WO2017177480A1 - 一种柔性基质 / 液体电解质粘性复合材料及其制备方法 - Google Patents

一种柔性基质 / 液体电解质粘性复合材料及其制备方法 Download PDF

Info

Publication number
WO2017177480A1
WO2017177480A1 PCT/CN2016/080288 CN2016080288W WO2017177480A1 WO 2017177480 A1 WO2017177480 A1 WO 2017177480A1 CN 2016080288 W CN2016080288 W CN 2016080288W WO 2017177480 A1 WO2017177480 A1 WO 2017177480A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid electrolyte
nitrate
composite material
flexible substrate
viscous
Prior art date
Application number
PCT/CN2016/080288
Other languages
English (en)
French (fr)
Inventor
杨磊
孙宁
林潇
蒋维
王新红
白艳洁
杨惠林
柏傲冰
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US15/777,203 priority Critical patent/US10500314B2/en
Publication of WO2017177480A1 publication Critical patent/WO2017177480A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/128Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing other specific inorganic fillers not covered by A61L31/126 or A61L31/127
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/222Gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/20Materials or treatment for tissue regeneration for reconstruction of the heart, e.g. heart valves

Definitions

  • the present invention relates to a medical material and a preparation method thereof, and particularly to a material that can be applied to the outer surface of a pericardium tissue for treating myocardial infarction or heart failure caused by various factors, and a preparation method thereof. Medical materials technology field.
  • Heart failure caused by myocardial infarction and other factors has become an important cause of human death in modern countries, according to statistics, chronic heart failure and Death due to myocardial infarction accounts for more than 50% of cardiovascular deaths, and the population of myocardial infarction and heart failure tends to be younger. Myocardial infarction and heart failure have caused great concern.
  • left ventricular myocardial enhancement devices such as the Myocor Coapsys left ventricular support device and the CardioClasp cardiac support device were developed.
  • the implantation procedure of the above devices is complicated, and the device is bulky, and excessive contact with normal myocardium may have a detrimental effect on normal myocardium.
  • Some researchers have developed myocardial enhancement materials that are locally implanted in the myocardial infarction site and act directly on the lesion. For example, Fujimoto et al.
  • PEUU polyurethane urea
  • Chi et al. used a protein fiber gel to immobilize a chitosan-hyaluronic acid/silk fibroin composite in a myocardial infarction site (see: Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction, 2013) ).
  • the present invention is directed to the problem that the existing myocardial reinforcing material for treating heart failure caused by myocardial infarction or various factors does not match the biomechanical properties of myocardial tissue, lacks sufficient viscosity and cannot be closely attached to the surface of the heart, and the like
  • a biomechanical property with good myocardial matching and high electrical conductivity A flexible matrix/liquid electrolyte viscous composite material having good biosafety, in vivo degradability, and a preparation method thereof.
  • the technical solution for achieving the object of the present invention is: a flexible matrix/liquid electrolyte viscous composite material, the interface bonding strength with the surface of the organ tissue is greater than 0.1 kPa; at a temperature of 37 ° C, the rheological test frequency is 0.0 Under the test conditions of l ⁇ 100Hz, the test strain is 0.01 ⁇ 10 ⁇ , the ratio of the loss modulus of the material to the storage modulus is 0.2 ⁇ 5; at the temperature of 37°C, the elastic tensile strength range of the material is 3 ⁇ 100kPa, the elongation at break is greater than 50%, and the 10% stress relaxation rate is less than 10min; the bulk conductivity of the material is 0.01 ⁇ 10S/m at 37°C; Cytotoxicity is 0 to 1 grade.
  • the flexible substrate is one of fibrin glue, dopamine, gelatin, hyaluronic acid, starch, alginic acid, or any combination thereof.
  • the liquid electrolyte is one of magnesium nitrate, zinc nitrate, calcium nitrate, lithium nitrate, potassium nitrate, lithium chloride, magnesium chloride, calcium chloride, zinc chloride, calcium iodide solution, or any combination thereof.
  • the material is applied to the outer surface of the pericardium tissue in vivo, and the material degrades within 6 to 24 months.
  • the technical solution of the present invention further includes a method for preparing the flexible matrix/liquid electrolyte viscous composite material, which comprises the following steps:
  • the metal salt of the present invention is one of magnesium nitrate, zinc nitrate, calcium nitrate, lithium nitrate, potassium nitrate, lithium chloride, magnesium chloride, calcium chloride, zinc chloride, calcium iodide, or Any combination.
  • the flexible substrate is one of fibrin glue, dopamine, gelatin, hyaluronic acid, starch, alginic acid, or any combination thereof.
  • the flexible matrix/liquid electrolyte viscous composite material provided by the present invention is used for treating myocardial infarction or heart failure caused by various factors.
  • the steps are as follows:
  • auxiliary navigation method such as an X-ray machine or a thoracoscope
  • a certain amount of material is delivered and adhered through a minimally invasive working channel using a minimally invasive delivery device such as a minimally invasive injection device or a minimally invasive surgical forceps.
  • a minimally invasive delivery device such as a minimally invasive injection device or a minimally invasive surgical forceps.
  • the present invention has the following beneficial effects:
  • the material of the invention has low cost, simple preparation and environmental friendliness
  • the material of the present invention has biomechanical properties matched with myocardium, high electrical conductivity, good biosafety, and in vivo degradability, and is therefore suitable for the treatment of myocardial infarction, and can be associated with myocardial tissue Forming a good match between morphology, mechanics and electrophysiological functions;
  • the material of the present invention is convenient to use, and does not require additional suture or the like to be fixed on the surface of the heart, which is beneficial to the actual clinical use on the one hand, and does not cause additional damage to the normal myocardium on the other hand.
  • the material can be used for minimally invasive surgery with simple surgical procedures and reduced risk.
