WO2017170885A1 - 新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物 - Google Patents

新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物 Download PDF

Info

Publication number
WO2017170885A1
WO2017170885A1 PCT/JP2017/013290 JP2017013290W WO2017170885A1 WO 2017170885 A1 WO2017170885 A1 WO 2017170885A1 JP 2017013290 W JP2017013290 W JP 2017013290W WO 2017170885 A1 WO2017170885 A1 WO 2017170885A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
crystals
type
methyl
mixture
Prior art date
Application number
PCT/JP2017/013290
Other languages
English (en)
French (fr)
Inventor
康隆 馬場
裕介 長遠
優 古関
Original Assignee
富山化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富山化学工業株式会社 filed Critical 富山化学工業株式会社
Priority to CN201780021137.7A priority Critical patent/CN109415302A/zh
Priority to US16/089,667 priority patent/US20200308103A1/en
Priority to JP2018509446A priority patent/JPWO2017170885A1/ja
Priority to EP17775419.9A priority patent/EP3438088A4/en
Publication of WO2017170885A1 publication Critical patent/WO2017170885A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/52Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/06Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to hydrogen atoms or to acyclic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/166Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the carbon of a carboxamide group directly attached to the aromatic ring, e.g. procainamide, procarbazine, metoclopramide, labetalol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention provides (2S) -2-((4-((4-((1S)-) having excellent inhibitory activity against uridyl diphospho-3-O-acyl-N-acetylglucosamine deacetylase (LpxC)).
  • the present invention relates to crystals of 1,2-dihydroxyethyl) phenyl) ethynyl) benzoyl) (methyl) amino) -N-hydroxy-N ′, 2-dimethylmalonamide or a hydrate thereof and a process for producing them.
  • the present invention further relates to a pharmaceutical composition comprising the above crystal.
  • LpxC is an enzyme responsible for the synthesis of lipid A.
  • Lipid A is an essential component for outer membrane formation, for example, essential for the survival of Gram-negative bacteria. Therefore, it is highly expected that a drug that inhibits the activity of LpxC can be an effective antibacterial agent against Gram-negative bacteria including Pseudomonas aeruginosa.
  • a hydrate crystal of Compound A produced according to the production method described in Patent Document 1 (hereinafter sometimes referred to as “type I crystal”) has hygroscopicity and is inferior in stability.
  • type I crystal When Compound A is used as an active pharmaceutical ingredient, it is strongly required to provide a crystal having excellent stability.
  • An object of the present invention is to provide a novel crystal of Compound A or a hydrate thereof, which is excellent in stability and useful as an active pharmaceutical ingredient, a production method thereof, and a pharmaceutical composition.
  • III-type crystal a crystal of Compound A having a diffraction peak at 2 °
  • the present inventors have found that a type II crystal and a type III crystal can be selectively produced by selecting an appropriate solvent, and completed the present invention.
  • the present invention provides the following. [1] In powder X-ray diffraction, diffraction angles (2 ⁇ ) 3.8 ⁇ 0.2 °, 7.7 ⁇ 0.2 °, 10.8 ⁇ 0.2 °, 12.0 ⁇ 0.2 ° and 14.4 (2S) -2-((4-((4-((1S) -1,2-dihydroxyethyl) phenyl) ethynyl) benzoyl) (methyl) amino) -N having a diffraction peak at ⁇ 0.2 ° -Hydroxy-N ', 2-dimethylmalonamide hydrate crystals.
  • [6] (1) The method for producing a crystal according to [1] or [2], comprising a step of stirring a mixture containing Compound A, (2) water, and (3) an organic solvent. Is one type or two or more types selected from alcohols, ethers, ketones and nitriles. [7] The production method according to [6], wherein the alcohol is methanol, ethanol and 2-propanol, the ether is tetrahydrofuran, the ketone is acetone, and the nitrile is acetonitrile. [8] The production method according to [6] or [7], wherein compound A is a type I crystal.
  • the present invention further provides the following.
  • [A] General formula [1] (In the formula, R 1 represents a C 1-3 alkyl group; R 2 represents a C 1-3 alkyl group.)
  • the method for producing a crystal according to [1] or [2], comprising the step of stirring Compound A in a mixture of water and an organic solvent without isolating Compound A, wherein the organic solvent is an alcohol.
  • the manufacturing method which is 1 type, or 2 or more types chosen from ethers, ketones, and nitriles.
  • the type II crystal of the present invention is excellent in stability and easy to handle, and is useful as a pharmaceutical drug substance.
  • the type III crystal of the present invention has excellent stability, is easy to handle, and is useful as a pharmaceutical drug substance.
  • type III crystals are excellent in solubility at low temperatures when solubilizing agents such as cyclodextrins are used. Since the production method of the present invention can selectively produce a type II crystal or a type III crystal, it is useful as an industrial production method.
  • C 1-3 alkyl group means a methyl, ethyl, propyl or isopropyl group.
  • Aliphatic hydrocarbons include pentane, hexane, heptane or cyclohexane.
  • Alcohols include methanol, ethanol, propanol, 2-propanol, butanol or 2-methyl-2-propanol.
  • ethers include methyl tert-butyl ether, dioxane, tetrahydrofuran, 2-methyltetrahydrofuran, cyclopentylmethyl ether and anisole.
  • Ketones include acetone, 2-butanone or 4-methyl-2-pentanone.
  • Esters include methyl acetate, ethyl acetate, propyl acetate or butyl acetate.
  • examples of the sulfoxides include dimethyl sulfoxide and sulfolane.
  • Nitriles include acetonitrile or propionitrile.
  • Examples of amides include N, N-dimethylformamide, N, N-dimethylacetamide, and 1-methyl-2-pyrrolidone.
  • the diffraction angle (2 ⁇ ) in powder X-ray diffraction may cause an error within a range of ⁇ 0.2 °. Therefore, in the present invention, “diffraction angle (2 ⁇ ) X °” means “diffraction angle (2 ⁇ ) ((X ⁇ 0.2) to (X + 0.2)) °” unless otherwise specified. To do. Therefore, not only crystals whose diffraction angles in powder X-ray diffraction completely match but also crystals whose diffraction angles match within an error range of ⁇ 0.2 ° are included in the present invention. It is known that the relative intensity in powder X-ray crystal diffraction varies depending on crystal orientation, particle size, crystallinity, or measurement conditions. Therefore, it should not be interpreted strictly.
