WO2017179246A1 - Solid-liquid separating filtration system for organic waste material - Google Patents

Solid-liquid separating filtration system for organic waste material Download PDF

Info

Publication number
WO2017179246A1
WO2017179246A1 PCT/JP2016/088849 JP2016088849W WO2017179246A1 WO 2017179246 A1 WO2017179246 A1 WO 2017179246A1 JP 2016088849 W JP2016088849 W JP 2016088849W WO 2017179246 A1 WO2017179246 A1 WO 2017179246A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
box
shaped space
filtration system
liquid separation
Prior art date
Application number
PCT/JP2016/088849
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 加藤
直輝 福重
秀浩 家次
啓三 菊馬
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
株式会社タスク
有限会社ライフワーク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構, 株式会社タスク, 有限会社ライフワーク filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to JP2018511881A priority Critical patent/JPWO2017179246A1/en
Publication of WO2017179246A1 publication Critical patent/WO2017179246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/02Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • C05F3/06Apparatus for the manufacture

Definitions

  • the present invention relates to a solid-liquid separation and filtration system for separating solid and liquid of organic waste containing liquid and solid.
  • Non-patent Document 1 Livestock excrement such as livestock manure contains abundant nutrients such as phosphorus and nitrogen as well as organic matter, and composting has been attempted.
  • composting is performed by covering with a covered compost house (patent document 1) or a water-impervious sheet (non-patent document 2).
  • the fertilizer component contained in livestock excrement is more potassium than phosphorus and nitrogen required by agricultural crops, and the component ratio is potassium> nitrogen> phosphorus.
  • the component ratio is potassium> nitrogen> phosphorus.
  • patent document 1 although it is an open-air grazing type
  • a livestock facility that promotes composting of resource materials (sawdust, etc.) and deodorizes manure is disclosed.
  • This facility has a roof, is a box-shaped container, and has a water shielding structure to form a bedding layer made of bioresource materials for livestock grazing and excreted on the bedding layer.
  • Manure is permeated into the bedding layer, filtered, collected in the active water tank through the sloped natural catchment floor, activated in the aging tank, and then sprayed on the bedding layer with a pump. It is a usage type. Solid excreta (solid) is composted with the bedding layer.
  • Patent Document 3 discloses a submerged artificial wetland system for purifying sewage. This is a system mainly for liquid treatment, and combines a two-stage vertical wetland that performs oxidative purification of wastewater and a single-stage horizontal wetland that performs reductive purification.
  • Non-Patent Document 3 discloses a downflow type constructed wetland system obtained by further improving the downflow type constructed wetland system of Patent Document 3.
  • the area and the number of steps of the subsidence type constructed wetland system can be designed according to the amount and concentration of sewage, the local annual average temperature, and the target concentration of treated water.
  • Non-patent Document 1 Solid-liquid separation of livestock excrement cannot be performed, and treatment of lewy juice that exudes during composting is not considered (Non-patent Document 1).
  • -Since the upper surface of livestock excrement is covered with a water shielding sheet or roof, excess salts containing potassium and sodium, particularly potassium, remain as they are (Non-patent Document 1, Patent Document 1).
  • Patent Document 2 In order to mechanically solid-liquid-separate livestock excrement, an exclusive apparatus and power source are required (patent document 2).
  • solid-liquid separation can be performed only up to about 20% of livestock excreta, and the livestock excrement cannot be sufficiently used for composting.
  • auxiliary materials such as sawdust and rice husk are added to the livestock excrement as a moisture adjusting material, it takes a lot of cost and labor to prepare these auxiliary materials.
  • an object of the present invention is to provide a solid-liquid separation and filtration system capable of appropriately separating solids and liquids of organic waste containing solids and liquids such as livestock excreta.
  • lewy juice generated in the composting process can be separated, excess salt can be removed from the solid and composted at a high rate, and for moisture adjustment
  • An object of the present invention is to provide a solid-liquid separation and filtration system that can greatly reduce the auxiliary materials such as sawdust.
  • the aspect of the solid-liquid separation and filtration system of the present invention includes a box-shaped space (S) surrounded by side and bottom surfaces having water-imperviousness, A culvert tube (5) extending in a substantially horizontal direction near the bottom of the box-shaped space (S), A wall portion (3a) that rises upward from the upper edge of the box-shaped space (S) at a predetermined height, and a plurality of vertical slits (3d) that are formed in the wall portion (3a); A composting wall retaining wall (3) installed in a part other than the entrance / exit of the entire circumference of the upper edge of the box-shaped space (S), A gravel layer (9) formed by gravel filled at least in the entire box-shaped space (S).
  • the upper edge of the box-shaped space (S) is rectangular in plan view, and the composting retaining wall (3) is installed on the other three sides with the one side (L1) of the rectangle as the entrance / exit It is preferred that
  • the drainage groove (4) installed so as to surround the entire periphery of the upper edge of the box-shaped space (S), or to surround the portion other than the inlet / outlet of the entire periphery of the upper edge. It is preferable that the drainage groove (4) is installed outside the composting board retaining wall (3) at the place where the composting board retaining wall (3) is installed.
  • the gravel forming the gravel layer (9) is further filled up to a middle height of the wall portion (3a) of the composting retaining wall (3).
  • the entire surface of the gravel layer (9) is a horizontal flat surface or is inclined so as to become higher toward the entrance / exit. In the above aspect, it is preferable that the surface of the gravel layer (9) is inclined so as to become higher toward the inlet / outlet in the vicinity of the inlet / outlet.
  • the floor slab (11) having a predetermined thickness is provided so as to cover the entire surface of the gravel layer (9), and the floor slab (11) includes a plurality of slits ( 11a) is preferably formed.
  • a drainage conduit (6) having one end connected to the culvert tube (5) and extending outside through the side surface of the box-shaped space (S), A drainage reservoir (8) connected to the drainage conduit (6) and having the other end of the drainage conduit (6) penetrating the side wall and opening into the internal space;
  • An air suction device (30) installed in the vicinity of the other end of the drainage conduit (6), The air suction device (30) A nozzle (33) installed inside the drainage conduit (6) so as to be able to inject air toward the opening of the drainage conduit (6); And a blower (31) for pumping air to the nozzle (33).
  • the side surface and the bottom surface of the box-shaped space (S) are covered with a water shielding sheet (2).
  • the exhaust pipe (7) for exhausting air in the gravel layer (9) is further provided, and one end (7a) of the exhaust pipe (7) is connected to the end of the underdrain pipe (5)
  • the other end (7b) is preferably opened to the atmosphere outside the box-shaped space (S).
  • the solid-liquid separation and filtration system of the present invention when an organic waste containing solid and liquid is put on the surface of the gravel layer, the liquid is separated and filtered from the solid by permeating the gravel layer. Solids remain on the surface of the gravel layer while being discharged to the outside through a tube or through a slit in the retaining wall of the compost.
  • the liquid of organic waste containing solid and liquid and leki juice generated in the composting process can be appropriately separated from the solid. Furthermore, excess salts are removed from the remaining solid, the solid can be recovered and composted with high efficiency, and auxiliary materials such as sawdust for moisture adjustment can be greatly reduced or eliminated.
  • solid-liquid separation when composting the remaining solids, solid-liquid separation can be performed up to about 40% of organic waste such as livestock excreta, so that more compost can be obtained than conventional mechanical solid-liquid separation. .
  • organic waste such as livestock excreta
  • the top surface is open, salt is washed away by rainfall, so the nutrients in the obtained compost have a ratio of phosphorus> nitrogen> potassium compared to conventional compost, producing high quality compost as fertilizer it can.
  • the production of high-quality compost promotes the use of compost in upland fields and paddy fields, and contributes to improving the physical and biological properties of the soil.
  • FIG. 1 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system according to a first embodiment of the present invention.
  • 2A is a schematic cross-sectional view taken along the line II of FIG. 1
  • FIG. 2B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to (a).
  • 3A is a schematic cross-sectional view taken along line II-II in FIG. 1
  • FIG. 3B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG.
  • FIG. 4 is a schematic plan view showing the outer structure of the solid-liquid separation and filtration system in the second embodiment of the present invention.
  • FIG. 5A is a schematic cross-sectional view taken along the line III-III in FIG. 4, and FIG. 5B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to
  • FIG. 6A is a schematic cross-sectional view taken along the line IV-IV in FIG. 4, and
  • FIG. 6B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG.
  • FIG. 7 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system according to the third embodiment of the present invention.
  • FIG. 8 is a schematic sectional view taken along line VV in FIG.
  • FIG. 9 is a schematic sectional view taken along line VI-VI in FIG.
  • FIG. 10 is an enlarged plan view schematically showing an air suction device installed in the solid-liquid separation and filtration system of the present invention.
  • a suitable treatment target of the solid-liquid separation and filtration system of the present invention is livestock excrement such as livestock excreta in the livestock industry, but in addition, a slurry of dairy cows containing a relatively large amount of solid (fiber) or liquid
  • the washing drainage of the milking parlor which occupies most can also be the processing object of the present invention.
  • the present invention is applicable not only to the livestock industry but also to organic waste containing liquids and solids generated in fisheries, agriculture, forestry, food processing, and the like.
  • FIG. 1 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system 1 according to the first embodiment of the present invention.
  • 2A is a schematic cross-sectional view taken along the line II of FIG. 1
  • FIG. 2B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to (a).
  • 3A is a schematic cross-sectional view taken along line II-II in FIG. 1
  • FIG. 3B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG.
  • FIG. 1, FIG. 2 (a) and FIG. 3 (a) show the outer structure of the solid-liquid separation filtration system 1.
  • FIG. This outer structure corresponds to the state excluding the gravel layer and organic waste shown in FIGS. 2 (b) and 3 (b).
  • each component will be described.
  • This system has a box-shaped space S surrounded by a side surface and a bottom surface having water-impervious properties.
  • the box-shaped space S is a hole formed by excavating the ground or embedding in a preferred example. Typically, it is a rectangular parallelepiped space as shown, but it may be a cylindrical shape or a polygonal prism shape.
  • the bottom surface of the box-shaped space S is horizontal, but the contour shape of the side surface is arbitrary.
  • the side surface is preferably a vertical surface, but may be an inclined surface inclined outward.
  • the box-shaped space S has a rectangular parallelepiped shape
  • examples of the size are a left-right direction of 14 m, a front-rear direction of 8 m, and a height of 1 m.
  • the size of the box-shaped space S is appropriately set according to the amount of organic waste processed.
  • the water-imperviousness of the bottom and side surfaces of the box-shaped space S is ensured by laying the water-impervious sheet 2 in a preferred example.
  • the bottom and side surfaces may be constructed with other water-impervious materials, and the bottom and side surfaces may be painted with a water-impervious material.
  • the upper edge (upper end of the side surface) of the box-shaped space S is positioned higher than the ground surface of the surrounding ground so that water and earth and sand do not enter from the surroundings (see the side views of FIGS. 2 and 3). For this purpose, for example, embankment is performed around the box-shaped space S.
  • a culvert tube 5 In the vicinity of the bottom surface of the box-shaped space S, a culvert tube 5 extends substantially in the horizontal direction.
  • the vicinity of the bottom surface includes a case where there is a gap between the bottom surface and the bottom surface.
  • the gap is filled with gravel of the gravel layer 9 shown in FIGS. 2 (b) and 3 (b).
  • two culvert tubes 5 are arranged in the left-right direction as indicated by reference numeral 5a, and three are indicated in the front-rear direction as indicated by reference numeral 5b. All of the plurality of culvert pipes 5 are connected, and the inside communicates.
  • a drainage conduit 6 is connected to one place of the culvert tube 5.
  • the drainage conduit 6 extends through the side of the box-shaped space S to the outside of the box-shaped space S, and is connected to a drainage storage tank 8 installed outside. Since the drainage conduit 6 does not have a hole like the underdrain pipe 5, the drainage does not leak outside except the drainage storage tank 8, and the liquid does not enter from the outside.
  • the culvert tube 5 may be installed completely horizontally, but is preferably slightly inclined so that the liquid naturally converges toward the drainage conduit 6. That is, in the example shown in the drawing, the left and right underdrain tube 5a is slightly inclined so that the right side is lower, and the front and rear underdrain tube 5b is slightly inclined so that the rear side is lower. As shown in FIGS. 3 (a) and 3 (b), the drainage conduit 6 is installed to be inclined toward the drainage storage tank 8.
  • the size, number and arrangement of the underdrain pipes 5 are appropriately set according to the size of the box-shaped space S or according to the amount of organic waste treated.
  • the underdrain pipe 5 an unglazed earth pipe or a polyethylene corrugated pipe can be employed.
  • the drainage conduit 6 a pipe made of vinyl chloride can be adopted.
  • the underdrain pipe 5 has an inner diameter of 80 mm and an outer diameter of 95 mm.
  • one end 7a of the exhaust pipe 7 is connected to both ends of two culvert pipes 5a extending in the left-right direction.
  • the exhaust pipe 7 penetrates the side surface of the box-shaped space S and extends in the horizontal direction in the ground. Further, the exhaust pipe 7 is folded upward in the vertical direction and appears on the ground surface, and extends to a predetermined height.
  • the other end 7b of the exhaust pipe 7 is open to the atmosphere. The other end 7b of the exhaust pipe 7 is opened downward to avoid intrusion of rainwater or the like.
  • the reason why the opening of the exhaust pipe 7 is provided not on the surface of the gravel layer 9 but outside the box-shaped space S is that it does not hinder the work performed on the surface of the gravel layer 9.
  • the exhaust pipe 7 is for exhausting the air in the gravel gap of the gravel layer 9 shown in FIGS. 2 (b) and 3 (b). Thereby, the filtration efficiency of the liquid in the gravel layer 9 improves.
  • FIG. 2B the air flow is indicated by white arrows. Since the exhaust pipe 7 does not have a hole like the culvert pipe 5, the drainage liquid in the culvert pipe 5 does not leak to the outside through the exhaust pipe 7, and the liquid does not enter from the outside.
  • a pipe made of vinyl chloride can be adopted as the exhaust pipe 7, for example, a vinyl chloride tube having an inner diameter of 100 mm is fitted and inserted so as to overlap with each other by 30 cm or more so as to wrap a culvert tube having an outer diameter of 95 mm.
  • a composting wall retaining wall 3 is installed so as to surround the upper edge of the box-shaped space S.
  • a continuous compost holding wall 3 is formed by arranging a plurality of blocks in parallel.
  • the composting board retaining wall 3 is installed in the other part of the entire circumference of the upper edge of the box-shaped space S except for the entrance / exit.
  • the box-shaped space S has a rectangular parallelepiped shape and the upper edge is rectangular in plan view, so that the rectangular long side L1 is left as an entrance and exit, and the composting plate retaining wall 3 is installed on the other three sides. .
  • One block that forms the composting retaining wall 3 includes a wall portion 3a that rises upward at a predetermined height, a base portion 3b that supports the lower end of the wall portion 3a, and an outer base portion 3c.
  • the bases 3b and 3c are in the shape of a flat plate having a predetermined thickness, and are respectively placed on the ground surface so as to extend horizontally inside and outside.
  • a plurality of vertical slits 3d are formed in the wall 3a.
  • the vertical slit 3d is an elongated through-hole extending from the height of the upper surface of the base portions 3b and 3c to the height near the top end of the wall portion 3a.
  • the plurality of vertical slits 3d are arranged at predetermined intervals (not limited to equal intervals) in the width direction of the wall 3a.
  • the composting retaining wall 3 is made of concrete.
  • the position of the inner edge of the inner base portion 3b coincides with the position of the upper edge of the box-shaped space S.
  • the height of the wall 3a is about 1.5 m to 2 m, and is appropriately set according to the amount of organic waste treated.
  • Gravel is, for example, a stone composed of stones having a diameter of about 2 cm to 5 cm, or a mixture of stones of this size and finer pebbles or sand.
