WO2017170913A1 - コンロッド及びコンロッドモジュール、並びにこれらの製造方法 - Google Patents

コンロッド及びコンロッドモジュール、並びにこれらの製造方法 Download PDF

Info

Publication number
WO2017170913A1
WO2017170913A1 PCT/JP2017/013366 JP2017013366W WO2017170913A1 WO 2017170913 A1 WO2017170913 A1 WO 2017170913A1 JP 2017013366 W JP2017013366 W JP 2017013366W WO 2017170913 A1 WO2017170913 A1 WO 2017170913A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting rod
end portion
annular
inner peripheral
stem
Prior art date
Application number
PCT/JP2017/013366
Other languages
English (en)
French (fr)
Inventor
健浩 松月
山下 智典
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112017001636.3T priority Critical patent/DE112017001636T5/de
Priority claimed from JP2017067817A external-priority patent/JP2017187173A/ja
Publication of WO2017170913A1 publication Critical patent/WO2017170913A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C7/00Connecting-rods or like links pivoted at both ends; Construction of connecting-rod heads
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Definitions

  • the present invention relates to a connecting rod (hereinafter referred to as a connecting rod) for connecting a crankshaft and a piston of an engine, a connecting rod module in which a bearing race is press-fitted into the connecting rod, and a manufacturing method thereof.
  • a connecting rod hereinafter referred to as a connecting rod
  • a connecting rod module in which a bearing race is press-fitted into the connecting rod
  • the connecting rod has integrally a large end connected to the crankshaft, a small end connected to the piston, and a stem portion connecting these.
  • a connecting rod made of sintered metal is known (for example, see Patent Document 1).
  • the annular portion (large end portion and small end portion) of the connecting rod is connected to a crankshaft or a piston via a bearing (for example, a needle roller bearing).
  • a bearing for example, a needle roller bearing
  • a bearing race outer ring
  • the connecting rod module shown in FIG. It is formed.
  • the connecting rod 110 as described above is formed of a sintered metal, usually, a step of compressing raw material powder to obtain a green compact, a step of sintering the green compact to obtain a sintered body, and a sintering It is manufactured through a sizing process that recompresses the body and adjusts the dimensional accuracy.
  • the inner peripheral surfaces of the annular portions 111 and 112 are made into a perfect circle shape by press-fitting a core having a perfectly circular cross section into the inner periphery of the annular portion (large end portion and small end portion) of the sintered body. It is shaped.
  • the sizing connecting rod 110 includes, in the inner peripheral surfaces 111a and 112a of the annular portions 111 and 112, circumferential regions W1 and W2 of the connecting portion with the stem portion 113.
  • it will be in the state which protruded to the internal-diameter side rather than the virtual cylindrical surface (it shows with a dashed line) which extended the other circumferential direction area
  • the outer rings 121 and 122 are press-fitted into the annular portions 111 and 112 of the connecting rod 110, the outer rings 121 and 122 are slightly reduced in diameter.
  • the circumferential regions W1 and W2 of the connecting portion with the stem portion 113 are higher in rigidity than the other circumferential regions, and thus the outer rings 121 and 122.
  • the circumferential regions W1 and W2 have a larger diameter reduction than the other circumferential regions.
  • the roundness of the inner peripheral surfaces (track surfaces) of the outer rings 121 and 122 in the (connecting rod module) deteriorates.
  • the circumferential regions W1 and W2 of the connecting portion with the stem portion 113 are smaller than the other circumferential regions.
  • the amount of the diameter increases, and a state in which it protrudes closer to the inner diameter side than the virtual cylindrical surface (indicated by a chain line) obtained by extending other circumferential regions is obtained.
  • the bearing race is made thicker and the rigidity is increased, the bearing race is less likely to be deformed, so that deterioration of the roundness of the bearing race can be suppressed.
  • increasing the thickness of the bearing raceway causes an increase in cost and weight, and affects the shape of other members, making it difficult to design.
  • the problem to be solved by the present invention is to improve the roundness of the inner peripheral surface of the bearing race ring that is press-fitted into the annular portion of the connecting rod without increasing the thickness of the bearing race ring.
  • the present invention provides a compacting process for forming a compact having a pair of annular parts and a stem part connecting them, and obtaining a sintered body by sintering the compact.
  • the annular portion and the stem portion of the inner peripheral surface of at least one annular portion of the compact A connecting rod manufacturing method is provided in which a relief portion retracted toward the stem portion side is formed in a circumferential region of the connecting portion.
  • the circumferential area is formed in another circumferential area. It is possible to prevent a situation in which it is closer to the inner diameter side than the direction area. Thereby, the roundness of the bearing race ring press-fitted into the annular portion of the connecting rod can be improved.
  • a bearing component including a bearing race ring may be used in addition to the bearing race ring alone.
  • a bearing race ring is provided in the annular portion of the connecting rod. You may press-fit a needle roller bearing.
  • the present invention provides a sintered metal connecting rod having a pair of annular portions and a stem portion for connecting the annular portions, of the inner peripheral surface of at least one of the annular portions. And a relief portion that is retracted toward the stem portion side is provided in a circumferential region of a connection portion between the stem portion and the stem portion.
  • the relief portion is provided in the circumferential region where the amount of diameter reduction of the bearing race ring press-fitted into the annular portion is increased in the inner peripheral surface of the annular portion of the connecting rod.
  • the press-fitting allowance between the annular portion and the bearing race ring in the circumferential region where the relief portion is provided is reduced, and the diameter reduction of the bearing race ring in the circumferential region is suppressed.
  • the diameter of the bearing race can be uniformly reduced over the entire circumference, so that the roundness of the inner peripheral surface of the bearing race can be improved.