  • an error may occur in the value of the wave number (cm ⁇ 1 ) in the infrared absorption spectrum (ATR method) within a range of ⁇ 2 cm ⁇ 1 . Therefore, in the present invention, “wave number Ycm ⁇ 1 ” means “wave number ((Y ⁇ 2) to (Y + 2)) cm ⁇ 1 ” unless otherwise specified. Therefore, the present invention includes not only a crystal in which the wave number of the absorption peak in the infrared absorption spectrum (ATR method) completely matches but also a crystal in which the wave number of the absorption peak matches within an error range of ⁇ 2 cm ⁇ 1 .
  • the type II crystals of the present invention are characterized by diffraction peaks in powder X-ray diffraction.
  • the type II crystal of the present invention has a diffraction angle (2 ⁇ ) of 3.8 ⁇ 0.2 °, 7.7 ⁇ 0.2 °, 10.8 ⁇ 0.2 °, 12.0 ⁇ Has diffraction peaks at 0.2 ° and 14.4 ⁇ 0.2 °.
  • the type II crystal of the present invention has diffraction peaks at 16.3 ⁇ 0.2 °, 17.0 ⁇ 0.2 °, and 21.8 ⁇ 0.2 ° in powder X-ray diffraction.
  • the type II crystal of the present invention is also characterized by an absorption peak in an infrared absorption spectrum (ATR method).
  • the type II crystal of the present invention absorbs at wave numbers of 1475 ⁇ 2 cm ⁇ 1 , 1606 ⁇ 2 cm ⁇ 1 , 1683 ⁇ 2 cm ⁇ 1 , 3134 ⁇ 2 cm ⁇ 1 and 3365 ⁇ 2 cm ⁇ 1 in the infrared absorption spectrum (ATR method). Has a peak.
  • the type III crystals of the present invention are characterized by diffraction peaks in powder X-ray diffraction.
  • the type III crystal of the present invention has diffraction angles (2 ⁇ ) of 8.2 ⁇ 0.2 °, 12.4 ⁇ 0.2 °, 13.3 ⁇ 0.2 °, 15.2 ⁇ .
  • the type III crystal of the present invention has diffraction peaks at 19.0 ⁇ 0.2 °, 20.2 ⁇ 0.2 ° and 22.8 ⁇ 0.2 ° in powder X-ray diffraction.
  • the type III crystal of the present invention is also characterized by an absorption peak in an infrared absorption spectrum (ATR method).
  • the type III crystal of the present invention absorbs at wave numbers 1484 ⁇ 2 cm ⁇ 1 , 1608 ⁇ 2 cm ⁇ 1 , 1688 ⁇ 2 cm ⁇ 1 , 3288 ⁇ 2 cm ⁇ 1 and 3475 ⁇ 2 cm ⁇ 1 in the infrared absorption spectrum (ATR method).
  • ATR method infrared absorption spectrum
  • Type I crystals can be produced according to the production method described in Patent Document 1. As a result of measuring moisture, the type I crystal was a monohydrate.
  • Type II crystals can be produced, for example, by stirring a mixture containing (1) compound A, (2) water, and (3) an organic solvent.
  • the organic solvent is one or more selected from alcohols, ethers, ketones and nitriles.
  • Examples of compound A used in this step include type I crystals and type III crystals described below, and it is preferable to use type I crystals.
  • the amount of water used may be 2 to 50 times the amount of compound A (v / w), and preferably 5 to 20 times the amount (v / w).
  • Examples of the alcohol used in this step include one or more selected from methanol, ethanol and 2-propanol, with 2-propanol being preferred.
  • Examples of ethers used in this step include one or two selected from dioxane and tetrahydrofuran, and tetrahydrofuran is preferred.
  • Examples of ketones used in this step include one or two selected from acetone and 2-butanone, with acetone being preferred.
  • Examples of the nitriles used in this step include one or two selected from acetonitrile and propionitrile, and acetonitrile is preferred.
  • the organic solvent used in this step is preferably one or more selected from alcohols, ethers and nitriles, and one or more selected from methanol, ethanol, 2-propanol, tetrahydrofuran and acetonitrile. More preferred is acetonitrile, and even more preferred.
  • the amount of the organic solvent used may be 2 to 50 times the amount of compound A (v / w), preferably 5 to 20 times the amount (v / w).
  • the stirring temperature is preferably 0 to 70 ° C, more preferably 0 to 30 ° C.
  • the stirring time is preferably 1 to 48 hours, more preferably 1 to 24 hours.
  • the type II crystal can be produced, for example, by the following production method.
  • R 1 represents a C 1-3 alkyl group
  • R 2 represents a C 1-3 alkyl group.
  • R 1 is a C 1-3 alkyl group.
  • R 1 is preferably a methyl group.
  • R 2 is a C 1-3 alkyl group.
  • R 2 is preferably a methyl group. More preferably, R 1 is a methyl group and R 2 is a methyl group.
  • Form II crystals are obtained by deprotecting the compound represented by the general formula [1] and preparing Compound A, and then stirring the mixture containing Compound A, water and an organic solvent without isolating Compound A.
  • the organic solvent is one or more selected from alcohols, ethers, ketones and nitriles.
  • the amount of water used, the type of organic solvent, the amount of organic solvent used, the temperature and the time are the same as described above. In this reaction, it is preferable to add seed crystals of type II crystals.
  • the type II crystal was a monohydrate.
  • Type III crystals are, for example, in the absence of water, (1) Compound A, and (2) an organic solvent, It can manufacture by stirring the mixture containing this.
  • the production in the absence of water means producing a crystal without adding water in the production of a type III crystal.
  • the water contained in Compound A or the organic solvent is allowed to be contained in the mixture.
  • the organic solvent is one or more selected from aliphatic hydrocarbons, alcohols, ethers, ketones, esters, sulfoxides, nitriles, and amides.
  • Compound A used in this step includes type I crystal or type II crystal, and it is preferable to use type II crystal.
  • Examples of the aliphatic hydrocarbons used in this step include one or more selected from hexane, heptane or cyclohexane, with heptane being preferred.
  • Examples of the alcohol used in this step include one or more selected from methanol, ethanol and 2-propanol, and methanol is preferable.
  • Examples of ethers used in this step include one or two selected from dioxane and tetrahydrofuran, and tetrahydrofuran is preferred.
  • Examples of ketones used in this step include one or two selected from acetone and 2-butanone, with acetone being preferred.
