cylinder 100 is provided with a bias rolling compression type.
  • the device P includes a main shaft 400, a rolling rotor 500, and an eccentrically oriented sleeve 600.
  • the main shaft 400 includes a front end shaft 410, a directional sliding shaft 420 and a rear end shaft 430 which are sequentially connected.
  • the eccentrically oriented sleeve shaft 600 is internally provided with an eccentrically oriented slide hole 610.
  • the eccentrically oriented sleeve shaft 600 is fitted outside the orientation sliding shaft 420 on the spindle 400 through its eccentrically oriented slide hole 610, and the eccentrically oriented sleeve shaft 600 can be oriented in the spindle 400.
  • the sliding shaft 420 is reciprocally slid in a direction perpendicular to the axis line O1 - O1 of the main shaft 400, and an elastic member is disposed between the eccentrically oriented sleeve shaft 600 and the orientation sliding shaft 420, and the rolling rotor 500 is sleeved on the outer side of the eccentrically oriented sleeve shaft 600.
  • the front end shaft 410 of the main shaft 400 is set in front In the shaft hole 210 of the cover 200, the rear end shaft 430 of the main shaft 400 is fitted in the shaft hole 310 of the rear cylinder head 300.
  • the sliding groove 120 on the cylinder wall 130 is provided to be reciprocally slidable in the sliding groove 120.
  • the sliding device R the lower end portion of the sliding device R can be pressed on the outer circle 540 of the rolling rotor 500 by the sliding spring 900.
  • the rolling rotor 500 can be biased against the cylinder.
  • the cylinder wall 130 of the 140 is rolled and rotated, and a high pressure gas chamber 142 and a low pressure gas chamber 141 are formed in the cylinder 140 in the rolling rotation.
  • the air inlet 110 is opened on the side of the cylinder wall 130 corresponding to the low pressure gas chamber 141, and Near the position of the slide groove 120, the side wall of the high pressure gas chamber 142 is provided with an exhaust mechanism which is disposed near the slide groove 120.
  • the inner end surface 320 of the rear cylinder head 300 is respectively provided with a valve guide hole H, an exhaust groove F leading from the valve guide hole H to the outside, and a shaft hole from the rear cylinder cover 300.
  • the opening of the 310 hole leads to the oil supply groove G of the cylinder 140, and a hole having an aperture smaller than the diameter of the valve guide hole H and communicating with the valve guide hole H is opened at a position corresponding to the valve guide hole H on the outer end surface 330 of the rear cylinder head 300.
  • the hole K preferably, the through hole K is located at the bottom of the hole of the valve guide hole H, the through hole K penetrates the bottom of the hole of the valve guide hole H and the outer end surface 330 of the rear cylinder head 300, and the upper surface of the exhaust groove F is received by the cylinder 100 The rear side end surface 150 is covered.
  • the inner end surface 220 of the front cylinder head 200 is respectively provided with a valve guide hole H, an exhaust groove F leading from the valve guide hole H to the outside, and an opening from the shaft hole 210 of the front cylinder head 200 to
  • the oil supply groove G of the cylinder 140 is provided with a through hole K having a hole diameter smaller than the diameter of the valve guide hole H and communicating with the valve guide hole H at a position corresponding to the valve guide hole H on the outer end surface 230 of the front cylinder head 200.
  • the through hole K is located at the bottom of the hole of the valve guide hole H.
  • the through hole K penetrates the bottom of the valve guide hole H and the outer end surface 230 of the front cylinder head 200, and the upper surface of the exhaust groove F is covered by the front end surface 160 of the cylinder 100.
  • the valve guide hole H opened in the rear cylinder head 300 or the front cylinder head 200 is provided with a valve device W that can reciprocally slide in the valve guide hole H.
  • the elastic member is a compression spring 1000
  • the outer circumferential surface of the orientation sliding shaft 420 of the main shaft 400 includes an upper axial surface 421 and a lower portion.
  • the outer peripheral axial surface 620 of the eccentrically oriented sleeve shaft 600 is a cylindrical surface
  • the eccentrically oriented sleeve shaft 600 is internally provided with an eccentrically oriented sliding hole 610
  • the inner peripheral hole surface of the eccentrically oriented sliding hole 610 includes an upper side hole.
  • the center plane B-B between the faces 614 is offset from the outer circle center O2 of the eccentrically oriented sleeve axis 600, and the offset distance is d, and the left side hole face 612 and the right side of the eccentrically oriented slide hole 610 of the eccentrically oriented sleeve shaft 600
  • the planar distance between the side aperture faces 614 is between the left axial plane 422 and the right axial plane 424 of the oriented slide axle 420 of the spindle 400.
  • the eccentrically oriented slide hole 610 of the eccentrically oriented sleeve 600 is fitted on the orientation sliding shaft 420 of the spindle 400 to ensure a gap between the left aperture surface 612 and the left shaft surface 422 and a right aperture surface 614.
  • the gap between the right side axial face 424 and the right side axial face 424 is zero, and the center plane B-B between the left side hole face 612 and the right side face face 614 of the eccentrically oriented slide hole 610 and the left side axial face 422 of the oriented slide shaft 420 Coinciding with the center plane A-A between the right side axial faces 424, the upper side hole faces 611 of the eccentrically oriented slide holes 610 are correspondingly combined with the upper side axial faces 421 of the oriented slide shafts 420 on the upper side hole faces 611 and the upper side.
  • An upper side gap X for reciprocating the eccentrically oriented sleeve shaft 600 relative to the orientation sliding shaft 420 is reserved between the shaft faces 421, and the lower side hole surface 613 of the eccentrically oriented slide hole 610 corresponds to the lower axial surface of the orientation sliding shaft 420.
  • 423 sets are merged between the lower side hole surface 613 and the lower side shaft surface 423 to reserve a lower side gap Y which enables the eccentrically oriented sleeve shaft 600 to reciprocate relative to the orientation sliding shaft 420.
  • One end of the compression spring 1000 is placed on the orientation sliding shaft 420. The other end of the compression spring 1000 is pressed against the eccentricity of the eccentrically oriented sleeve 600 in the compression spring fixing hole 425 of the lower shaft surface 423.
  • the lower side surface 613 of the directional slide hole 610 presses the lower side surface 613 of the eccentrically oriented slide hole 610 by the pressure spring 1000.
  • the left side hole surface 612 of the eccentrically oriented slide hole 610 corresponds to the left side of the directional slide shaft 420.
  • the side shaft surface 422 sleeves can be combined to slide in parallel on the left shaft surface 422.
  • the right side hole surface 614 of the eccentrically oriented slide hole 610 is corresponding to the right shaft surface 424 of the orientation sliding shaft 420 and can be combined on the right shaft surface 424.
  • the thicker portion 630 of the eccentrically oriented sleeve 600 disposed on the directional sliding shaft 420 of the spindle 400 is placed on the left axial surface 422 or the right axial surface 424 of the oriented sliding shaft 420 to cope with the pressure of the front high pressure plenum 142.
  • the side of the rotating phase is relatively advanced (in the present embodiment, the side of the right axial surface 424 that is to be subjected to the pressure of the front high-pressure gas chamber 142 and the rotational phase is relatively advanced), the inner circle 530 of the rolling rotor 500 and the eccentrically oriented sleeve shaft
  • a first rolling bearing assembly 1100 is disposed between the outer circumferences 620 of 600, or the inner circle 530 of the rolling rotor 500 is directly fitted over the outer circle 620 of the eccentrically oriented sleeve 600, the first rolling bearing assembly 1100 including a radial force applied thereto
  • Main types of rolling bearing components suits
  • the outer circle 540 of the rolling rotor 500 on the eccentrically oriented sleeve 600 and the center O3 of the inner circle 530 coincide with the center O2 of the outer circle 620 of the eccentrically oriented sleeve 600 and deviate from the left axial plane of the oriented sliding shaft 420 of the spindle 400.
  • the eccentrically oriented sleeve 600 that fits over the directional slide shaft 420 of the spindle 400 and the rolling rotor 500 that fits over the eccentrically oriented sleeve 600 can follow the left axial plane 422 of the oriented slide shaft 420 as the spindle 400 rpm Reciprocating with the central plane A-A direction between the right axial plane 424, the outer circle 620 of the eccentrically oriented sleeve 600 and the outer circle 540 of the rolling rotor 500 and the inner circle 530 of the inner circle 530 with respect to the oriented sliding shaft 420
  • the distance d between the left axis plane 422 and the right axis plane 424 is constant, and the distance e relative to the spindle center axis O1 is relatively variable, and the eccentrically oriented sleeve shaft 600 is not rotatable relative to the main shaft 400, and the rolling rotor 500 is both eccentrically rotatable relative to the main shaft 400 and concentric with respect to the eccentrically oriented