  • the retraction amount of the relief portion on the inner peripheral surface of the annular portion is too small or too large, the deformation amount of the bearing race cannot be made uniform. Therefore, it is preferable to set the retraction amount of the escape portion on the inner peripheral surface of the annular portion within a predetermined range. Specifically, for example, on the inner peripheral surface of the annular portion provided with the relief portion, the difference between the diameter in the extending direction of the stem portion and the diameter in the direction orthogonal to the extending direction is set to 5 ⁇ m or more and 30 ⁇ m or less. It is more preferable that the thickness be 10 ⁇ m or more and 25 ⁇ m or less.
  • the above connecting rod can be provided with a cylindrical surface in a circumferential region excluding the relief portion of the inner circumferential surface of the annular portion having the relief portion.
  • the escape portion is retracted toward the stem portion with respect to the virtual cylindrical surface obtained by extending the cylindrical surface.
  • the cylindrical surface has a circumferential region larger than 180 ° (preferably a circumferential region larger than 210 °, preferably at an angle with respect to the center of the cylindrical surface, in order to secure a press-fitted region with the bearing raceway.
  • it is provided in a circumferential region larger than 240 °.
  • the cylindrical surface has a circumferential region smaller than 330 ° (preferably 300 °, preferably at an angle with respect to the center of the cylindrical surface in order to sufficiently suppress the deterioration of roundness by forming a relief portion. It is preferable to provide in a circumferential region smaller than that, more preferably in a circumferential region smaller than 270 °.
  • the present invention includes a sintered metal connecting rod having a pair of annular portions and a stem portion connecting them, and a bearing race ring press-fitted into the inner peripheral surface of at least one annular portion of the connecting rod. It is a connecting rod module, and the press-fitting allowance between the annular portion and the bearing race in the circumferential region of the connecting portion between the annular portion and the stem portion is the annular portion in the circumferential region other than the connecting portion and the It can also be characterized as a connecting rod module smaller than the press-fit allowance with the bearing race.
  • the bearing race ring is uniformly reduced in diameter, and the roundness of the inner peripheral surface of the bearing race ring is improved. be able to.
  • the roundness of the bearing race ring that is press-fitted into the annular portion of the connecting rod is improved by making the connecting rod (green compact) into a shape that allows for deformation due to sizing or press-fitting of the bearing race ring. Can do.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is sectional drawing which shows a compacting process (state with which raw material powder was filled). It is sectional drawing which shows a compacting process (state which compression was completed). It is a top view of a green compact. It is a top view of a sintered compact. It is a top view of the sintered compact (connecting rod) after sizing.
  • FIG. 5B is an enlarged plan view of a large end portion and a small end portion of the green compact of FIG. 5A. It is sectional drawing which shows a sizing process (state before shaping).
  • FIG. 9A It is sectional drawing which shows a sizing process (state after shaping). It is a top view of the conventional connecting rod. It is a top view of the connecting rod module formed by press-fitting a bearing race into the inner periphery of the annular portion of the connecting rod of FIG. 9A.
  • the connecting rod module 1 is incorporated in an engine, for example, a small engine (general purpose engine) having a displacement of 100 cc or less (particularly, a displacement of 50 cc or less) provided in a brush cutter, a blower or the like.
  • the connecting rod module 1 includes a connecting rod 10 and at least outer rings 21 and 22 as bearing races.
  • the connecting rod module 1 may have a connecting rod 10 and needle roller bearings including outer rings 21 and 22 as bearing races.
  • the connecting rod 10 has a large end portion 11 and a small end portion 12 as annular portions, and a stem portion 13 that connects them. Both the large end portion 11 and the small end portion 12 have an annular shape that is continuous over the entire circumference.
  • Outer rings 21 and 22 constituting needle roller bearings (so-called needle bearings) are press-fitted into the inner peripheral surfaces 11 a and 12 a of the large end portion 11 and the small end portion 12.
  • the inner peripheral surfaces 11a and 12a of the large end portion 11 and the small end portion 12 form a highly accurate cylindrical surface in a state where the outer rings 21 and 22 are press-fitted.
  • the roundness is 10 ⁇ m or less, preferably 5 ⁇ m. It is as follows.
  • the stem portion 13 is formed with an elongated through hole 13a that is long in the extending direction of the stem portion 13 (left and right direction in FIG. 1).
  • the connecting rod 10 is formed of a sintered metal, and is particularly formed integrally with an iron-based sintered metal containing 90% by mass or more of iron.
  • the sintered metal of the present embodiment is made of an iron-based sintered material.
  • nickel is 0.1 to 5% by mass (preferably 0.5 to 4% by mass)
  • molybdenum is 0.1 to 5% by mass. (Preferably 0.3 to 4% by mass)
  • the density of the connecting rod 10 is, for example, 7.0 g / cm 3 or more, preferably 7.1 g / cm 3 or more, more preferably 7.2 g / cm 3 or more.
  • the density of the connecting rod 10, for example ideal ingot material 7.8 g / cm 3 is the density of below, 7.6 g / cm 3 or less substantially in consideration of powder pressing and the like at the time of molding, More practically, it is 7.4 g / cm 3 or less.
  • the outer rings 21 and 22 have a cylindrical shape, and cylindrical raceway surfaces 21a and 22a are provided on the inner peripheral surface.
  • a plurality of rollers (needle rollers) and a cage for holding the plurality of rollers at equal intervals in the circumferential direction are assembled on the inner circumference of the outer rings 21 and 22 (not shown).
  • the outer rings 21 and 22 are formed by cutting, forging, pressing, or the like on a molten material (for example, steel material).
  • the outer rings 21 and 22 are subjected to heat treatment (for example, quenching and tempering treatment) as necessary, and a hardened layer is formed on the surface layer. Finishing (for example, grinding finishing) is performed on the raceway surfaces 21a and 22a of the outer rings 21 and 22.
  • the raceways 21a and 22a of the outer rings 21 and 22 form a highly accurate cylindrical surface in a state where they are press-fitted into the large end portion 11 and the small end portion 12 of the connecting rod 10, for example, the roundness is preferably 10 ⁇ m or less. Is 5 ⁇ m or less.