  • esters used in this step include one or two selected from methyl acetate and ethyl acetate, and ethyl acetate is preferred.
  • sulfoxides used in this step include one or two kinds selected from dimethyl sulfoxide and sulfolane, and dimethyl sulfoxide is preferable.
  • nitriles used in this step include one or two selected from acetonitrile and propionitrile, and acetonitrile is preferred.
  • amides used in this step include one or two selected from N, N-dimethylformamide and N, N-dimethylacetamide, with N, N-dimethylacetamide being preferred.
  • the organic solvent used in this step is preferably one or more selected from aliphatic hydrocarbons, alcohols, esters and sulfoxides, one or more selected from heptane, methanol, ethyl acetate and dimethyl sulfoxide. Two or more types are more preferable, and a mixed solvent of heptane, methanol, ethyl acetate and dimethyl sulfoxide is more preferable.
  • the amount of the organic solvent used may be 1 to 100 times the amount of compound A (v / w), preferably 5 to 50 times the amount (v / w).
  • the stirring temperature is preferably 0 to 70 ° C, more preferably 0 to 30 ° C.
  • the stirring time is preferably 1 to 8 hours, more preferably 2 to 4 hours. In this reaction, it is preferable to add seed crystals of type III crystals.
  • the type III crystal can also be produced, for example, by crystallization of compound A from an organic solvent in the absence of water.
  • the organic solvent used, the amount of organic solvent used, the stirring temperature and the stirring time are the same as described above.
  • the type III crystal was an anhydride.
  • formulation adjuvants such as excipients, carriers and diluents usually used for formulation may be appropriately mixed.
  • excipients such as excipients, carriers and diluents usually used for formulation
  • these are tablets, capsules, powders, syrups, granules, pills, suspensions, emulsions, solutions, powder formulations, suppositories, eye drops, nasal drops, ear drops, patches, ointments , And can be administered orally or parenterally in the form of a lotion, cream or injection.
  • the administration method, the dose, and the number of administrations can be appropriately selected according to the age, weight and symptoms of the patient. In general, for adults, oral administration or parenteral administration (for example, injection, infusion, administration to the rectal site, etc.), 0.01 to 1000 mg / kg daily may be divided into 1 to several doses. Good.
  • Test Example 1 Hygroscopicity Type I and type III crystals were stored under conditions of 25 ° C. and a relative humidity of 97%. Sampling was performed over time, the weight of the crystals was measured, and the weight change rate was obtained. The results are shown below.
  • Weight change rate (%) ((BA) / A) ⁇ 100 A: Weight of crystal before start of test B: Weight of crystal after start of test
  • the weight change rate of the type I crystal after 13 weeks was 1% or more.
  • the weight change rate of the type III crystal was 0.1% or less.
  • Type III crystals were less hygroscopic.
  • Test Example 2 Physical stability (1) Type I and type II crystals were mixed, suspended in 40% aqueous acetonitrile and stirred at 25 ° C. Sampling was performed over time, and the crystal form was measured by powder X-ray diffraction. The results are shown below.
  • Type I crystals transitioned to type II crystals.
  • Type II crystals were more stable than Type I crystals.
  • Test Example 3 Physical stability (2) Form I and Form II crystals were mixed, suspended in acetonitrile and stirred at 5, 25, or 40 ° C. Sampling was performed over time, and the crystal form was measured by powder X-ray diffraction. The results are shown below.
  • Type I and type II crystals transitioned to type III crystals.
  • Type III crystals were more stable than type I and type II crystals under non-aqueous conditions.
  • Test Example 4 Physical stability (3) Form I and Form III crystals were mixed, suspended in acetonitrile and stirred at 5, 25, or 40 ° C. Sampling was performed over time, and the crystal form was measured by powder X-ray diffraction. The results are shown below.
  • Type I crystals transitioned to type III crystals.
  • Type III crystals were more stable than Type I crystals under non-aqueous conditions.
  • Test Example 5 Stability (1) The type I crystal, type II crystal and type III crystal were put in a light stability tester and irradiated with light (1.2 million lx ⁇ hr) (light source: D65 lamp (FLR20S-D-EDL-D65 / M)). The purity of each crystal was measured by HPLC. The results are shown below.
  • Type II and III crystals were more stable to light than type I crystals.
  • the HPLC purity of type I crystals after 13 weeks was about 90%. On the other hand, the HPLC purity of the type II crystal was about 91%, and the HPLC purity of the type III crystal was about 95%. Type II and Type III crystals were more stable than Type I crystals. Type III crystals were the most stable.
  • Test Example 7 Solubility of type I and type II crystals Sulfobutyl ether- ⁇ -cyclodextrin (CYCLOLAB Cyclodextrin Research & Development Laboratory Ltd.) (hereinafter sometimes referred to as “SBE ⁇ CD”) 6.00 32.4 mL of water for injection was added to g and stirred at 25 ° C. for 10 minutes. After confirming dissolution visually, the solution was cooled to 10 ° C., and 0.50 g of type I crystal or type II crystal was added and heated stepwise until dissolved. (2) Solubility of type III crystals 32.5 mL of water for injection was added to 6.00 g of SBE ⁇ CD, and the mixture was stirred at 25 ° C. for 10 minutes. After confirming dissolution visually, it was cooled to 0, 5 or 10 ° C., and 0.48 g of type III crystals were added and stirred until dissolved. The results are shown below.
  • type I crystal and the type II crystal had to be heated up to 25 ° C. for complete dissolution.
  • type III crystals were dissolved even at 0 ° C.
  • Powder X-ray diffraction was measured using Ultima IV (Rigaku) under the following conditions. Measurement conditions X-ray used: CuK ⁇ Tube voltage: 40kV Tube current: 40mA Scanning axis: 2 ⁇
  • the moisture content was measured using a Karl Fischer moisture meter CA-100 (Mitsubishi Chemical Corporation).
  • (1S) -1- (4-((trimethylsilyl) ethynyl) phenyl) was prepared in the same manner as in Production Example 5 using 5.00 g of (1S) -1- (4-iodophenyl) ethane-1,2-diol. Ethane-1,2-diol was obtained as a pale yellow solid.
