WO2017175776A1 - 誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ - Google Patents

誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ Download PDF

Info

Publication number
WO2017175776A1
WO2017175776A1 PCT/JP2017/014169 JP2017014169W WO2017175776A1 WO 2017175776 A1 WO2017175776 A1 WO 2017175776A1 JP 2017014169 W JP2017014169 W JP 2017014169W WO 2017175776 A1 WO2017175776 A1 WO 2017175776A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric waveguide
resonator
dielectric
input
line
Prior art date
Application number
PCT/JP2017/014169
Other languages
English (en)
French (fr)
Inventor
主一 谷田部
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2018510624A priority Critical patent/JPWO2017175776A1/ja
Publication of WO2017175776A1 publication Critical patent/WO2017175776A1/ja
Priority to US16/135,946 priority patent/US20190020089A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/087Transitions to a dielectric waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/10Dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor

Definitions

  • the present invention relates to a dielectric waveguide input / output structure in which a dielectric waveguide is directly mounted on a printed circuit board, and more particularly to a dielectric waveguide capable of inputting / outputting simultaneously to two TE mode dielectric waveguide resonators. It relates to the wave tube input / output structure.
  • the present invention also relates to a dielectric waveguide duplexer provided with the dielectric waveguide input / output structure.
  • a dielectric waveguide that can be directly mounted on a printed circuit board requires an input / output structure for connecting the dielectric waveguide to a line such as a microstrip line or a coplanar line provided on the printed circuit board. .
  • a branch structure that distributes one signal to two dielectric waveguides is required.
  • Patent Document 1 describes a waveguide branching structure that distributes a signal of a waveguide to two waveguides.
  • Patent Document 2 describes a dielectric waveguide filter having a waveguide branching structure that distributes a line signal to two resonators.
  • the present invention solves the above-described problems, eliminates the need for a member other than a printed circuit board and a dielectric waveguide, and provides a dielectric waveguide input / output structure having a waveguide branching structure and a dielectric conductor having the same.
  • the purpose is to provide a wave tube duplexer.
  • the dielectric waveguide input / output structure of the present invention is A dielectric waveguide input / output structure comprising a printed circuit board provided with a line and a dielectric waveguide, wherein the dielectric waveguide and the line are connected,
  • the dielectric waveguide includes a first resonator and a second resonator disposed adjacent to each other, On the surface of the printed circuit board, An impedance matching portion connected to the tip of the line and extending from the outside to the inside of the bottom surface of the dielectric waveguide; A gap provided on both sides of the line;
  • a crank-shaped first conductor non-forming portion connected to the gap and disposed on the first resonator side of the bottom surface of the dielectric waveguide;
  • a crank-shaped second conductor non-forming portion connected to the gap and disposed on the second resonator side of the bottom surface of the dielectric waveguide;
  • a surface ground provided in the remaining portion of the first conductor non-formation part and the second conductor non-formation part,
  • a back surface ground is
  • a small dielectric waveguide input / output structure having a waveguide branching structure and a dielectric waveguide duplexer including the same can be obtained.
  • FIG. 1 is an exploded perspective view for explaining a dielectric waveguide input / output structure according to a first embodiment of the present invention. It is the elements on larger scale of FIG. It is a top view for demonstrating the dimension of each part of the dielectric waveguide input / output structure which concerns on 1st Embodiment. It is a figure which shows the simulation result of the passage characteristic (S21) of the dielectric material waveguide input / output structure which concerns on 1st Embodiment. It is a figure which shows the simulation result of the electric field strength distribution of the dielectric material waveguide input / output structure which concerns on 1st Embodiment.
  • FIG. 1 is an exploded perspective view for explaining a dielectric waveguide input / output structure according to a first embodiment of the present invention.
  • FIG. 2 is a partially enlarged view for explaining in detail the conductor non-formed portion of FIG.
  • a dielectric waveguide 10 in which substantially the entire surface of a substantially rectangular parallelepiped dielectric block is covered with a conductor film 40 is mounted on a printed circuit board 50.
  • the top surface of the dielectric waveguide 10 is 10a
  • the bottom surface is 10b
  • the side surfaces are 10c and 10d
  • the left end surface is 10e
  • the right end surface is 10f
  • the size of the top surface 10a and the bottom surface 10b is L ⁇ W
  • 10d is L ⁇ H
  • the left end surface 10e and the right end surface 10f are W ⁇ H.
  • the dielectric waveguide 10 includes the first resonator 31 having a length L1 from the groove 22 to the left end surface 10e and the right end from the groove 22 because the iris 21 is formed by the groove 22 provided on the side surface 10c.
  • a second resonator 32 having a length L2 ( ⁇ L1) up to the surface 10f is configured.
  • the resonance frequency of the resonator 32 is f1
  • the resonance frequency of the resonator 31 is f2
  • L1> L2 and therefore, f1 ⁇ f2.
  • the first resonator 31 side is also referred to as “low frequency side”
  • the second resonator 32 side is also referred to as “high frequency side”.
  • the first resonator 31 and the second resonator 32 each act as a TE mode dielectric waveguide resonator.
  • a bottom surface dielectric is exposed from a ridge line E between the bottom surface 10b and the side surface 10d, and a dielectric block is exposed in substantially the same shape as conductor non-forming portions 81 and 82 described later.
  • Portions 41 and 42 are provided.
  • the outer shapes of the bottom surface dielectric exposed portions 41 and 42 coincide with the outer shapes of the conductor non-forming portions 81 and 82 or are slightly larger than the outer shapes of the conductor non-forming portions 81 and 82.
  • the bottom dielectric exposed portion 41 corresponds to a “first dielectric exposed portion” according to the present invention
  • the bottom dielectric exposed portion 42 corresponds to a “second dielectric exposed portion” according to the present invention.
  • the line 60, the gaps 61 and 62 where the substrate of the printed circuit board is exposed in a strip shape on both sides of the line 60, and the substrate of the printed circuit board connected to the gaps 61 and 62 are cranked.
  • Conductor non-formation parts 81 and 82 exposed in the shape are provided.
  • a surface ground 51 is provided in the remaining portion.
  • the line 60 is provided with a band-like impedance matching part 63 at the tip of the line 60, and the impedance matching part 63 extends inward from the outside of the bottom surface 10 b of the dielectric waveguide 10 and is connected to the surface ground 51.