  • the gravel of the gravel layer 9 in this system functions as a filter medium, that is, a filter material. The particle size and particle size distribution of gravel are appropriately selected depending on the required filtration performance.
  • the gravel forming the gravel layer 9 is further filled up to the middle height of the wall portion 3a of the compost holding wall 3 in addition to the entire box-shaped space S. It is suitable.
  • the intermediate height does not mean a half height, but an arbitrary height between the base portions 3b and 3c and the top end.
  • the height of the wall 3a is 1.5 m
  • gravel is filled up to a height of about 30 cm from the lower end.
  • the base 3b inside the composting board retaining wall 3 is fixed by the weight of gravel. Therefore, even when the working machine operated on the surface of the gravel layer 9 contacts or collides with the composting retaining wall 3, the stability of the composting retaining wall 3 can be ensured.
  • the gravel layer 9 may be a flat surface whose entire surface is horizontal as in the illustrated example, but may be inclined such that the entire surface gradually increases toward the entrance / exit.
  • a drainage groove 4 having a U-shaped cross section is provided so as to surround the entire circumference of the upper edge of the box-shaped space S.
  • the drainage groove 4 surrounds the entire periphery of the box-shaped space S and drains from one place of the peripheral groove 4 a for receiving the liquid.
  • It is composed of a guide groove 4 b for guiding the liquid to the storage tank 8.
  • the peripheral groove 4a may be horizontal, but is preferably slightly inclined toward the guide groove 4b.
  • the guide groove 4 b is inclined toward the drainage storage tank 8.
  • a concrete U-shaped groove can be adopted as the drainage groove 4.
  • the drainage groove 4 is provided with a lid 4c such as a lattice or a perforated plate so that dust or the like does not enter.
  • the drainage groove 4 is installed outside the wall portion 3a of the composting board retaining wall 3 at the place where the composting board retaining wall 3 is installed (three sides of the upper edge rectangle).
  • the surface of the gravel layer 9 and the drainage groove 4 which are installed just outside the upper edge and filled in the box-shaped space S It is installed so that the height of the upper end is aligned. Since the drainage groove 4 along one side L1 of the rectangle is higher than the drainage groove 4 along the other three sides, an inclination is provided at both ends of the drainage groove 4 along the one side L1.
  • the base 3c outside the composting retaining wall 3 and the drainage groove 4 are adjacent to each other.
  • emitted through the vertical slit 3d of the compost disc retaining wall 3 can flow in into the drainage groove 4 directly.
  • the upper surface of the base 3c and the upper end of the drainage groove 4 coincide with each other.
  • the upper end of the drainage groove 4 may be slightly lower than the upper surface of the base 3c.
  • the drainage groove 4 may be placed on the upper surface of the base 3c outside the composting wall retaining wall 3. In this case, the position of the surface of the gravel layer 9 is the position of the upper end of the drainage groove 4. Make it higher.
  • organic waste 10 such as livestock excrement is put on the surface of the gravel layer 9.
  • the organic waste 10 is a mixture containing a liquid and a solid.
  • the input method is appropriately selected depending on the water content of the organic waste 10. If the amount of water is relatively large and pumping is possible, use a hose with a pump. If the amount of water is relatively low and pumping is not possible, use a working machine such as a bucket loader or burn cleaner. In any case, it is preferable that the newly introduced organic waste 10 is uniformly dispersed on the surface of the gravel layer 9.
  • the liquid contained in the input organic waste 10 moves along a route indicated by a black arrow in FIGS. 2 (b) and 3 (b).
  • One liquid path is a path that penetrates into the gravel layer 9 and slowly descends by gravity from the surface toward the bottom surface. In this route, the liquid is filtered by the gravel layer 9.
  • the liquid that has reached the bottom surface stays in the vicinity of the bottom surface due to the water shielding sheet 2, but when the water level reaches the level of the underdrain pipe 5, it flows into the underdrain pipe 5 and is discharged through the drainage conduit 6. It is stored in the drainage storage tank 8.
  • the air in the gravel layer 9 is released to the outside through the exhaust pipe 7, thereby facilitating the liquid descent and performing the filtration efficiently.
  • Another liquid path is a path that penetrates into the gravel layer 9 and is discharged from the vertical slit 3d of the composting disk retaining wall 3 relatively near the surface.
  • the liquid flowing out through this path flows into the peripheral groove 4a of the drainage groove 4 and is stored in the drainage storage tank 8 through the guide groove 4b.
  • the drainage liquid collected in the drainage storage tank 8 by this system includes the liquid originally contained in the organic waste, leki juice generated during the composting process, and rainfall when composting.
  • the composting process has stages until it finally becomes fully mature.
  • compost at the stage before ripeness may be taken out and transported to a field or the like for use.
  • Ripe compost is good quality compost.
  • compost before maturity may be collected with a bucket loader and stacked on a part of the surface of the gravel layer 9 on a mountain having a height of 2 m or less, and composting may be continued until the maturity is achieved.
  • composting By stacking, the heat retention effect of fermentation heat is obtained and composting is promoted.
  • organic waste can be newly added to the surface of the gravel layer 9 vacated by collecting compost in a part.
  • a part of fully composted compost may be mixed with newly introduced organic waste to be used as a moisture adjusting material and an inoculum for promoting composting.
  • the effluent stored in the effluent storage tank 8 is purified to the target water quality standard by using, for example, a submerged artificial wetland system such as Patent Document 3 or Non-Patent Document 3, and is discharged to a river or the like. Can do. As another example, after purifying by applying another purification treatment method, it may be discharged. As yet another example, if it can be used as it is as a fertilizer, it may be used as it is.
  • the second embodiment is a form suitable for organic waste having a relatively large amount of liquid.
  • FIG. 4 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system 1A according to the second embodiment of the present invention.
  • FIG. 5A is a schematic cross-sectional view taken along the line III-III in FIG. 4
  • FIG. 5B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to
  • FIG. 6A is a schematic cross-sectional view taken along the line IV-IV in FIG. 4
  • FIG. 6B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG.
  • FIG. 4, FIG. 5 (a) and FIG. 6 (a) show the outer structure of the solid-liquid separation and filtration system 1A.
  • This outer structure corresponds to the state excluding the gravel layer and organic waste shown in FIGS. 2 (b) and 3 (b).
  • the second embodiment will be mainly described with respect to a configuration different from the first embodiment, and the description of the same configuration as the first embodiment will be simplified.
  • the box-shaped space S is rectangular in a plan view as in the first embodiment, and the compost holding wall 3 is provided around three sides other than the one side L1 serving as an entrance and exit.
  • a drainage groove 4 is provided outside the panel retaining wall 3.
  • the entire surface of the gravel layer 9 is not flat, and is inclined so as to become higher toward the side L1 in the vicinity of the side L1 serving as an inlet / outlet (see FIG. 6).
  • the bottom surface of the box-shaped space S is a flat surface from the rear end in the front-rear direction to the position L2, and the culvert tube 5 is disposed on this flat surface portion.
  • From the position of L2 in the box-shaped space S to the front end L1 ' is an inclined side surface that increases toward the front end L1', and a portion between the front end L1 'and one side L1 is a vertical side surface.
  • the surface of the gravel layer 9 is inclined so as to be higher along the inclined side surface.
  • An organic waste 10 ⁇ / b> A having a relatively large amount of liquid is put on the surface of the gravel layer 9.
  • the entrance / exit position is the highest position on the surface of the gravel layer 9.
  • the drainage groove 4 is not provided at the inlet / outlet, but is directly connected to the surrounding ground.
  • the surrounding ground is raised to the same height as the surface of the gravel layer 9 at the entrance and exit.
  • the organic waste 10 ⁇ / b> A is put on the surface of the gravel layer 9.
  • the organic waste 10A has a larger amount of liquid than the solid like the washing drainage of the milking parlor. Therefore, basically, a pump is used to supply with a hose.
  • the organic waste 10 ⁇ / b> A having a relatively large amount of liquid accumulates at a low position on the surface of the gravel layer 9. Since the vicinity of the entrance / exit is as high as a bank, the organic waste 10A does not flow out of the entrance / exit. Since there is a lot of liquid, a part of the liquid flows out from the vertical slit 3 d before penetrating into the gravel layer 9, flows into the drainage groove 4, and is stored in the drainage storage tank 8. The liquid that has penetrated into the gravel layer 9 slowly descends by gravity from the surface toward the bottom, flows into the underdrain pipe 5, is discharged through the drainage conduit 6, and is stored in the drainage storage tank 8.
  • the processing of the drainage stored in the drainage storage tank 8 is the same as in the first embodiment. Moreover, although it is a small amount compared with 1st Embodiment, it is the same as that of 1st Embodiment also about the process of the solid which remained on the surface of the gravel layer 9. FIG.
  • FIG. 7 is a schematic plan view of a solid-liquid separation and filtration system 1B according to the third embodiment of the present invention.
  • 8 is a schematic cross-sectional view taken along the line VV in FIG. 7
  • FIG. 9 is a schematic cross-sectional view taken along the line VI-VI in FIG.
  • FIG. 10 is an enlarged plan view schematically showing an air suction device that can be suitably combined with the solid-liquid separation system 1B of the third embodiment.
  • the box-shaped space S is rectangular in plan view as in the first embodiment, and an inlet / outlet is provided at a part of one side L1 of the rectangle.
  • a composting wall 3 is installed around the upper edge of the box-shaped space S other than the entrance / exit.
  • a drainage groove 4 is provided outside the composting wall retaining wall 3.
  • a feature of the third embodiment is that a floor slab 11 is installed on the surface of the gravel layer 9.
  • the floor slab 11 is a rigid plate having a predetermined thickness, and is preferably made of reinforced concrete.
  • the floor slab 11 is formed with a large number of slits 11a penetrating in the vertical direction.
  • the slit 11a is a long and narrow through hole in plan view.
  • a plurality of slits 11a are formed at predetermined intervals in the slit width direction, and a plurality of rows are formed in the slit length direction.
  • gravel is filled also in the slit 11a so that an organic waste may not enter into the slit 11a. Therefore, in the present embodiment, the surface of the gravel layer 9 is substantially flush with the upper surface of the floor slab 11. Since the surface area of the gravel layer 9 in the present embodiment is the sum of the areas of the slits 11a of the floor slab 11, it is smaller than those in the first and second embodiments.
  • a form of a predetermined shape is arranged on the surface of the gravel layer 9, and the reinforcing bars are installed vertically and horizontally. After that, concrete is placed on the formwork and solidified. Curing until the concrete solidifies. The formwork may be left as it is.
  • the peripheral portion of the floor slab 11 covers the base portion inside the composting board retaining wall 3. Thereby, the compost board retaining wall 3 is further stabilized.
  • the floor slab 11 can be produced by using a steel material such as H steel in addition to the reinforced concrete.
  • the floor slab 11 is advantageous in terms of cost.
  • the running stability of the work machine is improved when working with a work machine such as a bucket loader. Further, when the solid on the surface of the floor slab 11 (solid from which the liquid has been separated, compost before ripeness, or ripe compost) is picked up with a bucket, the floor slab 11 is a hard flat surface, so the gravel layer 9 Compared with the case where they are picked up from the surface, only the solid can be picked up easily.
  • the floor slab 11 is extended to the outside of the entrance / exit, and is inclined so as to become higher from the entrance / exit position 11 b toward the end portion 11 c.
  • This extension is not provided with a slit.
  • the end portion 11 c of the extended portion of the floor slab 11 is continuous with the floor of the composting house 20.
  • organic waste such as manure discharged from a livestock barn such as a cow barn provided next thereto is accumulated. Those organic wastes can be transferred to the solid-liquid separation and filtration system 1B through an extended portion of the inclined floor slab 11. By providing an inclination in this part, the organic waste does not go backward.
  • FIGS. 7 and 9 there is shown a drainage conduit 6 that connects between the culvert tube 5 and the drainage storage tank 8.
  • One end of the drainage conduit 6 is connected to the underdrain pipe 5 in the box-shaped space S.
  • the other end of the drainage conduit 6 penetrates the side wall of the drainage storage tank 8 and protrudes into the internal space of the drainage storage tank 8.
  • An air suction device 30 is installed in the vicinity of the other end of the drainage conduit 6.
  • the solid-liquid separation and filtration system 1B has the floor slab 11 installed as described above, the contact area between the organic waste and the gravel layer 9 is substantially reduced.
  • the ability to guide liquid into it is lower than in the first and second embodiments.
  • the air suction device 30 is provided to compensate for this drawback.
  • FIG. 10 is a schematic plan view in which a region near the air suction device 30 shown in FIG. 7 is enlarged.
  • a suction pipe 34 having substantially the same diameter is connected to the other end of the drainage conduit 6.
  • the suction tube 34 is substantially an extension of the drainage conduit 6.
  • the tip of the suction pipe 34 opens into the internal space of the drainage reservoir 8. Accordingly, the opening of the suction pipe 34 is substantially the opening of the drainage conduit 6.
  • a nozzle 33 is disposed inside the suction pipe 34.
  • the nozzle 33 is preferably arranged at an appropriate distance from the opening of the suction tube 34.
  • the nozzle 33 extends on the central axis of the suction pipe 34, and its injection port faces the opening of the suction pipe 34.
  • the feed pipe 32 connected to the rear part of the nozzle 33 passes through the pipe wall of the suction pipe 34 and further passes through the side wall of the drainage reservoir 8 and extends to the outside.
  • the pipe 32 is connected to the blower 31. When the blower 31 is operated, high-pressure air is transferred to the nozzle 33 through the feed pipe 32.
  • the piping path of the feed pipe 32 outside the suction pipe 34 is arbitrary.
  • the pipe 32 may pass through the pipe wall of the suction pipe 34 and then exit from the upper end opening of the drainage storage tank 8 and be connected to the blower 31.
  • the organic waste accumulated in the compost house 20 shown in FIG. 7 is moved onto the floor slab 11 of the solid-liquid separation and filtration system 1B using a bucket loader.
  • the newly introduced organic waste is uniformly dispersed on the floor slab 11.
  • the movement path of the liquid contained in the organic waste is basically the same as in the first and second embodiments described above.
  • the treatment of the solid remaining on the floor slab 11 is basically the same as in the first and second embodiments described above.
  • the air suction device 30 is operated to compensate for the small contact area between the organic waste and the gravel layer 9.
  • closing means such as a lid 7 c that can be opened and closed is attached to the opening of the exhaust pipe 7.
  • a valve may be attached instead of the lid.
  • the blower 31 is started.
  • the air fed through the feed pipe 32 is jetted from the jet port of the nozzle 33 toward the opening of the suction pipe 34.
  • the air flow F1 by high pressure air is produced
  • the distance between the nozzle 33 and the opening of the suction pipe 34 is preferably set to an appropriate length. If the distance is too short, a strong and stable air flow F1 cannot be obtained.
  • the air flow F2 is a suction flow that sucks air inside the underdrain pipe 5 of the solid-liquid separation and filtration system 1B. Further, the air flow F2 sucks air in the gravel gap of the gravel layer 9 and sucks liquid through the gap. Since the exhaust pipe 7 is closed, the suction force by the air flow F2 acts on the surface of the gravel layer 9, that is, the surface of gravel filled in the slit 11a of the floor slab 11. As a result, the air flow F2 causes liquid to be drawn into the gravel layer 9 from the organic waste that contacts the gravel surface. Inside the culvert tube 5 and the drainage conduit 6, the liquid flows in the lower part of the space, and the air flow F2 flows in the space above the liquid.
  • the air flow F2 also draws ambient air through the organic waste contacting the gravel surface, the air passes through the organic waste, and the effect of promoting composting by an aerobic reaction is also obtained. It is done.
  • the separation of the liquid from the organic waste is facilitated by the suction flow generated by the air suction device 30.
  • the efficiency of solid-liquid separation is improved by forcibly sucking the liquid.
  • air suction device 30 applied to the third embodiment can also be applied to the first and second embodiments described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Filtration Of Liquid (AREA)
  • Fertilizers (AREA)