  • the insoluble material was removed by filtration, and the solvent was distilled off under reduced pressure. 10 mL of ethyl acetate was added to the obtained residue. After confirming dissolution, 10 mL of heptane was added, seed crystals were added, and the mixture was stirred at 20-30 ° C. for 3 hours and allowed to stand overnight. To the resulting mixture, 15 mL of heptane was added over 1 hour, and the mixture was stirred at 20-30 ° C. for 1 hour. To the obtained mixture, 15 mL of heptane was added over 1 hour, and the mixture was stirred at the same temperature for 1 hour. The resulting mixture was cooled to 0-10 ° C. and stirred at the same temperature for 2 hours.
  • Example 1 Type II Crystal A suspension of 0.20 g of type I crystal in 2 mL of 50% acetonitrile in water was stirred at 20-30 ° C. for 21 hours. The solid was collected by filtration to obtain 0.13 g of a white solid type II crystal. An infrared absorption spectrum (ATR method) is shown in FIG. The powder X-ray diffraction pattern is shown in FIG. Moisture: 3.9% IR (ATR): 1475,1606,1683,3134,3365cm -1
  • the solid was collected by filtration and washed successively with 180 mL of 50% aqueous 2-propanol, 540 mL of water, and 540 mL of 80% aqueous 2-propanol, and (2S) -2-((4-((4-((1S) -1 , 2-dihydroxyethyl) phenyl) ethynyl) benzoyl) (methyl) amino) -N-hydroxy-N ′, 2-dimethylmalonamide hydrate 114 g was obtained as a white solid. The obtained solid was used as a seed crystal of Example 3.
  • 4 mL of 1 mol / L hydrochloric acid was added at 5 to 10 ° C., and the mixture was stirred at the same temperature for 18.5 hours.
  • a mixture of 0.34 g of sodium hydrogen carbonate and 8.1 mL of water was added to the reaction mixture, and the temperature was raised to 50-60 ° C.
  • the pH was adjusted to 5-6 using 5% aqueous sodium hydrogen carbonate solution and 1 mol / L hydrochloric acid.
  • the obtained mixture was cooled to 35 to 40 ° C., 10 mg of seed crystals were added, and the mixture was stirred at the same temperature for 1 hour.
  • the obtained mixture was cooled to 30 to 35 ° C., 47 mL of water was added over 2 hours, and the mixture was stirred at the same temperature for 1 hour.
  • the obtained mixture was cooled to 22.5 to 27.5 ° C., stirred at the same temperature for 1 hour, and allowed to stand overnight.
  • the resulting mixture was cooled to 12.5-17.5 ° C. and stirred at the same temperature for 1 hour.
  • the resulting mixture was cooled to 0-5 ° C.
  • Example 4 Type III Crystal A suspension of 150 g of Type II crystal in 450 mL of methanol was stirred at 20 to 25 ° C. for 3 hours and 20 minutes, and then stirred for 15 minutes under ice cooling. The solid was collected by filtration to obtain 108 g of a white solid type III crystal. An infrared absorption spectrum (ATR method) is shown in FIG. The powder X-ray diffraction pattern is shown in FIG. Moisture: 0.2% IR (ATR): 1484,1608,1688,3288,3475cm -1
  • Example 5 Type III Crystal A suspension of 16.5 g of Type II crystal in 49.5 mL of methanol was stirred at 20-30 ° C. for 3 hours. The solid was collected by filtration and washed twice with 33 mL of methanol to obtain 12.0 g of a white solid type III crystal. An infrared absorption spectrum (ATR method) is shown in FIG. The powder X-ray diffraction pattern is shown in FIG. The obtained solid was used as a seed crystal of Example 11.
  • ATR method infrared absorption spectrum
  • Example 7 Type III Crystal A type III crystal was obtained in the same manner as in Example 4 except that ethyl acetate was used instead of methanol.
  • Example 8 Type III Crystal A type III crystal was obtained in the same manner as in Example 4 except that tetrahydrofuran was used instead of methanol.
  • Example 9 Type III Crystal A type III crystal was obtained in the same manner as in Example 4 except that acetonitrile was used instead of methanol.
  • Example 10 Type III Crystal A type III crystal was obtained in the same manner as in Example 4 except that a type I crystal was used instead of a type II crystal.
  • Example 11 Type III Crystal To a mixed solution of 2 mL of methanol and 0.5 mL of dimethyl sulfoxide, 1.00 g of Type II crystal was added at 0 to 10 ° C. in a nitrogen atmosphere, and stirred at the same temperature for 4 minutes. After confirming dissolution, the temperature was raised to 20 to 25 ° C., 2 mL of methanol and 2 mL of ethyl acetate were added, seed crystals of type III crystals were added, and the mixture was stirred at the same temperature for 2 hours. To the reaction mixture, 8 mL of ethyl acetate was added at 20 to 25 ° C. over 30 minutes, and the mixture was stirred at the same temperature for 1 hour.
  • the crystal of the present invention is excellent in stability and easy to handle, and is useful as a drug substance for pharmaceuticals.