  • the directional sleeve 600 can be caused by the pressure of the compression spring 1000, as shown in FIG. 1, between the directional sliding shaft 420 and the eccentrically oriented sliding hole 610 of the eccentrically oriented sleeve 600, causing the outer circle 540 of the rolling rotor 500 to be pressed against
  • the cylinder wall 100 of the cylinder 100 of the cylinder 100 is over 400 spindles
  • the extension line C-C of the contact point Q of O1 and the outer circumference 540 of the rolling rotor 500 pressed against the cylinder wall 130 of the cylinder 100 of the cylinder 100 can be compared with the left side surface 422 and the right side surface 424 of the orientation sliding shaft 420.
  • the center plane A-A intersects to form a deflection pressure of the deflection angle ⁇ having an angle greater than 0°, so that the rolling rotor 500 is biased against the cylinder wall 130 of the cylinder 100 of the cylinder 100, and is biased against the cylinder of the cylinder 100 of the cylinder 100.
  • the rolling rotor 500 on the wall 130 can be biased to roll against the cylinder wall 130 of the cylinder 100 of the cylinder 100 as the eccentrically oriented sleeve 600 revolves with the spindle 400, and a high pressure gas is formed in the cylinder 140 during the rolling rotation.
  • Room 142 and low pressure gas chamber 141 room 142 and low pressure gas chamber 141.
  • a biasing rolling rotary compression device P that rotates in a counterclockwise direction is used as an example of operation.
  • An eccentrically oriented sleeve 600 is placed between the oriented sliding shaft 420 of the spindle 400 and the rolling rotor 500, and the oriented sliding shaft is disposed.
  • the pressure spring 1000 is disposed between the 420 and the eccentrically oriented sleeve 600, not only can the rolling rotor 500 be able to act on the high pressure gas chamber 142 of the rolling rotor 500 during the first half of the working stroke of compressing the high pressure gas chamber 142.
  • the pressure is utilized such that the rolling rotor 500 is more tightly pressed against the cylinder wall 130 to perform a more effective sealing isolation of the high pressure gas chamber 142 and the low pressure gas chamber 141, and the rolling rotor 500 can also be placed in the high pressure gas.
  • the deflection angle ⁇ formed between the rolling rotor 500 and the directional sliding shaft 420 is used to facilitate the sealing of the rolling rotor 500 due to the change in the working phase of the rolling rotor 500.
  • the pressure of the high pressure plenum 142 which has pushed the rolling rotor 500 away from the cylinder wall 130, which has been detrimental to the sealing of the rolling rotor 500, is resisted, so that the rolling rotor 500 only needs to rely on
  • the pressure of the large pressure spring 1000 and the centrifugal force generated during the movement can continue to be pressed and rotated on the cylinder wall 130 until the compression of the high pressure gas chamber 142 is completed, and once the pressure of the compressed gas in the high pressure gas chamber 142 exceeds the design.
  • the rolling rotor 500 is forced to automatically leave the cylinder wall 130, so that the ultra-high pressure compressed gas in the high-pressure gas chamber 142 can be discharged to the low-pressure gas chamber 141 through the gap between the rolling rotor 500 and the cylinder wall 130.
  • the pressure, and at the end of the compression stroke more effectively eliminates the liquid shock phenomenon which is often caused by excessive accumulation of lubricating oil in the high-pressure gas chamber 142, so that the compressor can obtain over-compression safety protection in time.
  • the center plane B-B between the left side hole surface 612 and the right side hole surface 614 of the eccentrically oriented slide hole 610 of the eccentrically oriented sleeve hole 600 of the eccentrically oriented sleeve shaft 600 fitted on the orientation sliding shaft 420 is deviated from the eccentricity under the condition that other conditions are not changed.
  • the small half-cycle working stroke can withstand higher pressure of the high pressure gas chamber 142 without leaving the cylinder wall 130, the stronger the compression capacity of the compressor, and the pressure of the pressure spring 1000 can be relatively reduced to reduce the deflection rolling rotary compression device. Radial load and motion resistance of P.
  • the deflecting rotary compression device P has the structural features described above, it is advantageous not only for reducing the machining accuracy of the compressor, the production cost, and the high efficiency of maintaining the long-term use of the compressor, but also the rolling rotor 500 and the eccentricity. After the first rolling bearing 1100 is disposed between the directional sleeves 600, the frictional resistance can be further reduced, and the mechanical efficiency of the compressor can be improved.
  • the front rolling shaft 410 of the main shaft 400 of the deflection rolling rotary compression device P and the hole wall of the shaft hole 210 of the front cylinder head 200 are provided with a second rolling bearing assembly 1200, or the front end of the main shaft 400.
  • the shaft 410 is directly fitted in the shaft hole 210 of the front cylinder head 200; a second rolling bearing assembly 1200 is disposed between the rear end shaft 430 of the main shaft 400 and the hole wall of the shaft hole 310 of the rear cylinder head 300, or the rear end of the main shaft 400
  • the shaft 430 is directly fitted into the shaft hole 310 of the rear cylinder head 300, and the front cylinder head 200 and the rear cylinder head 300 are respectively fixed to the front side end surface 160 and the rear side end surface 150 of the cylinder block 100 by screws 1300.
  • the bias rolling rotary compression device P is fixed in the cylinder 100 of the cylinder 100.
  • the second rolling bearing assembly 1200 is a type of rolling bearing assembly mainly based on the radial force of the load, and each of the axial loads is mainly used.
  • Various types of rolling bearing assemblies any of various types of rolling bearing assemblies capable of simultaneously loading radial and axial forces.
  • the sliding device R includes a sliding piece 700 , a first sliding piece seal 720 , and a second sliding piece sealing 740 .
  • the sliding piece device R is installed in the sliding piece groove 120 , and the sliding piece 700 is installed.
  • the lower end of the slider 700 can be inserted into the cylinder 140 of the cylinder 100, and the lower end of the sliding plate 700 is pressed against the outer circle 540 of the rolling rotor 500.
  • the side wall of the sliding plate 700 is provided with a first sliding plate sealing groove 710 and a second sliding portion.
  • the first sealing groove 730 is opened at a middle position of the sliding plate 700 around the four end faces of the sliding plate 700, and the first sliding piece sealing groove 710 is disposed in the sliding groove 120.
  • the second sliding vane sealing groove 730 is opened below the first sliding vane sealing groove 710, that is, the second sliding vane sealing groove 730 is disposed closer to the rolling rotor than the position of the first sliding vane sealing groove 710.
  • the shape of the first sliding vane seal 720 is matched with the shape of the first sliding vane sealing groove 710, the first sliding vane seal 720 is embedded in the first sliding vane sealing groove 710, and the first sliding vane sealing 720 is located
  • the second sliding piece sealing groove 730 includes a first portion of the second sliding plate sealing groove 731 and a second portion of the second sliding piece sealing groove 732, the first portion of the second sliding piece
  • the sealing groove 731 is formed around the four end faces of the sliding plate 700, and the first portion of the second sliding plate sealing groove 731 is disposed in the sliding groove 120, and the second portion of the second sliding sealing groove 732 is respectively disposed on the sliding plate 700.
  • the intermediate position of the opposite outer end faces in the axial direction of the main shaft 400 is extended from the first portion of the second vane sealing groove 731 toward the vicinity of the rolling rotor 500 to the position of the lower end surface of the sliding plate 700, preferably the second portion is second.
  • the sheet sealing groove 732 is perpendicular to the first portion of the second sliding sheet sealing groove 7 31.
  • the second vane seal 740 includes a first portion of the second vane seal 741 and a second portion of the second vane seal 742 extending downwardly at an intermediate position of the outer portions of the first portion of the second vane seal 741.
  • the first portion of the second vane seal 740 has a second vane seal 741 embedded in the first portion of the second vane seal groove 730 in the second vane seal groove 731, and the second portion of the second vane seal 740 is second.
  • the vane seals 742 are respectively embedded in the second partial second vane seal grooves 732 on both outer sides of the second vane seal grooves 730, that is, the shape of the second vane seals 740 and the second vane seal grooves 730.
  • the shapes of the second portion of the second vane seal 742 located at the front end surface of the slider 700 projecting into the cylinder 140 of the cylinder 100 are placed on the front end surface of the slider 700 and the front cylinder head 200.
  • the second portion of the second vane seal 742 located at the rear end surface of the slider 700 extends into the cylinder 140 of the cylinder 100 at the rear end face of the slider 700 and the rear cylinder head 300.