  • the impedance matching unit 63 is narrower than the line 60 for impedance matching.
  • the impedance matching portion 63 is disposed on the extension line of the boundary line C, and the conductor non-forming portion 81 is located on the resonator 31 side of the bottom surface 10b of the dielectric waveguide 10.
  • the conductor non-forming part 82 is arranged on the resonator 32 side of the bottom surface 10 b of the dielectric waveguide 10.
  • a back surface ground 52 is provided on the entire back surface of the printed circuit board 50. Accordingly, the line 60, the front surface ground 51, and the back surface ground 52 constitute a grounded coplanar line. That is, the line 60 is a signal line of a grounded coplanar line.
  • the printed circuit board 50 is connected to the front surface ground 51 and the back surface ground 52 and has a via hole group 90 disposed so as to surround the non-conductor-formed portions 81 and 82 in a rectangular shape, and the front surface ground 51 and the back surface ground 52. And a via hole group 91 disposed along the line 60 outside the gaps 61 and 62.
  • the conductor non-forming portions 81 and 82 are respectively formed in strip-shaped regions 81 a and 82 a provided on both sides of the impedance matching portion 63 and extending in parallel with each other, and strip-shaped regions 81 c extending in parallel with each other.
  • the conductor non-forming portion 81 has a crank shape with the region 81a and the region 81c as arms and the region 81b as axes, and the conductor non-forming portion 82 includes the region 82a and the region 82c as arms and the region 82b, respectively.
  • the crank shape is used as a shaft.
  • the conductor non-forming portions 81 and 82 provided on the printed circuit board 50 are replaced with the bottom surface dielectric exposed portions 41 and 82 provided on the dielectric waveguide 10. 42 so as to face each other and overlap each other.
  • the conductor non-forming portions 81 and 82 provided on the printed circuit board 50 are slightly larger than the bottom surface dielectric exposed portions 41 and 42 provided on the dielectric waveguide 10, the bottom surface of the dielectric waveguide 10 is provided. It arrange
  • a dielectric material is provided near the impedance matching portion on the side surface 10 d of the dielectric waveguide 10.
  • a side surface dielectric exposed portion 43 where the block is exposed is provided.
  • the width W43 of the side dielectric exposed portion 43 is wider than the width W63 of the impedance matching portion 63.
  • the side surface dielectric exposed portion 43 is preferably as small as possible in order to reduce unnecessary radiation from the side surface dielectric exposed portion 43.
  • the side dielectric exposed portion 43 corresponds to a “third dielectric exposed portion” according to the present invention.
  • FIG. 3 is a plan view for explaining the dimensions of each part of the dielectric waveguide input / output structure of the present embodiment.
  • the distance from the ridge line E to the tip of the conductor non-forming portion 81 is LS1
  • the distance from the ridge line E to the tip of the conductor non-forming portion 82 is LS2
  • the distance from the boundary line C to the left end of the region 82c is WS2
  • the distance from the edge E to the bottom of the groove 22 is Wi.
  • FIG. 4 is a diagram showing a simulation result of the pass characteristic (S21) of the dielectric waveguide input / output structure of the present embodiment, the result of normalizing the pass characteristic on the low frequency side with the frequency f1 is shown by a bold line, The result of normalizing the pass characteristic on the high frequency side with the frequency f2 is indicated by a thin line.
  • FIG. 5 and 6 are diagrams showing simulation results of the electric field strength distribution of the dielectric waveguide input / output structure of the present embodiment.
  • FIG. 5 shows the electric field strength distribution at the frequency f1
  • FIG. 6 shows the frequency at the frequency f2.
  • An electric field strength distribution is shown. 5 and 6 show that the lower the concentration, the higher the electric field strength.
  • the dielectric waveguide input / output structure of this embodiment distributes the signal from the line 60 (from the grounded coplanar line) to the resonators 31 and 32, respectively. You can input it.
  • FIG. 7 is a diagram showing a simulation result of the external Q of the dielectric waveguide input / output structure when Wi is changed.
  • the horizontal axis indicates Wi / ⁇ 1 or Wi / ⁇ 2
  • the vertical axis indicates the external Q
  • the solid line indicates the low frequency side
  • the dotted line indicates the high frequency external Q.
  • ⁇ 1 is the wavelength in the dielectric waveguide at the frequency f1
  • ⁇ 2 is the wavelength in the dielectric waveguide at the frequency f2.
  • FIG. 8 is a diagram showing a simulation result of the external Q of the dielectric waveguide input / output structure when LS1 or LS2 is changed.
  • the horizontal axis represents LS1 / ⁇ 1 or LS2 / ⁇ 2
  • the vertical axis represents the external Q
  • the solid line represents the low frequency side
  • the dotted line represents the high frequency external Q.
  • FIG. 9 is a diagram showing a simulation result of the external Q of the dielectric waveguide input / output structure when WS1 or WS2 is changed.
  • the horizontal axis indicates WS1 / ⁇ 1 or WS2 / ⁇ 2
  • the vertical axis indicates the external Q
  • the solid line indicates the low frequency side
  • the dotted line indicates the high frequency external Q.
  • the depth of the groove 22 is one of the parameters for adjusting the external Q.
  • the dielectric waveguide input / output structure of the present embodiment is a fairly wide band structure.
  • the line 60 is provided with a via hole group 91 along both sides of the coplanar line as a coplanar line with a ground.
  • the via hole group 91 may be omitted, and the back surface ground 52 on the back side of the line 60 may be omitted. May be omitted to form a coplanar line, or the surface grounds 51 on both sides of the line 60 may be omitted to form a microstrip line.
  • the conductor non-forming portions 81 and 82 have been described as crank shapes having different dimensions. However, the respective dimensions may be the same symmetrical shape, and the crank-shaped shaft regions 81b and 82b may be , It may be in a straight line or not in a straight line.
  • a plurality of resonators are formed by the iris 21 formed by the groove 22, but a plurality of resonators may be formed by the iris formed by a through hole or the like, for example.
  • FIG. 10 is an exploded perspective view for explaining the dielectric waveguide duplexer according to the second embodiment provided with the dielectric waveguide input / output structure shown in the first embodiment.
  • the bottom surface dielectric exposed portions 41 and 42 and the side surface dielectric exposed portion 43 provided on the printed circuit board 50 and the dielectric waveguide are the dielectric waveguide input / output structure shown in the first embodiment. Therefore, the same reference numerals are given and the description thereof is omitted.