  • the production method of the present invention is useful as an industrial production method of type II crystals and type III crystals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Epidemiology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°および10.8±0.2°などに、または、8.2±0.2°、12.4±0.2°および13.3±0.2°などに、回折ピークを有する(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N',2-ジメチルマロンアミドの結晶、それらの製造方法および医薬用組成物。

Description

新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物
 本発明は、ウリジルジホスホ-3-O-アシル-N-アセチルグルコサミンデアセチラーゼ(LpxC)に対して優れた阻害活性を有する(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドまたはその水和物の結晶およびそれらの製造方法に関する。本発明はさらに、上記結晶を含む医薬用組成物に関する。
 LpxCは、リピドAの合成を担う酵素である。リピドAは、外膜形成に必須な成分であり、たとえば、グラム陰性菌の生存に必須である。従って、LpxCの活性を阻害する薬剤は、緑膿菌を含むグラム陰性菌に対して有効な抗菌剤になり得ることが強く期待される。
 たとえば、優れたLpxC阻害活性を有する(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミド(以下、化合物Aと称することもある。)が知られている(特許文献1)。
国際公開第2014/142298号パンフレット
 特許文献1に記載された製造方法に従って製造される化合物Aの水和物の結晶(以下、「I型結晶」と称することもある。)は、吸湿性を有し、安定性に劣った。化合物Aを医薬品の原薬として用いる場合、安定性に優れる結晶を提供することが、強く求められる。
 本発明の課題は、安定性に優れ、医薬品の原薬として有用である化合物Aまたはその水和物の新規な結晶、それらの製造方法、および医薬用組成物を提供することである。
 このような状況下、本発明者らは、鋭意研究を行った結果、粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°、10.8±0.2°、12.0±0.2°および14.4±0.2°に回折ピークを有する化合物Aの水和物の結晶(以下、「II型結晶」と称することもある。)および回折角度(2θ)8.2±0.2°、12.4±0.2°、13.3±0.2°、15.2±0.2°および16.2±0.2°に回折ピークを有する化合物Aの結晶(以下、「III型結晶」と称することもある。)が、安定性に優れ、取り扱い易く、医薬の原薬として優れていることを見出した。
 また、本発明者らは、適切な溶媒を選択することによって、II型結晶およびIII型結晶を選択的に製造できることを見出し、本発明を完成させた。
 本発明は、以下を提供する。
[1]
 粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°、10.8±0.2°、12.0±0.2°および14.4±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物の結晶。
[2]
 粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°、10.8±0.2°、12.0±0.2°、14.4±0.2°、16.3±0.2°、17.0±0.2°および21.8±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物の結晶。
[3]
 粉末X線回折において、回折角度(2θ)8.2±0.2°、12.4±0.2°、13.3±0.2°、15.2±0.2°および16.2±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの結晶。
[4]
 粉末X線回折において、回折角度(2θ)8.2±0.2°、12.4±0.2°、13.3±0.2°、15.2±0.2°、16.2±0.2°、19.0±0.2°、20.2±0.2°および22.8±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの結晶。
[5]
 [1]~[4]のいずれか一に記載の結晶を含む、医薬用組成物。
[6]
 (1)化合物A、(2)水、および、(3)有機溶媒、を含む混合物を撹拌する工程、を含む、[1]または[2]に記載の結晶の製造方法であって、有機溶媒が、アルコール類、エーテル類、ケトン類およびニトリル類から選ばれる一種または二種以上である、製造方法。
[7]
 アルコール類が、メタノール、エタノールおよび2-プロパノールであり、エーテル類が、テトラヒドロフランであり、ケトン類が、アセトンであり、ニトリル類が、アセトニトリルである、[6]に記載の製造方法。
[8]
 化合物Aが、I型結晶である、[6]または[7]に記載の製造方法。
[9]
 水の不存在下、(1)化合物A、および、(2)有機溶媒、を含む混合物を撹拌する工程、を含む、[3]または[4]に記載の結晶の製造方法であって、有機溶媒が、脂肪族炭化水素類、アルコール類、エーテル類、ケトン類、エステル類、スルホキシド類、ニトリル類およびアミド類から選ばれる一種または二種以上である、製造方法。
[10]
 脂肪族炭化水素類が、ヘプタンであり、アルコール類が、メタノール、エタノールおよび2-プロパノールであり、エーテル類が、テトラヒドロフランであり、ケトン類が、アセトンであり、エステル類が酢酸エチルであり、スルホキシド類が、ジメチルスルホキシドであり、ニトリル類が、アセトニトリルであり、アミド類が、ジメチルアセトアミドである、[9]に記載の製造方法。
[11]
 化合物Aが、[1]または[2]に記載の結晶である、[9]または[10]に記載の製造方法。
 本発明は、さらに以下を提供する。
[A]
 一般式[1]
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、C1-3アルキル基を示し;Rは、C1-3アルキル基を示す。)で表わされる化合物を脱保護反応に付し、化合物Aを製造した後、化合物Aを単離することなく、化合物Aを水および有機溶媒の混合物中で撹拌する工程を含む、[1]または[2]に記載の結晶の製造方法であって、有機溶媒が、アルコール類、エーテル類、ケトン類およびニトリル類から選ばれる一種または二種以上である、製造方法。
[B]
 Rが、メチル基であり、Rが、メチル基である、[A]に記載の製造方法。
[C]
 アルコール類が、メタノール、エタノールおよび2-プロパノールであり、エーテル類が、テトラヒドロフランであり、ケトン類が、アセトンであり、ニトリル類が、アセトニトリルである、[A]または[B]に記載の製造方法。