  • the two vane seals 741 simultaneously seal the gap between the vane 700 and the slot wall of the vane slot 120 and the gap between the vane 700 and the inner end surface 220 of the front cylinder head 200 and the inner end surface 320 of the rear cylinder head 300, Achieving sealing isolation between the inside and the outside of the body, the second portion of the second vane seal 740, the second vane seal 742, the inner side end 220 of the vane 700 and the front cylinder head 200, and the inner end surface 320 of the rear cylinder head 300 The gap is sealed to achieve a sealed isolation between the high pressure gas chamber 142 and the low pressure gas chamber 141.
  • the first sliding vane seal 720 and the second sliding vane seal 740 are each formed of an elastic wear-resistant rubber material, and the lower end of the sliding vane 700 is pressed against the biasing rotary rotary compression device by the elastic force applied by the vane spring 900.
  • the sliding piece embedded with the first vane seal 720 and the second vane seal 740 can effectively reduce the leakage of the high pressure gas in the high pressure gas chamber 142 to the low pressure gas chamber 141 during operation of the compressor. After stopping the work, it can effectively prevent the high pressure gas outside the machine from flowing back into the compressor, thereby reducing the loss of working efficiency of the compressor.
  • the valve device W includes a valve 800 and a valve spring 1400 .
  • the outer peripheral wall 830 of the valve 800 has an outer cylindrical surface and a rear end surface is provided with a valve.
  • the spring fixing hole 810 is disposed in the valve guiding hole H of the rear cylinder head 300 or the front cylinder head 200.
  • the outer peripheral wall 830 of the valve 800 cooperates with the hole wall of the valve guiding hole H, and the front of the valve 800
  • the side end surface 820 faces the end surface of the cylinder 100 (the rear end surface 150 of the cylinder 100 or the front end surface 160) as a seal, that is, when the valve guide hole H is opened on the rear cylinder head 300, the front side of the valve 800
  • the end surface 820 is the rear end surface 150 of the opposite cylinder 100; when the valve guide hole H is opened on the front cylinder head 200, the front side end surface 820 of the valve 800 is the front side end surface 160 of the opposite cylinder 100, and the movable sleeve is placed
  • the valve 800 in the valve guide hole H can reciprocate in the valve guide hole H.
  • the valve spring 1400 is fitted in the valve spring fixing hole 810 of the valve 800 opened at the rear end surface, so that the front side end surface 820 of the valve 800 can Pressing on the end face of the cylinder 100 seals the cylinder 140 from the exhaust groove F, and when the cylinder 140 After the high pressure gas pressure in the high pressure gas chamber 142 reaches a certain level (overcoming the elastic force of the valve spring 1400 and the gas pressure outside the body), the high pressure gas can push the front end surface 820 of the valve 800 away from the end surface of the cylinder 100 to make the high pressure gas. It can be discharged from the exhaust groove F communicating with the orifice of the valve guide hole H.
  • the valve 800 can be reset by the elastic force of the valve spring 1400 and the gas pressure outside the body, so that the front end surface 820 of the valve 800 is again The end face of the cylinder 100 is again pressed to seal the cylinder 140 from the exhaust groove F.
  • the rear side end surface 150 or the front side end surface 160 of the cylinder block 100 is provided with a pressure accumulating chamber M at a position corresponding to the front side end surface 820 of the valve 800, or the pressure accumulating chamber M is opened on the front side end surface 820 of the valve 800.
  • the pressure accumulating chamber M can relatively increase the pressure forming area and the exhaust area of the high pressure gas in the high pressure gas chamber 142 of the cylinder 140, which facilitates the accumulation of the high pressure gas in the high pressure gas chamber 142 of the cylinder 140 to open the valve 800.
  • the valve 800 is pushed away from the cylinder 100 and the high pressure gas exhaust in the high pressure gas chamber 142 can be made smoother.
  • a through hole K is formed between the bottom of the valve guide hole H and the outer end surface 330 of the rear cylinder head 300 or the outer end surface 230 of the front cylinder head 200, so that the rear end surface of the valve 800 and the bottom of the valve guide hole H can be opened.
  • the cavity formed is ventilated to prevent the cavity from affecting the flexibility of the valve 800 to reciprocate due to the formation of a high pressure or vacuum seal cavity, affecting the exhaust gas, and also utilizing the external gas through the through hole K
  • the pressure causes the front side end surface 820 of the valve 800 to be pressed more tightly against the end surface of the cylinder block 100, improving the airtightness between the high pressure gas chamber 142 and the exhaust groove F. Since the venting mechanism of the present invention has only the size of the pressure accumulating chamber M, the volumetric efficiency of the compressor can be further improved.
  • the two outer end faces of the rolling rotor 500 are respectively provided with an annular rolling rotor end face sealing groove 510 at a position close to the outer circle 540 thereof.
  • a rolling rotor end face sealing ring 520 is fitted in the sealing groove 510.
  • the rolling rotor end face sealing ring 520 has a shape matching the shape of the rolling rotor end face sealing groove 510.
  • the rolling rotor end face sealing ring 520 is located at the front end surface of the rolling rotor 500.
  • the rolling rotor end seal ring 520 located at the rear end surface of the rolling rotor 500 is located between the rear end surface of the rolling rotor 500 and the inner end surface 320 of the rear end cover 300.
  • the rolling rotor end face seal ring 520 is made of an elastic wear resistant rubber material.
  • the rolling rotor end face seal ring 520 is disposed close to the rolling rotor outer circle 540, and the amount of high pressure gas stored in the high pressure gas chamber 142 after the exhaust gas is completed can be reduced, and the air compression efficiency of the compressor can be improved.
  • an oil supply groove G leading from the hole of the shaft hole 310 of the rear cylinder head 300 to the cylinder 140 is opened on the inner end surface 320 of the rear cylinder head 300 corresponding to the low pressure air chamber 141 .
  • a water supply groove G leading from the hole of the shaft hole 210 of the front cylinder head 200 to the cylinder 140 is opened on the side corresponding to the low pressure air chamber 141, and an oil supply passage is provided in the main shaft 400 for supplying
  • the oil groove G communicates with an oil supply passage in the main shaft 400.
  • the oil supply passage in the main shaft 400 includes a main oil hole 440 extending axially along the main shaft 400 and an oil hole 450 extending radially along the main shaft 400.
  • the main shaft 400 The outer side of the corresponding oil-receiving hole 450 is provided with a retreating oil groove 401, and the oil-receiving hole 450 communicates with the retracting oil groove 401, and the oil supply groove G can communicate with the main oil hole 440 through the oil-retaining hole 450 and the retracting oil groove 401.
  • the retracting oil groove 401 can keep the oil supply hole 450 in communication with the oil supply groove G, and after the oil supply groove G is opened at the inner end surface 320 of the rear cylinder head 300 or the inner end surface 220 of the front cylinder head 200,
  • the lubricating oil can be directly entered from the main oil hole 440 of the main shaft 400, and then injected into the cylinder 140 from the oil supply groove G through the oil supply hole 450, thereby further ensuring the supply of lubricating oil required for lubrication and sealing of the compressor interior, and further improving.
  • the lubrication and sealing conditions inside the compressor make the compressor more durable and airtight.
  • the rotary compressor of the invention has the advantages of reliable sealing, good air tightness, strong compression capability, high work efficiency, simple process, low production cost, and high efficiency for long-term use.
  • the present embodiment adopts a vertical structure scheme in which the front cylinder head 200 is placed below and the rear cylinder head 300 is placed above. Considering that the vertical structure scheme will give the front cylinder head 200 placed below.
  • a relatively large axial load is brought about if the front end shaft 410 of the main shaft 400 in the biasing rotary compression device P is only movably fitted to the shaft of the front cylinder head 200 by the second rolling bearing assembly 1200 which is mainly loaded with radial force.
  • the inside of the hole 210 or directly in the shaft hole 210 of the front cylinder head 200 causes a large contact between the directional sliding shaft 420 of the main shaft 400 and the inner end surface 220 of the front cylinder head 200 due to a small contact area and a large pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种旋转式压缩机,包括缸体(100)、前缸盖(200)、后缸盖(300),所述缸体(100)的气缸(140)内设置有偏向滚动旋转式压缩装置(P),偏向滚动旋转式压缩装置(P)包括主轴(400)、滚动转子(500)和偏心定向套轴(600),偏心定向套轴(600)活动套装在主轴(400)上的定向滑轴(420)外侧,且偏心定向套轴(600)与定向滑轴(420)之间设有弹性件,滚动转子(500)套装在偏心定向套轴(600)外侧,主轴(400)的前端轴(410)和后端轴(430)分别套装在前缸盖(200)的轴孔(210)内和后缸盖(300)的轴孔(310)内,气缸(140)的缸壁(130)开设有滑片槽(120),滑片槽(120)内设置有能在滑片槽(120)内往复滑动的滑片装置(R),且滑片装置(R)端部压在滚动转子(500)的外圆(540)上,滚动转子(500)能偏向压在气缸(140)的缸壁(130)上滚动旋转,并在滚动旋转中在气缸(140)内形成高压气室(142)和低压气室(141),且高压气室(142)的侧壁设有排气机构,低压气室(141)开设有进气口(110)。该旋转式压缩机不但密封可靠,工作效率高,润滑条件好,而且加工要求低。