  • the interface bonding strength of the material and the pericardium tissue was tested to be 0.5 ⁇ lkPa, the tensile strength of the material was 3 to 10 kPa, and the elongation at break was 100 ⁇ 3 ⁇ 4 1500. %, the required time between the stress relaxation rate of 10% is 30 ⁇ 100s.
  • the interfacial bonding strength between the material and the pericardial tissue is 0.5 to 1 kPa, the tensile strength is 3 to 10 kPa, the elongation at break is 100 ⁇ 3 ⁇ 4 to 1500%, and the required relaxation time is 10%. ⁇ 100s.
  • the rheological frequency scanning range is l ⁇ 100Hz, the test strain is 1% ⁇ , and the loss modulus to storage modulus ratio is 0.8 ⁇ 1.5.
  • the conductivity of the material is 0.2 to 1.8 S/m.
  • the cytotoxicity to NIH3T3 fibroblasts is 0 to 1 grade. The material was coated on the outer surface of the Sprague Dawley (SD) rat heart for 6 months and analyzed by tissue section without significant toxicity and inflammatory response and immune rejection.
  • SD Sprague Dawley
  • a model of acute myocardial infarction caused by myocardial ischemia was prepared on rats. Rats with established myocardial infarction model were divided into experimental group and control group. The control group was a myocardial infarction model rat not coated with the material provided by the present invention.
  • the experimental group was implanted as follows: Exposing the infarct area of the heart or the area of cardiac insufficiency; determining the amount of material according to the severity of the infarct size or cardiac insufficiency, taking appropriate amount of material with medical forceps; spreading the material with medical forceps.
  • the required shape, area and thickness are applied to the outer surface of the extracardiac muscle layer of the infarcted area of the heart or the outer surface of the ventricular myocardium of the heart failure, so that the two are closely fitted without any other auxiliary fixation methods; the thoracic cavity is sutured, and the material remains in the body. treatment effect. Specific steps are as follows: [0036] 1.
  • LVIDd and LV IDs The left ventricular end-diastolic and end-systolic left ventricular diameters (LVIDd and LV IDs) were measured by echocardiography every other week after surgery, and left ventricular ejection fraction (LVEF) and left ventricular short axis shortening rate (LVFS) were calculated. In this way, rat heart function was evaluated. After four weeks, the rat heart was removed, and the material in the treatment group was still covered on the left ventricular surface of the rat. Rat myocardial infarct size and fibrosis were analyzed by hematoxylin and eosin staining (HE) and Masson trichrome staining.
  • HE hematoxylin and eosin stain staining
  • Masson trichrome staining Masson trichrome staining.
  • the left ventricular muscle wall of the material treatment group was 3.5 to 3.8 mm, while the control group was 2.4 to 2.6 mm, and the myocardial infarct size of the treatment group was reduced by 70 ⁇ 3 ⁇ 4 ⁇ 76 ⁇ 3 ⁇ 4, while the control group The group was ⁇ AS ⁇ ; It can be seen that the treatment group has better inhibited the process of ventricular remodeling after myocardial ischemia, and has a good therapeutic effect on myocardial infarction. At 8 months after surgery, the material was still attached to the pericardium tissue and degraded by about 60 to 65%.
  • the interface bonding strength of the material with the pericardial tissue is 0.1 ⁇ 0.5kPa ; the rheological frequency scanning range is 0.1 ⁇ 100Hz, the strain is 2% ⁇ , the loss modulus to the storage modulus ratio is 0.4 ⁇ 0.8; Tensile strength is 10 ⁇ 15kPa, elongation at break is SO ⁇ ISO ⁇ , the required relaxation rate is 10%, the ratio is 100 ⁇ 300s, the conductivity is 0.01 ⁇ 0.12S/m, and the cells are for NIH3T3 fibroblasts. The toxicity is 0 ⁇ 1.
  • the material was coated on the outer surface of the heart of Spmgue Dawley (SD) rats for 6 months and analyzed by tissue sections without significant toxicity and inflammatory response and immune rejection.
  • a myocardial ischemia chronic myocardial infarction model was prepared on rats. Rats with established myocardial infarction model were divided into experimental group and control group. The control group was a myocardial infarction model rat not coated with the materials described in this patent.
  • the experimental group was implanted as follows: The location and extent of the infarction were determined by means of coronary angiography, thoracoscopic or echocardiography, and the amount of material was determined according to the severity of the infarct size or cardiac insufficiency; Guided by an assisted navigation method such as a machine or a thoracoscopic approach, a minimally invasive delivery device, such as a minimally invasive injection device or a minimally invasive surgical forceps, is used to deliver and adhere a defined amount of material to the extracardiac muscle layer of the infarcted area of the heart.
  • a minimally invasive delivery device such as a minimally invasive injection device or a minimally invasive surgical forceps
  • the rat is connected to the ventilator, the respiratory rate is 85 beats / min, breathing ratio 1:1, maintaining a certain anesthetic gas agent
  • Rat end-diastolic and end-systolic left ventricular diameters were measured by echocardiography every other week after surgery, and left ventricular ejection fraction (LVEF) and left ventricular short axis shortening rate (LVFS) were calculated. Evaluation Rat heart function. After four weeks, the rat heart was removed, and the myocardial infarct size and degree of fibrosis were analyzed by hematoxylin and eosin staining (HE) and Masson's trichrome staining.
  • the LVIDd and LVIDs of the treatment group with the surrounding materials were lower than the control group.
  • the LVFS of the treatment group was higher than that of the control group, which indicated that the heart function of the rats in the material treatment group was a certain degree. restore.
  • the thickness of left ventricular muscle wall in the treatment group was significantly higher than that in the control group, and the reduction of myocardial infarct size in the treatment group was also significantly higher than that in the control group. It is known that the material represses the ventricular remodeling process. Four weeks after surgery, it was found that the material adhered to the pericardium tissue and was in a complete lamellar shape. At 8 months after surgery, the material was still attached to the pericardium tissue and degraded by about 40 to 50%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种柔性基质/液体电解质粘性复合材料及其制备方法,将柔性基质按一定质量百分比加入到一定浓度的液体电解质溶液中,一定温度下充分搅拌使基质溶解或均匀分散,得到粘稠液,然后在特定温度下静置一定时间,即得到所述材料。该材料具有能够自主粘附于器官组织表面的粘性;具有与心肌匹配的力学性能;具有生物相容和安全性,用于急性及慢性心肌梗死与心力衰竭的治疗,抑制心室壁的重构、变薄和纤维化过程,改善心肌功能,同时,还具有导电性和体内可降解等特点。