Abstract

[Problem] To provide a solid-liquid separating filtration system for organic waste material that can appropriately treat liquids, remove excess salts from the solids, compost with high efficiency, and reduce sawdust, etc. used for moisture regulation. [Solution] A solid-liquid separating filtration system comprises: a box-shaped space S surrounded by side surfaces and a bottom surface that are impervious to water; culvert pipes 5 extending in the horizontal direction near the bottom surface of the box-shaped space; compost panel retaining wall 3, which has the upper edge of the box-shaped space as the position of the base 3c, is placed thereabove with a specified height on the entire upper edge except the inlet/outlet, and in which multiple vertical slits 3d have been made; and a gravel layer 9 formed from gravel that is filled at least in the entire box-shaped space.

Description

有機廃棄物の固液分離ろ過システムSolid-liquid separation and filtration system for organic waste
 本発明は、液体と固体を含む有機廃棄物の固体と液体の分離を行う固液分離ろ過システムに関する。 The present invention relates to a solid-liquid separation and filtration system for separating solid and liquid of organic waste containing liquid and solid.
 日本全国の畑地や水田は、この30年間、土壌中の有機物が減少傾向にあり、土壌の物理性や生物性が悪化していることが問題となっている。家畜糞尿等の畜産排泄物などには、有機物とともにリン・窒素などの栄養塩類が豊富に含まれており、堆肥化が試みられている(非特許文献1)。しかしながら畜産排泄物は、堆肥化するには水分が多すぎて通気性が無いため、材料中の空隙率を高くして通気性を確保するために水分調整材としておが屑や籾殻等を大量に混ぜる必要がある。また、堆肥化発酵時の発酵熱により水分を蒸発させるために、屋根付きの堆肥舎(特許文献1)や遮水シート(非特許文献2)で覆うことにより堆肥化が行われている。 In the field and paddy fields throughout Japan, organic matter in the soil has been decreasing for the past 30 years, and the physical and biological properties of the soil have deteriorated. Livestock excrement such as livestock manure contains abundant nutrients such as phosphorus and nitrogen as well as organic matter, and composting has been attempted (Non-patent Document 1). However, since livestock excreta have too much moisture for composting and are not breathable, a large amount of sawdust, rice husk, etc. are mixed as a moisture conditioner to increase the porosity in the material and ensure air permeability. There is a need. Moreover, in order to evaporate a water | moisture content with the fermentation heat at the time of composting fermentation, composting is performed by covering with a covered compost house (patent document 1) or a water-impervious sheet (non-patent document 2).
 元々、畜産排泄物に含まれる肥料成分は、農作物が必要とするリン・窒素よりもカリウムが過剰であり、カリウム>窒素>リンの成分割合となっている。これに加えて、畜産排泄物を用いて屋根付きの堆肥舎や遮水シートの下で堆肥を生産すると、カリウム・ナトリウムを含む塩類が雨水で流されることがないため、堆肥中にこれらの塩類が多量に残るという問題がある。 Originally, the fertilizer component contained in livestock excrement is more potassium than phosphorus and nitrogen required by agricultural crops, and the component ratio is potassium> nitrogen> phosphorus. In addition to this, when compost is produced using manure excrement under a covered compost house or a water shielding sheet, salts containing potassium and sodium will not be washed away by rainwater. There is a problem that a large amount remains.
 特許文献1では、露天放牧型であるが、降雨による家畜排泄物などの施設外溢出を防止する構造を持ち、家畜排泄物を飼育場所で処理し、排泄物処理水の再生循環利用、並びに生物資源資材(おが屑等)の堆肥化促進と糞尿の消臭を行う畜産施設が開示されている。この施設は、屋根付きであり、箱形容器状で遮水構造の畜産施設の中に家畜を露天放牧飼育するための、生物資源資材からなる敷料層を形成し、敷料層上に排泄された糞尿が敷料層内に浸透してろ過され、傾斜付き自然集水床面を通して活性水槽に集められ、さらに熟成槽で活性化された後、ポンプで敷料層に散布されるという、液体については循環利用型となっている。固形排泄物(固体)については敷料層とともに堆肥化される。 In patent document 1, although it is an open-air grazing type | mold, it has the structure which prevents the overflow of facilities, such as livestock excrement etc. by rainfall, processes livestock excrement in the breeding place, uses recycling of excrement treated water, and living thing A livestock facility that promotes composting of resource materials (sawdust, etc.) and deodorizes manure is disclosed. This facility has a roof, is a box-shaped container, and has a water shielding structure to form a bedding layer made of bioresource materials for livestock grazing and excreted on the bedding layer. Manure is permeated into the bedding layer, filtered, collected in the active water tank through the sloped natural catchment floor, activated in the aging tank, and then sprayed on the bedding layer with a pump. It is a usage type. Solid excreta (solid) is composted with the bedding layer.
 特許文献2では、畜産排泄物である糞尿を含水率が低く肥料として利用しやすい圧搾ケーキと、臭いが少なく土壌蒸散又は散布に適した濾液に分離することができる家畜の糞尿の処理方法及び装置が開示されている。この方法及び装置では、セパレータで粗大固形分を除去した後、反応槽で凝集反応させて微細固形分を凝集させた後、フィルタープレスで圧搾ケーキ(固体)と濾液(液体)を分離する。その後、圧搾ケーキを発酵槽で堆肥化させる。 In patent document 2, the processing method and apparatus of livestock manure which can isolate | separate the manure which is livestock excrement into the press cake which has a low moisture content, and is easy to use as a fertilizer, and the filtrate with little smell and suitable for soil transpiration or spraying Is disclosed. In this method and apparatus, coarse solids are removed by a separator, and then agglomeration reaction is carried out in a reaction tank to agglomerate fine solids, and then a pressed cake (solid) and a filtrate (liquid) are separated by a filter press. Thereafter, the pressed cake is composted in a fermenter.
 特許文献3には、汚水を浄化するための伏流式人工湿地システムが開示されている。これは、主として液体処理のためのシステムであり、汚水の酸化的浄化を行う2段の縦型湿地と還元的浄化を行う1段の横型湿地を組み合わせている。非特許文献3には、特許文献3の伏流式人工湿地システムをさらに改良した伏流式人工湿地システムが開示されている。非特許文献3のシステムでは、汚水の量と濃度、現地の年平均気温、処理水の目標濃度に応じて、伏流式人工湿地システムの面積・段数を設計できる。 Patent Document 3 discloses a submerged artificial wetland system for purifying sewage. This is a system mainly for liquid treatment, and combines a two-stage vertical wetland that performs oxidative purification of wastewater and a single-stage horizontal wetland that performs reductive purification. Non-Patent Document 3 discloses a downflow type constructed wetland system obtained by further improving the downflow type constructed wetland system of Patent Document 3. In the system of Non-Patent Document 3, the area and the number of steps of the subsidence type constructed wetland system can be designed according to the amount and concentration of sewage, the local annual average temperature, and the target concentration of treated water.
特開2004-337136号公報JP 2004-337136 A 特開平7-256296号公報JP 7-256296 A 特開2008-68211号公報JP 2008-68211 A
 しかしながら、従来技術によれば、以下のような問題点がある。
 ・畜産排泄物の固液分離ができず、堆肥化過程で滲出するレキ汁の処理が考慮されていない(非特許文献1)。
 ・畜産排泄物の上面が遮水シート又は屋根で覆われているため、カリウム・ナトリウムを含む過剰な塩類、特にカリウムがそのまま残留する(非特許文献1、特許文献1)。
 ・畜産排泄物を機械的に固液分離するため、専用の装置及び動力源が必要である(特許文献2)。また、一般的な固液分離装置では多くとも畜産排泄物の2割程度までしか固液分離できず、畜産排泄物を十分に堆肥化に利用できない。
 ・畜産排泄物に水分調整材として大量におが屑や籾殻等の副資材を投入する場合、これらの副資材の準備に多額の費用と手間がかかる。
However, the conventional technique has the following problems.
-Solid-liquid separation of livestock excrement cannot be performed, and treatment of lewy juice that exudes during composting is not considered (Non-patent Document 1).
-Since the upper surface of livestock excrement is covered with a water shielding sheet or roof, excess salts containing potassium and sodium, particularly potassium, remain as they are (Non-patent Document 1, Patent Document 1).
-In order to mechanically solid-liquid-separate livestock excrement, an exclusive apparatus and power source are required (patent document 2). Moreover, with a general solid-liquid separator, solid-liquid separation can be performed only up to about 20% of livestock excreta, and the livestock excrement cannot be sufficiently used for composting.
・ When a large amount of auxiliary materials such as sawdust and rice husk are added to the livestock excrement as a moisture adjusting material, it takes a lot of cost and labor to prepare these auxiliary materials.
 以上の現状に鑑み本発明は、畜産排泄物等の、固体と液体を含む有機廃棄物の固体と液体を適切に分離できる固液分離ろ過システムを提供することを目的とする。さらに、固液分離と併せて堆肥化を行う場合には、堆肥化過程で発生するレキ汁を分離でき、固体から過剰な塩類が除去されるとともに高い割合で堆肥化でき、かつ、水分調整用のおが屑等の副資材を大幅に低減できる、固液分離ろ過システムを提供することを目的とする。 In view of the above situation, an object of the present invention is to provide a solid-liquid separation and filtration system capable of appropriately separating solids and liquids of organic waste containing solids and liquids such as livestock excreta. In addition, when composting is performed in conjunction with solid-liquid separation, lewy juice generated in the composting process can be separated, excess salt can be removed from the solid and composted at a high rate, and for moisture adjustment An object of the present invention is to provide a solid-liquid separation and filtration system that can greatly reduce the auxiliary materials such as sawdust.
 上記の課題を解決すべく、本発明は以下の構成を提供する。括弧内の数字は、後述する図面中の符号であり、参考のために付するものである。 In order to solve the above problems, the present invention provides the following configuration. Numbers in parentheses are reference numerals in the drawings described later, and are attached for reference.
 本発明の固液分離ろ過システムの態様は、遮水性を有する側面及び底面で囲まれた箱形空間(S)と、
 前記箱形空間(S)の底面近傍にて略水平方向に延設された暗渠管(5)と、
 前記箱形空間(S)の上縁から上方に所定の高さで起立する壁部(3a)と該壁部(3a)に穿設された複数の縦スリット(3d)とを具備しかつ該箱形空間(S)の上縁の全周のうち入出口以外の部分に設置されている堆肥盤擁壁(3)と、
 少なくとも前記箱形空間(S)全体に充填された砂利により形成される砂利層(9)と、を有することを特徴とする。
The aspect of the solid-liquid separation and filtration system of the present invention includes a box-shaped space (S) surrounded by side and bottom surfaces having water-imperviousness,
A culvert tube (5) extending in a substantially horizontal direction near the bottom of the box-shaped space (S),
A wall portion (3a) that rises upward from the upper edge of the box-shaped space (S) at a predetermined height, and a plurality of vertical slits (3d) that are formed in the wall portion (3a); A composting wall retaining wall (3) installed in a part other than the entrance / exit of the entire circumference of the upper edge of the box-shaped space (S),
A gravel layer (9) formed by gravel filled at least in the entire box-shaped space (S).
 上記態様において、前記箱形空間(S)の上縁が平面視にて長方形であり、該長方形の一辺(L1)を前記入出口とし他の三辺に前記堆肥盤擁壁(3)が設置されていることが好適である。 In the above aspect, the upper edge of the box-shaped space (S) is rectangular in plan view, and the composting retaining wall (3) is installed on the other three sides with the one side (L1) of the rectangle as the entrance / exit It is preferred that
 上記態様において、前記箱形空間(S)の上縁の全周を囲むように、又は、上縁の全周のうち入出口以外の部分を囲むように設置された排液溝(4)を有し、該排液溝(4)は前記堆肥盤擁壁(3)が設置されている箇所においては該堆肥盤擁壁(3)の外側に設置されていることが好適である。 In the above aspect, the drainage groove (4) installed so as to surround the entire periphery of the upper edge of the box-shaped space (S), or to surround the portion other than the inlet / outlet of the entire periphery of the upper edge. It is preferable that the drainage groove (4) is installed outside the composting board retaining wall (3) at the place where the composting board retaining wall (3) is installed.
 上記態様において、前記砂利層(9)を形成する砂利が、前記堆肥盤擁壁(3)の壁部(3a)の中間の高さまでさらに充填されていることが好適である。 In the above embodiment, it is preferable that the gravel forming the gravel layer (9) is further filled up to a middle height of the wall portion (3a) of the composting retaining wall (3).
 上記態様において、前記砂利層(9)の表面全体が、水平な平坦面であるか又は前記入出口に向かって高くなるように傾斜していることが好適である。
 上記態様において、前記砂利層(9)の表面が、前記入出口の近傍において該入出口に向かって高くなるように傾斜していることが好適である。
In the above aspect, it is preferable that the entire surface of the gravel layer (9) is a horizontal flat surface or is inclined so as to become higher toward the entrance / exit.
In the above aspect, it is preferable that the surface of the gravel layer (9) is inclined so as to become higher toward the inlet / outlet in the vicinity of the inlet / outlet.
 上記態様において、前記砂利層(9)の表面全体を覆うように設置された所定の厚さの床スラブ(11)を有し、前記床スラブ(11)は鉛直方向に貫通する多数のスリット(11a)を形成されていることが好適である。 In the above embodiment, the floor slab (11) having a predetermined thickness is provided so as to cover the entire surface of the gravel layer (9), and the floor slab (11) includes a plurality of slits ( 11a) is preferably formed.
 上記態様において、前記暗渠管(5)に一端が連結されかつ前記箱形空間(S)の側面を貫通して外部に延在する排液導管(6)と、
 前記排液導管(6)に連結されかつ該排液導管(6)の他端が側壁を貫通して内部空間に開口している排液貯留槽(8)と、
 前記排液導管(6)の他端近傍に設置された空気吸引装置(30)と、を有し、
 前記空気吸引装置(30)は、
  前記排液導管(6)の内部にて該排液導管(6)の開口の方に向かってエアを噴射可能に設置されたノズル(33)と、
  前記ノズル(33)に対してエアを圧送するための送風機(31)と、を具備することが好適である。
In the above embodiment, a drainage conduit (6) having one end connected to the culvert tube (5) and extending outside through the side surface of the box-shaped space (S),
A drainage reservoir (8) connected to the drainage conduit (6) and having the other end of the drainage conduit (6) penetrating the side wall and opening into the internal space;
An air suction device (30) installed in the vicinity of the other end of the drainage conduit (6),
The air suction device (30)
A nozzle (33) installed inside the drainage conduit (6) so as to be able to inject air toward the opening of the drainage conduit (6);
And a blower (31) for pumping air to the nozzle (33).
 上記態様において、前記箱形空間(S)の側面及び底面が遮水シート(2)で覆われていることが好適である。 In the above aspect, it is preferable that the side surface and the bottom surface of the box-shaped space (S) are covered with a water shielding sheet (2).
 上記態様において、前記砂利層(9)内の空気を排出するための排気管(7)をさらに備え、該排気管(7)の一端(7a)は前記暗渠管(5)の端部に接続されかつ他端(7b)は前記箱形空間(S)の外部の大気中に開口することが好適である。 In the above aspect, the exhaust pipe (7) for exhausting air in the gravel layer (9) is further provided, and one end (7a) of the exhaust pipe (7) is connected to the end of the underdrain pipe (5) The other end (7b) is preferably opened to the atmosphere outside the box-shaped space (S).
 本発明の固液分離ろ過システムによれば、固体と液体を含む有機廃棄物が砂利層の表面に投入されたとき、液体が該砂利層に浸透することにより固体から分離ろ過されると共に、暗渠管を通して又は堆肥盤擁壁のスリットを通して外部に排出される一方、固体が砂利層の表面に残留する。 According to the solid-liquid separation and filtration system of the present invention, when an organic waste containing solid and liquid is put on the surface of the gravel layer, the liquid is separated and filtered from the solid by permeating the gravel layer. Solids remain on the surface of the gravel layer while being discharged to the outside through a tube or through a slit in the retaining wall of the compost.
 この結果、固体と液体を含む有機廃棄物の液体及び堆肥化過程で発生するレキ汁を固体から適切に分離することができる。さらに、残留する固体から過剰な塩類が除去され、固体を高い効率で回収して堆肥化でき、かつ、水分調整用のおが屑等の副資材を大幅に低減又は不要とすることができる。 As a result, the liquid of organic waste containing solid and liquid and leki juice generated in the composting process can be appropriately separated from the solid. Furthermore, excess salts are removed from the remaining solid, the solid can be recovered and composted with high efficiency, and auxiliary materials such as sawdust for moisture adjustment can be greatly reduced or eliminated.
 本システムによれば、残留する固体を堆肥化する場合、畜産排泄物等の有機廃棄物の4割程度まで固液分離できるので、従来の機械的な固液分離よりも多くの堆肥が得られる。また上面が開放されているので降雨により塩類が洗い流されることから、得られた堆肥中の栄養塩類は、従来の堆肥に比べてリン>窒素>カリウムの成分割合となり、肥料として良質の堆肥を生産できる。良質な堆肥が生産できることにより、畑地や水田での堆肥の利用が促進され、土壌の物理性や生物性の向上に貢献できる。 According to this system, when composting the remaining solids, solid-liquid separation can be performed up to about 40% of organic waste such as livestock excreta, so that more compost can be obtained than conventional mechanical solid-liquid separation. . In addition, since the top surface is open, salt is washed away by rainfall, so the nutrients in the obtained compost have a ratio of phosphorus> nitrogen> potassium compared to conventional compost, producing high quality compost as fertilizer it can. The production of high-quality compost promotes the use of compost in upland fields and paddy fields, and contributes to improving the physical and biological properties of the soil.