 本発明のII型結晶は、安定性に優れ、取り扱い易く、医薬の原薬として有用である。
 本発明のIII型結晶は、安定性に優れ、取り扱い易く、医薬の原薬として有用である。また、III型結晶は、シクロデキストリンなどの可溶化剤を用いた場合、低温での溶解性に優れる。
 本発明の製造方法は、II型結晶またはIII型結晶を選択的に製造できるため、工業的製造方法として有用である。
化合物Aの水和物のI型結晶の赤外吸収スペクトル(ATR法)の一例を示す図である(参考例1)。 化合物Aの水和物のI型結晶の粉末X線回折パターンの一例を示す図である(参考例1)。 化合物Aの水和物のII型結晶の赤外吸収スペクトル(ATR法)の一例を示す図である(実施例1)。 化合物Aの水和物のII型結晶の粉末X線回折パターンの一例を示す図である(実施例1)。 化合物Aの水和物のII型結晶の赤外吸収スペクトル(ATR法)の一例を示す図である(実施例3)。 化合物Aの水和物のII型結晶の粉末X線回折パターンの一例を示す図である(実施例3)。 化合物AのIII型結晶の赤外吸収スペクトル(ATR法)の一例を示す図である(実施例4)。 化合物AのIII型結晶の粉末X線回折パターンの一例を示す図である(実施例4)。 化合物AのIII型結晶の赤外吸収スペクトル(ATR法)の一例を示す図である(実施例5)。 化合物AのIII型結晶の粉末X線回折パターンの一例を示す図である(実施例5)。
 本発明について以下に詳述する。
 本発明において、特に断らない限り、%は、質量%である。
 本発明において、特に断らない限り、各用語は、次の意味を有する。
 C1-3アルキル基とは、メチル、エチル、プロピルまたはイソプロピル基を意味する。
 脂肪族炭化水素類としては、ペンタン、ヘキサン、ヘプタンまたはシクロヘキサンが挙げられる。
 アルコール類としては、メタノール、エタノール、プロパノール、2-プロパノール、ブタノールまたは2-メチル-2-プロパノールが挙げられる。
 エーテル類としては、メチルtert-ブチルエーテル、ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテルまたはアニソールが挙げられる。
 ケトン類としては、アセトン、2-ブタノンまたは4-メチル-2-ペンタノンが挙げられる。
 エステル類としては、酢酸メチル、酢酸エチル、酢酸プロピルまたは酢酸ブチルが挙げられる。
 スルホキシド類としては、ジメチルスルホキシドまたはスルホランが挙げられる。
 ニトリル類としては、アセトニトリルまたはプロピオニトリルが挙げられる。
 アミド類としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドまたは1-メチル-2-ピロリドンが挙げられる。
 一般に、粉末X線回折における回折角度(2θ)は、±0.2°の範囲内で誤差が生じ得る。したがって、本発明で「回折角度(2θ)X°」というときは、特に記載した場合を除き、「回折角度(2θ)((X-0.2)~(X+0.2))°」を意味する。よって、粉末X線回折における回折角度が完全に一致する結晶だけでなく、回折角度が±0.2°の誤差範囲内で一致する結晶も本発明に含まれる。
 なお、粉末X線結晶回折における相対強度は、結晶の配向性、粒子の大きさ、結晶化度または測定条件などによって変動することが知られている。そのため、厳密に解されるべきではない。
 一般に、赤外吸収スペクトル(ATR法)における波数(cm-1)の値は±2cm-1の範囲内で誤差が生じ得る。したがって、本発明で「波数Ycm-1」というときは、特に記載した場合を除き、「波数((Y-2)~(Y+2))cm-1」を意味する。よって、赤外吸収スペクトル(ATR法)における吸収ピークの波数が完全に一致する結晶だけでなく、吸収ピークの波数が±2cm-1の誤差範囲内で一致する結晶も本発明に含まれる。
 本発明のII型結晶は、粉末X線回折における回折ピークによって特徴付けられる。
 本発明のII型結晶は、粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°、10.8±0.2°、12.0±0.2°および14.4±0.2°に回折ピークを有する。
 さらに、本発明のII型結晶は、粉末X線回折において、16.3±0.2°、17.0±0.2°および21.8±0.2°に回折ピークを有する。
 また、本発明のII型結晶は、赤外吸収スペクトル(ATR法)における吸収ピークによっても特徴付けられる。
 本発明のII型結晶は、赤外吸収スペクトル(ATR法)において、波数1475±2cm-1、1606±2cm-1、1683±2cm-1、3134±2cm-1および3365±2cm-1に吸収ピークを有する。
 本発明のIII型結晶は、粉末X線回折における回折ピークによって特徴付けられる。
 本発明のIII型結晶は、粉末X線回折において、回折角度(2θ)8.2±0.2°、12.4±0.2°、13.3±0.2°、15.2±0.2°および16.2±0.2°に回折ピークを有する。
 さらに、本発明のIII型結晶は、粉末X線回折において、19.0±0.2°、20.2±0.2°および22.8±0.2°に回折ピークを有する。
 また、本発明のIII型結晶は、赤外吸収スペクトル(ATR法)における吸収ピークによっても特徴付けられる。
 本発明のIII型結晶は、赤外吸収スペクトル(ATR法)において、波数1484±2cm-1、1608±2cm-1、1688±2cm-1、3288±2cm-1および3475±2cm-1に吸収ピークを有する。
 次に本発明のII型結晶およびIII型結晶について説明する。
[I型結晶]
 I型結晶は、特許文献1に記載された製造方法に従って製造することができる。
 水分を測定した結果、I型結晶は、1水和物であった。
[II型結晶]
 II型結晶は、たとえば、(1)化合物A、(2)水、および、(3)有機溶媒、を含む混合物を撹拌することにより、製造することができる。
 ここで、有機溶媒とは、アルコール類、エーテル類、ケトン類およびニトリル類から選ばれる一種または二種以上である。
 この工程に使用される化合物Aとしては、I型結晶または後述するIII型結晶が挙げられ、I型結晶を使用することが好ましい。
 水の使用量は、化合物Aに対して2~50倍量(v/w)であればよく、好ましくは、5~20倍量(v/w)である。
 この工程に使用されるアルコール類としては、メタノール、エタノールおよび2-プロパノールから選ばれる一種または二種以上が挙げられ、2-プロパノールが好ましい。
 この工程に使用されるエーテル類としては、ジオキサンおよびテトラヒドロフランから選ばれる一種または二種が挙げられ、テトラヒドロフランが好ましい。
 この工程に使用されるケトン類としては、アセトンおよび2-ブタノンから選ばれる一種または二種が挙げられ、アセトンが好ましい。
 この工程に使用されるニトリル類としては、アセトニトリルおよびプロピオニトリルから選ばれる一種または二種が挙げられ、アセトニトリルが好ましい。
 この工程に使用される有機溶媒としては、アルコール類、エーテル類およびニトリル類から選ばれる一種または二種以上が好ましく、メタノール、エタノール、2-プロパノール、テトラヒドロフランおよびアセトニトリルから選ばれる一種または二種以上がより好ましく、アセトニトリルがさらに好ましい。