  • a dielectric waveguide 11 in which substantially the entire surface of a substantially rectangular parallelepiped dielectric block is covered with a conductor film 40 is mounted on a printed circuit board 50.
  • the dielectric waveguide 11 is divided by irises by a plurality of grooves 23 provided on the side surface 11c, so that a plurality of resonators 31g, 31f, 31e, 31d, 31c, 31b, 31a, 32a, 32b, and 32c are provided. , 32d, 32e, and 32f.
  • the resonators 31a, 31b, 31c, 31d, 31e, 31f, and 31g constitute a low-pass filter 71
  • the resonators 32a, 32b, 32c, 32d, 32e, and 32f are on the high-pass side.
  • the filter 72 is configured.
  • Each resonator acts as a TE mode dielectric waveguide resonator.
  • the resonator 31a corresponds to the “first resonator” according to the present invention
  • the resonator 32a corresponds to the “second resonator” according to the present invention.
  • the side surface dielectric exposed portion 43 is provided, and the region of the resonator 31 a on the bottom surface 11 b of the dielectric waveguide 11.
  • the bottom dielectric exposed portion 41 is provided, and the bottom dielectric exposed portion 42 is provided in the region of the resonator 32 a on the bottom surface of the dielectric waveguide 11.
  • the resonance frequency of the resonator 31a is f1
  • the resonance frequency of the resonator 32a is f2 (> f1).
  • FIG. 11 is a diagram showing simulation results of the dielectric waveguide duplexer 1 of the present embodiment.
  • the coplanar line with the ground including the line 60 is PORT1
  • the resonator 32f is PORT2
  • the resonator 31g is PORT3.
  • the thick solid line indicates the return loss S13 of PORT3
  • the thick dotted line indicates the insertion loss S13 from PORT3 to PORT1
  • the thin solid line indicates the return loss S22 of PORT2
  • the thin dotted line indicates the insertion loss S12 from PORT2 to PORT1. .
  • the dielectric waveguide 11 that the dielectric waveguide 11 operates as a duplexer having the frequencies f1 and f2 as center frequencies.
  • FIG. 12 is an exploded perspective view for explaining the dielectric waveguide duplexer according to the third embodiment provided with the dielectric waveguide input / output structure shown in the first embodiment.
  • the dielectric waveguide duplexer 2 of the present embodiment is different from the dielectric waveguide duplexer 1 shown in the second embodiment in that a substantially U-shaped dielectric waveguide 12 is used. .
  • the length between the resonator 31a and the resonator 32a is U-shaped or J-shaped bent by 180 °, so that the total length is shortened and the direction of the PORT Has changed.
  • the dielectric waveguide duplexer 2 includes a first dielectric waveguide portion constituting the filter 71 and a second dielectric waveguide portion constituting the filter 72.
  • resonators 31a to 31g are arranged in a row, and one end direction is set to the direction of the input / output port PORT3.
  • resonators 32a to 32f are arranged in a row, and one end direction is set to the direction of the input / output port PORT2.
  • the direction of the input / output port PORT3 of the filter 71 and the direction of the input / output port PORT2 of the filter 72 are the same.
  • the first resonator 31a is provided at the end of the filter 71 away from the input / output port PORT3, and the second resonator 32a is provided at the end of the filter 72 away from the input / output port PORT2.
  • the first resonator 31a and the second resonator 32a are divided by the iris by the groove 23a and are structurally connected.
  • the other grooves 23b except for the groove 23a between the filter 71 and the filter 72 are dielectric. It is provided on the outer side surface of the body waveguide 12. This structure facilitates processing.
  • FIG. 13 is an exploded perspective view for explaining the dielectric waveguide duplexer according to the fourth embodiment having the dielectric waveguide input / output structure shown in the first embodiment.
  • the dielectric waveguide duplexer 3 of the present embodiment is different from the third embodiment in that two substantially rectangular parallelepiped dielectric waveguides 13a and 13b are coupled via coupling windows 25a and 25b. It is different from the dielectric waveguide duplexer 2 shown.
  • the dielectric waveguide duplexer 3 includes a substantially rectangular parallelepiped dielectric waveguide 13a and a dielectric waveguide 13b.
  • the dielectric waveguide 13a corresponds to a “first dielectric waveguide portion” according to the present invention
  • the dielectric waveguide 13b corresponds to a “second dielectric waveguide portion” according to the present invention.
  • the dielectric waveguide 13a is divided by the iris formed by the groove 23 provided on the side surface, thereby forming a plurality of resonators 31a, 31b, 31c, 31d, 31e, 31f, and 31g.
  • a plurality of resonators 32 a, 32 b, 32 c, 32 d, 32 e, and 32 f are configured by being divided by the iris by the groove 23 provided on the side surface 13 b.
  • the resonator 31a corresponds to a “first resonator” according to the present invention
  • the resonator 32a corresponds to a “second resonator” according to the present invention.
  • the dielectric waveguide 13a and the dielectric waveguide 13b are arranged in parallel, so that the first resonator 31a and the second resonator 32a are arranged adjacent to each other.
  • the dielectric waveguide 13a and the dielectric waveguide 13b are coupled via coupling windows 25a and 25b in which dielectric blocks provided on the side surfaces of the resonators 31a and 32a are exposed in a rectangular shape.
  • the side surface dielectric exposed portion 43 is divided into the end surfaces of the dielectric waveguide 13a and the dielectric waveguide 13b.
  • Such dielectric waveguides that can be easily processed may be combined using a coupling window.
  • FIG. 14 is an exploded perspective view for explaining a dielectric waveguide duplexer according to the fifth embodiment, which is provided with the dielectric waveguide input / output structure shown in the first embodiment.
  • the dielectric waveguide duplexer 4 of the present embodiment is a dielectric waveguide duplexer having the resonator 31g and the resonator 32f as trap resonators.
  • the dielectric waveguide input / output structure shown in the first embodiment is used for the resonator 31f and the resonator 31g, and the resonator 32e and the resonator 32f.
  • the dielectric waveguide 13a and the dielectric waveguide 13b are disposed so that the side surfaces provided with the grooves 23b are adjacent to each other for the convenience of drawing out the PORT2 and PORT3 lines on the printed circuit board 50.
  • the dielectric waveguide input / output structure of the present invention can be applied to various branch structures that distribute one signal to two dielectric waveguides.
  • Dielectric waveguide duplexer 10 11, 12, 13a, 13b Dielectric waveguide 10a Upper surface 10b Lower surface 10c, 10d Side surface 10e Left end surface 10f Right end surface 21 Iris 22, 23a, 23b Groove 25 Coupling windows 31, 32, 31a to 31g, 31a to 31f Resonators 31, 31a First resonator 32, 32a Second resonator 40 Conductor films 41, 42 Bottom dielectric exposed portion 43 Side dielectric exposed portion 50 Printed circuit board 51 Front surface ground 52 Back surface ground 60 Line 61, 62 Gap 63 Impedance matching portion 71, 72 Filter 81, 82 Conductor non-forming portion 81a, 81b, 81c, 82a, 82b, 82c Region 90, 91 Via hole group