Description

一种旋转式压缩机
技术领域
本发明涉及压缩机领域,尤其涉及一种旋转式压缩机,属于旋转式压缩机的改进技术。
背景技术
传统的旋转式压缩机,虽然具有结构简单紧凑、零部件少等优点,但也存在着以下问题:
1. 滚动转子的密封问题。由于滚动转子外圆与缸体气缸缸壁之间所构成的径向密封,是半径不等的两圆弧面之间的不等间距间隙密封,密封条件本来就比较差,而密封行程又比较长,因此,要使这样的密封能够达到压缩机的密封要求,除了要将滚动转子外圆与缸体气缸缸壁之间的间隙控制在很小的范围内之外,还需要有较多的润滑油填补间隙,不但技术难度大,而且密封可靠性差。虽然,滚动转子两外侧端面与前端盖内侧端面和后端盖内侧端面之间所构成的轴向密封,都是平面与平面之间的等间距间隙密封,间隙相对比较容易得到控制并有利于形成有效密封油层,但由于要靠通过这些密封间隙对压缩机内部其他密封的润滑和密封提供润滑油,因此,就使这些密封的气密性因存在间隙而受到了限制。
2. 滑片的密封问题。由于滑片两内侧端面与缸体滑片槽两槽面之间和滑片两外侧端面与前缸盖内侧端面和后缸盖内侧端面之间的密封都是间隙密封,因此,就使得压缩机工作时,高压气室内的高压气体会向低压气室泄漏,而停止工作后,机体外的高压气体又会回流到压缩机的内部,从而使压缩机工作效率下降。
3. 排气机构的容积效率问题。由于排气机构的余隙容积比较大,因此,压缩机的容积效率相对比较低。
4. 压缩机的生产成本和效率保持问题。由于压缩机的多处密封,都是间隙密封,要使这样的密封能够起到密封的作用,就要有很高的加工精度和装配精度,因此,不但生产成本高,而且无法保持压缩机长期使用的高效性。
发明内容
本发明的目的是为克服上述现有技术中的至少一种不足,提供了一种滚动转子外圆与缸体气缸缸壁之间的径向密封性能好的旋转式压缩机。
为了达到上述目的,本发明采取的技术方案:一种旋转式压缩机,包括缸体及分别固定在缸体的前侧端面和后侧端面的前缸盖和后缸盖,所述缸体内开设有缸壁为圆柱形表面的气缸,所述缸体的气缸内设置有偏向滚动旋转式压缩装置,所述偏向滚动旋转式压缩装置包括主轴、滚动转子、偏心定向套轴,所述主轴包括有依次连接的前端轴、定向滑轴和后端轴,所述偏心定向套轴内部开设有偏心定向滑孔,偏心定向套轴通过其偏心定向滑孔套装在主轴上的定向滑轴外侧,偏心定向套轴能在主轴的定向滑轴上沿垂直于主轴的轴心线的方向往复滑动,且偏心定向套轴与定向滑轴之间设有弹性件,滚动转子套装在偏心定向套轴外侧,主轴的前端轴套装在前缸盖的轴孔内,主轴的后端轴套装在后缸盖的轴孔内,所述气缸的缸壁开设有滑片槽,滑片槽内设置有能在滑片槽内往复滑动的滑片装置,且滑片装置的端部压在滚动转子的外圆上,所述滚动转子能压在气缸的缸壁上滚动旋转,并在滚动旋转中在气缸内形成高压气室和低压气室,且高压气室的侧壁设有排气机构,低压气室开设有进气口。
上述方案中,主轴带动偏心定向套轴旋转,使得滚动转子压在气缸的缸壁上滚动旋转,由于偏心定向套轴的偏心定向滑孔是偏心的,且在偏心定向套轴的偏心定向滑孔与主轴的定向滑轴之间设有弹性件,因此,就使得滚动转子能够在弹性件的弹力作用下偏向压在气缸的缸壁上,偏向压在气缸的缸壁上的滚动转子,即使在高压气室压力不断升高的情况下,其外圆都始终能够与气缸的缸壁保持紧密接触,以消除滚动转子的外圆与气缸的缸壁之间的间隙,提高滚动转子外圆与气缸缸壁之间的径向密封性能和高效保证完成整个压缩过程。
为了保证高压气室内的压缩气体尽可能全部排出,提高压缩机的空气压缩效率,上述排气机构包括开设在后缸盖的内侧端面上或前缸盖的内侧端面上的阀门导孔、从阀门导孔孔口通向外界的排气槽及安装在阀门导孔内的阀门装置,且缸体的端面覆盖于排气槽的上面,所述阀门装置包括阀门和阀门弹簧,阀门外周壁与阀门导孔的孔壁配合,且阀门能在阀门导孔内往复活动,阀门弹簧设置于阀门与阀门导孔的孔底之间,使得阀门的前侧端面能在阀门弹簧的弹力作用下压在缸体的端面而将气缸与排气槽密封隔离。
为了使得压缩空气可更顺利推动阀门打开而排气,上述缸体的端面在与阀门的前侧端面相对应的位置开设有储压腔,或者所述阀门的前侧端面开设有储压腔。
为了提高阀门往复活动的灵活性和使阀门能利用机体外部的气体压力而更好地进行密封,所述阀门导孔的壁部开设有通孔。
为了保证偏心定向套轴可以平稳地在主轴的定向滑轴上往复滑动,且确保偏心定向套轴可以带动滚动转子压在气缸的缸壁上滚动旋转和使得滚动转子即使在高压气室压力不断升高的情况下,都仍然能够保持紧压在气缸的缸壁上滚动旋转直至完成整个压缩过程,上述弹性件为压力弹簧,所述主轴的定向滑轴的外周轴面包括有上侧轴面、下侧轴面、左侧轴面、右侧轴面,其中,左侧轴面和右侧轴面为互相平行的平面,下侧轴面开设有至少一个压力弹簧固定孔,所述偏心定向套轴内部的偏心定向滑孔的内周孔面包括有上侧孔面、下侧孔面、左侧孔面、右侧孔面,其中,左侧孔面和右侧孔面为互相平行的平面,且左侧孔面与右侧孔面之间的中心平面偏离于偏心定向套轴的外圆圆心,偏心定向套轴通过其偏心定向滑孔套装在主轴上的定向滑轴外侧,偏心定向滑孔的左侧孔面对应与定向滑轴的左侧轴面配合,偏心定向滑孔的右侧孔面对应与定向滑轴的右侧轴面配合,偏心定向滑孔的上侧孔面对应与定向滑轴的上侧轴面套合并在上侧孔面与上侧轴面之间预留有能使偏心定向套轴相对定向滑轴活动的上侧间隙,偏心定向滑孔的下侧孔面对应与定向滑轴的下侧轴面套合并在下侧孔面与下侧轴面之间预留有能使偏心定向套轴相对定向滑轴活动的下侧间隙,压力弹簧的一端置于定向滑轴的压力弹簧固定孔内,压力弹簧的另一端抵压在偏心定向套轴的偏心定向滑孔的下侧孔面,偏心定向套轴能平行于定向滑轴的左侧轴面和右侧轴面并沿垂直于主轴的轴心线的方向往复滑动,套装在主轴的定向滑轴上的偏心定向套轴的偏厚部分置于要应对前方高压气室压力、旋转相位相对超前的一侧。
为了保证偏心定向套轴可以更加平稳地在主轴的定向滑轴上往复滑动,所述偏心定向套轴的偏心定向滑孔的左侧孔面与右侧孔面之间的平面距离与所述主轴的定向滑轴的左侧轴面与右侧轴面之间的平面距离相等,所述偏心定向套轴的偏心定向滑孔套装在所述主轴的定向滑轴上,偏心定向滑孔的左侧孔面与右侧孔面之间的中心平面与定向滑轴的左侧轴面与右侧轴面之间的中心平面重合。
为了使主轴转动平稳和减小转动过程中所产生的摩擦,提高压缩机的机械效率,上述主轴的前端轴与前缸盖的轴孔的孔壁之间设有第二滚动轴承组件;主轴的后端轴与后缸盖的轴孔的孔壁之间设有第二滚动轴承组件。
为了进一步提高气密性,减少高压气室的高压气体通过滑片与前缸盖和后缸盖之间的间隙回流至低压气室和阻止外部的高压气体通过滑片槽和滑片之间的间隙向内部回流,上述滑片装置包括滑片、第一滑片密封、第二滑片密封,所述滑片的侧壁开设有第一滑片密封槽和第二滑片密封槽,所述第一滑片密封槽在滑片的中段位置环绕滑片的四侧端面开设,所述第二滑片密封槽的所设位置比第一滑片密封槽的所设位置更靠近滚动转子,所述第二滑片密封槽包括第一部分第二滑片密封槽和第二部分第二滑片密封槽,第一部分第二滑片密封槽环绕滑片的四侧端面开设,第二部分第二滑片密封槽分别在滑片上沿主轴轴线方向的相对两外侧端面、从第一部分第二滑片密封槽开始向靠近滚动转子的方向延伸开设至靠近滑片的端面位置,所述第一滑片密封的形状与第一滑片密封槽的形状相匹配,所述第二滑片密封的形状与第二滑片密封槽的形状相匹配,所述第一滑片密封嵌装在第一滑片密封槽内,第二滑片密封嵌装在第二滑片密封槽内。
同样地,为了提高气密性,减少高压气室的高压气体从滚动转子与前缸盖和后缸盖之间的间隙泄漏,上述滚动转子的两外侧端面在靠近其外圆的位置分别开设有环形的滚动转子端面密封槽,所述滚动转子端面密封槽内嵌装有滚动转子端面密封环,滚动转子端面密封环的形状与滚动转子端面密封槽的形状相匹配。此外,滚动转子端面密封环设置在靠近滚动转子外圆的位置,还可以减少在排气完成后储存在高压气室的高压气体余量,提高压缩机的空气压缩效率。
为了保证和改善对压缩机内部润滑和密封所需的润滑油供应,进一步提高压缩机的机械效率和气密性,上述后缸盖的内侧端面上对应低压气室一侧开设有从后缸盖的轴孔孔口通向至气缸的供油槽,主轴内开设有供油通道,供油槽与供油通道连通;或者在前缸盖的内侧端面上对应低压气室一侧开设有从前缸盖的轴孔孔口通向至气缸的供油槽,主轴内开设有供油通道,供油槽与供油通道连通。
为了降低滚动转子的内圆与偏心定向套轴的外圆之间的摩擦,上述滚动转子的内圆与偏心定向套轴的外圆之间设有第一滚动轴承组件。
与现有技术相比,本发明具有如下优点:
1. 密封可靠,气密性好。
2. 压缩能力强,工作效率高。
3. 工艺简单,生产成本低。
4. 能保持长期使用的高效性。
附图说明
图1为本发明实施例1的压缩机内部的径向结构示意图。
图2为本发明实施例1的压缩机内部的轴向结构示意图。
图3为本发明实施例1的偏向滚动旋转式压缩装置的径向结构分解示意图。
图4为本发明实施例1的偏向滚动旋转式压缩装置的立体结构分解示意图。
图5为本发明实施例1的滑片装置的立体结构分解示意图。
图6为本发明实施例1的排气机构、缸体及后缸盖的轴向结构分解示意图。
图7为本发明实施例1的排气机构与后缸盖的立体结构分解示意图。
图8为本发明实施例1的压缩机的立体结构分解示意图。
图9为本发明的循环工作原理示意图。
图10为本发明实施例2的压缩机的立式结构的轴向结构示意图。
具体实施方式
下面结合附图对本发明做进一步说明。附图仅用于示例性说明,不能理解为对本专利的限制。
为了更简洁的说明本实施例,附图或说明中某些本领域技术人员公知的、但与本创造的主要内容不相关的零部件会有所省略。另外为便于表述,附图中某些零部件会有省略、放大或缩小,但并不代表实际产品的尺寸或全部结构。
实施例1:
本实施例的旋转式压缩机的结构如图1至9所示,包括缸体100及分别固定在缸体100的前侧端面160和后侧端面150的前缸盖200和后缸盖300,所述缸体100内开设有缸壁130为圆柱形表面的气缸140、与气缸140连通的进气口110和滑片槽120,所述缸体100的气缸140内设置有偏向滚动旋转式压缩装置P,所述偏向滚动旋转式压缩装置P包括主轴400、滚动转子500、偏心定向套轴600,所述主轴400包括有依次连接的前端轴410、定向滑轴420和后端轴430,所述偏心定向套轴600内部开设有偏心定向滑孔610,偏心定向套轴600通过其偏心定向滑孔610套装在主轴400上的定向滑轴420外侧,偏心定向套轴600能在主轴400的定向滑轴420上沿垂直于主轴400的轴心线O1—O1的方向往复滑动,且偏心定向套轴600与定向滑轴420之间设有弹性件,滚动转子500套装在偏心定向套轴600外侧,主轴400的前端轴410套装在前缸盖200的轴孔210内,主轴400的后端轴430套装在后缸盖300的轴孔310内,所述缸壁130上的滑片槽120内设置有能在滑片槽120内往复滑动的滑片装置R,滑片装置R的下端部能通过滑片弹簧900压在滚动转子500的外圆540上,在主轴400通过偏心定向套轴600带动下,滚动转子500能偏向压在气缸140的缸壁130上滚动旋转,并在滚动旋转中在气缸140内形成高压气室142和低压气室141,进气口110开设在缸壁130对应低压气室141的一侧,并尽可能靠近滑片槽120的位置,高压气室142的侧壁设有排气机构,排气机构设在靠近滑片槽120的位置。
如图6、8所示,上述后缸盖300的内侧端面320上分别开设有阀门导孔H、从阀门导孔H孔口通向外界的排气槽F、从后缸盖300的轴孔310孔口通向至气缸140的供油槽G,在后缸盖300的外侧端面330上对应阀门导孔H的位置开设有孔径小于阀门导孔H的孔径、且与阀门导孔H连通的通孔K,优选的,通孔K位于阀门导孔H的孔底,通孔K贯穿阀门导孔H的孔底和后缸盖300的外侧端面330,排气槽F的上面被缸体100的后侧端面150覆盖。或者,所述前缸盖200的内侧端面220上分别开设有阀门导孔H、从阀门导孔H孔口通向外界的排气槽F、从前缸盖200的轴孔210孔口通向至气缸140的供油槽G,在前缸盖200的外侧端面230上对应阀门导孔H的位置开设有孔径小于阀门导孔H的孔径、且与阀门导孔H连通的通孔K,优选的,通孔K位于阀门导孔H的孔底,通孔K贯穿阀门导孔H的孔底和前缸盖200的外侧端面230,排气槽F的上面被缸体100的前侧端面160覆盖,所述在后缸盖300或者前缸盖200上开设的阀门导孔H内设置有能在阀门导孔H内往复滑动的阀门装置W。
见图1、图2、图3、图4、图8,本实施例中,上述弹性件为压力弹簧1000,上述主轴400的定向滑轴420的外周轴面包括有上侧轴面421、下侧轴面423、左侧轴面422、右侧轴面424,其中,左侧轴面422和右侧轴面424都是互相平行的平面,下侧轴面423开设有至少一个压力弹簧固定孔425,所述偏心定向套轴600的外周轴面620为圆柱形表面,偏心定向套轴600内部开设有偏心定向滑孔610,所述偏心定向滑孔610的内周孔面包括有上侧孔面611、下侧孔面613、左侧孔面612、右侧孔面614,其中,左侧孔面612和右侧孔面614为互相平行的平面,且左侧孔面612与右侧孔面614之间的中心平面B-B偏离于偏心定向套轴600的外圆圆心O2,偏离的距离为d,所述偏心定向套轴600的偏心定向滑孔610的左侧孔面612与右侧孔面614之间的平面距离与所述主轴400的定向滑轴420的左侧轴面422与右侧轴面424之间的平面距离相等,都等于t ,所述偏心定向套轴600的偏心定向滑孔610套装在所述主轴400的定向滑轴420上,为保证左侧孔面612与左侧轴面422之间的间隙和右侧孔面614与右侧轴面424之间的间隙均为零,偏心定向滑孔610的左侧孔面612与右侧孔面614之间的中心平面B-B与定向滑轴420的左侧轴面422与右侧轴面424之间的中心平面A-A重合,偏心定向滑孔610的上侧孔面611对应与定向滑轴420的上侧轴面421套合并在上侧孔面611与上侧轴面421之间预留有能使偏心定向套轴600相对定向滑轴420往复活动的上侧间隙X,偏心定向滑孔610的下侧孔面613对应与定向滑轴420的下侧轴面423套合并在下侧孔面613与下侧轴面423之间预留有能使偏心定向套轴600相对定向滑轴420往复活动的下侧间隙Y,压力弹簧1000的一端置于定向滑轴420的下侧轴面423的压力弹簧固定孔425内,压力弹簧1000的另一端抵压在偏心定向套轴600的偏心定向滑孔610的下侧孔面613,通过压力弹簧1000对偏心定向滑孔610的下侧孔面613进行施压,偏心定向滑孔610的左侧孔面612对应与定向滑轴420的左侧轴面422套合并能在左侧轴面422上平行滑动,偏心定向滑孔610的右侧孔面614对应与定向滑轴420的右侧轴面424套合并能在右侧轴面424上平行滑动,套装在主轴400的定向滑轴420上的偏心定向套轴600的偏厚部分630置于定向滑轴420的左侧轴面422或右侧轴面424要应对前方高压气室142压力、旋转相位相对超前的一侧(本实施例中置于要应对前方高压气室142压力、旋转相位相对超前的右侧轴面424一侧),滚动转子500的内圆530与偏心定向套轴600的外圆620之间设有第一滚动轴承组件1100,或者滚动转子500的内圆530直接套装在偏心定向套轴600的外圆620上,所述第一滚动轴承组件1100包括以负载径向力为主的各种类型滚动轴承组件,套装在偏心定向套轴600上的滚动转子500的外圆540和内圆530的圆心O3与偏心定向套轴600的外圆620的圆心O2重合且偏离于主轴400的定向滑轴420的左侧轴面422与右侧轴面424之间的中心平面A-A和主轴400轴心O1。
套装在主轴400的定向滑轴420上的偏心定向套轴600和套装在偏心定向套轴600上的滚动转子500,在随主轴400公转时,能沿着定向滑轴420的左侧轴面422与右侧轴面424之间的中心平面A-A方向往复运动,偏心定向套轴600的外圆620圆心O2和滚动转子500的外圆540和内圆530圆心O3相对于定向滑轴420的左侧轴面422与右侧轴面424之间的中心平面A-A的距离d是保持不变的、而相对于主轴400轴心O1的距离e是相对可变的,且偏心定向套轴600不能相对于主轴400转动,而滚动转子500既能相对于主轴400偏心转动,又能相对于偏心定向套轴600同心转动,套装在主轴400的定向滑轴420和滚动转子500之间的偏心定向套轴600能在压力弹簧1000的压力作用下,如图1所示,在定向滑轴420和偏心定向套轴600的偏心定向滑孔610之间产生使滚动转子500的外圆540压在缸体100气缸140的缸壁130上,且过主轴400轴心O1和滚动转子500的外圆540压在缸体100气缸140的缸壁130上的接触点Q的延长直线C-C能与定向滑轴420的左侧轴面422与右侧轴面424之间的中心平面A-A相交形成角度大于0°的偏向夹角ω的偏向压力,使滚动转子500偏向压在缸体100气缸140的缸壁130上,偏向压在缸体100气缸140的缸壁130上的滚动转子500在连同偏心定向套轴600随主轴400公转时,能一直偏向压在缸体100气缸140的缸壁130上滚动旋转,并在滚动旋转中在气缸140内形成高压气室142和低压气室141。
见图1、图9,以逆时针方向旋转的偏向滚动旋转式压缩装置P作为工作示例,在主轴400的定向滑轴420和滚动转子500之间套装偏心定向套轴600、并在定向滑轴420与偏心定向套轴600之间设置压力弹簧1000后,不但可以使得滚动转子500在对高压气室142进行压缩的前大半周工作行程中,能对作用在滚动转子500的高压气室142的压力进行利用,使得滚动转子500更加紧密地压在缸壁130上滚动旋转而对高压气室142与低压气室141实施更为有效的密封隔离,而且,还可以使得滚动转子500在对高压气室142进行压缩的最后小半周工作行程中,利用滚动转子500与定向滑轴420的之间所形成的偏向夹角ω,对因滚动转子500工作相位改变已从原来有利于滚动转子500密封转而变成要将滚动转子500推离缸壁130、已经不利于滚动转子500密封的高压气室142压力进行抵制,使得滚动转子500只需依靠不大的压力弹簧1000压力以及在运动时所产生的离心力,就能继续压在缸壁130上滚动旋转,直至完成对高压气室142的压缩,而一旦高压气室142内的压缩气体压力超过设计压力时,滚动转子500却又会被迫自动离开缸壁130,使高压气室142内的超高压压缩气体能够通过滚动转子500与缸壁130之间的间隙向低压气室141排放而进行泄压,并在压缩行程即将结束时,更加有效地消除往往因润滑油在高压气室142内过量积聚而容易导致出现的压力突变的液击现象,使压缩机能够及时得到过压缩安全保护。在其他条件不变的前提下,套装在定向滑轴420上的偏心定向套轴600的偏心定向滑孔610的左侧孔面612与右侧孔面614之间的中心平面B-B偏离偏心定向套轴600的外圆620圆心O2的距离d越大,套装在偏心定向套轴600上的滚动转子500与定向滑轴420之间的偏向夹角ω也就越大,偏向夹角ω越大,压力弹簧1000在定向滑轴420和偏心定向套轴600之间所产生的使滚动转子500压迫缸壁130的压力就越大,越使得滚动转子500在对高压气室142进行压缩的最后小半周工作行程中能承受更高的高压气室142压力而不脱离缸壁130,压缩机的压缩能力越强,并可相对减小压力弹簧1000的压力,以减小偏向滚动旋转式压缩装置P的径向负荷和运动阻力。此外,由于偏向滚动旋转式压缩装置P具有以上所述的结构特点,因此,不但有利于降低压缩机的加工精度、生产成本和保持压缩机长期使用的高效性,而且,在滚动转子500与偏心定向套轴600之间设置第一滚动轴承1100后,还可进一步减少摩擦阻力,提高压缩机的机械效率。