Description

说明书 发明名称:一种柔性基质 /液体电解质粘性复合材料及其制备方法 技术领域
[0001] 本发明涉及一种医用材料及其制备方法, 特别涉及一种可涂覆于心包膜组织外 表面用于治疗心肌梗死或各种因素导致的心力衰竭的材料及其制备方法, 属医 用材料技术领域。
背景技术
[0002] 心肌梗死及其他因素 (毒性物质, 药物, 酒精, 遗传变异, 基因突变等, 病毒 或细菌感染) 引起的心脏功能衰竭已成为现代化国家人类死亡一个重要原因, 据统计, 慢性心力衰竭和心肌梗死而导致的死亡占心血管死亡的 50%以上, 而 且心肌梗死与心力衰竭的发病人群趋于年轻化。 心肌梗死与心力衰竭已引起人 们的高度关注。
[0003] 当心脏冠状动脉发生堵塞; 一些遗传变异或重要基因突变, 或者毒性物质, 药 物, 酒精, 病毒或细菌感染后, 导致心室肌内的部分心肌细胞死亡, 心肌遭到 不可逆的损伤而无法再生, 随后心室发生自我重构, 导致心室壁变薄, 并且发 生成纤维细胞增生形成瘢痕组织。 因此, 心肌梗死与其他各类因素导致心肌的 功能随着病程的发展而逐渐降低, 最终会导致心力衰竭。 最近的研究显示, 通 过在心包膜外表面包覆弹性材料对心室壁进行力学增强, 可以抑制心梗区心室 的重塑过程, 抑制纤维细胞增生及纤维组织的形成, 改善心肌功能。 可能机制 包括(1)改善心肌局部力学微环境, 抑制纤维细胞增生, 促进心肌再生和血管生 成; (2)增加室壁厚度, 降低室壁压强, 稳定心室大小, 重塑心室几何形状, 防 止室壁瘤形成。
[0004] 早期的研究采用双心室包覆的方法来进行力学增强, 例如 Acom CorCap心脏支 持器件和 Paracor
HeartNet心脏支持器件。 随后幵发了左心室心肌增强的器件, 如 Myocor Coapsys 左心室支持器件和 CardioClasp心脏支持器件。 上述器件的植入程序较为复杂, 而且器件体积较大, 过多与正常心肌接触会对正常心肌造成有害的影响。 近年 来, 一些研究者幵发了局部植入于心肌梗死部位的心肌增强材料, 直接作用于 病变部位。 例如, Fujimoto等人将聚氨酯脲 (PEUU) 制备的薄膜利用手术缝线 固定于大鼠急性心肌梗死部位 (参见文献: An Elastic, Biodegradable Cardiac Patch Induces Contractile Smooth Muscle and Improves Cardiac Remodeling and Function in Subacute Myocardial Infarction, 2007) 。 Liao等人将一个商品双层网状 膜 (内层为聚丙烯, 外层为聚四氟乙烯) 用缝线植入于大鼠慢性心肌梗死部位( 参见文南犬: Attenuation of Left Ventricular Adverse Remodeling With Epicardial Patching After Myocardial Infarction, 2010)。 Chi等人用蛋白纤维胶将壳聚糖 -透明 质酸 /丝素蛋白复合材料固定于心肌梗死部位 (参见文献: Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction, 2013)。
技术问题
[0005] 现有技术的研究都取得了积极的结果, 证明了利用材料进行局部心肌增强的可 行性。 但是, 现有材料具有一定的局限性。 首先, 材料不具有粘性, 因此需要 通过缝合或其它手段对材料进行固定, 一方面导致手术程序复杂, 风险因素增 多, 对心包膜造成损伤, 另一方面, 心包膜在材料的固定位置局部受力过大, 而其它区域受力反而相对较小, 而无法使材料包覆区域均匀受力; 其次, 心肌 组织具有应力松弛快而蠕变相对较慢的特点, 而现有材料大部分为纯弹性体, 与心肌生物力学性能不匹配, 会造成心脏搏动周期紊乱或治疗效果不佳; 另外 , 现有材料大多不具有导电性, 而导电材料有利于移植物与心肌之间电信号的 传递; 此外, 多数现有材料在体内不可降解或降解非常缓慢, 长期植入体内会 导致后期的异物反应, 最后, 现有材料不具备注射性能, 只能通过幵胸手术进 行治疗, 手术复杂且风险较大。