  • the connecting rod 10 is manufactured through a compacting process, a sintering process, and a sizing process.
  • the green compact is formed by filling the raw material powder into a forming mold and compressing it.
  • the raw material powder M is filled in the cavity defined by the die 41, the side cores 42 a and 42 b, the center core 42 c, and the lower punch 43.
  • raw material powder M is used in which graphite powder and a lubricant (such as metal soap) are added to partially diffused alloy powder of iron, nickel, and molybdenum.
  • the upper punch 44 is lowered to compress the raw material powder M, and a green compact 10 ′ ⁇ see FIG. 5A) having substantially the same shape as the connecting rod 10 is formed.
  • the cross-sectional shapes of the side cores 42a and 42b are not strictly perfect circles, and both have a non-circular shape in which a circumferential region on the center core 42c side is bulged toward the center core 42c side (not shown).
  • side cores 42a and 42b as shown in FIG. 5A, among the inner peripheral surfaces 11a ′ and 12a ′ of the large end portion 11 ′ and the small end portion 12 ′ of the green compact 10 ′.
  • the circumferential regions W1 ′ and W2 ′ of the connecting portion with the stem portion 13 ′ relief portions 11a1 ′ and 12a1 ′ retracted toward the stem portion 13 ′ are formed.
  • cylindrical surfaces 11a2 ′ and 12a2 are provided in a circumferential region excluding the relief portions 11a1 ′ and 12a1 ′. 'Is provided. Cylindrical surfaces 11a2 ′ and 12a2 ′ are provided in a circumferential region larger than 180 ° on inner peripheral surfaces 11a ′ and 12a ′ of large end portion 11 ′ and small end portion 12 ′, respectively.
  • the escape portions 11a1 ′ and 12a1 ′ and the cylindrical surfaces 11a2 ′ and 12a2 ′ are smoothly continuous.
  • the relief portions 11a1 ′ and 12a1 ′ may be provided not in the entire area of the circumferential regions W1 ′ and W2 ′ but in a part of the circumferential regions W1 ′ and W2 ′. Further, the relief portions 11a1 ′ and 12a1 ′ are preferably provided in a region including the end portion on the stem portion 13 ′ side of the inner peripheral surfaces 11a ′ and 12a ′ of the large end portion 11 ′ and the small end portion 12 ′. . For example, the relief portions 11a1 ′ and 12a1 ′ are provided in a circumferential region of 90 to 135 ° at an angle with respect to the centers of the cylindrical surfaces 11a2 ′ and 12a2 ′.
  • the cylindrical surfaces 11a2 ′ and 12a2 ′ are provided in a circumferential region of 225 to 270 ° at an angle with respect to the center of the cylindrical surfaces 11a2 ′ and 12a2 ′.
  • the sectional shape of the side cores 42a and 42b of the forming mold is set.
  • the relief portions 11a1 ′ and 12a1 ′ of the green compact 10 ′ have stem portions 13 ′ with respect to virtual cylindrical surfaces C1 ′ and C2 ′ in which the cylindrical surfaces 11a2 ′ and 12a2 ′ extend all around.
  • the relief portions 11a1 ′ and 12a1 ′ in the illustrated example have an elliptical shape that bulges toward the stem portion 13 ′ with respect to the virtual cylindrical surfaces C1 ′ and C2 ′.
  • the amount of retraction of the escape portions 11a1 ′ and 12a1 ′ is maximized at the end portion on the stem portion 13 ′ side of the inner peripheral surfaces 11a ′ and 12a ′ of the large end portion 11 ′ and the small end portion 12 ′, and from there It gets smaller gradually as you go to both directions.
  • the maximum retraction amounts ⁇ 1 ′ and ⁇ 2 ′ of the relief portions 11a1 ′ and 12a1 ′ with respect to the virtual cylindrical surfaces C1 ′ and C2 ′ are 10 to 25 ⁇ m.
  • the green compact 10 ′ is fired at a predetermined temperature for a predetermined time to obtain a sintered body 10 ′′ having substantially the same shape as the green compact 10 ′ (sintering process). 5B, it has a large end portion 11 ′′, a small end portion 12 ′′, and a stem portion 13 ′′. Inner peripheral surfaces 11a ′′ and 12a of the large end portion 11 ′′ and the small end portion 12 ′′.
  • the stem portion 13 “side with respect to the virtual cylindrical surfaces C1" and C2 "obtained by extending the cylindrical surfaces 11a2" and 12a2 " Relief portions 11a1 "and 12a1" that are retracted are provided.
  • the shape and dimensions of each portion of the sintered body 10 are the same as those of the green compact 10 'except for the influence of shrinkage due to sintering. Is omitted.
  • the sintered body 10 ′′ is recompressed to increase the dimensional accuracy (sizing step).
  • the inner peripheral surfaces of the large end portion 11 ′′ and the small end portion 12 ′′ of the sintered body 10 ′′ are increased.
  • the sintered body 10 ′′ is placed in the upper end opening of the die 51. Thereafter, as shown in FIG. 8, the upper punch 54 is lowered and sintered.
  • the large end portion 11 ′′ and the small end portion 12 ′′ of the body 10 ′′ are pushed into the space between the die 51 and the side cores 52a and 52b, and the sintered body 10 ′′ is compressed from above and below with the upper punch 54 and the lower punch 53.
  • the outer peripheral surfaces of the large end portion 11 ′′ and the small end portion 12 ′′ of the sintered body 10 ′′ are formed on the inner peripheral surface of the die 51, and the inner peripheral surface 11a ′′ of the large end portion 11 ′′ and Inner peripheral surfaces 12a "of the small end portions 12" are formed on the outer peripheral surfaces of the side cores 52a and 52b, respectively.
  • the relative positional relationship between the inner peripheral surface of the large end portion 11 ′′ and the inner peripheral surface of the small end portion 12 ′′ is corrected by the side cores 52a and 52b. Thereafter, the sintered body 10 ′′ (connecting rod 10) is discharged from the sizing mold.
  • the sintered body 10 "(that is, the connecting rod 10) subjected to sizing has the dimensions of each part, in particular, the shapes and positions of the inner peripheral surfaces 11a and 12a of the large end part 11 and the small end part 12 set with high accuracy.
  • the cross-sectional shapes of the side cores 52a and 52b of the sizing mold are not strictly perfect circles, and both have a non-circular shape in which the circumferential region on the center core 52c side is bulged toward the center core 52c side. Therefore, as shown in FIG.5 (C), the circumferential direction of the connection part with the stem part 13 among the internal peripheral surfaces 11a and 12a of the large end part 11 and the small end part 12 of the connecting rod 10 is shown.
  • the regions W1 and W2 are provided with relief portions 11a1 and 12a1 that are retracted toward the stem portion 13 with respect to the virtual cylindrical surfaces C1 and C2 obtained by extending the cylindrical surfaces 11a2 and 12a2, for example, the relief portions 11a1 and 12a1 are cylindrical.