见图2、图8,所述偏向滚动旋转式压缩装置P的主轴400的前端轴410与前缸盖200的轴孔210的孔壁之间设有第二滚动轴承组件1200,或者主轴400的前端轴410直接套装在前缸盖200的轴孔210内;主轴400的后端轴430与后缸盖300的轴孔310的孔壁之间设有第二滚动轴承组件1200,或者主轴400的后端轴430直接套装在后缸盖300的轴孔310内,再通过螺丝1300分别将前缸盖200和后缸盖300固定在缸体100的前侧端面160和后侧端面150 上,使偏向滚动旋转式压缩装置P固定在缸体100气缸140内,所述第二滚动轴承组件1200为以负载径向力为主的各种类型滚动轴承组件、以负载轴向力为主的各种类型滚动轴承组件、能同时负载径向力和轴向力的各种类型滚动轴承组件的任一种。在偏向滚动旋转式压缩装置P的主轴400的前端轴410和后端轴430分别套装第二滚动轴承组件1200后,就可进一步减少压缩机在工作时的机械摩擦阻力,提高工作效率。
见图1、图5、图8,所述滑片装置R包括滑片700、第一滑片密封720、第二滑片密封740,滑片装置R安装在滑片槽120内,滑片700的下端能伸入缸体100的气缸140内,且滑片700下端压在滚动转子500的外圆540上,所述滑片700的侧壁开设有第一滑片密封槽710和第二滑片密封槽730,所述第一滑片密封槽710在滑片700的中段位置环绕滑片700的四侧端面开设,且第一滑片密封槽710的所设位置位于滑片槽120内。所述第二滑片密封槽730在第一滑片密封槽710的下方开设,即是第二滑片密封槽730的所设位置比第一滑片密封槽710的所设位置更靠近滚动转子500,所述第一滑片密封720的形状与第一滑片密封槽710的形状相匹配,第一滑片密封720嵌装在第一滑片密封槽710内,第一滑片密封720位于滑片700与滑片槽120槽壁之间;所述第二滑片密封槽730包括第一部分第二滑片密封槽731和第二部分第二滑片密封槽732,第一部分第二滑片密封槽731环绕滑片700的四侧端面开设,且第一部分第二滑片密封槽731的所设位置位于滑片槽120内,第二部分第二滑片密封槽732分别在滑片700上沿主轴400轴线方向的相对两外侧端面的中间位置、从第一部分第二滑片密封槽731开始向靠近滚动转子500方向延伸开设至靠近滑片700的下端面位置,优选第二部分第二滑片密封槽732垂直于第一部分第二滑片密封槽731,所述第二滑片密封740包括第一部分第二滑片密封741和分别连接在第一部分第二滑片密封741两外侧的中间位置、向下方延伸的第二部分第二滑片密封742,第二滑片密封740的第一部分第二滑片密封741嵌装在第二滑片密封槽730的第一部分第二滑片密封槽731内,第二滑片密封740的第二部分第二滑片密封742分别嵌装在第二滑片密封槽730两外侧的第二部分第二滑片密封槽732内,即是所述第二滑片密封740的形状与第二滑片密封槽730的形状相匹配,位于滑片700的前侧端面的第二部分第二滑片密封742伸入到缸体100的气缸140内的部分置于滑片700的前侧端面与前缸盖200的内侧端面220之间,位于滑片700的后侧端面的第二部分第二滑片密封742伸入到缸体100的气缸140内的部分置于滑片700的后侧端面与后缸盖300的内侧端面320之间;第一滑片密封720和第二滑片密封740的第一部分第二滑片密封741同时对滑片700与滑片槽120槽壁之间的间隙和滑片700与前缸盖200的内侧端面220和后缸盖300的内侧端面320之间的间隙进行密封,实现对机体内与外之间的密封隔离,第二滑片密封740的第二部分第二滑片密封742对滑片700与前缸盖200的内侧端面220和后缸盖300的内侧端面320之间的间隙进行密封,实现对高压气室142与低压气室141之间的密封隔离。所述第一滑片密封720和第二滑片密封740均由弹性耐磨橡胶材料构成,所述滑片700的下端通过滑片弹簧900所施加的弹力,压在偏向滚动旋转式压缩装置P的滚动转子500的外圆540上。嵌装有第一滑片密封720和第二滑片密封740的滑片,就可以使得压缩机在工作时能有效减少高压气室142内的高压气体向低压气室141泄漏,而在压缩机停止工作后又能有效阻止机体外的高压气体回流到压缩机内部,从而减少压缩机的工作效率损失。
见图1、图2、图6、图7、图8,所述阀门装置W包括阀门800和阀门弹簧1400,所述阀门800的外周壁830表面为外圆柱形表面,后侧端面开设有阀门弹簧固定孔810,所述阀门800活动套装在后缸盖300或者前缸盖200上所开设的阀门导孔H内,阀门800外周壁830与阀门导孔H的孔壁配合,阀门800的前侧端面820作为密封面对向缸体100的端面(缸体100的后侧端面150或者前侧端面160),即是当阀门导孔H开设在后缸盖300上,则阀门800的前侧端面820是对向缸体100的后侧端面150;当阀门导孔H开设在前缸盖200上,则阀门800的前侧端面820是对向缸体100的前侧端面160,活动套装在阀门导孔H内的阀门800,能在阀门导孔H内往复活动,所述阀门弹簧1400套装在阀门800在后侧端面开设的阀门弹簧固定孔810内,使得阀门800的前侧端面820能压在缸体100的端面上将气缸140与排气槽F密封隔离,而当气缸140内的高压气室142内的高压气体压力达到一定后(克服阀门弹簧1400的弹力和机体外部的气体压力),高压气体能将阀门800的前侧端面820推离缸体100的端面,使高压气体能从与阀门导孔H的孔口连通的排气槽F排出,排气完成后,阀门800又可借助阀门弹簧1400的弹力和机体外部的气体压力复位,使阀门800的前侧端面820又再重新压在缸体100的端面而将气缸140与排气槽F密封隔离。所述缸体100的后侧端面150或者前侧端面160在与阀门800的前侧端面820相对应的位置开设有储压腔M,或者储压腔M开设在阀门800的前侧端面820上,储压腔M能相对增大气缸140的高压气室142内的高压气体的压力形成面积和排气面积,有利于气缸140高压气室142内的高压气体积聚开启阀门800的始推力,顺利地将阀门800推离缸体100和使高压气室142内的高压气体排气能够更加畅顺。在阀门导孔H的孔底与后缸盖300的外侧端面330或前缸盖200的外侧端面230之间开设通孔K,可以使阀门800后侧端面与阀门导孔H的孔底之间所形成的空腔进行透气,避免此空腔可能因形成高压状或真空状密封腔而影响阀门800往复活动的灵活性,对排气造成影响,并且还可以通过通孔K而利用外部的气体压力使得阀门800的前侧端面820更加紧密地压在缸体100的端面上,提高高压气室142与排气槽F之间的气密性。本发明的排气机构由于余隙容积只有储压腔M大小,因此就可以进一步提高压缩机的容积效率。
见图1、图2、图3、图4,图8,所述滚动转子500的两外侧端面在靠近其外圆540的位置分别开设有环形的滚动转子端面密封槽510,所述滚动转子端面密封槽510内嵌装有滚动转子端面密封环520,所述滚动转子端面密封环520的形状与滚动转子端面密封槽510的形状相匹配,位于滚动转子500前侧端面的滚动转子端面密封环520位于滚动转子500前侧端面与前端盖200的内侧端面220之间,位于滚动转子500后侧端面的滚动转子端面密封环520位于滚动转子500后侧端面与后端盖300的内侧端面320之间。所述滚动转子端面密封环520由弹性耐磨橡胶材料制成。嵌装有滚动转子端面密封环520的滚动转子500,就能够更加有效地解决轴向密封问题,提高压缩机的气密性。此外,滚动转子端面密封环520设置在靠近滚动转子外圆540的位置,还可以减少在排气完成后储存在高压气室142的高压气体余量,提高压缩机的空气压缩效率。
见图1、图7、图8,在后缸盖300的内侧端面320上对应低压气室141一侧开设有从后缸盖300的轴孔310孔口通向至气缸140的供油槽G,或者在前缸盖200的内侧端面220上对应低压气室141一侧开设有从前缸盖200的轴孔210孔口通向至气缸140的供油槽G,主轴400内开设有供油通道,供油槽G与主轴400内的供油通道连通,所述主轴400内的供油通道包括沿主轴400轴向开设的主油孔440及沿主轴400径向开设的支油孔450,所述主轴400的外侧在对应支油孔450的位置开设有退刀油槽401,支油孔450与退刀油槽401连通,供油槽G能通过支油孔450及退刀油槽401与主油孔440连通。压缩机运行时,退刀油槽401可使得支油孔450是一直与供油槽G保持连通的,在后缸盖300的内侧端面320或者前缸盖200的内侧端面220开设了供油槽G后,润滑油就可以直接从主轴400的主油孔440进入,再经支油孔450从供油槽G注入到气缸140中,从而更加保证对压缩机内部润滑和密封所需的润滑油供应,进一步改善压缩机内部的润滑和密封条件,使得压缩机的耐久性和气密性更加好。
本发明的旋转式压缩机具有密封可靠,气密性好、压缩能力强,工作效率高、工艺简单,生产成本低、能保持长期使用的高效性等优点。
实施例2:
见图10,本实施例所采用的是将前缸盖200置于下方、将后缸盖300置于上方的立式结构方案,考虑到立式结构方案会给置于下方的前缸盖200带来比较大的轴向负荷,如果偏向滚动旋转式压缩装置P中的主轴400的前端轴410仅是通过以负载径向力为主的第二滚动轴承组件1200活动套装在前缸盖200的轴孔210内或者直接活动套装在前缸盖200的轴孔210内,就会使得主轴400的定向滑轴420与前缸盖200的内侧端面220之间因接触面积小、压力大而产生比较大的摩擦,不利于压缩机长期正常工作,为此,在主轴400的前端轴410与前缸盖200的轴孔210之间或者主轴400的定向滑轴420与前缸盖200的内侧端面220之间设置以负载轴向力为主或者能同时负载径向力和轴向力的第二滚动轴承组件1200,就可以将上述的问题解决。