问题的解决方案
技术解决方案
[0006] 本发明针对现有用于治疗心肌梗死或各种因素导致的心力衰竭的心肌增强材料 存在的与心肌组织生物力学性能不匹配, 缺乏足够粘性而无法紧密贴附于心脏 表面等问题, 提供一种具有良好的与心肌匹配的生物力学性能、 较高的导电性 、 良好的生物安全性、 体内可降解性的柔性基质 /液体电解质粘性复合材料及其 制备方法。
[0007] 实现本发明目的的技术方案是: 一种柔性基质 /液体电解质粘性复合材料, 它 与器官组织表面的界面结合强度大于 O.lkPa; 在温度为 37°C、 流变测试频率为 0.0 l〜100Hz的测试条件下, 测试应变为 0.01〜10吋, 材料的损耗模量与储存模量的 比值为 0.2〜5; 在温度为 37°C的条件下, 材料的弹性拉伸强度范围为 3〜100kPa , 断裂延伸率大于 50%, 达到 10%应力松弛率的吋间少于 lOmin; 在温度为 37°C 的条件下, 材料的体电导率为 0.01〜10S/m; 材料浸提液细胞毒性为 0〜1级。
[0008] 所述的柔性基质为纤维蛋白胶、 多巴胺、 明胶、 透明质酸、 淀粉、 海藻酸中的 一种, 或它们的任意组合。 所述液体电解质为硝酸镁、 硝酸锌、 硝酸钙、 硝酸 锂、 硝酸钾、 氯化锂、 氯化镁、 氯化钙、 氯化锌、 碘化钙溶液中的一种, 或它 们的任意组合。 材料在体内涂覆于心包膜组织外表面吋, 材料于 6〜24月内降解
[0009] 本发明技术方案还包括上述柔性基质 /液体电解质粘性复合材料的制备方法, 包括如下步骤:
[0010] (1) 将金属盐按质量分数为 10%〜20<¾溶解于去离子水中, 得到液体电解质; [0011] (2) 将柔性基质按质量百分比 3%〜10 <¾加入到步骤 (1) 制备的液体电解质 溶液中, 在温度为 25°C〜80°C的条件下充分搅拌, 得到粘稠液;
[0012] (3) 将步骤 (2) 得到的粘稠液在温度为 25°C〜45°C的条件下静置至体系质量 稳定, 即得到一种柔性基质 /液体电解质粘性复合材料。
[0013] 本发明所述的金属盐为硝酸镁、 硝酸锌、 硝酸钙、 硝酸锂、 硝酸钾、 氯化锂、 氯化镁、 氯化钙、 氯化锌、 碘化钙中的一种, 或它们的任意组合。 所述的柔性 基质为纤维蛋白胶、 多巴胺、 明胶、 透明质酸、 淀粉、 海藻酸中的一种, 或它 们的任意组合。
[0014] 本发明所提供的柔性基质 /液体电解质粘性复合材料, 用于治疗心肌梗死或各 种因素导致的心力衰竭的一种使用方法步骤如下:
[0015] 1、 麻醉, 接入呼吸机;
[0016] 2、 待呼吸平稳后, 在无菌条件下, 手术打幵胸腔, 暴露心脏, 根据梗死面积 或心功能不全的严重程度确定材料的用量;
[0017] 3、 将确定量材料黏附于心脏梗死区心外肌层或心力衰竭心室肌外层外表面, 无需其它辅助固定;
[0018] 4、 缝合胸腔, 有自主呼吸后拔出呼吸机, 完成手术。
[0019] 5、 材料完成治疗周期后自然降解, 无需取出。
[0020] 本发明所述材料用于治疗心肌梗死或各种因素导致的心力衰竭的另一种使用方 法步骤如下:
[0021] 1、 通过冠脉造影、 胸腔镜观察或超声心动图等检测手段, 确定梗死位置及范 围, 根据梗死面积或心功能不全的严重程度确定材料的用量;
[0022] 2、 在 X光机或胸腔镜等辅助导航方法的指引下, 通过微创工作通道利用微创注 射装置或微创手术钳等微创递送装置, 将确定量的材料送抵并黏附于心脏梗死 区心外肌层或心力衰竭心室肌外层外表面, 无需其它辅助固定;
[0023] 3、 退出微创递送装置, 待材料在心外肌层或心力衰竭心室肌外层外表面融合 形成完整薄膜后关闭创口, 结束手术;
[0024] 4、 材料完成治疗周期后自然降解, 无需取出。
发明的有益效果
有益效果
[0025] 与现有技术相比, 本发明具有如下有益效果:
[0026] 1、 本发明所述材料成本低廉, 制备简单, 环境友好;