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Abstract

誘電体導波管(10)は第1共振器(31)および第2共振器(32)を備える。プリント基板(50)の表面には、線路(60)、インピーダンス整合部(63)、ギャップ(61,62)、クランク形状の第1導体非形成部(81)、クランク形状の第2導体非形成部(82)、および表面グランド(51)がそれぞれ形成されている。プリント基板(50)の裏面には裏面グランド(52)が形成されている。さらにプリント基板(50)には、表面グランド(51)と裏面グランド(52)とを接続するビアホール群(90.91)が形成されている。第1共振器(31)および第2共振器(32)の底面には、第1誘電体露出部(41)および第2誘電体露出部(42)がそれぞれ設けられていて、誘電体導波管(10)の側面(10d)の線路の近傍には第3誘電体露出部(43)が設けられている。このような誘電体導波管(10)がプリント基板(50)に実装される。

Description

誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ
 本発明は、プリント基板上に誘電体導波管を直接実装する、誘電体導波管入出力構造に関し、特に2つのTEモードの誘電体導波管共振器に同時に入出力可能な誘電体導波管入出力構造に関する。また、本発明は、上記誘電体導波管入出力構造を備えた誘電体導波管デュプレクサに関する。
 プリント基板に直接実装が可能な誘電体導波管には、プリント基板に設けられたマイクロストリップ線路やコプレーナ線路などの線路と誘電体導波管とを接続するための入出力構造が必要である。
 そして、誘電体導波管デュプレクサのような誘電体導波管においては、1つの信号を2つの誘電体導波管に分配する分岐構造が必要になる。
 たとえば、特許文献1には、導波管の信号を2つの導波管に分配する導波管分岐構造が記載されている。また特許文献2には、線路の信号を2つの共振器に分配する導波管分岐構造を有する誘電体導波管フィルタが記載されている。
特開平5-167315号公報 特開2004-312217号公報
 しかし、特許文献1,2に示される導波管分岐構造は、誘電体導波管以外の部材が必要である。そのため、誘電体導波管の構造が複雑化し、かつ寸法が大きくなるという問題がある。
 本発明は、上記した問題を解消して、プリント基板および誘電体導波管以外の部材を不要とし、導波管分岐構造を有する誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサを提供することを目的とする。
 本発明の誘電体導波管入出力構造は、
 線路が設けられたプリント基板と誘電体導波管とを備え、前記誘電体導波管と前記線路とが接続された、誘電体導波管入出力構造であって、
 前記誘電体導波管は、互いに隣接配置された第1共振器および第2共振器を備え、
 前記プリント基板の表面に、
 前記線路の先端に接続されて、前記誘電体導波管の底面の外側から内側に延出するインピーダンス整合部と、
 前記線路の両側に設けられたギャップと、
 前記ギャップに接続され、前記誘電体導波管の底面の前記第1共振器側に配置されたクランク形状の第1導体非形成部と、
 前記ギャップに接続され、前記誘電体導波管の底面の前記第2共振器側に配置されたクランク形状の第2導体非形成部と、
 前記第1導体非形成部および前記第2導体非形成部の残余の部位に設けられた表面グランドと、が設けられ、
 前記プリント基板の裏面に裏面グランドが設けられ、
 前記表面グランドと前記裏面グランドとを接続するビアホール群が、前記第1導体非形成部および前記第2導体非形成部を囲むように設けられ、
 前記第1共振器および前記第2共振器の底面に、前記第1導体非形成部および前記第2導体非形成部とそれぞれ重なる第1誘電体露出部および第2誘電体露出部が設けられ、
 前記誘電体導波管の側面の、前記線路の近傍に、第3誘電体露出部が設けられ、
 前記誘電体導波管は、前記第1導体非形成部および前記第2導体非形成部が、前記第1誘電体露出部および前記第2誘電体露出部にそれぞれ重なるように前記プリント基板に実装されたことを特徴とする。
 本発明によれば、追加の部材が不要であるので、導波管分岐構造を有する小型の誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサが得られる。
本発明の第1の実施形態に係る誘電体導波管入出力構造を説明するための分解透視斜視図である。 図1の部分拡大図である。 第1の実施形態に係る誘電体導波管入出力構造の各部の寸法を説明するための平面図である。 第1の実施形態に係る誘電体導波管入出力構造の通過特性(S21)のシミュレーション結果を示す図である。 第1の実施形態に係る誘電体導波管入出力構造の電界強度分布のシミュレーション結果を示す図である。 第1の実施形態に係る誘電体導波管入出力構造の電界強度分布のシミュレーション結果を示す図である。 第1の実施形態に係る誘電体導波管入出力構造の外部Qのシミュレーション結果を示す図である。 第1の実施形態に係る誘電体導波管入出力構造の外部Qのシミュレーション結果を示す図である。 第1の実施形態に係る誘電体導波管入出力構造の外部Qのシミュレーション結果を示す図である。 第2の実施形態に係る誘電体導波管入出力構造を備えた誘電体導波管デュプレクサを説明するための分解透視斜視図である。 第2の実施形態に係る誘電体導波管入出力構造を備えた誘電体導波管デュプレクサのシミュレーション結果を示す図である。 第3の実施形態に係る誘電体導波管入出力構造を備えた別の誘電体導波管デュプレクサを説明するための分解透視斜視図である。 第4の実施形態に係る誘電体導波管入出力構造を備えたさらに別の誘電体導波管デュプレクサを説明するための分解透視斜視図である。 第5の実施形態に係る誘電体導波管入出力構造を備えたさらにさらに別の誘電体導波管デュプレクサを説明するための分解透視斜視図である。
 以降、図面を参照して本発明の各実施形態を説明する。なお、図において、誘電体が露出する部位を斜線、基材が露出する部位をクロスハッチで示している。
《第1の実施形態》
 図1は、本発明の第1の実施形態に係る誘電体導波管入出力構造を説明するための分解透視斜視図である。図2は図1の導体非形成部を詳しく説明するための部分拡大図である。
 図1に示すように、略直方体形状の誘電体ブロックの表面の略全面が導体膜40で被覆された誘電体導波管10がプリント基板50上に実装されている。ここで、誘電体導波管10の、上面を10a、底面を10b、側面を10c,10d、左端面を10e、右端面10fとし、上面10aおよび底面10bの大きさをL×W、側面10c,10dの大きさをL×H、左端面10eおよび右端面10fの大きさをW×Hとする。
 誘電体導波管10は、側面10cに設けられた溝22によるアイリス21が形成されていることで、溝22から左端面10eまでの長さL1の第1共振器31と、溝22から右端面10fまでの長さL2(<L1)の第2共振器32とが構成されている。ここで、共振器32の共振周波数をf1、共振器31の共振周波数をf2とすると、L1>L2なので、f1<f2である。以後、第1共振器31側を「低域側」、第2共振器32側を「高域側」ともいう。第1共振器31、第2共振器32はそれぞれTEモードの誘電体導波管共振器として作用する。
 誘電体導波管10の底面10bには、底面10bと側面10dとの稜線Eから延出する、後述する導体非形成部81,82と略同一形状に誘電体ブロックが露出する底面誘電体露出部41,42が設けられている。底面誘電体露出部41,42の外形は、導体非形成部81,82の外形と一致する、または導体非形成部81,82の外形より少しだけ大きい。上記底面誘電体露出部41は本発明に係る「第1誘電体露出部」に相当し、底面誘電体露出部42は本発明に係る「第2誘電体露出部」に相当する。