  • the cylindrical surfaces 11a2 and 12a2 are provided in a circumferential region of 90 to 135 ° at an angle with respect to the center of the surfaces 11a2 and 12a2.
  • the cross-sectional shape of the side cores 52a and 52b of the sizing mold is set.
  • the allowance between the inner peripheral surfaces 11a “and 12a” of the large end portion 11 "and the small end portion 12” of the sintered body 10 "before sizing and the outer peripheral surfaces of the side cores 52a and 52b is
  • the circumferential regions W1 and W2 on the stem portion 13 "side have an outer periphery. It is difficult to plastically deform because it is not corrected by the mold. Therefore, the circumferential regions W1 and W2 of the inner peripheral surfaces 11a “and 12a” of the large end portion 11 "and the small end portion 12" are less likely to expand in diameter than the other circumferential regions.
  • the escape amounts of the escape portions 11a1 and 12a1 with respect to the virtual cylindrical surfaces C1 and C2 are the sintering before sizing shown in FIG. This is smaller than the escape amount of the relief portions 11a1 "and 12a1” with respect to the virtual cylindrical surfaces C1 "and C2" in the body 10 ".
  • the outer rings 21 and 22 are press-fitted into the inner peripheral surface 11a of the large end portion 11 and the inner peripheral surface 12a of the small end portion 12 of the connecting rod 10 thus formed.
  • the large end portion 11 and the small end portion 12 of the connecting rod 10 receive a force in the outer diameter direction, and the outer rings 21 and 22 are pressed in the inner diameter direction.
  • the circumferential regions W1 and W2 of the connecting portion with the stem portion 13 have high radial rigidity.
  • the escape portion 11a1 retracted toward the stem portion 13 side in the circumferential regions W1 and W2 of the inner peripheral surfaces 11a and 12a of the large end portion 11 and the small end portion 12 of the connecting rod 10. , 12a1 are provided.
  • both of the press-fitting allowances in the circumferential regions W1 and W2 are smaller than both of the press-fitting allowances in the other circumferential regions.
  • the pressing force applied to the circumferential regions W1 and W2 of the outer rings 21 and 22 is suppressed, the pressing force applied to the outer rings 21 and 22 can be made uniform over the entire circumference. Therefore, since the outer rings 21 and 22 can be uniformly deformed (reduced diameter) in the circumferential direction, deterioration of the roundness of the outer rings 21 and 22 can be suppressed. Thus, the connecting rod module 1 shown in FIGS. 1 and 2 is completed.
  • the present invention is not limited to the above embodiment.
  • the case where the relief portions 11a1 ′ and 12a1 ′ are provided in the green compact 10 ′ and the relief portions 11a1 and 12a1 are provided in the connecting rod 10 has been described.
  • the escape portions 11a1 and 12a1 may be formed.
  • the inner peripheral surfaces 11a ′ and 12a ′ of the large end portion 11 ′ and the small end portion 12 ′ of the green compact 10 ′ are formed by side cores 42a and 42b having a perfectly circular cross section, and the green compact. 10 ′ is fired to obtain a sintered body 10 ′′.
  • cylindrical inner peripheral surfaces 11a ′′ and 12a ′′ of the large end portion 11 ′′ and the small end portion 12 ′′ of the sintered body 10 ′′ are obtained.
  • the relief portions 11a1 and 12a1 are formed by pressing and molding a side core having a non-circular cross section.
  • the sizing cost becomes larger than when the relief portions 11a1 ′ and 12a1 ′ are provided in the green compact 10 ′.
  • the amount of springback when the connecting rod 10 is discharged from the sizing die increases as the sizing allowance increases, it is necessary to further increase the sizing allowance in consideration of the increase in springback.
  • the core rod 10 may be blurred or wear of the sizing mold may be increased. Therefore, it is preferable to provide relief parts 11a1 'and 12a1' in the green compact 10 'as in the above-described embodiment so that the sizing allowance is as small as possible.
  • the structure of the connecting rod 10 is not limited to the above, and the through-hole 13a of the stem portion 13 is omitted, or a thin-walled portion that is thinner than other regions is provided in a portion where the through-hole 13a of the stem portion 13 is formed. May be.
  • the connecting rod 10 may be press-fitted into one of the inner peripheral surfaces 11a and 12a of the large end 11 and the small end 12 and the outer ring may not be press-fitted into the other.
  • the large end portion 11 is divided into a connecting rod body and a cap member, and these are fixed with bolts or the like. be able to.
  • escape part 11a1, 12a1 was provided in both the internal peripheral surfaces 11a and 12a of the big end part 11 of the connecting rod 10, and the small end part 12 was shown, it is not restricted to this but large
  • the escape portion may be provided only on one of the inner peripheral surfaces 11a and 12a of the end portion 11 and the small end portion 12, or the retraction amounts of the escape portions 11a1 and 12a1 may be made different.
  • the outer ring 22 of the connecting rod module 1 shown in FIGS. 1 and 2 is thicker than the outer ring 21 and has a small diameter, and therefore has high radial rigidity.
  • the maximum retraction amount ⁇ 2 of the inner peripheral surface 12a of the small end portion 12 into which the outer ring 22 having high rigidity is press-fitted is set to the maximum retreat amount ⁇ 2 of the inner peripheral surface 11a of the large end portion 11 into which the outer ring 21 having low rigidity is press-fitted. It may be smaller than ⁇ 1 ( ⁇ 1> ⁇ 2).
  • the relief portion 11a1 is provided only on the inner peripheral surface 11a of the large end portion 11 into which the outer ring 21 having low rigidity is press-fitted, and the inner peripheral surface 12a of the small end portion 12 into which the outer ring 22 having high rigidity is press-fitted is provided.
  • the entire circumference may be a cylindrical surface without providing a portion.
  • bearings to be mounted on the large end and small end of the connecting rod so-called shells are provided with flanges protruding toward the inner diameter side at both ends in the axial direction of the outer ring so that the rollers and the cage are not dropped from the outer ring.
  • a type of roller bearing may be employed.
  • connecting rod module 10 connecting rod 10 'green compact 10 "sintered body 11 large end portion (annular portion) 11a Inner peripheral surface 11a1 Escape portion 11a2 Cylindrical surface 12 Small end (annular portion) 12a Inner peripheral surface 12a1 Escape portion 12a2 Cylindrical surface 13 Stem portions 21, 22 Outer rings 21a, 22a Track surfaces C1, C2 Virtual cylindrical surfaces W1, W2 Circumferential regions ⁇ 1 ′, ⁇ 2 ′ at the connection portion between the annular portion and the stem portion Treatment amount