 有機溶媒の使用量は、化合物Aに対して2~50倍量(v/w)であればよく、好ましくは、5~20倍量(v/w)である。
 撹拌温度は、0~70℃が好ましく、0~30℃がより好ましい。
 撹拌時間は、1~48時間が好ましく、1~24時間がより好ましい。
 また、II型結晶は、たとえば、次の製造方法によっても製造することができる。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、C1-3アルキル基を示し;Rは、C1-3アルキル基を示す。)
 一般式[1]で表わされる化合物は、たとえば、後述する製造例に従って製造することができる。
 Rは、C1-3アルキル基である。Rが、メチル基であることが好ましい。
 Rは、C1-3アルキル基である。Rが、メチル基であることが好ましい。
 Rが、メチル基であり、Rが、メチル基であることがより好ましい。
 II型結晶は、一般式[1]で表わされる化合物を脱保護し、化合物Aを製造した後、化合物Aを単離することなく、化合物A、水および有機溶媒を含む混合物を撹拌することによっても、製造することができる。ここで、有機溶媒とは、アルコール類、エーテル類、ケトン類およびニトリル類から選ばれる一種または二種以上である。
 水の使用量、有機溶媒の種類、有機溶媒の使用量、温度および時間は前記と同様である。
 この反応では、II型結晶の種晶を添加することが好ましい。
 水分を測定した結果、II型結晶は、1水和物であった。
[III型結晶]
 III型結晶は、たとえば、水の不存在下、(1)化合物A、および、(2)有機溶媒、
を含む混合物を撹拌することにより、製造することができる。
 ここで、水の不存在下での製造は、III型結晶の製造において、水を添加せずに結晶を製造することを意味する。また化合物Aまたは有機溶媒に含まれる水分が、混合物に含まれることを許容する。
 ここで、有機溶媒とは、脂肪族炭化水素類、アルコール類、エーテル類、ケトン類、エステル類、スルホキシド類、ニトリル類およびアミド類から選ばれる一種または二種以上である。
 この工程に使用される化合物Aとしては、I型結晶またはII型結晶が挙げられ、II型結晶を使用することが好ましい。
 この工程に使用される脂肪族炭化水素類としては、ヘキサン、ヘプタンまたはシクロヘキサンから選ばれる一種または二種以上が挙げられ、ヘプタンが好ましい。
 この工程に使用されるアルコール類としては、メタノール、エタノールおよび2-プロパノールから選ばれる一種または二種以上が挙げられ、メタノールが好ましい。
 この工程に使用されるエーテル類としては、ジオキサンおよびテトラヒドロフランから選ばれる一種または二種が挙げられ、テトラヒドロフランが好ましい。
 この工程に使用されるケトン類としては、アセトンおよび2-ブタノンから選ばれる一種または二種が挙げられ、アセトンが好ましい。
 この工程に使用されるエステル類としては、酢酸メチルおよび酢酸エチルから選ばれる一種または二種が挙げられ、酢酸エチルが好ましい。
 この工程に使用されるスルホキシド類としては、ジメチルスルホキシドおよびスルホランから選ばれる一種または二種が挙げられ、ジメチルスルホキシドが好ましい。
 この工程に使用されるニトリル類としては、アセトニトリルおよびプロピオニトリルから選ばれる一種または二種が挙げられ、アセトニトリルが好ましい。
 この工程に使用されるアミド類としては、N,N-ジメチルホルムアミドおよびN,N-ジメチルアセトアミドから選ばれる一種または二種が挙げられ、N,N-ジメチルアセトアミドが好ましい。
 この工程に使用される有機溶媒としては、脂肪族炭化水素類、アルコール類、エステル類およびスルホキシド類から選ばれる一種または二種以上が好ましく、ヘプタン、メタノール、酢酸エチルおよびジメチルスルホキシドから選ばれる一種または二種以上がより好ましく、ヘプタン、メタノール、酢酸エチルおよびジメチルスルホキシドの混合溶媒がさらに好ましい。
 有機溶媒の使用量は、化合物Aに対して1~100倍量(v/w)であればよく、好ましくは、5~50倍量(v/w)である。
 撹拌温度は、0~70℃が好ましく、0~30℃がより好ましい。
 撹拌時間は、1~8時間が好ましく、2~4時間がより好ましい。
 この反応では、III型結晶の種晶を添加することが好ましい。
 また、工業的製造法において、III型結晶は、たとえば、水の不存在下、化合物Aを有機溶媒中から晶析させることによっても、製造することができる。
 使用される有機溶媒、有機溶媒の使用量、撹拌温度および撹拌時間は、前記と同様である。
 水分を測定した結果、III型結晶は、無水物であった。
 本発明のII型結晶およびIII型結晶を医薬品(医薬用組成物)として用いる場合、通常、製剤化に使用される賦形剤、担体および希釈剤などの製剤補助剤を適宜混合してもよい。
 これらは、錠剤、カプセル剤、散剤、シロップ剤、顆粒剤、丸剤、懸濁剤、乳剤、液剤、粉体製剤、坐剤、点眼剤、点鼻剤、点耳剤、貼付剤、軟膏剤、ローション剤、クリーム剤または注射剤などの形態で経口または非経口で投与することができる。また、投与方法、投与量および投与回数は、患者の年齢、体重および症状に応じて適宜選択することができる。通常、成人に対しては、経口または非経口(たとえば、注射、点滴および直腸部位への投与など)投与により、1日、0.01~1000mg/kgを1回から数回に分割して投与すればよい。
 次に、本発明のII型結晶およびIII型結晶の有用性を以下の試験例で説明する。
試験例1 吸湿性
 I型結晶およびIII型結晶を25℃、相対湿度97%の条件下で保存した。
 経時的にサンプリングし、結晶の重量を測定し、重量変化率を求めた。結果を以下に示す。
 重量変化率(%)=((B-A)/A)x100
  A:試験開始前の結晶の重量
  B:試験開始後の結晶の重量
Figure JPOXMLDOC01-appb-T000003
 13週後のI型結晶の重量変化率は、1%以上であった。一方、III型結晶の重量変化率は、0.1%以下であった。
 III型結晶は、吸湿性が少なかった。
試験例2 物理的安定性(1)
 I型結晶およびII型結晶を混合し、40%アセトニトリル水溶液に懸濁させ、25℃で撹拌した。
 経時的にサンプリングし、粉末X線回折により結晶形を測定した。
 結果を以下に示す。
Figure JPOXMLDOC01-appb-T000004
 I型結晶は、II型結晶に転移した。
 II型結晶は、I型結晶より安定であった。
試験例3 物理的安定性(2)
 I型結晶およびII型結晶を混合し、アセトニトリルに懸濁させ、5、25または40℃で撹拌した。
 経時的にサンプリングし、粉末X線回折により結晶形を測定した。
 結果を以下に示す。
Figure JPOXMLDOC01-appb-T000005
 I型結晶およびII型結晶は、III型結晶に転移した。
 III型結晶は、非水条件下においてI型結晶およびII型結晶より安定であった。
試験例4 物理的安定性(3)
 I型結晶およびIII型結晶を混合し、アセトニトリルに懸濁させ、5、25または40℃で撹拌した。
 経時的にサンプリングし、粉末X線回折により結晶形を測定した。
 結果を以下に示す。
Figure JPOXMLDOC01-appb-T000006
 I型結晶は、III型結晶に転移した。