[0027] 2、 本发明所述的材料具有与心肌匹配的生物力学性能、 较高的导电性、 良好 的生物安全性、 体内可降解性, 因此适用于心肌梗塞的治疗, 并可与心肌组织 形成良好的形态、 力学和电生理功能的匹配;
[0028] 3、 本发明所述材料使用方便, 无需额外缝合等固定于心脏表面的方式, 一方 面利于实际临床使用, 另一方面对正常心肌不会造成额外损伤。 此外, 该材料 还可用于微创手术, 手术程序简单, 风险降低。
对附图的简要说明
附图说明
[0029] 图 1是本发明实施例提供的柔性基质 /液体电解质复合材料的粘性及延展性能照 片。 本发明的实施方式
[0030] [0008]下面结合附图和实施例对本发明技术方案作进一步说明。
[0031] 实施例 1 :
[0032] 将氯化钙溶解于去离子水中, 溶液的质量分数为 18%, 作为液体电解质, 以淀 粉作为基质, 加入到液体电解质溶液中, 基质的质量百分比浓度为 6%, 50°C下 充分混合均匀, 制备粘稠液, 然后在 40°C下静止 48小吋至材料质量稳定, 得到了 高粘性、 柔性导电材料。
[0033] 参见附图 1, 它是本实施例提供的柔性基质 /液体电解质复合材料的粘性及延展 性能照片, 图中, L=1.2mm; 由图 1可见, 材料牢固粘附于医用乳胶手套表面, 可拉伸至原长十倍, 显示了制备的材料具有良好的粘性和较高的断裂延伸率 ( 大于 1000%) 。
[0034] 在模拟体温 37°C的条件下, 经测试, 该材料与心包膜组织的界面结合强度为 0.5 〜lkPa, 自身拉伸强度为 3〜10kPa, 断裂延伸率为 100<¾〜 1500%, 应力松弛率 达到 10%的所需吋间为 30〜100s。 该材料与心包膜组织的界面结合强度为 0.5〜1 kPa, 自身拉伸强度为 3〜10kPa, 断裂延伸率为 100<¾〜 1500%, 应力松弛率达到 10%的所需吋间为 30〜100s。 流变频率扫描范围为 l〜100Hz, 测试应变为 1%吋 , 损耗模量与储存模量比为 0.8〜1.5。 材料的电导率为 0.2〜1.8S/m。 对 NIH3T3 成纤维细胞的细胞毒性为 0〜1级。 将材料涂覆 Sprague Dawley (SD) 大鼠心脏外 表面 6个月后组织切片分析, 无明显毒性和炎症反应及免疫排斥反应。
[0035] 在大鼠上制备了心肌缺血引起的急性心肌梗死模型。 将建立心肌梗死模型的大 鼠分为实验组和对照组。 对照组为不涂覆本发明所提供材料的心肌梗死模型大 鼠。 实验组如下进行材料的植入手术: 暴露心脏的梗死区域或心功能不全的区 域; 根据梗死面积或心功能不全的严重程度确定材料用量, 用医用镊子取适量 材料; 用医用镊子将材料铺展成所需形状、 面积及厚度, 在心脏梗死区心外肌 层或心力衰竭心室肌外层外表面涂覆, 使两者紧密贴合, 无需其它辅助固定方 式; 缝合胸腔, 材料留在在体内发挥治疗效果。 具体步骤如下: [0036] 1、 将 250g重左右的雄性 SD大鼠置入气体麻醉箱, 以合适剂量异氟烷麻醉大鼠 [0037] 2、 将大鼠接入呼吸机, 呼吸频率为 85次 /分, 呼吸比 1:1, 维持一定麻醉气体剂
[0038] 3、 待大鼠呼吸平稳后打幵胸腔, 暴露心脏, 打幵心包膜, 用手术线结扎左前 降支血管, 观察心尖变成黑色, 以确定心肌缺血造模成功;
[0039] 4、 用镊子夹取约 O.lg本实施例提供的材料, 伸展为约 0.5毫米厚度的膜, 将其 涂覆于左心室缺血部位表面;
[0040] 5、 将胸腔内气体排掉, 缝合关闭胸腔;
[0041] 6、 关闭气体麻醉, 待大鼠有自主呼吸后拔出呼吸机, 并腹腔注射 20万单位青 霉素。
[0042] 术后每隔一周超声心动图检测大鼠舒张末期和收缩末期左室内径 (LVIDd和 LV IDs) , 并计算左室射血分数 (LVEF) 和左室短轴缩短率 (LVFS) , 以此评价 大鼠心功能。 四周后将大鼠心脏取出, 治疗组可见材料仍然覆盖于大鼠左心室 表面。 用苏木精伊红染色 (HE) 和 Masson三色染色法分析大鼠心梗面积和纤维 化程度。