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

焼結金属製のコンロッド10は、一対の環状部(大端部11及び小端部12)及びこれらを連結するステム部13を有する。大端部11及び小端部12の内周面11a,12aのうち、大端部11及び小端部12とステム部13との連結部分の周方向領域W1,W2に、ステム部13側に後退した逃げ部11a1,12a1を設ける。

Description

コンロッド及びコンロッドモジュール、並びにこれらの製造方法
 本発明は、エンジンのクランクシャフトとピストンを連結するコネクティングロッド(以下、コンロッドと言う)、及びコンロッドに軸受軌道輪を圧入してなるコンロッドモジュール、並びにこれらの製造方法に関する。
 コンロッドは、クランクシャフトに連結される大端部と、ピストンに連結される小端部と、これらを連結するステム部とを一体に有する。このようなコンロッドとして、焼結金属製のコンロッドが知られている(例えば、特許文献1参照)。
特開2007-284769号公報
 コンロッドの環状部(大端部及び小端部)は、軸受(例えば針状ころ軸受)を介してクランクシャフトあるいはピストンに連結される。この場合、コンロッドの環状部に軸受軌道輪(外輪)を圧入してモジュール化することがある。例えば、図9(A)に示すコンロッド110の環状部111,112の円筒面状の内周面111a,112aに、外輪121,122を圧入することで、図9(B)に示すコンロッドモジュールが形成される。
 上記のようなコンロッド110を焼結金属で形成する場合、通常、原料粉を圧縮成形して圧粉体を得る工程と、圧粉体を焼結して焼結体を得る工程と、焼結体を再圧縮して寸法精度を整えるサイジング工程とを経て製造される。サイジング工程では、焼結体の環状部(大端部及び小端部)の内周に、断面真円形状のコアを圧入することにより、環状部111,112の内周面が真円形状に整形される。しかし、環状部111,112のうち、ステム部113との連結部分の周方向領域W1,W2は、他の周方向領域よりも剛性が高いため、サイジングを施しても環状部111,112の内周面は真円形状とはならない。具体的に、サイジング後のコンロッド110は、図9(A)に示すように、環状部111,112の内周面111a,112aのうち、ステム部113との連結部分の周方向領域W1,W2が、他の周方向領域を延長した仮想円筒面(鎖線で示す)よりも内径側に迫り出した状態となる。
 また、コンロッド110の環状部111,112に外輪121,122を圧入すると、外輪121,122は僅かに縮径する。しかし、上記のように、コンロッド110の環状部111,112のうち、ステム部113との連結部分の周方向領域W1,W2は、他の周方向領域よりも剛性が高いため、外輪121,122のうち、上記の周方向領域W1,W2は、他の周方向領域よりも縮径量が大きくなる。
 以上のような、サイジングによるコンロッド110の環状部111,112の変形、及び、環状部111,112への圧入による外輪121、22の変形の影響により、コンロッド110と外輪121,122との組立品(コンロッドモジュール)における外輪121,122の内周面(軌道面)の真円度が悪化する。具体的には、図9(B)に示すように、外輪121,122の内周面のうち、ステム部113との連結部分の周方向領域W1,W2が、他の周方向領域よりも縮径量が大きくなり、他の周方向領域を延長した仮想円筒面(鎖線で示す)よりも内径側に迫り出した状態となる。
 例えば、軸受軌道輪を厚肉化して剛性を高めれば、軸受軌道輪が変形しにくくなるため、軸受軌道輪の真円度の悪化を抑えることができる。しかし、軸受軌道輪を厚肉化すると、コストアップや重量増を招く上、他の部材の形状に影響を与えるため設計がしにくくなる。
 以上の事情から、本発明が解決すべき課題は、軸受軌道輪を厚肉化することなく、コンロッドの環状部に圧入される軸受軌道輪の内周面の真円度を改善することにある。
 前記課題を解決するために、本発明は、一対の環状部及びこれらを連結するステム部を有する圧粉体を形成する圧粉工程と、前記圧粉体を焼結して焼結体を得る焼結工程と、前記焼結体にサイジングを施すサイジング工程とを有し、前記圧粉工程において、前記圧粉体の少なくとも一方の環状部の内周面のうち、該環状部と前記ステム部との連結部分の周方向領域に、前記ステム部側に後退した逃げ部を形成するコンロッドの製造方法を提供する。
 このように、本発明では、焼結体の環状部の内周面のうち、サイジングにより内径側に迫り出そうとする周方向領域に逃げ部を設けることにより、この周方向領域が他の周方向領域よりも内径側に迫り出す事態を防止できる。これにより、コンロッドの環状部に圧入される軸受軌道輪の真円度を改善することができる。尚、コンロッドの環状部に圧入される部品としては、軸受軌道輪単体の他、軸受軌道輪を備えた軸受部品などであってもよく、例えば、コンロッドの環状部に、軸受軌道輪を備えた針状ころ軸受を圧入してもよい。
 また、前記課題を解決するために、本発明は、一対の環状部及びこれらを連結するステム部を有する焼結金属製のコンロッドにおいて、少なくとも一方の環状部の内周面のうち、該環状部と前記ステム部との連結部分の周方向領域に、前記ステム部側に後退した逃げ部を設けたことを特徴とする。
 このように、本発明では、コンロッドの環状部の内周面のうち、環状部に圧入される軸受軌道輪の縮径量が大きくなる周方向領域に逃げ部を設けた。この環状部に軸受軌道輪を圧入すると、逃げ部を設けた周方向領域における環状部と軸受軌道輪との圧入代が小さくなるため、この周方向領域における軸受軌道輪の縮径が抑えられる。これにより、軸受軌道輪を全周で均一に縮径させることができるため、軸受軌道輪の内周面の真円度を改善することができる。
 環状部の内周面における逃げ部の後退量が小さすぎたり大きすぎたりすると、軸受軌道輪の変形量を均一にすることができない。従って、環状部の内周面における逃げ部の後退量は所定の範囲内に設定することが好ましい。具体的には、例えば、逃げ部を設けた環状部の内周面において、ステム部の延在方向の直径と、該延在方向と直交する方向の直径との差を5μm以上30μm以下とすることが好ましく、さらに、10μm以上25μm以下とすることがより好ましい。
 上記のコンロッドは、逃げ部を有する環状部の内周面のうち、逃げ部を除く周方向領域に円筒面を設けることができる。この場合、逃げ部は、円筒面を延長した仮想円筒面に対してステム部側に後退している。円筒面は、軸受軌道輪との圧入領域を確保するために、該円筒面の中心を基準とした角度にて180°よりも大きい周方向領域(好ましくは210°よりも大きい周方向領域、さらに好ましくは240°よりも大きい周方向領域)に設けることが好ましい。また、円筒面は、逃げ部を形成することにより真円度の悪化を十分に抑えるために、該円筒面の中心を基準とした角度にて330°よりも小さい周方向領域(好ましくは300°よりも小さい周方向領域、さらに好ましくは270°よりも小さい周方向領域)に設けることが好ましい。
 以上より、本発明は、一対の環状部及びこれらを連結するステム部を有する焼結金属製のコンロッドと、前記コンロッドの少なくとも一方の環状部の内周面に圧入された軸受軌道輪とを有するコンロッドモジュールであって、前記環状部と前記ステム部との連結部分の周方向領域における前記環状部と前記軸受軌道輪との圧入代が、前記連結部分以外の周方向領域における前記環状部と前記軸受軌道輪との圧入代よりも小さいコンロッドモジュールとして特徴づけることもできる。このように、コンロッドの環状部と軸受軌道輪との圧入代を周方向で異ならせることで、軸受軌道輪を均一に縮径させて、軸受軌道輪の内周面の真円度を改善することができる。
 以上のように、コンロッド(圧粉体)を、サイジングや軸受軌道輪の圧入による変形を見越した形状とすることで、コンロッドの環状部に圧入される軸受軌道輪の真円度を改善することができる。