図1は、本発明の第1の実施形態における固液分離ろ過システムの外郭構造を示した概略平面図である。FIG. 1 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system according to a first embodiment of the present invention. 図2(a)は図1のI-Iラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。2A is a schematic cross-sectional view taken along the line II of FIG. 1, and FIG. 2B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to (a). 図3(a)は図1のII-IIラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。3A is a schematic cross-sectional view taken along line II-II in FIG. 1, and FIG. 3B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG. 図4は、本発明の第2の実施形態における固液分離ろ過システムの外郭構造を示した概略平面図である。FIG. 4 is a schematic plan view showing the outer structure of the solid-liquid separation and filtration system in the second embodiment of the present invention. 図5(a)は図4のIII-IIIラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。FIG. 5A is a schematic cross-sectional view taken along the line III-III in FIG. 4, and FIG. 5B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG. 図6(a)は図4のIV-IVラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。6A is a schematic cross-sectional view taken along the line IV-IV in FIG. 4, and FIG. 6B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG. 図7は、本発明の第3の実施形態における固液分離ろ過システムの外郭構造を示した概略平面図である。FIG. 7 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system according to the third embodiment of the present invention. 図8は、図7のV-Vラインに沿った概略断面図である。FIG. 8 is a schematic sectional view taken along line VV in FIG. 図9は、図7のVI-VIラインに沿った概略断面図である。FIG. 9 is a schematic sectional view taken along line VI-VI in FIG. 図10は、本発明の固液分離ろ過システムに設置された空気吸引装置を概略的に示す拡大平面図である。FIG. 10 is an enlarged plan view schematically showing an air suction device installed in the solid-liquid separation and filtration system of the present invention.
 以下、図面を参照しつつ本発明の実施形態を説明する。
 本発明の固液分離ろ過システムの好適な処理対象物は、畜産業における家畜糞尿等の畜産排泄物であるが、その他に、比較的固体(繊維)が多く含まれる乳牛のスラリーや、液体が大部分を占める搾乳パーラーの洗浄排水なども本発明の処理対象物となり得る。また、畜産業に限らず水産業、農業、林業、食品加工業等において発生する液体と固体を含む有機廃棄物に対しても適用可能である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A suitable treatment target of the solid-liquid separation and filtration system of the present invention is livestock excrement such as livestock excreta in the livestock industry, but in addition, a slurry of dairy cows containing a relatively large amount of solid (fiber) or liquid The washing drainage of the milking parlor which occupies most can also be the processing object of the present invention. Further, the present invention is applicable not only to the livestock industry but also to organic waste containing liquids and solids generated in fisheries, agriculture, forestry, food processing, and the like.
(1)第1の実施形態の構成
 図1は、本発明の第1の実施形態における固液分離ろ過システム1の外郭構造を示した概略平面図である。図2(a)は図1のI-Iラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。図3(a)は図1のII-IIラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。
(1) Configuration of First Embodiment FIG. 1 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system 1 according to the first embodiment of the present invention. 2A is a schematic cross-sectional view taken along the line II of FIG. 1, and FIG. 2B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to (a). 3A is a schematic cross-sectional view taken along line II-II in FIG. 1, and FIG. 3B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG.
 図1、図2(a)及び図3(a)は、固液分離ろ過システム1の外郭構造を示している。この外郭構造は、図2(b)及び図3(b)に示す砂利層及び有機廃棄物を除いた状態に相当する。以下、各構成要素について説明する。 FIG. 1, FIG. 2 (a) and FIG. 3 (a) show the outer structure of the solid-liquid separation filtration system 1. FIG. This outer structure corresponds to the state excluding the gravel layer and organic waste shown in FIGS. 2 (b) and 3 (b). Hereinafter, each component will be described.
 <箱形空間S>
 本システムは、遮水性を有する側面及び底面で囲まれた箱形空間Sを有する。箱形空間Sは、好適例では、地盤を掘削するか又は盛土をすることにより形成された穴である。典型的には、図示のような直方体形状の空間であるが、円柱形や多角柱形でもよい。箱形空間Sの底面は水平であるが、側面の輪郭形状は任意である。側面は、好適には垂直面であるが、外側に傾斜した傾斜面でもよい。箱形空間Sが直方体形状の場合、大きさの一例は、左右方向14m、前後方向8m、高さ1mである。箱形空間Sの大きさは、有機廃棄物の処理量に応じて適宜設定する。
<Box space S>
This system has a box-shaped space S surrounded by a side surface and a bottom surface having water-impervious properties. The box-shaped space S is a hole formed by excavating the ground or embedding in a preferred example. Typically, it is a rectangular parallelepiped space as shown, but it may be a cylindrical shape or a polygonal prism shape. The bottom surface of the box-shaped space S is horizontal, but the contour shape of the side surface is arbitrary. The side surface is preferably a vertical surface, but may be an inclined surface inclined outward. When the box-shaped space S has a rectangular parallelepiped shape, examples of the size are a left-right direction of 14 m, a front-rear direction of 8 m, and a height of 1 m. The size of the box-shaped space S is appropriately set according to the amount of organic waste processed.
 箱形空間Sの底面及び側面の遮水性は、好適例では遮水シート2を敷設することにより確保される。別の例として他の遮水性材料で底面及び側面を構築してもよく、遮水性材料で底面及び側面を塗装してもよい。箱形空間Sの上縁(側面の上端)は、周囲から水や土砂が浸入しないように周囲地盤の地表より高い位置とする(図2及び図3の側面図参照)。このためには、例えば箱形空間Sの周囲に盛土を行う。 The water-imperviousness of the bottom and side surfaces of the box-shaped space S is ensured by laying the water-impervious sheet 2 in a preferred example. As another example, the bottom and side surfaces may be constructed with other water-impervious materials, and the bottom and side surfaces may be painted with a water-impervious material. The upper edge (upper end of the side surface) of the box-shaped space S is positioned higher than the ground surface of the surrounding ground so that water and earth and sand do not enter from the surroundings (see the side views of FIGS. 2 and 3). For this purpose, for example, embankment is performed around the box-shaped space S.
 <暗渠管5>
 箱形空間Sの底面近傍には暗渠管5が略水平方向に延設されている。底面近傍とは、底面に接する場合も底面との間に間隙がある場合も含む。暗渠管5と底面との間に間隙がある場合、その間隙には図2(b)、図3(b)に示す砂利層9の砂利が充填されている。暗渠管5は、図示の例では、左右方向に符号5aで示す2本、前後方向に符号5bで示す3本が配置されている。これら複数の暗渠管5は全て連結され、内部が連通している。
<Culvert tube 5>
In the vicinity of the bottom surface of the box-shaped space S, a culvert tube 5 extends substantially in the horizontal direction. The vicinity of the bottom surface includes a case where there is a gap between the bottom surface and the bottom surface. When there is a gap between the culvert tube 5 and the bottom surface, the gap is filled with gravel of the gravel layer 9 shown in FIGS. 2 (b) and 3 (b). In the illustrated example, two culvert tubes 5 are arranged in the left-right direction as indicated by reference numeral 5a, and three are indicated in the front-rear direction as indicated by reference numeral 5b. All of the plurality of culvert pipes 5 are connected, and the inside communicates.
 暗渠管5の一箇所には、排液導管6が連結されている。排液導管6は、箱形空間Sの側面を貫通して箱形空間Sの外部に延在し、外部に設置されている排液貯留槽8に連結されている。排液導管6には暗渠管5のような孔が無いため、排液貯留槽8を除いて排液が外部に漏れることはなく、外部からも液体が浸入することはない。 A drainage conduit 6 is connected to one place of the culvert tube 5. The drainage conduit 6 extends through the side of the box-shaped space S to the outside of the box-shaped space S, and is connected to a drainage storage tank 8 installed outside. Since the drainage conduit 6 does not have a hole like the underdrain pipe 5, the drainage does not leak outside except the drainage storage tank 8, and the liquid does not enter from the outside.
 暗渠管5は、完全に水平に設置してもよいが、排液導管6に向かって液体が自然に集束するように若干傾斜させることが好適である。すなわち図示の例では、左右方向の暗渠管5aは右側が低くなるように、前後方向の暗渠管5bは後側が低くなるように若干傾斜を設ける。図3(a)(b)に示すように、排液導管6は排液貯留槽8に向かって低くなるように傾斜して設置されている。 The culvert tube 5 may be installed completely horizontally, but is preferably slightly inclined so that the liquid naturally converges toward the drainage conduit 6. That is, in the example shown in the drawing, the left and right underdrain tube 5a is slightly inclined so that the right side is lower, and the front and rear underdrain tube 5b is slightly inclined so that the rear side is lower. As shown in FIGS. 3 (a) and 3 (b), the drainage conduit 6 is installed to be inclined toward the drainage storage tank 8.
 暗渠管5の大きさ、数及び配置は、箱形空間Sの大きさに応じて又は有機廃棄物の処理量に応じて適宜設定する。暗渠管5としては、素焼きの土管又はポリエチレン製のコルゲート管等を採用できる。排液導管6としては、塩化ビニル製の管を採用できる。一例として、暗渠管5は内径80mm、外径95mmである。 The size, number and arrangement of the underdrain pipes 5 are appropriately set according to the size of the box-shaped space S or according to the amount of organic waste treated. As the underdrain pipe 5, an unglazed earth pipe or a polyethylene corrugated pipe can be employed. As the drainage conduit 6, a pipe made of vinyl chloride can be adopted. As an example, the underdrain pipe 5 has an inner diameter of 80 mm and an outer diameter of 95 mm.
 <排気管7>
 好適には、左右方向に延在する2本の暗渠管5aの両端に、それぞれ排気管7の一端7aが連結されている。排気管7は、箱形空間Sの側面を貫通して地中で水平方向に延在し、さらに鉛直方向上方に折れて地表に現れ、所定の高さまで延在する。そして、排気管7の他端7bは大気中に開口している。雨水等の浸入を避けるために排気管7の他端7bは、下向きに開口している。排気管7の開口を、砂利層9の表面上ではなく箱形空間Sの外部に設けている理由は、砂利層9の表面上で行う作業の支障とならないためである。
<Exhaust pipe 7>
Preferably, one end 7a of the exhaust pipe 7 is connected to both ends of two culvert pipes 5a extending in the left-right direction. The exhaust pipe 7 penetrates the side surface of the box-shaped space S and extends in the horizontal direction in the ground. Further, the exhaust pipe 7 is folded upward in the vertical direction and appears on the ground surface, and extends to a predetermined height. The other end 7b of the exhaust pipe 7 is open to the atmosphere. The other end 7b of the exhaust pipe 7 is opened downward to avoid intrusion of rainwater or the like. The reason why the opening of the exhaust pipe 7 is provided not on the surface of the gravel layer 9 but outside the box-shaped space S is that it does not hinder the work performed on the surface of the gravel layer 9.
 排気管7は、図2(b)、図3(b)に示す砂利層9の砂利の間隙にある空気を排気するためのものである。これにより、砂利層9における液体のろ過効率が向上する。図2(b)に、空気の流れを白矢印で示している。排気管7には暗渠管5のような孔は無いため、暗渠管5内の排液が排気管7を通して外部に漏れることはなく、外部からも液体が浸入することはない。排気管7としては、塩化ビニル製の管を採用できる。連結部においては、例えば、外径95mmの暗渠管を包むように、内径100mmの塩化ビニル製の管を両者が30cm以上重なるように嵌挿する。 The exhaust pipe 7 is for exhausting the air in the gravel gap of the gravel layer 9 shown in FIGS. 2 (b) and 3 (b). Thereby, the filtration efficiency of the liquid in the gravel layer 9 improves. In FIG. 2B, the air flow is indicated by white arrows. Since the exhaust pipe 7 does not have a hole like the culvert pipe 5, the drainage liquid in the culvert pipe 5 does not leak to the outside through the exhaust pipe 7, and the liquid does not enter from the outside. As the exhaust pipe 7, a pipe made of vinyl chloride can be adopted. In the connecting portion, for example, a vinyl chloride tube having an inner diameter of 100 mm is fitted and inserted so as to overlap with each other by 30 cm or more so as to wrap a culvert tube having an outer diameter of 95 mm.
 <堆肥盤擁壁3>
 さらに、箱形空間Sの上縁を囲むように堆肥盤擁壁3が設置されている。図示の例では、複数のブロックを並設して連続的な堆肥盤擁壁3が形成されている。堆肥盤擁壁3は、箱形空間Sの上縁の全周のうち、入出口を残してそれ以外の部分に設置されている。図示の例では、箱形空間Sが直方体形状で上縁が平面視において長方形であるので、長方形の長い一辺L1を入出口として残し、他の三辺に堆肥盤擁壁3が設置されている。
<Composting wall 3>
Further, a composting wall retaining wall 3 is installed so as to surround the upper edge of the box-shaped space S. In the illustrated example, a continuous compost holding wall 3 is formed by arranging a plurality of blocks in parallel. The composting board retaining wall 3 is installed in the other part of the entire circumference of the upper edge of the box-shaped space S except for the entrance / exit. In the example shown in the figure, the box-shaped space S has a rectangular parallelepiped shape and the upper edge is rectangular in plan view, so that the rectangular long side L1 is left as an entrance and exit, and the composting plate retaining wall 3 is installed on the other three sides. .
 堆肥盤擁壁3を形成する1つのブロックは、上方に所定の高さをもって起立する壁部3aと、壁部3aの下端を支持する基部3bと外側の基部3cとからなる。基部3b、3cは、所定の厚さの平板状でありそれぞれ内側と外側に水平に張り出し地表に載置されている。壁部3aには複数の縦スリット3dが穿設されている。縦スリット3dは、基部3b、3cの上面の高さから壁部3aの天端近傍の高さまで延在する細長い貫通孔である。複数の縦スリット3dは、壁部3aの幅方向に所定の間隔(等間隔に限られない)で配置されている。 One block that forms the composting retaining wall 3 includes a wall portion 3a that rises upward at a predetermined height, a base portion 3b that supports the lower end of the wall portion 3a, and an outer base portion 3c. The bases 3b and 3c are in the shape of a flat plate having a predetermined thickness, and are respectively placed on the ground surface so as to extend horizontally inside and outside. A plurality of vertical slits 3d are formed in the wall 3a. The vertical slit 3d is an elongated through-hole extending from the height of the upper surface of the base portions 3b and 3c to the height near the top end of the wall portion 3a. The plurality of vertical slits 3d are arranged at predetermined intervals (not limited to equal intervals) in the width direction of the wall 3a.
 好適には、堆肥盤擁壁3はコンクリート製である。内側の基部3bの内縁の位置が、箱形空間Sの上縁の位置と一致している。壁部3aの高さは、1.5m~2m程度であり、有機廃棄物の処理量に応じて適宜設定する。 Preferably, the composting retaining wall 3 is made of concrete. The position of the inner edge of the inner base portion 3b coincides with the position of the upper edge of the box-shaped space S. The height of the wall 3a is about 1.5 m to 2 m, and is appropriately set according to the amount of organic waste treated.
 <砂利層9>
 さらに本システムでは、少なくとも箱形空間S全体に砂利が充填され、砂利層9が形成されている。砂利層9の表面に有機廃棄物10が投入される。砂利は、一例として、直径2cm~5cm程度の石から構成されたもの、又は、この程度の粒度の石とさらに細かい小石や砂との混合物である。本システムにおける砂利層9の砂利は、ろ材すなわちフィルター材として機能する。砂利の粒度及び粒度分布は、必要とされるろ過性能によって適宜選択される。
<Gravel layer 9>
Further, in this system, at least the entire box-shaped space S is filled with gravel and a gravel layer 9 is formed. Organic waste 10 is put on the surface of the gravel layer 9. Gravel is, for example, a stone composed of stones having a diameter of about 2 cm to 5 cm, or a mixture of stones of this size and finer pebbles or sand. The gravel of the gravel layer 9 in this system functions as a filter medium, that is, a filter material. The particle size and particle size distribution of gravel are appropriately selected depending on the required filtration performance.
 図2(b)、図3(b)に示すように、砂利層9を形成する砂利が、箱形空間S全体に加え、堆肥盤擁壁3の壁部3aの中間の高さまでさらに充填されていることが好適である。中間の高さとは、半分の高さの意味ではなく、基部3b、3cと天端の間の任意の高さの意味である。例えば、壁部3aの高さが1.5mのとき、下端から30cm程度の高さまで砂利を充填する。これにより、堆肥盤擁壁3の内側の基部3bが砂利の重量で固定される。従って、砂利層9の表面で稼動させる作業機械が堆肥盤擁壁3と接触や衝突した際にも、堆肥盤擁壁3の安定性が確保できる。
 なお、砂利層9は、図示の例のように表面全体が水平な平坦面であってもよいが、表面全体が入出口に向かって緩やかに高くなるように傾斜していてもよい。
As shown in FIGS. 2B and 3B, the gravel forming the gravel layer 9 is further filled up to the middle height of the wall portion 3a of the compost holding wall 3 in addition to the entire box-shaped space S. It is suitable. The intermediate height does not mean a half height, but an arbitrary height between the base portions 3b and 3c and the top end. For example, when the height of the wall 3a is 1.5 m, gravel is filled up to a height of about 30 cm from the lower end. Thereby, the base 3b inside the composting board retaining wall 3 is fixed by the weight of gravel. Therefore, even when the working machine operated on the surface of the gravel layer 9 contacts or collides with the composting retaining wall 3, the stability of the composting retaining wall 3 can be ensured.
The gravel layer 9 may be a flat surface whose entire surface is horizontal as in the illustrated example, but may be inclined such that the entire surface gradually increases toward the entrance / exit.
 <排液溝4>