 プリント基板50の表面には、線路60と、線路60の両側にプリント基板の基材が帯状に露出するギャップ61,62と、ギャップ61,62にそれぞれ接続された、プリント基板の基材がクランク形状に露出する導体非形成部81,82が設けられている。残余の部位には表面グランド51が設けられている。
 線路60は、線路60の先端に帯状のインピーダンス整合部63が設けられていて、インピーダンス整合部63が、誘電体導波管10の底面10bの外側から内側に延出して、表面グランド51と接続されている。インピーダンス整合部63は、インピーダンス整合のために、線路60よりも幅が狭くなっている。
 溝22の中心線を境界線Cとすると、インピーダンス整合部63は、境界線Cの延長線上に配置され、導体非形成部81は、誘電体導波管10の底面10bの共振器31側に配置され、導体非形成部82は、誘電体導波管10の底面10bの共振器32側に配置される。
 他方、プリント基板50の裏面の全面には、裏面グランド52が設けられている。したがって、線路60、表面グランド51および裏面グランド52によってグランド付きコプレーナ線路が構成されている。すなわち、線路60はグランド付きコプレーナ線路の信号線である。
 また、プリント基板50には、表面グランド51と裏面グランド52とを接続するとともに導体非形成部81,82を矩形状に囲むように配置されたビアホール群90と、表面グランド51と裏面グランド52とを接続するとともにギャップ61,62の外側で線路60に沿って配置されたビアホール群91とが設けられている。
 図2に示すように、導体非形成部81,82は、それぞれ、インピーダンス整合部63の両側に設けられた互いに並行に延伸する帯状の領域81a,82aと、互いに並行に延伸する帯状の領域81c,82cと、領域81aおよび領域81cに直交するとともに両端をクランク形状にそれぞれ接続する帯状の領域81bと、領域82aおよび領域82cに直交するとともに両端をクランク形状にそれぞれ接続する帯状の領域82bと、で構成されている。つまり、導体非形成部81は、領域81aおよび領域81cをそれぞれ腕部、領域81bを軸とするクランク形状であり、導体非形成部82は、領域82aおよび領域82cをそれぞれ腕部、領域82bを軸とするクランク形状である。これらクランク形状部は、領域81a,82aを境界線Cに互いに近づけ、領域81c,82cを境界線Cから互いに遠ざけるように、境界線Cの両側に配置されている。
 誘電体導波管10をプリント基板50に実装する際には、プリント基板50に設けられた導体非形成部81,82が、誘電体導波管10に設けられた底面誘電体露出部41,42にそれぞれ対面して重なるように配置する。プリント基板50に設けられた導体非形成部81,82が、誘電体導波管10に設けられた底面誘電体露出部41,42よりひとまわり大きい場合には、誘電体導波管10の底面誘電体露出部41,42がプリント基板の導体非形成部81,82のそれぞれ内側になるように配置する。
 プリント基板50に設けられた導体非形成部81,82が、誘電体導波管10に設けられた底面誘電体露出部41,42よりひとまわり大きい場合には、誘電体導波管10の実装位置のずれに対する、線路60と誘電体共振器31,32との結合のばらつきが少ないという効果がある。
 このとき、プリント基板50に設けられたインピーダンス整合部63と誘電体導波管10の導体膜40とが短絡しないように、誘電体導波管10の側面10dのインピーダンス整合部近傍に、誘電体ブロックが露出する側面誘電体露出部43が設けられている。側面誘電体露出部43の幅W43は、インピーダンス整合部63の幅W63より広い。ただし、側面誘電体露出部43は、側面誘電体露出部43からの不要な放射を低減するために、できるだけ小さいことが好ましい。また、側面誘電体露出部43は、溝22の内壁に設けるのは困難であるので、溝の無い側面10d側に設けるのが好適である。上記側面誘電体露出部43は本発明に係る「第3誘電体露出部」に相当する。
 図3は、本実施形態の誘電体導波管入出力構造の、各部の寸法を説明するための平面図である。図3に示すように、稜線Eから導体非形成部81の先端までの距離をLS1、稜線Eから導体非形成部82の先端までの距離をLS2、境界線Cから領域81cの右端までの距離をWS1、境界線Cから領域82cの左端までの距離をWS2、稜線Eから溝22の底までの距離をWiとする。
 図4は、本実施形態の誘電体導波管入出力構造の通過特性(S21)のシミュレーション結果を示す図であり、低域側の通過特性を周波数f1で正規化した結果を太線で示し、高域側の通過特性を周波数f2で正規化した結果を細線で示す。
 図5と図6は、本実施形態の誘電体導波管入出力構造の電界強度分布のシミュレーション結果を示す図であり、図5は周波数f1における電界強度分布を示し、図6は周波数f2における電界強度分布を示す。図5と図6において、濃度が薄いほど電界強度が高いことを示している。
 図4、図5、図6の結果から、本実施形態の誘電体導波管入出力構造は、線路60からの(グランド付きコプレーナ線路からの)信号を、共振器31,32にそれぞれ分配して入力できることがわかる。
 図7は、Wiを変化させた場合の、誘電体導波管入出力構造の外部Qのシミュレーション結果を示す図である。図7において、横軸はWi/λ1またはWi/λ2、縦軸は外部Qを示し、実線は低域側、点線は高域側の外部Qを示す。ここで、λ1は、周波数f1における誘電体導波管内の波長、λ2は周波数f2における誘電体導波管内の波長である。
 図8は、LS1またはLS2を変化させた場合の、誘電体導波管入出力構造の外部Qのシミュレーション結果を示す図である。図7において、横軸はLS1/λ1またはLS2/λ2、縦軸は外部Qを示し、実線は低域側、点線は高域側の外部Qを示す。
 図9は、WS1またはWS2を変化させた場合の、誘電体導波管入出力構造の外部Qのシミュレーション結果を示す図である。図8において、横軸はWS1/λ1またはWS2/λ2、縦軸は外部Qを示し、実線は低域側、点線は高域側の外部Qを示す。
 図7と図8の結果から、高域側と低域側の外部Qは、右肩下がりに変化していることが分かり、一方、図9の結果から、低域側の外部Qは右肩上がり、高域側の外部Qは右肩下がりになっていることが分かる。これらの結果から、高域側の外部Qと低域側の外部Qは、その大きさをWi,LS1,LS2で調整しつつ、その比をWS1,WS2で調整可能であることが分かる。この関係を用いれば、高域側と低域側とで帯域をそれぞれ調整できる。なお、共振器31と共振器32とは結合しているが、この結合が小さすぎると帯域が狭くなる。したがって、溝22の深さも外部Qを調整するパラメータの一つである。
 図7、図8、図9のいずれの結果でも、外部Qは20以下になっている。したがって、本実施形態の誘電体導波管入出力構造は、かなり広帯域な構造であると言える。
 本実施形態では、線路60は、グランド付きコプレーナ線路として、コプレーナ線路の両側に沿ってビアホール群91を設けたが、ビアホール群91は省略してもよく、さらに、線路60の裏側の裏面グランド52を省略してコプレーナ線路としてもよく、または線路60の両側の表面グランド51を省略してマイクロストリップ線路としてもよい。
 また、本実施形態では、導体非形成部81,82は各寸法が異なるクランク形状で説明したが、各寸法が同じ対称な形状であってもよく、クランク形状の軸部の領域81b,82bは、一直線にあってもよいし、一直線になくてもよい。
 さらに、誘電体導波管は、溝22によるアイリス21で複数の共振器を構成したが、例えば、貫通孔等によるアイリスで複数の共振器を構成してもよい。