[0043] 结果: (1) 四周吋超声心动图可见贴了本实施例材料的治疗组 LVIDd和 LVIDs 分别为 6.2〜6.5mm和 3.6〜4.3mm, 而对照组两值分别为 8.5〜9mm和 8〜8.6mm; 而治疗组和对照组 LVEF分别为 60〜65<¾和 45〜50<¾, LVFS分别为 32〜36<¾和 21 〜26%, 由此得知材料治疗组的大鼠心功能得到一定程度的恢复。 (2) 通过 HE 和 Masson染色, 可见材料治疗组左室肌肉壁为 3.5〜3.8mm, 而对照组为 2.4〜2.6 mm, 并且治疗组心肌梗死面积减少了 70<¾〜76<¾, 而对照组为 ^^ AS^; 可知 治疗组较好地抑制了心肌缺血后的心室重构过程, 对心肌梗死有着较好的治疗 作用。 术后 8个月发现材料仍黏附于心包膜组织上, 并降解了约 60〜65%。
[0044]
[0045] 实施例 2
[0046] 按质量分数为 15%, 将氯化钙、 硝酸镁和硝酸钙溶解于去离子水中, 溶液作为 液体电解质; 按质量浓度为 8%, 以透明质酸作为基质材料, 加入到液体电解质 溶液中, 在温度为 25°C条件下充分混合均匀, 制备得到粘稠液体; 再于 35°C条件 下静置 36小吋至材料质量稳定, 制备了柔性、 导电、 粘性的材料。
[0047] 该材料与心包膜组织的界面结合强度为 0.1〜0.5kPa; 流变频率扫描范围为 0.1〜 100Hz, 应变为 2%吋, 损耗模量与储存模量比为 0.4〜0.8; 自身拉伸强度为 10〜 15kPa, 断裂延伸率为 SO^ ISO^ , 应力松弛率达到 10%的所需吋间为 100〜300s , 电导率为 0.01〜0.12S/m, 对 NIH3T3成纤维细胞的细胞毒性为 0〜1级。 将材料 涂覆 Spmgue Dawley (SD) 大鼠心脏外表面 6个月后组织切片分析, 无明显毒性 和炎症反应及免疫排斥反应。
[0048] 在大鼠上制备了心肌缺血慢性心肌梗死模型。 将建立心肌梗死模型的大鼠分为 实验组和对照组。 对照组为不涂覆本专利所述材料的心肌梗死模型大鼠。 实验 组如下进行材料的植入手术: 通过冠脉造影、 胸腔镜观察或超声心动图等检测 手段, 确定梗死位置及范围, 根据梗死面积或心功能不全的严重程度确定材料 的用量; 在 X光机或胸腔镜等辅助导航方法的指引下, 通过微创工作通道利用微 创注射装置或微创手术钳等微创递送装置, 将确定量的材料送抵并黏附于心脏 梗死区心外肌层或心力衰竭心室肌外层外表面, 无需其它辅助固定; 退出微创 递送装置, 待材料在心外肌层或心力衰竭心室肌外层外表面融合形成完整薄膜 后关闭创口, 结束手术; 材料完成治疗周期后自然降解, 无需取出。 具体操作 如下:
[0049] 1、 将慢性心梗大鼠置入气体麻醉箱, 以合适剂量异氟烷麻醉大鼠;
[0050] 2、 对大鼠进行冠脉造影和超声心动图检査, 确定心梗的位置及范围, 确定材 料用量;
[0051] 3、 将大鼠接入呼吸机, 呼吸频率为 85次 /分, 呼吸比 1:1, 维持一定麻醉气体剂
[0052] 4、 植入材料到心脏表面待治疗的区域, 退出传递系统并关闭创口;
[0053] 5、 关闭气体麻醉, 待大鼠有自主呼吸后拔出呼吸机, 并腹腔注射 20万单位青 霉素。
[0054] 术后每隔一周超声心动图检测大鼠舒张末期和收缩末期左室内径 (LVIDd和 LV IDs) , 并计算左室射血分数 (LVEF) 和左室短轴缩短率 (LVFS) , 以此评价 大鼠心功能。 四周后将大鼠心脏取出, 用苏木精伊红染色 (HE) 和 Masson三色 染色法分析大鼠心梗面积和纤维化程度。
结果: (1) 四周吋贴了材料的治疗组 LVIDd和 LVIDs均低于对照组; 而治疗组 LVEF的 LVFS均高于对照组, 由此得知材料治疗组的大鼠心功能得到一定程度 的恢复。 (2) 通过染色可见材料治疗组左室肌肉壁厚度显著高于对照组, 并且 治疗组心肌梗死面积减少量也明显高于对照组; 可知材料较好的阻抑了心室重 构过程。 术后 4周发现材料仍黏附于心包膜组织上, 并呈完整的片层状。 术后 8 个月发现材料仍黏附于心包膜组织上, 并降解了约 40〜50%。