本発明の一実施形態に係るコンロッドを有するコンロッドモジュールの平面図である。 図1のA-A線における断面図である。 圧粉工程を示す断面図である(原料粉末を充填した状態)。 圧粉工程を示す断面図である(圧縮が完了した状態)。 圧粉体の平面図である。 焼結体の平面図である。 サイジング後の焼結体(コンロッド)の平面図である。 図5Aの圧粉体の大端部及び小端部の拡大平面図である。 サイジング工程を示す断面図である(整形前の状態)。 サイジング工程を示す断面図である(整形後の状態)。 従来のコンロッドの平面図である。 図9Aのコンロッドの環状部の内周に軸受軌道輪を圧入してなるコンロッドモジュールの平面図である。
 以下、本発明の実施形態を図面に基づいて説明する。
 本発明の一実施形態に係るコンロッドモジュール1は、エンジンに組み込まれ、例えば刈払機やブロア等に設けられる排気量100cc以下(特に排気量50cc以下)の小型エンジン(汎用エンジン)に組み込まれる。コンロッドモジュール1は、図1及び図2に示すように、コンロッド10と、少なくとも軸受軌道輪としての外輪21、22とを有する。尚、コンロッドモジュール1は、コンロッド10と、軸受軌道輪としての外輪21,22を含む針状ころ軸受とを有するものであってもよい。
 コンロッド10は、環状部としての大端部11及び小端部12と、これらを連結するステム部13とを有する。大端部11及び小端部12は、何れも全周で連続した環状をなしている。大端部11及び小端部12の内周面11a,12aには、針状ころ軸受(いわゆるニードルベアリング)を構成する外輪21,22が圧入されている。大端部11及び小端部12の内周面11a,12aは、外輪21,22が圧入された状態で精度の高い円筒面を成しており、例えば真円度が10μm以下、好ましくは5μm以下とされる。ステム部13には、ステム部13の延在方向(図1の左右方向)に長大な細長形状の貫通孔13aが形成される。
 コンロッド10は、焼結金属で形成され、特に、鉄を90質量%以上含む鉄系焼結金属で一体に成形される。本実施形態の焼結金属は鉄系焼結材からなり、具体的には、例えばニッケル0.1~5質量%(好ましくは0.5~4質量%)、モリブデン0.1~5質量%(好ましくは0.3~4質量%)、炭素0.05~1.5質量%(好ましくは0.1~1.5質量%)、残部が鉄とされる。コンロッド10の密度は、例えば7.0g/cm3以上、好ましくは7.1g/cm3以上、より好ましくは7.2g/cm3以上とされる。また、コンロッド10の密度は、例えば理想的な溶製材の密度である7.8g/cm3以下、実質的には成形時の粉体押圧性等を考慮して7.6g/cm3以下、より実際的には7.4g/cm3以下とされる。
 外輪21、22は、円筒状を成し、内周面に円筒面状の軌道面21a、22aが設けられる。外輪21、22の内周には、複数のころ(針状ころ)と、複数のころを周方向等間隔に保持する保持器とが組み付けられる(図示省略)。外輪21,22は、溶製材(例えば鋼材)に切削、鍛造、プレス等を施すことにより形成される。外輪21,22には、必要に応じて熱処理(例えば焼き入れ焼き戻し処理)が施され、表層に硬化層が形成される。外輪21,22の軌道面21a,22aには、仕上げ加工(例えば研削仕上げ)が施される。コンロッド10の大端部11及び小端部12に圧入された状態で、外輪21,22の軌道面21a,22aは精度の高い円筒面を成しており、例えば真円度が10μm以下、好ましくは5μm以下とされる。
 以下、コンロッドモジュール1の製造方法を説明する。まず、圧粉工程、焼結工程、及びサイジング工程を経て、コンロッド10を製造する。
 圧粉工程では、原料粉末をフォーミング金型に充填して圧縮成形することにより、圧粉体を成形する。具体的には、図3に示すようにダイ41、サイドコア42a,42b、センターコア42c、及び下パンチ43で区画されたキャビティに原料粉末Mを充填する。本実施形態では、鉄、ニッケル、及びモリブデンの部分拡散合金粉に、黒鉛粉末及び潤滑剤(金属セッケン等)が添加された原料粉末Mが使用される。そして、図4に示すように、上パンチ44を下降させて原料粉末Mを圧縮し、コンロッド10と略同形状の圧粉体10'{図5(A)参照}を成形する。
 サイドコア42a,42bの断面形状は、厳密な真円ではなく、何れもセンターコア42c側の周方向領域をセンターコア42c側に膨出させた非真円形状を成している(図示省略)。このようなサイドコア42a,42bを用いることで、図5(A)に示すように、圧粉体10'の大端部11'及び小端部12'の内周面11a',12a'のうち、ステム部13'との連結部分の周方向領域W1',W2'に、ステム部13'側に後退した逃げ部11a1',12a1'が成形される。圧粉体10'の大端部11'及び小端部12'の内周面11a',12a'のうち、逃げ部11a1',12a1'を除く周方向領域には、円筒面11a2',12a2'が設けられる。円筒面11a2',12a2'は、それぞれ大端部11'及び小端部12'の内周面11a',12a'のうち、180°より大きい周方向領域に設けられる。逃げ部11a1',12a1'と円筒面11a2',12a2'とは、それぞれ滑らかに連続している。尚、逃げ部11a1',12a1'は、上記の周方向領域W1',W2'の全域ではなく、周方向領域W1',W2'の一部に設けてもよい。また、逃げ部11a1',12a1'は、大端部11'及び小端部12'の内周面11a',12a'のうち、ステム部13'側の端部を含む領域に設けることが好ましい。例えば、逃げ部11a1',12a1'は、円筒面11a2',12a2'の中心を基準とした角度で90~135°の周方向領域に設けられる。すなわち、円筒面11a2',12a2'は、自身の中心を基準とした角度で225~270°の周方向領域に設けられる。この形状に対応して、フォーミング金型のサイドコア42a,42bの断面形状が設定される。
 図6に示すように、圧粉体10'の逃げ部11a1',12a1'は、円筒面11a2',12a2'を全周に延長した仮想円筒面C1',C2'に対してステム部13'側に後退している。図示例の逃げ部11a1',12a1'は、仮想円筒面C1',C2'に対してステム部13'側に膨出した楕円形状を成している。逃げ部11a1',12a1'の後退量は、大端部11'及び小端部12'の内周面11a',12a'のうち、ステム部13'側の端部で最大となり、そこから周方向両側に行くにつれて徐々に小さくなっている。仮想円筒面C1',C2'に対する逃げ部11a1',12a1'の最大後退量δ1',δ2'は、10~25μmとされる。逃げ部11a1',12a1'の最大後退量δ1',δ2'は、圧粉体10'の大端部11'及び小端部12'の内周面11a',12a'のうち、ステム部13'の延在方向(図6の左右方向)の直径D1a',D2a'と、延在方向と直交する方向(図6の上下方向)の直径D1b',D2b'との差として表すことができる(δ1'=D1a'-D1b'、δ2'=D2a'-D2b')。
 次に、圧粉体10'を所定温度で所定時間焼成することにより、圧粉体10'と略同形状を成した焼結体10"を得る(焼結工程)。焼結体10"は、図5(B)に示すように、大端部11"、小端部12"、及びステム部13"を有する。大端部11"及び小端部12"の内周面11a",12a"のうち、ステム部13"との連結部分の周方向領域W1",W2"には、円筒面11a2",12a2"を延長した仮想円筒面C1",C2"に対してステム部13"側に後退した逃げ部11a1",12a1"が設けられる。焼結体10"の各部の形状や寸法は、焼結による収縮の影響を除いて圧粉体10'と同様であるため、詳細な説明は省略する。