 好適には、箱形空間Sの上縁の全周を囲むように、断面U字形の排液溝4が設置されている。図1、図3(a)(b)に示すように、排液溝4は、箱形空間Sの全周囲を囲み液体を受けるための周囲溝4aと、周囲溝4aの一箇所から排液貯留槽8へと液体を誘導するための誘導溝4bとから構成されている。周囲溝4aは、水平でもよいが、誘導溝4bの方へ向かって若干傾斜させることが好適である。誘導溝4bは、排液貯留槽8へ向かって傾斜させる。排液溝4として、コンクリート製U字溝を採用できる。さらに排液溝4には、塵などが浸入しないように、格子や孔空き板等の蓋4cを設けることが好適である。
<Drainage groove 4>
Preferably, a drainage groove 4 having a U-shaped cross section is provided so as to surround the entire circumference of the upper edge of the box-shaped space S. As shown in FIGS. 1, 3 (a) and 3 (b), the drainage groove 4 surrounds the entire periphery of the box-shaped space S and drains from one place of the peripheral groove 4 a for receiving the liquid. It is composed of a guide groove 4 b for guiding the liquid to the storage tank 8. The peripheral groove 4a may be horizontal, but is preferably slightly inclined toward the guide groove 4b. The guide groove 4 b is inclined toward the drainage storage tank 8. A concrete U-shaped groove can be adopted as the drainage groove 4. Furthermore, it is preferable that the drainage groove 4 is provided with a lid 4c such as a lattice or a perforated plate so that dust or the like does not enter.
 排液溝4は、堆肥盤擁壁3が設置されている箇所(上縁の長方形の三辺)においては、堆肥盤擁壁3の壁部3aよりも外側に設置されている。堆肥盤擁壁3が設置されていない箇所(上縁の長方形の一辺L1)においては上縁の直ぐ外側に設置され、かつ箱形空間Sに充填した砂利層9の表面と排液溝4の上端の高さが揃うように設置されている。長方形の一辺L1に沿った排液溝4は他の三辺に沿った排液溝4よりも高い位置にあるので、一辺L1に沿った排液溝4の両端部分において傾斜を設ける。 The drainage groove 4 is installed outside the wall portion 3a of the composting board retaining wall 3 at the place where the composting board retaining wall 3 is installed (three sides of the upper edge rectangle). At the place where the composting retaining wall 3 is not installed (one side L1 of the upper edge rectangle), the surface of the gravel layer 9 and the drainage groove 4 which are installed just outside the upper edge and filled in the box-shaped space S It is installed so that the height of the upper end is aligned. Since the drainage groove 4 along one side L1 of the rectangle is higher than the drainage groove 4 along the other three sides, an inclination is provided at both ends of the drainage groove 4 along the one side L1.
 好適には、堆肥盤擁壁3のある箇所では、堆肥盤擁壁3の外側の基部3cと排液溝4が隣接している。これにより、堆肥盤擁壁3の縦スリット3dを通って外側に排出された液体が、直接、排液溝4に流入することができる。図示の例では、基部3cの上面と排液溝4の上端の高さが一致しているが、別の例として、排液溝4の上端を基部3cの上面よりも若干低くしてもよい。さらに別の例として、排液溝4を堆肥盤擁壁3の外側の基部3cの上面に載せてもよいが、その場合、砂利層9の表面の位置は、排液溝4の上端の位置より高くする。 Preferably, at a place where the composting retaining wall 3 is located, the base 3c outside the composting retaining wall 3 and the drainage groove 4 are adjacent to each other. Thereby, the liquid discharged | emitted through the vertical slit 3d of the compost disc retaining wall 3 can flow in into the drainage groove 4 directly. In the illustrated example, the upper surface of the base 3c and the upper end of the drainage groove 4 coincide with each other. However, as another example, the upper end of the drainage groove 4 may be slightly lower than the upper surface of the base 3c. . As still another example, the drainage groove 4 may be placed on the upper surface of the base 3c outside the composting wall retaining wall 3. In this case, the position of the surface of the gravel layer 9 is the position of the upper end of the drainage groove 4. Make it higher.
(2)第1の実施形態の使用形態
 次に、図1~図3をさらに参照して、固液分離ろ過システムの第1の実施形態の使用形態の一例を説明する。
(2) Usage Form of the First Embodiment Next, an example of usage form of the first embodiment of the solid-liquid separation and filtration system will be described with further reference to FIGS.
 <有機廃棄物の投入工程>
 図2(b)、図3(b)に示すように、畜産排泄物等の有機廃棄物10を砂利層9の表面に投入する。有機廃棄物10は、液体と固体を含む混合物である。有機廃棄物10の水分量によって投入方法を適宜選択する。比較的水分量が多くポンプ圧送が可能な場合は、ポンプを用いてホースで投入する。比較的水分量が少なくポンプ圧送できない場合は、バケットローダーやバーンクリーナ等の作業機械を用いて投入する。いずれの場合も、新規に投入された有機廃棄物10を砂利層9の表面に均一に分散させることが好ましい。
<Input process of organic waste>
As shown in FIGS. 2 (b) and 3 (b), organic waste 10 such as livestock excrement is put on the surface of the gravel layer 9. The organic waste 10 is a mixture containing a liquid and a solid. The input method is appropriately selected depending on the water content of the organic waste 10. If the amount of water is relatively large and pumping is possible, use a hose with a pump. If the amount of water is relatively low and pumping is not possible, use a working machine such as a bucket loader or burn cleaner. In any case, it is preferable that the newly introduced organic waste 10 is uniformly dispersed on the surface of the gravel layer 9.
 <固液分離ろ過工程>
 投入された有機廃棄物10に含まれる液体は、図2(b)、図3(b)に黒矢印で示す経路で移動する。1つの液体経路は、砂利層9に浸透し、表面から底面へ向かって重力によりゆっくりと降下する経路である。この経路においては、砂利層9による液体のろ過が行われる。底面まで到達した液体は、遮水シート2があるので底面近傍に滞留するが、その水位が暗渠管5の高さになると暗渠管5内に流入し、排液導管6を通って排出され、排液貯留槽8に貯留される。排気管7を通して砂利層9内の空気が外部に放出されることによって液体の降下を促進し、ろ過を効率的に行うことができる。
<Solid-liquid separation and filtration process>
The liquid contained in the input organic waste 10 moves along a route indicated by a black arrow in FIGS. 2 (b) and 3 (b). One liquid path is a path that penetrates into the gravel layer 9 and slowly descends by gravity from the surface toward the bottom surface. In this route, the liquid is filtered by the gravel layer 9. The liquid that has reached the bottom surface stays in the vicinity of the bottom surface due to the water shielding sheet 2, but when the water level reaches the level of the underdrain pipe 5, it flows into the underdrain pipe 5 and is discharged through the drainage conduit 6. It is stored in the drainage storage tank 8. The air in the gravel layer 9 is released to the outside through the exhaust pipe 7, thereby facilitating the liquid descent and performing the filtration efficiently.
 もう1つの液体経路は、砂利層9に浸透し、比較的表面近くにおいて堆肥盤擁壁3の縦スリット3dから排出される経路である。この経路で流出した液体は、排液溝4の周囲溝4aに流入し、誘導溝4bを通って排液貯留槽8に貯留される。 Another liquid path is a path that penetrates into the gravel layer 9 and is discharged from the vertical slit 3d of the composting disk retaining wall 3 relatively near the surface. The liquid flowing out through this path flows into the peripheral groove 4a of the drainage groove 4 and is stored in the drainage storage tank 8 through the guide groove 4b.
 本システムは、屋外に設けられかつ屋根が無いので、降雨により有機廃棄物10が洗われることで塩類が液体とともに流出する。これにより、表面に残る固体中の余分な塩類が低減される。 Since this system is installed outdoors and has no roof, the organic waste 10 is washed away by rain, so that the salt flows out together with the liquid. Thereby, excess salts in the solid remaining on the surface are reduced.
 本システムで排液貯留槽8に集められる排液は、有機廃棄物に元々含まれていた液体、堆肥化を行う場合は堆肥化過程で発生するレキ汁、及び降雨を含むものである。 The drainage liquid collected in the drainage storage tank 8 by this system includes the liquid originally contained in the organic waste, leki juice generated during the composting process, and rainfall when composting.
 <堆肥化工程>
 本システムで堆肥化を行う場合における堆肥化工程について説明する。砂利層9の表面の残留物は、適度な水分を含む固体であり、そのまま放置することで堆肥化が進行する。堆肥化の進行中、1回又は複数回のバケットローダーによる切り返しを適切な時期に行う。切り返し作業を行う際には、入出口からバケットローダーを乗り入れ、表面の固体を集め切り返しを行う。
<Composting process>
The composting process in the case of composting with this system will be described. The residue on the surface of the gravel layer 9 is a solid containing moderate moisture, and composting proceeds when left as it is. During composting, one or more bucket loaders are turned over at an appropriate time. When performing the reversing work, a bucket loader is loaded from the entrance and exit, and the surface solids are collected and reversed.
 <堆肥の取り出し工程>
 堆肥化過程は、最終的に完熟状態となるまで段階がある。一例として、完熟前の段階の堆肥を取り出し、畑地等へ運搬して利用してもよい。完熟状態の堆肥は良質堆肥となる。
<Manure removal process>
The composting process has stages until it finally becomes fully mature. As an example, compost at the stage before ripeness may be taken out and transported to a field or the like for use. Ripe compost is good quality compost.
 別の例として、完熟前の堆肥をバケットローダーで集めて砂利層9の表面の一部に高さ2m以下の山に積み上げて完熟状態となるまで堆肥化を進めてもよい。積み上げることで発酵熱の保温効果が得られ堆肥化が促進される。また、堆肥を一部に集めることで空いた砂利層9の表面には、新たに有機廃棄物を投入できる。 As another example, compost before maturity may be collected with a bucket loader and stacked on a part of the surface of the gravel layer 9 on a mountain having a height of 2 m or less, and composting may be continued until the maturity is achieved. By stacking, the heat retention effect of fermentation heat is obtained and composting is promoted. Further, organic waste can be newly added to the surface of the gravel layer 9 vacated by collecting compost in a part.
 また別の例として、完熟状態の堆肥の一部を、新たに投入した有機廃棄物に混ぜることにより、水分調整材と堆肥化促進の種菌として利用してもよい。 As another example, a part of fully composted compost may be mixed with newly introduced organic waste to be used as a moisture adjusting material and an inoculum for promoting composting.
 <本システムで堆肥化を行わない場合の固体処理>
 本システムで堆肥化を行わない場合、固液分離された有機廃棄物の残留固体を作業機械で集め、搬出する。その後、別の場所で堆肥化を行ったり、そのまま利用したり、適切な廃棄物処理を行ったりする。
<Solid treatment when composting is not performed in this system>
When composting is not performed in this system, the solid residue of solid waste separated into solid and liquid is collected by a work machine and carried out. Then, compost in another place, use as it is, or perform appropriate waste disposal.
 <排液処理>
 排液貯留槽8に貯留された排液は、例えば特許文献3又は非特許文献3のような伏流式人工湿地システムを利用することにより目標とする水質基準まで浄化し、河川等に放流することができる。別の例として、他の浄化処理方法を適用して浄化した後、放流してもよい。さらに別の例として、そのまま肥料として利用可能であればそのまま利用してもよい。
<Drainage treatment>
The effluent stored in the effluent storage tank 8 is purified to the target water quality standard by using, for example, a submerged artificial wetland system such as Patent Document 3 or Non-Patent Document 3, and is discharged to a river or the like. Can do. As another example, after purifying by applying another purification treatment method, it may be discharged. As yet another example, if it can be used as it is as a fertilizer, it may be used as it is.
(3)第2の実施形態の構成
 次に、本発明の第2の実施形態について説明する。第2の実施形態は、比較的液体が多い有機廃棄物に好適な形態である。
(3) Configuration of Second Embodiment Next, a second embodiment of the present invention will be described. The second embodiment is a form suitable for organic waste having a relatively large amount of liquid.
 図4は、本発明の第2の実施形態における固液分離ろ過システム1Aの外郭構造を示した概略平面図である。図5(a)は図4のIII-IIIラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。図6(a)は図4のIV-IVラインに沿った概略断面図であり、(b)は(a)に砂利層及び有機廃棄物を付加したシステム全体の概略断面図である。 FIG. 4 is a schematic plan view showing an outer structure of a solid-liquid separation and filtration system 1A according to the second embodiment of the present invention. FIG. 5A is a schematic cross-sectional view taken along the line III-III in FIG. 4, and FIG. 5B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG. 6A is a schematic cross-sectional view taken along the line IV-IV in FIG. 4, and FIG. 6B is a schematic cross-sectional view of the entire system in which a gravel layer and organic waste are added to FIG.
 図4、図5(a)及び図6(a)は、固液分離ろ過システム1Aの外郭構造を示している。この外郭構造は、図2(b)及び図3(b)に示す砂利層及び有機廃棄物を除いた状態に相当する。以下、主として、第1の実施形態と異なる構成について第2の実施形態を説明し、第1の実施形態と同じ構成については説明を簡略化する。 FIG. 4, FIG. 5 (a) and FIG. 6 (a) show the outer structure of the solid-liquid separation and filtration system 1A. This outer structure corresponds to the state excluding the gravel layer and organic waste shown in FIGS. 2 (b) and 3 (b). Hereinafter, the second embodiment will be mainly described with respect to a configuration different from the first embodiment, and the description of the same configuration as the first embodiment will be simplified.
 固液分離ろ過システム1Aでは、第1の実施形態と同じく箱形空間Sが平面視において長方形であり、入出口となる一辺L1以外の三辺の周囲に堆肥盤擁壁3が設けられ、堆肥盤擁壁3の外側には排液溝4が設けられている。 In the solid-liquid separation and filtration system 1A, the box-shaped space S is rectangular in a plan view as in the first embodiment, and the compost holding wall 3 is provided around three sides other than the one side L1 serving as an entrance and exit. A drainage groove 4 is provided outside the panel retaining wall 3.
 固液分離ろ過システム1Aでは、砂利層9の表面全体が平坦ではなく、入出口となる一辺L1近傍において一辺L1の方に向かって高くなるように傾斜が設けられている(図6参照)。図示の例では、箱形空間Sの底面が、前後方向の後端からL2の位置までの平坦面であり、この平坦面の部分に暗渠管5が配置されている。箱形空間SにおけるL2の位置から前端L1’までは、前端L1’に向かって高くなる傾斜側面となっており、前端L1’と一辺L1の間は鉛直側面となっている。砂利層9の表面は、この傾斜側面に沿って高くなるように傾斜を設けられている。このような砂利層9の表面に、比較的液体の多い有機廃棄物10Aが投入される。 In the solid-liquid separation and filtration system 1A, the entire surface of the gravel layer 9 is not flat, and is inclined so as to become higher toward the side L1 in the vicinity of the side L1 serving as an inlet / outlet (see FIG. 6). In the illustrated example, the bottom surface of the box-shaped space S is a flat surface from the rear end in the front-rear direction to the position L2, and the culvert tube 5 is disposed on this flat surface portion. From the position of L2 in the box-shaped space S to the front end L1 'is an inclined side surface that increases toward the front end L1', and a portion between the front end L1 'and one side L1 is a vertical side surface. The surface of the gravel layer 9 is inclined so as to be higher along the inclined side surface. An organic waste 10 </ b> A having a relatively large amount of liquid is put on the surface of the gravel layer 9.
 入出口の位置が砂利層9の表面の最高位置となっている。第2の実施形態では入出口には排液溝4は設けられず、直接、周囲の地盤に繋がっている。周囲の地盤は、入出口の砂利層9の表面と同じ高さまで盛り上げられている。 The entrance / exit position is the highest position on the surface of the gravel layer 9. In the second embodiment, the drainage groove 4 is not provided at the inlet / outlet, but is directly connected to the surrounding ground. The surrounding ground is raised to the same height as the surface of the gravel layer 9 at the entrance and exit.
(4)第2の実施形態の使用形態
 次に、図4~図6をさらに参照して、固液分離ろ過システムの第2の実施形態の使用形態の一例を説明する。
(4) Usage Form of Second Embodiment Next, an example of usage form of the second embodiment of the solid-liquid separation and filtration system will be described with further reference to FIGS.
 <有機廃棄物の投入工程>
 図5(b)、図6(b)に示すように、有機廃棄物10Aを砂利層9の表面に投入する。この場合、有機廃棄物10Aは、搾乳パーラーの洗浄排水のように固体に比べて液体が多い。従って基本的にポンプを用いてホースで投入する。
<Input process of organic waste>
As shown in FIGS. 5 (b) and 6 (b), the organic waste 10 </ b> A is put on the surface of the gravel layer 9. In this case, the organic waste 10A has a larger amount of liquid than the solid like the washing drainage of the milking parlor. Therefore, basically, a pump is used to supply with a hose.
 <固液分離ろ過工程>
 比較的液体の多い有機廃棄物10Aは、砂利層9の表面の低い位置に溜まる。入出口の近傍は土手のように高くなっているので、有機廃棄物10Aが入出口から流出することはない。液体が多いため、その一部は、砂利層9に浸透する前に縦スリット3dから外側に流出し、排液溝4に流れ込み、排液貯留槽8に貯留される。砂利層9に浸透した液体は、表面から底面へ向かって重力によりゆっくりと降下して暗渠管5内に流入し、排液導管6を通って排出され、排液貯留槽8に貯留される。排液貯留槽8に貯留された排液の処理は、第1の実施形態と同様である。また、第1の実施形態に比べれば少量であるが、砂利層9の表面に残留した固体の処理についても第1の実施形態と同様である。
<Solid-liquid separation and filtration process>
The organic waste 10 </ b> A having a relatively large amount of liquid accumulates at a low position on the surface of the gravel layer 9. Since the vicinity of the entrance / exit is as high as a bank, the organic waste 10A does not flow out of the entrance / exit. Since there is a lot of liquid, a part of the liquid flows out from the vertical slit 3 d before penetrating into the gravel layer 9, flows into the drainage groove 4, and is stored in the drainage storage tank 8. The liquid that has penetrated into the gravel layer 9 slowly descends by gravity from the surface toward the bottom, flows into the underdrain pipe 5, is discharged through the drainage conduit 6, and is stored in the drainage storage tank 8. The processing of the drainage stored in the drainage storage tank 8 is the same as in the first embodiment. Moreover, although it is a small amount compared with 1st Embodiment, it is the same as that of 1st Embodiment also about the process of the solid which remained on the surface of the gravel layer 9. FIG.