Claims

权利要求书
一种柔性基质 /液体电解质粘性复合材料, 其特征在于: 它与器官组 织表面的界面结合强度大于 O.lkPa; 在温度为 37°C、 流变测试频率为 0.01〜100Hz的测试条件下, 测试应变为 0.01〜10吋, 材料的损耗模 量与储存模量的比值为 0.2〜5; 在温度为 37°C的条件下, 材料的弹性 拉伸强度范围为 3〜100kPa, 断裂延伸率大于 50%, 达到 10%应力松 弛率的吋间少于 lOmin; 在温度为 37°C的条件下, 材料的体电导率为 0 .01〜10S/m; 材料浸提液细胞毒性为 0〜1级。
根据权利要求 1所述的一种柔性基质 /液体电解质粘性复合材料, 其特 征在于: 所述的柔性基质为纤维蛋白胶、 多巴胺、 明胶、 透明质酸、 淀粉、 海藻酸中的一种, 或它们的任意组合。
根据权利要求 1所述的一种柔性基质 /液体电解质粘性复合材料, 其特 征在于: 所述液体电解质为硝酸镁、 硝酸锌、 硝酸钙、 硝酸锂、 硝酸 钾、 氯化锂、 氯化镁、 氯化钙、 氯化锌、 碘化钙溶液中的一种, 或它 们的任意组合。
根据权利要求 1所述的一种柔性基质 /液体电解质粘性复合材料, 其特 征在于: 材料在体内涂覆于心包膜组织外表面吋, 材料于 6〜24月内 降解。
一种如权利要求 1所述的柔性基质 /液体电解质粘性复合材料的制备方 法, 其特征在于包括如下步骤:
(1) 将金属盐按质量百分数为 10%〜20<¾溶解于去离子水中, 得到 液体电解质;
(2) 将柔性基质按质量百分比 3%〜10 <¾加入到步骤 (1) 制备的液 体电解质溶液中, 在温度为 25°C〜80°C的条件下充分搅拌, 得到粘稠 液;
(3) 将步骤 (2) 得到的粘稠液在温度为 25°C〜45°C的条件下静置至 体系质量稳定, 即得到一种柔性基质 /液体电解质粘性复合材料。 根据权利要求 5所述的一种柔性基质 /液体电解质粘性复合材料的制备 方法, 其特征在于: 所述的金属盐为硝酸镁、 硝酸锌、 硝酸钙、 硝酸 锂、 硝酸钾、 氯化锂、 氯化镁、 氯化钙、 氯化锌、 碘化钙中的一种, 或它们的任意组合。
[权利要求 7] 根据权利要求 5所述的一种柔性基质 /液体电解质粘性复合材料的制备 方法, 其特征在于: 所述的柔性基质为纤维蛋白胶、 多巴胺、 明胶、 透明质酸、 淀粉、 海藻酸中的一种, 或它们的任意组合。
PCT/CN2016/080288 2016-04-15 2016-04-26 一种柔性基质 / 液体电解质粘性复合材料及其制备方法 WO2017177480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/777,203 US10500314B2 (en) 2016-04-15 2016-04-26 Flexible substrate/liquid electrolyte viscous composite material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610234727.5A CN105833361A (zh) 2016-04-15 2016-04-15 一种柔性基质/液体电解质粘性复合材料及其制备方法
CN201610234727.5 2016-04-15

Publications (1)

Publication Number Publication Date
WO2017177480A1 true WO2017177480A1 (zh) 2017-10-19

Family

ID=56588441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080288 WO2017177480A1 (zh) 2016-04-15 2016-04-26 一种柔性基质 / 液体电解质粘性复合材料及其制备方法

Country Status (3)