 次に、焼結体10"を再圧縮して寸法精度を高める(サイジング工程)。本実施形態では、特に、焼結体10"の大端部11"及び小端部12"の内周面11a",12a"の寸法精度及びこれらの相対的な位置関係を高める。具体的には、まず、図7に示すように、ダイ51の上端開口部に焼結体10”を載置する。その後、図8に示すように、上パンチ54を降下させて、焼結体10”の大端部11”及び小端部12”を、ダイ51とサイドコア52a,52bとの間の空間に押し込むと共に、焼結体10”を上パンチ54及び下パンチ53で上下から圧縮する。これにより、焼結体10"の大端部11"及び小端部12"の外周面がダイ51の内周面で成形されると共に、大端部11"の内周面11a"及び小端部12"の内周面12a"がそれぞれサイドコア52a,52bの外周面で成形される。これと同時に、大端部11"の内周面と小端部12"の内周面との相対的な位置関係が、サイドコア52a,52bで矯正される。その後、サイジング金型から焼結体10"(コンロッド10)が排出される。
 サイジングが施された焼結体10"(すなわちコンロッド10)は、各部の寸法、特に大端部11及び小端部12の内周面11a,12aの形状及び位置が、高精度に設定されている。サイジング金型のサイドコア52a,52bの断面形状は、厳密な真円ではなく、何れもセンターコア52c側の周方向領域をセンターコア52c側に膨出させた非真円形状を成している(図示省略)。従って、図5(C)に示すように、コンロッド10の大端部11及び小端部12の内周面11a,12aのうち、ステム部13との連結部分の周方向領域W1,W2には、円筒面11a2,12a2を延長した仮想円筒面C1,C2に対してステム部13側に後退した逃げ部11a1,12a1が設けられる。例えば、逃げ部11a1,12a1は、円筒面11a2,12a2の中心を基準とした角度で90~135°の周方向領域に設けられる。すなわち、円筒面11a2,12a2は、自身の中心を基準とした角度で225~270°の周方向領域に設けられる。この形状に対応して、サイジング金型のサイドコア52a,52bの断面形状が設定される。
 尚、サイジング工程において、サイジング前の焼結体10"の大端部11"及び小端部12"の内周面11a",12a"と、サイドコア52a,52bの外周面との締め代は、全周で略一定とされる。しかし、大端部11"及び小端部12"の内周面11a",12a"のうち、ステム部13"側の周方向領域W1,W2は、外周を金型で矯正しないため塑性変形しにくい。そのため、大端部11"及び小端部12"の内周面11a",12a"の周方向領域W1,W2は、他の周方向領域と比べて拡径しにくい。従って、図5(C)に示すサイジング後の焼結体(コンロッド10)における、仮想円筒面C1,C2に対する逃げ部11a1,12a1の逃げ量は、図5(B)に示すサイジング前の焼結体10"における、仮想円筒面C1",C2"に対する逃げ部11a1",12a1"の逃げ量よりも小さくなる。
 こうして形成されたコンロッド10の大端部11の内周面11a及び小端部12の内周面12aに、外輪21,22を圧入する。この圧入により、コンロッド10の大端部11及び小端部12が外径向きの力を受けると共に、外輪21,22が内径向きに圧迫される。このとき、コンロッド10の大端部11及び小端部12のうち、ステム部13との連結部分の周方向領域W1,W2は、半径方向の剛性が高い。このため、コンロッド10の大端部11及び小端部12に外輪21,22を圧入したとき、大端部11及び小端部12のうち、周方向領域W1,W2は他の領域よりも拡径しにくく、この周方向領域W1,W2では外輪21,22に加わる内径向きの圧迫力が大きくなる。
 そこで、本発明では、上記のように、コンロッド10の大端部11及び小端部12の内周面11a,12aの上記周方向領域W1,W2に、ステム部13側に後退した逃げ部11a1,12a1を設けた。このコンロッド10の大端部11及び小端部12に外輪21,22を圧入すると、周方向領域W1,W2における両者の圧入代が、他の周方向領域における両者の圧入代よりも小さくなる。これにより、外輪21,22の周方向領域W1,W2に加わる圧迫力が抑えられるため、外輪21,22に加わる圧迫力を全周で均一にすることができる。従って、外輪21,22を周方向で均一に変形(縮径)させることができるため、外輪21,22の真円度の悪化を抑えることができる。以上により、図1及び図2に示すコンロッドモジュール1が完成する。
 本発明は上記の実施形態に限られない。例えば上記の実施形態では、圧粉体10'に逃げ部11a1',12a1'を設けることで、コンロッド10に逃げ部11a1,12a1を設けた場合を示したが、これに限らず、サイジング工程で逃げ部11a1,12a1を形成してもよい。具体的には、圧粉体10'の大端部11'及び小端部12'の内周面11a',12a'を、断面真円形状のサイドコア42a,42bで成形し、この圧粉体10'を焼成して焼結体10"を得る。そして、サイジング工程で、焼結体10"の大端部11"及び小端部12"の円筒面状の内周面11a",12a"に、断面非真円形状のサイドコアを押し付けて成形することで、逃げ部11a1,12a1を形成する。
 ただし、サイジングのみで逃げ部11a1,12a1を整形しようとすると、圧粉体10'に逃げ部11a1',12a1'を設ける場合と比べて、サイジング代が大きくなる。また、サイジング金型からコンロッド10を排出したときのスプリングバック量は、サイジング代が大きい程大きくなるため、スプリングバックの増大を考慮してサイジング代をさらに大きくする必要が生じる。このように、サイジング代が大きくなると、コアロッド10にムシレが生じたり、サイジング金型の摩耗が大きくなる恐れがある。従って、上記の実施形態のように、圧粉体10'に逃げ部11a1',12a1'を設け、サイジング代をなるべく小さくすることが好ましい。
 また、コンロッド10の構成は上記に限らず、ステム部13の貫通孔13aを省略したり、ステム部13の貫通孔13aの形成部分に、他の領域よりも肉厚の薄い薄肉部を設けたりしてもよい。
 また、上記の実施形態では、コンロッド10の大端部11及び小端部12の内周面11a,12aの双方に外輪21,22を圧入した場合を示したが、これに限らず、コンロッド10の大端部11及び小端部12の内周面11a,12aの一方に外輪を圧入し、他方には外輪を圧入しない構成としてもよい。具体的には、例えば、小端部12の内周面12aに外輪を圧入する一方で、大端部11は、コンロッド本体とキャップ部材とに分割し、ボルト等でこれらを固定する構成とすることができる。
 また、上記の実施形態では、コンロッド10の大端部11及び小端部12の内周面11a,12aの双方に逃げ部11a1,12a1を設けた場合を示したが、これに限らず、大端部11及び小端部12の内周面11a,12aの一方のみに逃げ部を設けたり、両逃げ部11a1,12a1の後退量を異ならせたりしてもよい。例えば、図1及び図2に示すコンロッドモジュール1の外輪22は、外輪21よりも肉厚が厚く、且つ、小径となっているため、半径方向の剛性が高い。この場合、剛性の高い外輪22が圧入される小端部12の内周面12aの最大後退量δ2を、剛性の低い外輪21が圧入される大端部11の内周面11aの最大後退量δ1よりも小さくしてもよい(δ1>δ2)。あるいは、剛性の低い外輪21が圧入される大端部11の内周面11aにのみ逃げ部11a1を設け、剛性の高い外輪22が圧入される小端部12の内周面12aには、逃げ部を設けず、全周を円筒面としてもよい。
 また、コンロッドの大端部及び小端部に装着される軸受として、外輪の軸方向両端に内径側に突出した鍔部を設け、外輪からころ及び保持器が脱落しないように保持した、いわゆるシェル型のころ軸受を採用してもよい。
1     コンロッドモジュール
10   コンロッド
10' 圧粉体
10" 焼結体
11   大端部(環状部)
11a 内周面
11a1      逃げ部
11a2      円筒面
12   小端部(環状部)
12a 内周面
12a1      逃げ部
12a2      円筒面
13   ステム部
21,22    外輪
21a,22a       軌道面
C1,C2    仮想円筒面
W1,W2    環状部とステム部との連結部分の周方向領域
δ1',δ2'       最大後退量