Claims (11)

  1. 一种旋转式压缩机,包括缸体(100)及分别固定在缸体(100)的前侧端面(160)和后侧端面(150)的前缸盖(200)和后缸盖(300),其特征在于:所述缸体(100)内开设有缸壁(130)为圆柱形表面的气缸(140),所述缸体(100)的气缸(140)内设置有偏向滚动旋转式压缩装置(P),所述偏向滚动旋转式压缩装置(P)包括主轴(400)、滚动转子(500)及偏心定向套轴(600),所述主轴(400)包括有依次连接的前端轴410)、定向滑轴(420)和后端轴(430),所述偏心定向套轴(600)内部开设有偏心定向滑孔(610),偏心定向套轴(600)通过其偏心定向滑孔(610)套装在主轴(400)上的定向滑轴(420)外侧,偏心定向套轴(600)能在主轴(400)的定向滑轴(420)上沿垂直于主轴(400)的轴心线(O1—O1)的方向往复滑动,且在偏心定向套轴(600)与定向滑轴(420)之间设有弹性件,滚动转子(500)套装在偏心定向套轴(600)外侧,主轴(400)的前端轴(410)套装在前缸盖(200)的轴孔(210)内,主轴(400)的后端轴(430)套装在后缸盖(300)的轴孔(310)内,所述气缸(140)的缸壁(130)开设有滑片槽(120),所述滑片槽(120)内设置有能在滑片槽(120)内往复滑动的滑片装置(R),且滑片装置(R)的端部压在滚动转子(500)的外圆(540)上,所述滚动转子(500)能压在气缸(140)的缸壁(130)上滚动旋转,并在滚动旋转中在气缸(140)内形成高压气室(142)和低压气室(141),且高压气室(142)的侧壁设有排气机构,低压气室(141)开设有进气口(110)。
  2. 根据权利要求1所述的旋转式压缩机,其特征在于:所述排气机构包括开设在后缸盖(300)的内侧端面(320)上或前缸盖(200)的内侧端面(220)上的阀门导孔(H)、从阀门导孔(H)孔口通向外界的排气槽(F)及安装在阀门导孔(H)内的阀门装置(W),且缸体(100)的端面覆盖于排气槽(F)的上面,所述阀门装置(W)包括阀门(800)和阀门弹簧(1400),阀门(800)的外周壁(830)与阀门导孔(H)的孔壁配合,且阀门(800)能在阀门导孔(H)内往复活动,阀门弹簧(1400)设置于阀门(800)与阀门导孔(H)的孔底之间,使得阀门(800)的前侧端面(820)能在阀门弹簧(1400)的弹力作用下压在缸体(100)的端面而将气缸(140)与排气槽(F)密封隔离。
  3. 根据权利要求2所述的旋转式压缩机,其特征在于:所述缸体(100)的端面在与阀门(800)的前侧端面(820)相对应的位置开设有储压腔(M);或者所述阀门(800)的前侧端面(820)开设有储压腔(M)。
  4. 根据权利要求2所述的旋转式压缩机,其特征在于:所述阀门导孔(H)的壁部开设有通孔(K)。
  5. 根据权利要求1所述的旋转式压缩机,其特征在于:所述弹性件为压力弹簧(1000),所述主轴(400)的定向滑轴(420)的外周轴面包括有上侧轴面(421)、下侧轴面(423)、左侧轴面(422)、右侧轴面(424),其中,左侧轴面(422)和右侧轴面(424)为互相平行的平面,下侧轴面(423)开设有至少一个压力弹簧固定孔(425),所述偏心定向套轴(600)内部的偏心定向滑孔(610)的内周孔面包括有上侧孔面(611)、下侧孔面(613)、左侧孔面(612)、右侧孔面(614),其中,左侧孔面(612)和右侧孔面(614)为互相平行的平面,且左侧孔面(612)与右侧孔面(614)之间的中心平面(B-B)偏离于偏心定向套轴(600)的外圆(620)圆心(O2),偏心定向套轴(600)通过其偏心定向滑孔(610)套装在主轴(400)上的定向滑轴(420)外侧,偏心定向滑孔(610)的左侧孔面(612)对应与定向滑轴(420)的左侧轴面(422)配合,偏心定向滑孔(610)的右侧孔面(614)对应与定向滑轴(420)的右侧轴面(424)配合,偏心定向滑孔(610)的上侧孔面(611)对应与定向滑轴(420)的上侧轴面(421)套合并在上侧孔面(611)与上侧轴面(421)之间预留有能使偏心定向套轴(600)相对定向滑轴(420)活动的上侧间隙(X),偏心定向滑孔(610)的下侧孔面(613)对应与定向滑轴(420)的下侧轴面(423)套合并在下侧孔面(613)与下侧轴面(423)之间预留有能使偏心定向套轴(600)相对定向滑轴(420)活动的下侧间隙(Y),压力弹簧(1000)的一端置于定向滑轴(420)的压力弹簧固定孔(425)内,压力弹簧(1000)的另一端抵压在偏心定向套轴(600)的偏心定向滑孔(610)的下侧孔面(613),偏心定向套轴(600)能平行于定向滑轴(420)的左侧轴面(422)和右侧轴面(424)并沿垂直于主轴(400)的轴心线(O1—O1)的方向往复滑动,套装在主轴(400)的定向滑轴(420)上的偏心定向套轴(600)的偏厚部分(630)置于要应对前方高压气室(142)压力、旋转相位相对超前的一侧。
  6. 根据权利要求5所述的一种旋转式压缩机,其特征在于:所述偏心定向套轴(600)的偏心定向滑孔(610)的左侧孔面(612)与右侧孔面(614)之间的平面距离与所述主轴(400)的定向滑轴(420)的左侧轴面(422)与右侧轴面(424)之间的平面距离相等,所述偏心定向套轴(600)的偏心定向滑孔(610)套装在所述主轴(400)的定向滑轴(420)上,偏心定向滑孔(610)的左侧孔面(612)与右侧孔面(614)之间的中心平面(B-B)与定向滑轴(420)的左侧轴面(422)与右侧轴面(424)之间的中心平面(A-A)重合。
  7. 根据权利要求1所述的一种旋转式压缩机,其特征在于:所述主轴(400)的前端轴(410)与前缸盖(200)的轴孔(210)的孔壁之间设有第二滚动轴承组件(1200);主轴(400)的后端轴(430)与后缸盖(300)的轴孔(310)的孔壁之间设有第二滚动轴承组件(1200)。
  8. 根据权利要求1所述的旋转式压缩机,其特征在于:所述滑片装置(R)包括滑片(700)、第一滑片密封(720)、第二滑片密封(740),所述滑片(700)的侧壁开设有第一滑片密封槽(710)和第二滑片密封槽(730),所述第一滑片密封槽(710)在滑片(700)的中段位置环绕滑片(700)的四侧端面开设,所述第二滑片密封槽(730)的所设位置比第一滑片密封槽(710)的所设位置更靠近滚动转子(500),所述第二滑片密封槽(730)包括第一部分第二滑片密封槽(731)和第二部分第二滑片密封槽(732),第一部分第二滑片密封槽(731)环绕滑片(700)的四侧端面开设,第二部分第二滑片密封槽(732)分别在滑片(700)上沿主轴(400)轴线方向的相对两外侧端面、从第一部分第二滑片密封槽(731)开始向靠近滚动转子(500)的方向延伸开设至靠近滑片(700)的端面位置,所述第一滑片密封(720)的形状与第一滑片密封槽(710)的形状相匹配,所述第二滑片密封(740)的形状与第二滑片密封槽(730)的形状相匹配,所述第一滑片密封(720)嵌装在第一滑片密封槽(710)内,第二滑片密封(740)嵌装在第二滑片密封槽(730)内。
  9. 根据权利要求1所述的旋转式压缩机,其特征在于:所述滚动转子(500)的两外侧端面在靠近其外圆(540)的位置分别开设有环形的滚动转子端面密封槽(510),所述滚动转子端面密封槽(510)内嵌装有滚动转子端面密封环(520),所述滚动转子端面密封环(520)的形状与滚动转子端面密封槽(510)的形状相匹配。
  10. 根据权利要求1所述的旋转式压缩机,其特征在于:所述后缸盖(300)的内侧端面(320)上对应低压气室(141)一侧开设有从后缸盖(300)的轴孔(310)孔口通向至气缸(140)的供油槽(G),主轴(400)内开设有供油通道,供油槽(G)与供油通道连通;或者在前缸盖(200)的内侧端面(220)上对应低压气室(141)一侧开设有从前缸盖(200)的轴孔(210)孔口通向至气缸(140)的供油槽(G),主轴(400)内开设有供油通道,供油槽(G)与供油通道连通。
  11. 根据权利要求1至10任一项所述的旋转式压缩机,其特征在于:所述滚动转子(500)的内圆(530)与偏心定向套轴(600)的外圆(620)之间设有第一滚动轴承组件(1100)。
PCT/CN2016/079630 2016-04-19 2016-04-19 一种旋转式压缩机 WO2017181335A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079630 WO2017181335A1 (zh) 2016-04-19 2016-04-19 一种旋转式压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/079630 WO2017181335A1 (zh) 2016-04-19 2016-04-19 一种旋转式压缩机