(5)第3の実施形態の構成
 次に、本発明の第3の実施形態について説明する。第3の実施形態は、バケットローダー作業の効率を向上させるとともに、液体分離の効率を向上させることを考慮した形態である。
(5) Configuration of Third Embodiment Next, a third embodiment of the present invention will be described. In the third embodiment, the efficiency of bucket loader work is improved, and the efficiency of liquid separation is considered.
 図7は、本発明の第3の実施形態における固液分離ろ過システム1Bの概略平面図である。図8は、図7のV-Vラインに沿った概略断面図であり、図9は、図7のVI-VIラインに沿った概略断面図である。図10は、第3の実施形態の固液分離システム1Bと好適に組み合わせることができる空気吸引装置を概略的に示した拡大平面図である。 FIG. 7 is a schematic plan view of a solid-liquid separation and filtration system 1B according to the third embodiment of the present invention. 8 is a schematic cross-sectional view taken along the line VV in FIG. 7, and FIG. 9 is a schematic cross-sectional view taken along the line VI-VI in FIG. FIG. 10 is an enlarged plan view schematically showing an air suction device that can be suitably combined with the solid-liquid separation system 1B of the third embodiment.
 図7~図9では、固液分離ろ過システム1Bの箱形空間に砂利を充電して砂利層9を形成した状態である。これらの図では有機廃棄物は示していない。以下、主として、第1の実施形態と異なる構成について第3の実施形態を説明し、第1の実施形態と同じ構成については説明を簡略化する。 7 to 9 show a state in which gravel layers 9 are formed by charging gravel in the box-shaped space of the solid-liquid separation and filtration system 1B. These figures do not show organic waste. Hereinafter, the third embodiment will be mainly described with respect to the configuration different from the first embodiment, and the description of the same configuration as the first embodiment will be simplified.
 固液分離ろ過システム1Bでは、第1の実施形態と同じく箱形空間Sが平面視において長方形であり、長方形の一辺L1の一部に入出口が設けられている。入出口以外の箱形空間Sの上縁周囲には堆肥盤擁壁3が設置されている。堆肥盤擁壁3の外側には排液溝4が設置されている。 In the solid-liquid separation and filtration system 1B, the box-shaped space S is rectangular in plan view as in the first embodiment, and an inlet / outlet is provided at a part of one side L1 of the rectangle. A composting wall 3 is installed around the upper edge of the box-shaped space S other than the entrance / exit. A drainage groove 4 is provided outside the composting wall retaining wall 3.
 固液分離ろ過システム1Bでは、箱形空間Sの上縁と砂利層9の表面が基本的に同じ高さ位置となるように砂利が充填されている。第3の実施形態の特徴は、砂利層9の表面上に、床スラブ11が設置されていることである。床スラブ11は、所定の厚さを有する剛体板であり、好適には鉄筋コンクリート製である。 In the solid-liquid separation and filtration system 1B, gravel is filled so that the upper edge of the box-shaped space S and the surface of the gravel layer 9 are basically at the same height position. A feature of the third embodiment is that a floor slab 11 is installed on the surface of the gravel layer 9. The floor slab 11 is a rigid plate having a predetermined thickness, and is preferably made of reinforced concrete.
 さらに床スラブ11は、鉛直方向に貫通する多数のスリット11aを形成されている。図示の例ではスリット11aは、平面視にて細長い形状の貫通孔である。複数のスリット11aが、スリットの幅方向に所定の間隔で形成され、さらにスリットの長さ方向に複数の列が形成されている。なお、スリット11a内に有機廃棄物が入り込まないように、スリット11a内にも砂利が充填されている。従って本実施形態では、砂利層9の表面は、実質的に床スラブ11の上面と同一面となる。本実施形態における砂利層9の表面積は、床スラブ11のスリット11aの面積の総和であるので、第1及び第2の実施形態と比べて小さくなる。 Furthermore, the floor slab 11 is formed with a large number of slits 11a penetrating in the vertical direction. In the illustrated example, the slit 11a is a long and narrow through hole in plan view. A plurality of slits 11a are formed at predetermined intervals in the slit width direction, and a plurality of rows are formed in the slit length direction. In addition, gravel is filled also in the slit 11a so that an organic waste may not enter into the slit 11a. Therefore, in the present embodiment, the surface of the gravel layer 9 is substantially flush with the upper surface of the floor slab 11. Since the surface area of the gravel layer 9 in the present embodiment is the sum of the areas of the slits 11a of the floor slab 11, it is smaller than those in the first and second embodiments.
 鉄筋コンクリート製の床スラブ11を設置する場合、先ず、砂利層9の表面に、所定の形状の型枠を配置し、縦横に鉄筋を設置する。その後、型枠にコンクリートを打設し、固化させる。コンクリートが固化するまで養生させる。型枠はそのまま残してもよい。 When installing the floor slab 11 made of reinforced concrete, first, a form of a predetermined shape is arranged on the surface of the gravel layer 9, and the reinforcing bars are installed vertically and horizontally. After that, concrete is placed on the formwork and solidified. Curing until the concrete solidifies. The formwork may be left as it is.
 図示の通り、床スラブ11の周辺部が、堆肥盤擁壁3の内側の基部の上を覆うことが好適である。これにより、堆肥盤擁壁3がさらに安定化する。床スラブ11は、鉄筋コンクリート製以外に、H鋼等の鋼材を用いても作製可能であるが、コスト的には鉄筋コンクリート製が有利である。 As shown in the figure, it is preferable that the peripheral portion of the floor slab 11 covers the base portion inside the composting board retaining wall 3. Thereby, the compost board retaining wall 3 is further stabilized. The floor slab 11 can be produced by using a steel material such as H steel in addition to the reinforced concrete. However, the floor slab 11 is advantageous in terms of cost.
 床スラブ11を設置することにより、バケットローダー等の作業機による作業の際に、作業機の走行安定性が向上する。また、床スラブ11の表面上の固体(液体を分離された固体、完熟前の堆肥、又は完熟した堆肥)をバケットにより掬って取り出す場合、床スラブ11が硬い平坦面であるので、砂利層9の表面からそれらを掬う場合に比べて、固体のみを容易に掬うことができる。 By installing the floor slab 11, the running stability of the work machine is improved when working with a work machine such as a bucket loader. Further, when the solid on the surface of the floor slab 11 (solid from which the liquid has been separated, compost before ripeness, or ripe compost) is picked up with a bucket, the floor slab 11 is a hard flat surface, so the gravel layer 9 Compared with the case where they are picked up from the surface, only the solid can be picked up easily.
 好適には、図9の断面図に示すように、床スラブ11を入出口の外側に延長し、かつ、入出口の位置11bから端部11cに向かって高くなるように傾斜を設ける。この延長部分にはスリットは設けない。図示の例では、床スラブ11の延長部分の端部11cが、堆肥舎20の床と連続している。堆肥舎20内には、例えば、その隣に設けられた牛舎等の家畜舎から排出された糞尿等の有機廃棄物が蓄積されている。それらの有機廃棄物は、傾斜した床スラブ11の延長部分を介して固液分離ろ過システム1Bへと移動させることができる。この部分に傾斜を設けたことにより、有機廃棄物が逆行することはない。 Preferably, as shown in the cross-sectional view of FIG. 9, the floor slab 11 is extended to the outside of the entrance / exit, and is inclined so as to become higher from the entrance / exit position 11 b toward the end portion 11 c. This extension is not provided with a slit. In the illustrated example, the end portion 11 c of the extended portion of the floor slab 11 is continuous with the floor of the composting house 20. In the compost house 20, for example, organic waste such as manure discharged from a livestock barn such as a cow barn provided next thereto is accumulated. Those organic wastes can be transferred to the solid-liquid separation and filtration system 1B through an extended portion of the inclined floor slab 11. By providing an inclination in this part, the organic waste does not go backward.
 図7及び図9を参照すると、暗渠管5と排液貯留槽8の間を連結する排液導管6が示されている。排液導管6の一端は、箱形空間S内で暗渠管5に接続されている。排液導管6の他端は、排液貯留槽8の側壁を貫通し、排液貯留槽8の内部空間に突出している。排液導管6の他端近傍に、空気吸引装置30が設置されている。 Referring to FIGS. 7 and 9, there is shown a drainage conduit 6 that connects between the culvert tube 5 and the drainage storage tank 8. One end of the drainage conduit 6 is connected to the underdrain pipe 5 in the box-shaped space S. The other end of the drainage conduit 6 penetrates the side wall of the drainage storage tank 8 and protrudes into the internal space of the drainage storage tank 8. An air suction device 30 is installed in the vicinity of the other end of the drainage conduit 6.
 固液分離ろ過システム1Bは、上述した通り床スラブ11を設置したことにより、有機廃棄物と砂利層9との接触面積が実質的に小さくなっていることから、重力を利用して砂利層9内に液体を誘導する能力は第1及び第2の実施形態に比べて低くなる。空気吸引装置30は、この欠点を補うために設けたものである。 Since the solid-liquid separation and filtration system 1B has the floor slab 11 installed as described above, the contact area between the organic waste and the gravel layer 9 is substantially reduced. The ability to guide liquid into it is lower than in the first and second embodiments. The air suction device 30 is provided to compensate for this drawback.
 図10は、図7に示した空気吸引装置30の近傍領域を拡大した概略平面図である。排液貯留槽8の内部空間において、一例として排液導管6の他端にほぼ同じ直径をもつ吸引管34が連結されている。図10では、吸引管34の管壁の一部を切り欠いて示している。吸引管34は、実質的に排液導管6の延長部分である。吸引管34の先端は、排液貯留槽8の内部空間に開口している。従って、吸引管34の開口は、実質的に排液導管6の開口である。 FIG. 10 is a schematic plan view in which a region near the air suction device 30 shown in FIG. 7 is enlarged. In the internal space of the drainage reservoir 8, for example, a suction pipe 34 having substantially the same diameter is connected to the other end of the drainage conduit 6. In FIG. 10, a part of the tube wall of the suction tube 34 is cut away. The suction tube 34 is substantially an extension of the drainage conduit 6. The tip of the suction pipe 34 opens into the internal space of the drainage reservoir 8. Accordingly, the opening of the suction pipe 34 is substantially the opening of the drainage conduit 6.
 吸引管34の内部には、ノズル33が配置されている。ノズル33は、吸引管34の開口から適切な距離だけ離間して配置されることが好適である。ノズル33は、吸引管34の中心軸上に延在し、その噴射口は吸引管34の開口の方に向いている。ノズル33の後部に連結された送管32は、吸引管34の管壁を貫通し、さらに排液貯留槽8の側壁を貫通して外部に延在している。送管32は、送風機31に接続されている。送風機31を稼動させると、高圧エアが送管32を通してノズル33へと移送される。なお、吸引管34の外部における送管32の配管経路は任意である。別の例として、送管32は、吸引管34の管壁を貫通した後、排液貯留槽8の上端開口から出て、送風機31に接続されてもよい。 A nozzle 33 is disposed inside the suction pipe 34. The nozzle 33 is preferably arranged at an appropriate distance from the opening of the suction tube 34. The nozzle 33 extends on the central axis of the suction pipe 34, and its injection port faces the opening of the suction pipe 34. The feed pipe 32 connected to the rear part of the nozzle 33 passes through the pipe wall of the suction pipe 34 and further passes through the side wall of the drainage reservoir 8 and extends to the outside. The pipe 32 is connected to the blower 31. When the blower 31 is operated, high-pressure air is transferred to the nozzle 33 through the feed pipe 32. Note that the piping path of the feed pipe 32 outside the suction pipe 34 is arbitrary. As another example, the pipe 32 may pass through the pipe wall of the suction pipe 34 and then exit from the upper end opening of the drainage storage tank 8 and be connected to the blower 31.
(6)第3の実施形態の使用形態
 次に、図7~図10をさらに参照して、固液分離ろ過システムの第3の実施形態の使用形態の一例を説明する。
(6) Usage Pattern of Third Embodiment Next, an example of usage pattern of the third embodiment of the solid-liquid separation and filtration system will be described with further reference to FIGS.
 <有機廃棄物の投入工程>
 一例として、図7に示す堆肥舎20内に蓄積された有機廃棄物が、バケットローダーを用いて固液分離ろ過システム1Bの床スラブ11上に移動させられる。新規に投入された有機廃棄物は、床スラブ11上に均一に分散させられる。
<Input process of organic waste>
As an example, the organic waste accumulated in the compost house 20 shown in FIG. 7 is moved onto the floor slab 11 of the solid-liquid separation and filtration system 1B using a bucket loader. The newly introduced organic waste is uniformly dispersed on the floor slab 11.
 <固液分離ろ過工程>
 有機廃棄物に含まれる液体の移動経路は、上述した第1及び第2実施形態と基本的に同じである。床スラブ11上に残留した固体の処理も、上述した第1及び第2実施形態と基本的に同じである。本実施形態では、有機廃棄物と砂利層9との接触面積が小さいことを補うために、空気吸引装置30を稼動させる。
<Solid-liquid separation and filtration process>
The movement path of the liquid contained in the organic waste is basically the same as in the first and second embodiments described above. The treatment of the solid remaining on the floor slab 11 is basically the same as in the first and second embodiments described above. In the present embodiment, the air suction device 30 is operated to compensate for the small contact area between the organic waste and the gravel layer 9.
 空気吸引装置30を稼動させる際は、先ず、図8に示すように、暗渠管5に接続された排気管7の開口を閉じる。このために、例えば、排気管7の開口に開閉可能な蓋7c等の閉鎖手段を取り付ける。別の例として、蓋に替えてバルブを取り付けてもよい。 When operating the air suction device 30, first, the opening of the exhaust pipe 7 connected to the underdrain pipe 5 is closed as shown in FIG. For this purpose, for example, closing means such as a lid 7 c that can be opened and closed is attached to the opening of the exhaust pipe 7. As another example, a valve may be attached instead of the lid.
 続いて、送風機31を始動させる。図10を参照すると、送管32を通して圧送されたエアはノズル33の噴射口から吸引管34の開口へ向かって噴射される。これにより、高圧エアによるエア流F1が生成される。所定の強度の安定なエア流F1を生成するために、ノズル33と吸引管34の開口との間の距離を適切な長さとすることが好ましい。距離が短すぎると、強く安定なエア流F1が得られない。 Subsequently, the blower 31 is started. Referring to FIG. 10, the air fed through the feed pipe 32 is jetted from the jet port of the nozzle 33 toward the opening of the suction pipe 34. Thereby, the air flow F1 by high pressure air is produced | generated. In order to generate a stable air flow F1 having a predetermined strength, the distance between the nozzle 33 and the opening of the suction pipe 34 is preferably set to an appropriate length. If the distance is too short, a strong and stable air flow F1 cannot be obtained.
 エア流F1が生成されることにより、ノズル33の後方すなわち排液導管6の内部空間は負圧となる。この結果、エア流F2が生成される。エア流F2は、固液分離ろ過システム1Bの暗渠管5の内部の空気を吸引する吸引流となる。さらにこのエア流F2は、砂利層9の砂利の間隙にある空気を吸引し、さらにその間隙を通して液体を吸引する。排気管7は閉じられているので、エア流F2による吸引力は、砂利層9の表面、すなわち床スラブ11のスリット11aに充填された砂利の表面に対して作用する。その結果、このエア流F2により、砂利の表面に接触する有機廃棄物から液体が砂利層9内に引き込まれることとなる。暗渠管5及び排液導管6の内部においては、空間の下部を液体が流れ、液体の上方空間をエア流F2が流れる。 When the air flow F1 is generated, the pressure behind the nozzle 33, that is, the internal space of the drainage conduit 6, becomes negative. As a result, an air flow F2 is generated. The air flow F2 is a suction flow that sucks air inside the underdrain pipe 5 of the solid-liquid separation and filtration system 1B. Further, the air flow F2 sucks air in the gravel gap of the gravel layer 9 and sucks liquid through the gap. Since the exhaust pipe 7 is closed, the suction force by the air flow F2 acts on the surface of the gravel layer 9, that is, the surface of gravel filled in the slit 11a of the floor slab 11. As a result, the air flow F2 causes liquid to be drawn into the gravel layer 9 from the organic waste that contacts the gravel surface. Inside the culvert tube 5 and the drainage conduit 6, the liquid flows in the lower part of the space, and the air flow F2 flows in the space above the liquid.
 さらに、エア流F2が、砂利の表面に接触する有機廃棄物を通して周囲の空気も引き込む場合は、有機廃棄物の中を空気が通ることになり、好気性反応による堆肥化を促進する効果も得られる。 Furthermore, when the air flow F2 also draws ambient air through the organic waste contacting the gravel surface, the air passes through the organic waste, and the effect of promoting composting by an aerobic reaction is also obtained. It is done.
 このようにして、空気吸引装置30により発生する吸引流により、有機廃棄物からの液体の分離が促進される。本実施形態では、重力による液体の降下に加え、強制的に液体を吸引することで、固液分離の効率を向上させている。 In this way, the separation of the liquid from the organic waste is facilitated by the suction flow generated by the air suction device 30. In this embodiment, in addition to the drop of the liquid due to gravity, the efficiency of solid-liquid separation is improved by forcibly sucking the liquid.
 なお、第3の実施形態に適用した空気吸引装置30は、上述した第1及び第2の実施形態において適用することも可能である。 Note that the air suction device 30 applied to the third embodiment can also be applied to the first and second embodiments described above.
 1、1A 固液分離ろ過システム
 2 遮水シート
 3 堆肥盤擁壁
 4 排液溝
 5 暗渠管
 6 排液導管
 7 排気管
 8 排液貯留槽
 9、9A 砂利層
 10、10A 有機廃棄物
 11 スリット付スラブ
 20 堆肥舎
 30 空気吸引装置
 31 送風機
 32 送管
 33 ノズル
 34 吸引管 
 S 箱形空間
DESCRIPTION OF SYMBOLS 1, 1A solid-liquid separation filtration system 2 Water shielding sheet 3 Manure board retaining wall 4 Drainage groove 5 Underdrain pipe 6 Drainage pipe 7 Exhaust pipe 8 Drainage storage tank 9, 9A Gravel layer 10, 10A Organic waste 11 With slit Slab 20 Compost 30 Air suction device 31 Blower 32 Feed pipe 33 Nozzle 34 Suction pipe
S Box-shaped space