《第2の実施形態》
 図10は、第1の実施形態で示した誘電体導波管入出力構造を備えた、第2の実施形態に係る誘電体導波管デュプレクサを説明するための分解透視斜視図である。図10において、プリント基板50および誘電体導波管に設けられた底面誘電体露出部41,42および側面誘電体露出部43は、第1の実施形態で示した誘電体導波管入出力構造と同一のため、同一の符号を付して、その説明を省略する。
 図10に示すように、略直方体形状の誘電体ブロックの表面の略全面が導体膜40で被覆された誘電体導波管11がプリント基板50上に実装されている。
 誘電体導波管11は、側面11cに設けられた複数の溝23によるアイリスによって区分されることで、複数の共振器31g,31f,31e,31d,31c,31b,31a,32a,32b,32c,32d,32e,32fが構成されている。これら共振器のうち共振器31a,31b,31c,31d,31e,31f,31gで低域側のフィルタ71が構成されていて、共振器32a,32b,32c,32d,32e,32fで高域側のフィルタ72が構成されている。各共振器はTEモードの誘電体導波管共振器として作用する。
 上記複数の共振器のうち、共振器31aが本発明に係る「第1共振器」に相当し、共振器32aが本発明に係る「第2共振器」に相当する。
 誘電体導波管11の側面11dの共振器31aと共振器32aの間の領域に、側面誘電体露出部43が設けられていて、誘電体導波管11の底面11bの共振器31aの領域に、底面誘電体露出部41が設けられていて、誘電体導波管11の底面の共振器32aの領域に、底面誘電体露出部42が設けられている。ここで、共振器31aの共振周波数をf1、共振器32aの共振周波数をf2(>f1)とする。
 図11は、本実施形態の誘電体導波管デュプレクサ1のシミュレーション結果を示す図であり、図10において、線路60を備えるグランド付きコプレーナ線路をPORT1、共振器32fをPORT2、共振器31gをPORT3としたとき、太い実線はPORT3のリターンロスS33、太い点線はPORT3からPORT1へのインサーションロスS13、細い実線はPORT2のリターンロスS22、細い点線はPORT2からPORT1へのインサーションロスS12をそれぞれ示す。
 図11の結果から、誘電体導波管11は、周波数f1,f2を中心周波数とするデュプレクサとして動作していることが分かる。
 なお、共振器31aと共振器32aとの間の溝23を除くその他の溝23は、側面11cと平行な側面11d側に設けてもよい。
《第3の実施形態》
 図12は、第1の実施形態で示した誘電体導波管入出力構造を備えた、第3の実施形態に係る誘電体導波管デュプレクサを説明するための分解透視斜視図である。本実施形態の誘電体導波管デュプレクサ2は、略U字形状の誘電体導波管12を用いている点が、第2の実施形態で示した誘電体導波管デュプレクサ1と異なっている。
 第2の実施形態の誘電体導波管デュプレクサ1では、共振器の数が多くなると、誘電体導波管デュプレクサの全長が長くなってしまう。本実施形態の誘電体導波管デュプレクサ2では、共振器31aと共振器32aとの間を、180°折れ曲がったU字形状またはJ字形状とすることで、全長を短くするとともに、PORTの方向を変更している。
 誘電体導波管デュプレクサ2は、フィルタ71を構成する第1誘電体導波管部およびフィルタ72を構成する第2誘電体導波管部を備える。フィルタ71は共振器31a~31gが列を成して配置され、一方端方向を入出力ポートPORT3の方向とする。フィルタ72は共振器32a~32fが列を成して配置され、一方端方向を入出力ポートPORT2の方向とする。
 フィルタ71の入出力ポートPORT3の方向およびフィルタ72の入出力ポートPORT2の方向は同方向である。第1共振器31aはフィルタ71の入出力ポートPORT3から離れた端部に設けられていて、第2共振器32aはフィルタ72の入出力ポートPORT2から離れた端部に設けられている。第1共振器31aと第2共振器32aとは、溝23aによるアイリスによって区分されて、構造的に繋がっている。
 なお、全ての溝をU字形状またはJ字形状の内側の側面に設けると加工し難いので、本実施形態では、フィルタ71とフィルタ72との間の溝23aを除く他の溝23bは、誘電体導波管12の外側の側面に設けている。この構造により加工が容易となる。
《第4の実施形態》
 図13は、第1の実施形態で示した誘電体導波管入出力構造を備えた、第4の実施形態に係る誘電体導波管デュプレクサを説明するための分解透視斜視図である。本実施形態の誘電体導波管デュプレクサ3は、2つの略直方体形状の誘電体導波管13a,13bを、結合窓25a,25bを介して結合させている点が、第3の実施形態で示した誘電体導波管デュプレクサ2と異なっている。
 図13に示すように、誘電体導波管デュプレクサ3は、略直方体形状の誘電体導波管13aと誘電体導波管13bとからなる。誘電体導波管13aは本発明に係る「第1誘電体導波管部」に相当し、誘電体導波管13bは本発明に係る「第2誘電体導波管部」に相当する。誘電体導波管13aは、側面に設けられた溝23によるアイリスで区分されることにより、複数の共振器31a,31b,31c,31d,31e,31f,31gが構成され、誘電体導波管13bは、側面に設けられた溝23によるアイリスで区分されることにより、複数の共振器32a,32b,32c,32d,32e,32fが構成されている。共振器31aは本発明に係る「第1共振器」に相当し、共振器32aは本発明に係る「第2共振器」に相当する。
 そして、誘電体導波管13aと誘電体導波管13bとが並列配置されることで、第1共振器31aと第2共振器32aとが互いに隣接配置される。誘電体導波管13aと誘電体導波管13bとは、共振器31a,32aのそれぞれの側面に設けられた誘電体ブロックが矩形状に露出する結合窓25a,25bを介して結合される。側面誘電体露出部43は、誘電体導波管13aと誘電体導波管13bの端面に分割して設けられている。
 このように加工し易い形状の誘電体導波管を、結合窓を用いて組み合わせてもよい。
《第5の実施形態》
 図14は、第1の実施形態で示した誘電体導波管入出力構造を備えた、第5の実施形態に係る誘電体導波管デュプレクサを説明するための分解透視斜視図である。本実施形態の誘電体導波管デュプレクサ4は、共振器31gおよび共振器32fをトラップ共振器とする誘電体導波管デュプレクサである。
 図14に示すように、共振器31fと共振器31gおよび共振器32eと共振器32fに、第1の実施形態で示した誘電体導波管入出力構造を用いている。誘電体導波管13aと誘電体導波管13bは、プリント基板50上のPORT2とPORT3の線路を引き出す方向の都合から、溝23bが設けられた側面を隣接させて配置している。
 以上の各実施形態で示したように、本発明の誘電体導波管入出力構造は、1つの信号を2つの誘電体導波管に分配する種々の分岐構造に適用可能である。
1,2,3,4 誘電体導波管デュプレクサ
10,11,12,13a,13b 誘電体導波管
10a 上面
10b 下面
10c,10d 側面
10e 左端面
10f 右端面
21 アイリス
22,23a,23b 溝
25 結合窓
31,32,31a~31g,31a~31f 共振器
31,31a 第1共振器
32,32a 第2共振器
40 導体膜
41,42 底面誘電体露出部
43 側面誘電体露出部
50 プリント基板
51 表面グランド
52 裏面グランド
60 線路
61,62 ギャップ
63 インピーダンス整合部
71,72 フィルタ
81,82 導体非形成部
81a,81b,81c,82a,82b,82c 領域
90,91 ビアホール群