Country Link
US (1) US10500314B2 (zh)
CN (1) CN105833361A (zh)
WO (1) WO2017177480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333921A (zh) * 2020-03-19 2020-06-26 广州大学 一种淀粉基柔性导电材料及其制备和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109489539B (zh) * 2018-08-29 2020-01-24 北京邮电大学 柔性应变传感器的制备方法及柔性应变传感器
CN111508004B (zh) * 2020-04-29 2021-01-15 中国人民解放军总医院 基于深度学习的室壁运动异常超声处理方法、系统和设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618236A (zh) * 2008-07-01 2010-01-06 中国人民解放军军事医学科学院基础医学研究所 一种用于治疗心肌梗死的可注射性心肌组织工程产品
CN102178984A (zh) * 2011-04-25 2011-09-14 哈尔滨工业大学 用于治疗心肌梗死的海藻酸钠-蛋白胶可注射凝胶材料及其制备方法
CN103480037A (zh) * 2013-09-06 2014-01-01 奚廷斐 用于心衰辅助治疗的可注射型海藻酸基生物材料及其制备方法
CN104189958A (zh) * 2014-08-25 2014-12-10 中国人民解放军总医院 用于促进心肌组织再生和干细胞监测的壳聚糖-丝素蛋白复合纳米纤维多功能补片的制备方法
WO2015019109A1 (en) * 2013-08-09 2015-02-12 Locate Therapeutics Limited Composition and delivery system
CN104436305A (zh) * 2014-11-05 2015-03-25 暨南大学 以脱细胞生物膜为载体的心肌补片及制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066837A1 (en) * 2005-12-06 2007-06-14 Lg Household & Health Care Ltd. Delivery system for tooth whitening component using in situ gelling
CN101077424B (zh) * 2006-05-25 2011-04-06 范恒华 一种血管粘接吻合密封胶及试剂盒
DE102011007528A1 (de) * 2011-04-15 2012-10-18 Aesculap Aktiengesellschaft Thixotrope Zusammensetzung, insbesondere zur postchirurgischen Adhäsionsprophylaxe
IN2014MN01417A (zh) * 2011-12-28 2015-04-03 Kuraray Co
CN104558699B (zh) * 2015-01-06 2017-09-22 苏州大学 一种弹性导电胶体、制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101618236A (zh) * 2008-07-01 2010-01-06 中国人民解放军军事医学科学院基础医学研究所 一种用于治疗心肌梗死的可注射性心肌组织工程产品
CN102178984A (zh) * 2011-04-25 2011-09-14 哈尔滨工业大学 用于治疗心肌梗死的海藻酸钠-蛋白胶可注射凝胶材料及其制备方法
WO2015019109A1 (en) * 2013-08-09 2015-02-12 Locate Therapeutics Limited Composition and delivery system
CN103480037A (zh) * 2013-09-06 2014-01-01 奚廷斐 用于心衰辅助治疗的可注射型海藻酸基生物材料及其制备方法
CN104189958A (zh) * 2014-08-25 2014-12-10 中国人民解放军总医院 用于促进心肌组织再生和干细胞监测的壳聚糖-丝素蛋白复合纳米纤维多功能补片的制备方法
CN104436305A (zh) * 2014-11-05 2015-03-25 暨南大学 以脱细胞生物膜为载体的心肌补片及制备方法与应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111333921A (zh) * 2020-03-19 2020-06-26 广州大学 一种淀粉基柔性导电材料及其制备和应用

Also Published As

Publication number Publication date
CN105833361A (zh) 2016-08-10
US10500314B2 (en) 2019-12-10
US20180333517A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
US9968714B2 (en) Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions
CA2670590C (en) Medical devices incorporating collagen inhibitors
CN104981259B (zh) 包含防粘连的水凝胶膜的试剂盒
US20070014784A1 (en) Methods and Systems for Treating Injured Cardiac Tissue
US20070093748A1 (en) Methods and systems for treating injured cardiac tissue
BR112018014246B1 (pt) Tecido de malha de urdidura, e, material médico
WO2017177480A1 (zh) 一种柔性基质 / 液体电解质粘性复合材料及其制备方法
JP2015513349A (ja) 組織修復のための基礎材システム
JP4994230B2 (ja) 密封機能を備える肺装置
Lu et al. A honeybee stinger-inspired self-interlocking microneedle patch and its application in myocardial infarction treatment
JP2019047819A (ja) シート状細胞培養物とフィブリンゲルとの積層体の製造方法
WO2023282247A1 (ja) 組織形成剤
CN109953842A (zh) 主动脉载药支架及其制备方法
US20220265254A1 (en) Polyurethane-reinforced hydrogel cardiac patch
RU2743611C1 (ru) Способ закрытия культи бронха
RU2654601C1 (ru) Способ моделирования пластики эпителиального дефекта стенки трахеи
Fang et al. Flexible Conductive Decellularized Fish Skin Matrix as a Functional Scaffold for Myocardial Infarction Repair
RU2620049C1 (ru) Способ формирования полости левого желудочка сердца, максимально приближенной к физиологичной, у пациентов с переднеперегородочными аневризмами при его реконструкции по методу L. Menicanti
JP2009507522A (ja) 損傷のある心臓組織を処置する方法およびシステム
Minghui et al. Tines made of degradable materials with decreasing removal forces: An option to facilitate passive-fixation leads extraction from the very beginning?
CN116549485A (zh) β-多肽或β-多肽聚合物在促进血管形成及抑制器官纤维化中的应用
CN116392642A (zh) 用于心衰治疗的细胞外基质/糖肽水凝胶及其制备方法
CN117442544A (zh) 一种抗心肌纤维化的吡非尼酮缓释微针贴片及其制备方法
Kadner Investigation of synthetic hydrogels as therapy for myocardial infarction
DE102018133599A1 (de) Koronarer Anastomosekonnektor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15777203

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898297

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898297

Country of ref document: EP

Kind code of ref document: A1