Claims (10)

  1.  遮水性を有する側面及び底面で囲まれた箱形空間(S)と、
     前記箱形空間(S)の底面近傍にて略水平方向に延設された暗渠管(5)と、
     前記箱形空間(S)の上縁から上方に所定の高さで起立する壁部(3a)と該壁部(3a)に穿設された複数の縦スリット(3d)とを具備しかつ該箱形空間(S)の上縁の全周のうち入出口以外の部分に設置されている堆肥盤擁壁(3)と、
     少なくとも前記箱形空間(S)全体に充填された砂利により形成される砂利層(9)と、を有することを特徴とする
     固液分離ろ過システム。
    A box-shaped space (S) surrounded by side and bottom surfaces with water-imperviousness,
    A culvert tube (5) extending in a substantially horizontal direction near the bottom of the box-shaped space (S),
    A wall portion (3a) that rises upward from the upper edge of the box-shaped space (S) at a predetermined height, and a plurality of vertical slits (3d) that are formed in the wall portion (3a); A composting wall retaining wall (3) installed in a part other than the entrance / exit of the entire circumference of the upper edge of the box-shaped space (S),
    A solid-liquid separation and filtration system comprising: a gravel layer (9) formed of gravel filled at least in the entire box-shaped space (S).
  2.  前記箱形空間(S)の上縁が平面視にて長方形であり、該長方形の一辺(L1)又は一辺の一部を前記入出口とすることを特徴とする請求項1に記載の固液分離ろ過システム。 2. The solid-liquid according to claim 1, wherein an upper edge of the box-shaped space (S) is rectangular in a plan view, and one side (L1) of the rectangle or a part of one side is used as the inlet / outlet. Separation filtration system.
  3.  前記箱形空間(S)の上縁の全周を囲むように、又は、上縁の全周のうち前記入出口以外の部分を囲むように設置された排液溝(4)を有し、該排液溝(4)は前記堆肥盤擁壁(3)が設置されている箇所においては該堆肥盤擁壁(3)の外側に設置されていることを特徴とする請求項1又は2に記載の固液分離ろ過システム。 A drainage groove (4) installed so as to surround the entire periphery of the upper edge of the box-shaped space (S) or to surround a portion other than the inlet / outlet of the entire periphery of the upper edge, 3. The drainage groove (4) according to claim 1 or 2, wherein the drainage groove (4) is installed outside the composting wall retaining wall (3) at a place where the composting retaining wall (3) is installed. The solid-liquid separation and filtration system described.
  4.  前記砂利層(9)を形成する砂利が、前記堆肥盤擁壁(3)の壁部(3a)の中間の高さまでさらに充填されていることを特徴とする請求項1~3のいずれかに記載の固液分離ろ過システム。 The gravel forming the gravel layer (9) is further filled up to a height in the middle of the wall portion (3a) of the composting retaining wall (3). The solid-liquid separation and filtration system described.
  5.  前記砂利層(9)の表面全体が、水平な平坦面であるか又は前記入出口に向かって高くなるように傾斜していることを特徴とする請求項1~4のいずれかに記載の固液分離ろ過システム。 The solid surface according to any one of claims 1 to 4, wherein the entire surface of the gravel layer (9) is a horizontal flat surface or is inclined so as to become higher toward the entrance / exit. Liquid separation filtration system.
  6.  前記砂利層(9)の表面が、前記入出口の近傍において該入出口に向かって高くなるように傾斜していることを特徴とする請求項1~4のいずれかに記載の固液分離ろ過システム。 The solid-liquid separation filtration according to any one of claims 1 to 4, wherein a surface of the gravel layer (9) is inclined so as to become higher toward the inlet / outlet in the vicinity of the inlet / outlet. system.
  7.  前記砂利層(9)の表面全体を覆うように設置された所定の厚さの床スラブ(11)を有し、前記床スラブ(11)は鉛直方向に貫通する多数のスリット(11a)を形成されていることを特徴とする請求項1~3のいずれかに記載の固液分離ろ過システム。 It has a floor slab (11) of a predetermined thickness installed so as to cover the entire surface of the gravel layer (9), and the floor slab (11) forms a number of slits (11a) penetrating in the vertical direction The solid-liquid separation and filtration system according to any one of claims 1 to 3, wherein
  8.  前記暗渠管(5)に一端が連結されかつ前記箱形空間(S)の側面を貫通して外部に延在する排液導管(6)と、
     前記排液導管(6)に連結されかつ該排液導管(6)の他端が側壁を貫通して内部空間に開口している排液貯留槽(8)と、
     前記排液導管(6)の他端近傍に設置された空気吸引装置(30)と、を有し、
     前記空気吸引装置(30)は、
      前記排液導管(6)の内部にて該排液導管(6)の開口の方に向かってエアを噴射可能に設置されたノズル(33)と、
      前記ノズル(33)に対してエアを圧送するための送風機(31)と、を具備することを特徴とする請求項1~7のいずれかに記載の固液分離ろ過システム。
    A drainage conduit (6) having one end connected to the culvert tube (5) and extending outside through the side surface of the box-shaped space (S);
    A drainage reservoir (8) connected to the drainage conduit (6) and having the other end of the drainage conduit (6) penetrating the side wall and opening into the internal space;
    An air suction device (30) installed in the vicinity of the other end of the drainage conduit (6),
    The air suction device (30)
    A nozzle (33) installed inside the drainage conduit (6) so as to be able to inject air toward the opening of the drainage conduit (6);
    The solid-liquid separation and filtration system according to any one of claims 1 to 7, further comprising a blower (31) for pumping air to the nozzle (33).
  9.  前記箱形空間(S)の側面及び底面が遮水シート(2)で覆われていることを特徴とする請求項1~8のいずれかに記載の固液分離ろ過システム。 The solid-liquid separation and filtration system according to any one of claims 1 to 8, wherein a side surface and a bottom surface of the box-shaped space (S) are covered with a water shielding sheet (2).
  10.  前記砂利層(9)内の空気を排出するための排気管(7)をさらに備え、該排気管(7)の一端(7a)は前記暗渠管(5)の端部に接続されかつ他端(7b)は前記箱形空間(S)の外部の大気中に開口することを特徴とする請求項1~9のいずれかに記載の固液分離ろ過システム。
     