Publications (1)

Publication Number Publication Date
WO2017181335A1 true WO2017181335A1 (zh) 2017-10-26

Family

ID=60115530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079630 WO2017181335A1 (zh) 2016-04-19 2016-04-19 一种旋转式压缩机

Country Status (1)

Country Link
WO (1) WO2017181335A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109356848A (zh) * 2018-11-08 2019-02-19 周琦人 滑片式空气压缩机
CN110425139A (zh) * 2019-08-19 2019-11-08 珠海格力节能环保制冷技术研究中心有限公司 滑片组件、压缩机及空调器
CN114876788A (zh) * 2022-05-31 2022-08-09 嵊州市浙江工业大学创新研究院 无接触滑片泵及其滑片机构
CN117329127A (zh) * 2023-12-01 2024-01-02 成都理工大学 一种滑片式与离心式复合的压缩机械

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286979A (ja) * 2003-01-28 2003-10-10 ▲荒▼田 哲哉 ヘリカルブレ−ド式圧縮機
US6739847B1 (en) * 2002-12-23 2004-05-25 Rechi Precision Co., Ltd. Structure of check valve with silencing cover
CN201155460Y (zh) * 2008-01-29 2008-11-26 江苏超力机械有限公司 旋转式压缩机
CN103591022A (zh) * 2013-08-02 2014-02-19 西安交通大学 一种滚动活塞类流体机械的滑块式径向柔性补偿机构
CN204312356U (zh) * 2014-12-05 2015-05-06 广东美芝制冷设备有限公司 旋转式压缩机
CN105736371A (zh) * 2016-04-19 2016-07-06 彭力丰 一种旋转式压缩机
CN105736378A (zh) * 2016-04-19 2016-07-06 彭力丰 一种密封性能好的旋转式压缩机
CN105782039A (zh) * 2016-04-19 2016-07-20 彭力丰 一种容积效率高的旋转式压缩机
CN205503454U (zh) * 2016-04-19 2016-08-24 彭力丰 一种旋转式压缩机
CN205503467U (zh) * 2016-04-19 2016-08-24 彭力丰 一种供油效果好的旋转式压缩机
CN205503455U (zh) * 2016-04-19 2016-08-24 彭力丰 一种旋转式压缩机
CN205533226U (zh) * 2016-04-19 2016-08-31 彭力丰 一种容积效率高的旋转式压缩机
CN205533233U (zh) * 2016-04-19 2016-08-31 彭力丰 一种密封性能好的旋转式压缩机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6739847B1 (en) * 2002-12-23 2004-05-25 Rechi Precision Co., Ltd. Structure of check valve with silencing cover
JP2003286979A (ja) * 2003-01-28 2003-10-10 ▲荒▼田 哲哉 ヘリカルブレ−ド式圧縮機
CN201155460Y (zh) * 2008-01-29 2008-11-26 江苏超力机械有限公司 旋转式压缩机
CN103591022A (zh) * 2013-08-02 2014-02-19 西安交通大学 一种滚动活塞类流体机械的滑块式径向柔性补偿机构
CN204312356U (zh) * 2014-12-05 2015-05-06 广东美芝制冷设备有限公司 旋转式压缩机
CN105736378A (zh) * 2016-04-19 2016-07-06 彭力丰 一种密封性能好的旋转式压缩机
CN105736371A (zh) * 2016-04-19 2016-07-06 彭力丰 一种旋转式压缩机
CN105782039A (zh) * 2016-04-19 2016-07-20 彭力丰 一种容积效率高的旋转式压缩机
CN205503454U (zh) * 2016-04-19 2016-08-24 彭力丰 一种旋转式压缩机
CN205503467U (zh) * 2016-04-19 2016-08-24 彭力丰 一种供油效果好的旋转式压缩机
CN205503455U (zh) * 2016-04-19 2016-08-24 彭力丰 一种旋转式压缩机
CN205533226U (zh) * 2016-04-19 2016-08-31 彭力丰 一种容积效率高的旋转式压缩机
CN205533233U (zh) * 2016-04-19 2016-08-31 彭力丰 一种密封性能好的旋转式压缩机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109356848A (zh) * 2018-11-08 2019-02-19 周琦人 滑片式空气压缩机
CN110425139A (zh) * 2019-08-19 2019-11-08 珠海格力节能环保制冷技术研究中心有限公司 滑片组件、压缩机及空调器
CN114876788A (zh) * 2022-05-31 2022-08-09 嵊州市浙江工业大学创新研究院 无接触滑片泵及其滑片机构
CN114876788B (zh) * 2022-05-31 2023-12-22 嵊州市浙江工业大学创新研究院 无接触滑片泵及其滑片机构
CN117329127A (zh) * 2023-12-01 2024-01-02 成都理工大学 一种滑片式与离心式复合的压缩机械
CN117329127B (zh) * 2023-12-01 2024-02-02 成都理工大学 一种滑片式与离心式复合的压缩机械

Similar Documents

Publication Publication Date Title
WO2017181335A1 (zh) 一种旋转式压缩机
KR100377654B1 (ko) 다기통 회전압축기
WO2017140208A1 (zh) 流体机械和换热设备
JP4004073B2 (ja) ドライ真空ポンプ
WO2017024863A1 (zh) 流体机械、换热设备和流体机械的运行方法
EP3812591B1 (en) Slide valve, slide valve adjustment mechanism and screw compressor
JPS6035556B2 (ja) スクロ−ル流体機械
US11898562B2 (en) Pumping assembly, compressor and air conditioning equipment
WO2017024867A1 (zh) 压缩机、换热设备和压缩机的运行方法
WO2010009603A1 (zh) 平动式旋转压缩装置
WO2017024862A1 (zh) 流体机械、换热设备和流体机械的运行方法
WO2022116577A1 (zh) 泵体组件及具有其的流体机械
WO2021027524A1 (zh) 平动转子泵及发动机
US6206661B1 (en) Hermetic compressor
CN108049918A (zh) 转轮活塞同步回旋机构
WO2023097898A1 (zh) 泵体组件及增焓转子压缩机
CN205533226U (zh) 一种容积效率高的旋转式压缩机
CN110805554A (zh) 泵体组件和具有其的旋转压缩机
CN205478139U (zh) 二维双联轴向活塞泵
CN114278533A (zh) 一种化学真空泵
CN105736371A (zh) 一种旋转式压缩机
WO2023226407A1 (zh) 流体机械和换热设备
CN2525282Y (zh) 套缸式滚动转子压缩机
WO2021235703A1 (ko) 로터리 압축기
CN108547770A (zh) 变排气孔口大小的涡旋式制冷压缩机

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898925

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898925

Country of ref document: EP

Kind code of ref document: A1