Claims (10)

  1.  線路が設けられたプリント基板と誘電体導波管とを備え、前記誘電体導波管と前記線路とが接続された、誘電体導波管入出力構造であって、
     前記誘電体導波管は、互いに隣接配置された第1共振器および第2共振器を備え、
     前記プリント基板の表面に、
     前記線路の先端に接続されて、前記誘電体導波管の底面の外側から内側に延出するインピーダンス整合部と、
     前記線路の両側に設けられたギャップと、
     前記ギャップに接続され、前記誘電体導波管の底面の前記第1共振器側に配置されたクランク形状の第1導体非形成部と、
     前記ギャップに接続され、前記誘電体導波管の底面の前記第2共振器側に配置されたクランク形状の第2導体非形成部と、
     前記第1導体非形成部および前記第2導体非形成部の残余の部位に設けられた表面グランドと、が設けられ、
     前記プリント基板の裏面に裏面グランドが設けられ、
     前記表面グランドと前記裏面グランドとを接続するビアホール群が、前記第1導体非形成部および前記第2導体非形成部を囲むように設けられ、
     前記第1共振器および前記第2共振器の底面に、前記第1導体非形成部および前記第2導体非形成部とそれぞれ重なる第1誘電体露出部および第2誘電体露出部が設けられ、
     前記誘電体導波管の側面の、前記線路の近傍に、第3誘電体露出部が設けられ、
     前記誘電体導波管は、前記第1導体非形成部および前記第2導体非形成部が、前記第1誘電体露出部および前記第2誘電体露出部にそれぞれ重なるように前記プリント基板に実装された、
     誘電体導波管入出力構造。
  2.  前記インピーダンス整合部の幅は、前記線路の幅より狭い、請求項1に記載の誘電体導波管入出力構造。
  3.  前記第1誘電体露出部および前記第2誘電体露出部は、前記第1導体非形成部および前記第2導体非形成部の外形より大きく、
     前記誘電体導波管は、前記第1導体非形成部および前記第2導体非形成部が、前記第1誘電体露出部および前記第2誘電体露出部のそれぞれの内側に配置されるように、前記プリント基板に実装される、
     請求項1に記載の誘電体導波管入出力構造。
  4.  前記第1導体非形成部および前記第2導体非形成部は、前記第1共振器と前記第2共振器との間の境界線に対して非線対称である、請求項1から3のいずれかに記載の誘電体導波管入出力構造。
  5.  前記線路は、マイクロストリップ線路、コプレーナ線路、グランド付コプレーナ線路のいずれかの信号線である請求項1から4のいずれかに記載の誘電体導波管入出力構造。
  6.  前記第1共振器および前記第2共振器は、前記誘電体導波管の側面に設けられた溝によるアイリスによって区分されている、
     請求項1から5のいずれかに記載の誘電体導波管入出力構造。
  7.  前記誘電体導波管は、複数の共振器が列を成して配置され一方端方向を入出力ポートの方向とする第1誘電体導波管部、および複数の共振器が列を成して配置され一方端方向を入出力ポートの方向とする第2誘電体導波管部を備え、
     前記第1誘電体導波管部および前記第2誘電体導波管部は、それぞれの入出力ポートが同方向を向き、
     前記第1誘電体導波管部の、前記入出力ポートから離れた端部に前記第1共振器が設けられ、
     前記第2誘電体導波管部の、前記入出力ポートから離れた端部に前記第2共振器が設けられ、
     前記第1共振器と前記第2共振器とは繋がっている、
     請求項1から6のいずれかに記載の誘電体導波管入出力構造。
  8.  前記誘電体導波管は、複数の共振器が列を成して配置され一方端方向を入出力ポートの方向とする第1誘電体導波管部、および複数の共振器が列を成して配置され一方端方向を入出力ポートの方向とする第2誘電体導波管部を備え、
     前記第1共振器は前記第1誘電体導波管部に設けられ、
     前記第2共振器は前記第2誘電体導波管部に設けられ、
     前記第1誘電体導波管部と前記第2誘電体導波管部とが並列配置されることで、前記第1共振器と前記第2共振器とが互いに隣接配置される、
     請求項1から6のいずれかに記載の誘電体導波管入出力構造。
  9.  前記第1共振器および前記第2共振器は、前記誘電体導波管の側面に設けられた結合窓を介して結合する、
     請求項8に記載の誘電体導波管入出力構造。
  10.  二つの誘電体導波管共振器を備える誘電体導波管デュプレクサであって、前記2つの誘電体導波管共振器に対する入力部に請求項1から9のいずれかに記載の誘電体導波管入出力構造を備えた、誘電体導波管デュプレクサ。
PCT/JP2017/014169 2016-04-08 2017-04-05 誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ WO2017175776A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018510624A JPWO2017175776A1 (ja) 2016-04-08 2017-04-05 誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ
US16/135,946 US20190020089A1 (en) 2016-04-08 2018-09-19 Dielectric waveguide input/output structure and dielectric waveguide duplexer including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-077884 2016-04-08
JP2016077884 2016-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/135,946 Continuation US20190020089A1 (en) 2016-04-08 2018-09-19 Dielectric waveguide input/output structure and dielectric waveguide duplexer including the same