     
     
     
    The exhaust pipe (7) for exhausting air in the gravel layer (9) is further provided, and one end (7a) of the exhaust pipe (7) is connected to the end of the underdrain pipe (5) and the other end The solid-liquid separation and filtration system according to any one of claims 1 to 9, wherein (7b) opens into the atmosphere outside the box-shaped space (S).



PCT/JP2016/088849 2016-04-13 2016-12-27 Solid-liquid separating filtration system for organic waste material WO2017179246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018511881A JPWO2017179246A1 (en) 2016-04-13 2016-12-27 Solid-liquid separation filtration system for organic waste

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016080111 2016-04-13
JP2016-080111 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017179246A1 true WO2017179246A1 (en) 2017-10-19

Family

ID=60042466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088849 WO2017179246A1 (en) 2016-04-13 2016-12-27 Solid-liquid separating filtration system for organic waste material

Country Status (2)

Country Link
JP (1) JPWO2017179246A1 (en)
WO (1) WO2017179246A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119266A (en) * 1973-03-20 1974-11-14
JPH0852306A (en) * 1994-08-12 1996-02-27 Okikazu Kumakura Filter
JPH10298965A (en) * 1997-05-02 1998-11-10 Nippon Doren Kogyo Kk Solar drying equipment for muddy water
JPH11128614A (en) * 1997-10-29 1999-05-18 Bio Oriented Technol Res Advancement Inst Solid-liquid separation and device therefor
JP2004074115A (en) * 2002-08-22 2004-03-11 Mk:Kk Filtration equipment for cement-based waste slurry
JP2006061868A (en) * 2004-08-30 2006-03-09 Hikari Kasei Kk Organic matter storage facility and its constructing method
JP2012096142A (en) * 2010-10-29 2012-05-24 Green Deal Suishin Kyokai Vacuum suction treatment method and vacuum suction treatment system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119266A (en) * 1973-03-20 1974-11-14
JPH0852306A (en) * 1994-08-12 1996-02-27 Okikazu Kumakura Filter
JPH10298965A (en) * 1997-05-02 1998-11-10 Nippon Doren Kogyo Kk Solar drying equipment for muddy water
JPH11128614A (en) * 1997-10-29 1999-05-18 Bio Oriented Technol Res Advancement Inst Solid-liquid separation and device therefor
JP2004074115A (en) * 2002-08-22 2004-03-11 Mk:Kk Filtration equipment for cement-based waste slurry
JP2006061868A (en) * 2004-08-30 2006-03-09 Hikari Kasei Kk Organic matter storage facility and its constructing method
JP2012096142A (en) * 2010-10-29 2012-05-24 Green Deal Suishin Kyokai Vacuum suction treatment method and vacuum suction treatment system

Also Published As

Publication number Publication date
JPWO2017179246A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US7718063B2 (en) Treating pollutants by phytoleaching
EP2248770B1 (en) Capillary water distributor and use of same in purification assemblies for domestic waste water
JP5595929B2 (en) Sewage treatment equipment
CN105461167B (en) A kind of integration villages and small towns ecoscape type garbage leachate processing system
DE202011052232U1 (en) Wastewater treatment plant with a root chamber clarification area
JP4041901B2 (en) Lake water dredging method and dredging system
KR101603588B1 (en) Device for reducing nonpoint pollution source using the Ecology Cycle
CA2439391C (en) Method and system for processing waste
DE102011051932A1 (en) Wastewater treatment plant with root space-clarifying area, useful for treating household wastewater, comprises waste water collecting tank, root-space clarifying area, downstream clean water collecting device, and perforated drainage pipes
JP2004337136A (en) Recycling-utilizing type waste-undischarging livestock breeding facility
WO2017179246A1 (en) Solid-liquid separating filtration system for organic waste material
CN104743674B (en) Modularized artificial wetland processing unit
CN216451816U (en) Saline-alkali soil salt isolation and discharge structure
JP2011224449A (en) Solid-liquid separation treatment structure for livestock excreta or the like
RU2363688C1 (en) Preparation method for bio-organic matter and unit for its implementation
JP4144761B1 (en) Mud sludge treatment method and mud sludge treatment apparatus
KR101238571B1 (en) A method for the quality of water by the bottom cleaning of watercourse and a equipment thereof
CN207002517U (en) A kind of cow dung recovery and sewage disposal system
CN206518970U (en) A kind of filter
JP4724081B2 (en) How to drain sediment at the bottom of a farm pond
RU2751178C1 (en) Solid waste composting method and climate chamber for its implementation
DE10258173B4 (en) Method and device for the distribution of organic sludges, in particular of sewage sludge
FI124757B (en) Wastewater treatment using composting
CN106759075A (en) A kind of construction method of lake silt processing system
JP3025819U (en) Wastewater treatment equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018511881

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898702

Country of ref document: EP

Kind code of ref document: A1