Claims (9)

  1.  一対の環状部及びこれらを連結するステム部を有する焼結金属製のコンロッドであって、
     少なくとも一方の環状部の内周面のうち、該環状部と前記ステム部との連結部分の周方向領域に、前記ステム部側に後退した逃げ部を設けたコンロッド。
  2.  前記逃げ部を有する環状部の内周面のうち、前記ステム部の延在方向の直径と、前記延在方向と直交する方向の直径との差が5μm以上30μm以下である請求項1記載のコンロッド。
  3.  前記逃げ部を有する環状部の内周面のうち、前記逃げ部を除く周方向領域に円筒面が設けられ、前記逃げ部が、前記円筒面を延長した仮想円筒面に対してステム部側に後退した請求項1又は2記載のコンロッド。
  4.  前記円筒面が、該円筒面の中心を基準とした角度にて180°よりも大きい周方向領域に設けられた請求項3記載のコンロッド。
  5.  前記円筒面が、該円筒面の中心を基準とした角度にて330°よりも小さい周方向領域に設けられた請求項3又は4記載のコンロッド。
  6.  一対の環状部及びこれらを連結するステム部を有する焼結金属製のコンロッドと、前記コンロッドの少なくとも一方の環状部の内周面に圧入された軸受軌道輪とを有するコンロッドモジュールであって、
     前記環状部と前記ステム部との連結部分の周方向領域における前記環状部と前記軸受軌道輪との圧入代が、前記連結部分以外の周方向領域における前記環状部と前記軸受軌道輪との圧入代よりも小さいコンロッドモジュール。
  7.  前記コンロッドが、請求項1~5の何れか1項に記載されたコンロッドである請求項6に記載のコンロッドモジュール。
  8.  一対の環状部及びこれらを連結するステム部を有する圧粉体を形成する圧粉工程と、前記圧粉体を焼結して焼結体を得る焼結工程と、前記焼結体にサイジングを施すサイジング工程とを有するコンロッドの製造方法であって、
     前記圧粉工程において、前記圧粉体の少なくとも一方の環状部の内周面のうち、該環状部と前記ステム部との連結部分の周方向領域に、前記ステム部側に後退した逃げ部を形成するコンロッドの製造方法。
  9.  請求項8に記載の方法でコンロッドを製造する工程と、前記コンロッドの少なくとも一方の環状部の内周に軸受軌道輪を圧入する工程とを有するコンロッドモジュールの製造方法。
PCT/JP2017/013366 2016-03-30 2017-03-30 コンロッド及びコンロッドモジュール、並びにこれらの製造方法 WO2017170913A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112017001636.3T DE112017001636T5 (de) 2016-03-30 2017-03-30 Pleuelstange, Pleuelstangenmodul und Verfahren zu ihrer Herstellung

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016069133 2016-03-30
JP2016-069133 2016-03-30
JP2017067817A JP2017187173A (ja) 2016-03-30 2017-03-30 コンロッド及びコンロッドモジュール、並びにこれらの製造方法
JP2017-067817 2017-03-30

Publications (1)

Publication Number Publication Date
WO2017170913A1 true WO2017170913A1 (ja) 2017-10-05

Family

ID=59964741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013366 WO2017170913A1 (ja) 2016-03-30 2017-03-30 コンロッド及びコンロッドモジュール、並びにこれらの製造方法

Country Status (1)

Country Link
WO (1) WO2017170913A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167916A (ja) * 1986-01-06 1987-07-24 テカムゼ・プロダクツ・カンパニ− 連接棒
JP2004018958A (ja) * 2002-06-18 2004-01-22 Hitachi Unisia Automotive Ltd 焼結機械部品の製造方法
US20070227349A1 (en) * 2006-03-29 2007-10-04 Lg Electronics Inc. Connecting rod for hermetic compressor
JP2007284769A (ja) * 2006-04-19 2007-11-01 Toyota Motor Corp コネクティングロッドの製造方法およびコネクティングロッド
JP2011153344A (ja) * 2010-01-26 2011-08-11 Toyota Motor Corp 焼結鍛造体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167916A (ja) * 1986-01-06 1987-07-24 テカムゼ・プロダクツ・カンパニ− 連接棒
JP2004018958A (ja) * 2002-06-18 2004-01-22 Hitachi Unisia Automotive Ltd 焼結機械部品の製造方法
US20070227349A1 (en) * 2006-03-29 2007-10-04 Lg Electronics Inc. Connecting rod for hermetic compressor
JP2007284769A (ja) * 2006-04-19 2007-11-01 Toyota Motor Corp コネクティングロッドの製造方法およびコネクティングロッド
JP2011153344A (ja) * 2010-01-26 2011-08-11 Toyota Motor Corp 焼結鍛造体

Similar Documents

Publication Publication Date Title
US9939015B2 (en) Sintered bearing
US10718371B1 (en) Method of manufacturing connecting rod module
CN104781569B (zh) 用于套筒轴承的滚动圈
JP6689151B2 (ja) 円筒状リング部材の製造方法、ラジアル転がり軸受の製造方法、及び一方向クラッチの製造方法
JP2017187173A (ja) コンロッド及びコンロッドモジュール、並びにこれらの製造方法
US9884361B2 (en) Method for producing a shaft
WO2017170913A1 (ja) コンロッド及びコンロッドモジュール、並びにこれらの製造方法
JP6788071B2 (ja) 焼結軸受
JP2009208135A (ja) 針状ころ軸受の保持器用素形材の冷間ローリングによる製造方法
JP5679360B2 (ja) 粉末成形用金型
US20090142013A1 (en) Bearing apparatus
JP5834592B2 (ja) 外向フランジ部付金属製部材の製造方法
JP6458848B2 (ja) リング状部材の製造装置及び製造方法、ラジアル転がり軸受の製造方法及び製造装置、並びに、回転機器の製造方法
JP5770987B2 (ja) 保持器及びこの保持器を使用する遊星減速機又はエンジン
JP2013215774A (ja) フランジ構造体およびフランジ構造体製造方法
JP2009014164A (ja) 鍔付円筒状部材の製造方法
JP2008075823A (ja) 焼結軸受の製造方法
JP6245199B2 (ja) リング状部材の製造方法及び製造装置、ラジアル転がり軸受の製造方法及び製造装置、並びに、回転機器の製造方法
JP2003286504A (ja) 同軸度精度に優れた内孔付き焼結部材の製造方法
JP2024076033A (ja) ハブユニット軸受及び、ハブ輪の製造方法
JP5346471B2 (ja) 針状ころ軸受
JP4345529B2 (ja) シェル形総ころ軸受の外輪の製造方法
JP2018027573A5 (ja) リング状部材の製造装置
JP2016165742A5 (ja)
JP2015010561A (ja) 組立カムシャフト及びこの組立カムシャフトに用いられるカムロブの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775447

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775447

Country of ref document: EP

Kind code of ref document: A1