Publications (1)

Publication Number Publication Date
WO2017175776A1 true WO2017175776A1 (ja) 2017-10-12

Family

ID=60001302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014169 WO2017175776A1 (ja) 2016-04-08 2017-04-05 誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ

Country Status (3)

Country Link
US (1) US20190020089A1 (ja)
JP (1) JPWO2017175776A1 (ja)
WO (1) WO2017175776A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061474A (ja) * 2019-10-03 2021-04-15 株式会社フジクラ 構造体
JP2021061475A (ja) * 2019-10-03 2021-04-15 株式会社フジクラ 構造体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063297A1 (en) * 2002-01-24 2003-07-31 Marconi Communications Gmbh Waveguide to microstrip transition
EP2197072A1 (en) * 2008-12-12 2010-06-16 Toko, Inc. Dielectric waveguide-microstrip transition structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016225894A (ja) * 2015-06-02 2016-12-28 東光株式会社 誘電体導波管フィルタおよび誘電体導波管デュプレクサ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003063297A1 (en) * 2002-01-24 2003-07-31 Marconi Communications Gmbh Waveguide to microstrip transition
EP2197072A1 (en) * 2008-12-12 2010-06-16 Toko, Inc. Dielectric waveguide-microstrip transition structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. ITO ET AL.: "60-GHz Band Dielectric Waveguide Filters Made of Crystalline Quartz", 2005 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, 2005, pages 2087 - 2090, XP010844977, DOI: doi:10.1109/MWSYM.2005.1517158 *
K. SANO ET AL.: "A Transition from Microstrip to Dielectric-Filled Rectangular Waveguide in Surface Mounting", 2002 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, vol. 2, 2002, pages 813 - 816, XP032408374 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061474A (ja) * 2019-10-03 2021-04-15 株式会社フジクラ 構造体
JP2021061475A (ja) * 2019-10-03 2021-04-15 株式会社フジクラ 構造体

Also Published As

Publication number Publication date
JPWO2017175776A1 (ja) 2018-12-20
US20190020089A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
US7710222B2 (en) Dual band resonator and dual band filter
US20040119554A1 (en) Waveguide/microstrip line converter
CN102496759B (zh) 平面波导、波导滤波器及天线
US9660315B2 (en) Ground structures between resonators for distributed electromagnetic wave filters
WO2017175776A1 (ja) 誘電体導波管入出力構造およびそれを備えた誘電体導波管デュプレクサ
MX2015002935A (es) Filtro paso banda.
CN110011006A (zh) 带通滤波器
JP2016225894A (ja) 誘電体導波管フィルタおよび誘電体導波管デュプレクサ
WO2019064510A1 (ja) 高周波フィルタ
CN105977593B (zh) 电介质波导管的输入输出结构和电介质波导管的安装结构
US7825752B2 (en) Dielectric filter having a dielectric block with input/output electrodes of a bent shape at corner portions of the block
JPS63220603A (ja) セラミツク導波管型濾波回路
JP3845394B2 (ja) 高周波モジュール
CN105896008A (zh) 一种在高频和低频均含有传输零点的紧凑型带通滤波器
JPH04167701A (ja) 誘電体フィルタ
WO2019017085A1 (ja) チューナブル帯域通過フィルタ及びその構成方法
KR100758303B1 (ko) 유전체 도파관을 이용한 대역저지필터
JP2013225787A (ja) 帯域通過フィルタ
JP2010226515A (ja) 帯域通過フィルタ
JP5374718B2 (ja) 帯域通過フィルタ
JP2018182386A (ja) 方向性結合器の製造方法
JP2002111312A (ja) 導波管フィルタ
TWI528624B (zh) Balanced tri - band band - pass filter
WO2023127304A1 (en) High-frequency circuit
JP2015192297A (ja) 水晶導波管フィルタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510624

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779154

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779154

Country of ref document: EP

Kind code of ref document: A1