 III型結晶は、非水条件下においてI型結晶より安定であった。
試験例5 安定性(1)
 I型結晶、II型結晶およびIII型結晶を光安定性試験器に入れ、光照射(120万lx・hr)した(光源:D65ランプ(FLR20S-D-EDL-D65/M))。
 各結晶の純度をHPLCによって測定した。
 結果を以下に示す。
 HPLC測定条件
 測定波長:254nm
 カラム:Ascentis Express C18(シグマアルドリッチジャパン株式会社)、粒子径:5μm、内径4.6mm×長さ150mm
 カラム温度:40℃
 流量:2.0mL/分
 移動相A:水/酢酸=1000/1 溶液
 移動相B:アセトニトリル/酢酸=1000/1 溶液
 グラジエント条件(移動相B)
  0-7.5min=5→30%
  7.5-12.5min=30→90%
  12.5-17.5min=90%
Figure JPOXMLDOC01-appb-T000007
 I型結晶は、純度が低下した。
 II型結晶およびIII型結晶は、I型結晶より光に対して安定であった。
試験例6 安定性(2)
 I型結晶、II型結晶およびIII型結晶を60℃、相対湿度75%の条件下で保存した。
 経時的にサンプリングし、HPLCで純度を測定した。結果を以下に示す。
 HPLC測定条件
 測定波長:254nm
 カラム:Ascentis Express C18(シグマアルドリッチジャパン株式会社)、粒子径:5μm、内径4.6mm×長さ150mm
 カラム温度:40℃
 流量:2.0mL/分
 移動相A:水/酢酸=1000/1 溶液
 移動相B:アセトニトリル/酢酸=1000/1 溶液
 グラジエント条件(移動相B)
  0-7.5min=5→30%
  7.5-12.5min=30→90%
  12.5-17.5min=90%
Figure JPOXMLDOC01-appb-T000008
 13週後のI型結晶のHPLC純度は、約90%であった。
 一方、II型結晶のHPLC純度は、約91%であり、III型結晶のHPLC純度は、約95%であった。
 II型結晶およびIII型結晶は、I型結晶より安定であった。
 III型結晶が、最も安定であった。
試験例7 溶解性
(1)I型結晶およびII型結晶の溶解性
 スルフォブチルエーテル-β-シクロデキストリン(CYCLOLAB Cyclodextrin Research & Development Laboratory Ltd.)(以下、「SBEβCD」と称することもある。)6.00gに注射用水32.4mLを加え、25℃で10分間撹拌した。溶解を目視で確認後、10℃に冷却し、I型結晶またはII型結晶0.50gを添加して溶解するまで段階的に加温した。
(2)III型結晶の溶解性
 SBEβCD6.00gに注射用水32.5mLを加え、25℃で10分間撹拌した。溶解を目視で確認後、0、5または10℃に冷却し、III型結晶0.48gを添加して溶解するまで撹拌した。
 結果を以下に示す。
Figure JPOXMLDOC01-appb-T000009
 I型結晶およびII型結晶は、完全溶解するのに25℃までの加温しなければならなかった。一方、III型結晶は、0℃においても溶解した。
 次に、本発明の結晶を製造例、参考例および実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
 粉末X線回折は、Ultima IV(リガク社)を用い、以下の条件で測定した。
 測定条件
 使用X線:CuKα
 管電圧:40kV
 管電流:40mA
 走査軸:2θ
 水分含量は、カールフィッシャー水分計 CA-100(三菱化学社)を用いて測定した。
Figure JPOXMLDOC01-appb-C000010
 2-ブロモ-1-(4-ヨードフェニル)エタノン10.00g、エタノール39mL、酢酸ナトリウム3.89gおよび水19.5mLの混合物に、窒素雰囲気下、酢酸2.03gを加え、70~75℃で3時間撹拌した。反応混合物を室温まで冷却した後、水19.5mLを加え、同温度で1時間撹拌した。固形物を濾取し、水27mLで2回洗浄し、(2-(4-ヨードフェニル)-2-オキソエチル) アセタート8.92gを淡黄色固体として得た。
1H-NMR(600MHz,CDCl3)δ値:2.23(3H,s),5.28(2H,s),7.62(2H,d,J=9.0Hz),7.86(2H,d,J=9.0Hz).
Figure JPOXMLDOC01-appb-C000011
 N,N-ジメチルホルムアミド5.0mLおよびN,N-ジイソプロピルエチルアミン1.15mLの混合物に、窒素雰囲気下、0~10℃でギ酸0.62mL、(2-(4-ヨードフェニル)-2-オキソエチル) アセタート1.00gおよび[(R,R)-N-(2-アミノ-1,2-ジフェニルエチル)-p-トルエンスルホンアミド]クロロ(p-シメン)ルテニウム(II)10.5mgを順次加え、20~30℃で6.5時間撹拌した。反応混合物に酢酸エチル10mLおよび20%塩化ナトリウム水溶液10mLを加えた。有機層を分取し、20%塩化ナトリウム水溶液5mLで1回、5%炭酸水素ナトリウム水溶液5mLで2回および20%塩化ナトリウム水溶液5mLで1回洗浄した。得られた有機層に活性炭0.10gを加え、20~30℃で40分間撹拌し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去し、((2S)-2-ヒドロキシ-2-(4-ヨードフェニル)エチル) アセタート0.99gを淡黄色油状物として得た。
1H-NMR(600MHz,CDCl3)δ値:2.10(3H,s),2.72(1H,s),4.10(1H,dd,J=11.4,7.8Hz),4.24(1H,dd,J=12.0,3.6Hz),4.90(1H,d,J=7.8Hz),7.14(2H,d,J=8.4Hz),7.70(2H,d,J=8.4Hz).
Figure JPOXMLDOC01-appb-C000012
 ((2S)-2-ヒドロキシ-2-(4-ヨードフェニル)エチル) アセタート0.48gおよびメタノール2.5mLの混合物に、窒素雰囲気下、炭酸カリウム0.34gを加え、室温で2時間撹拌した。反応混合物に塩化メチレン10mL、水5mL、飽和塩化ナトリウム水溶液5mLおよび2-メチル-2-プロパノール0.1mLを加えた。有機層を分取し、水層を塩化メチレン10mLおよび2-メチル-2-プロパノール0.1mLの混合液で抽出した。有機層および抽出液を併せ、無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去した。得られた残留物にジイソプロピルエーテルを加え、固形物を濾取し、(1S)-1-(4-ヨードフェニル)エタン-1,2-ジオール0.30gを淡黄色固体として得た。
 得られた固体を製造例4の種晶として使用した。
Figure JPOXMLDOC01-appb-C000013
 N,N-ジメチルホルムアミド100mLおよびN,N-ジイソプロピルエチルアミン17.0gの混合物に、窒素雰囲気下、0~10℃でギ酸15.1g、(2-(4-ヨードフェニル)-2-オキソエチル) アセタート20.0gおよび[(R,R)-N-(2-アミノ-1,2-ジフェニルエチル)-p-トルエンスルホンアミド]クロロ(p-シメン)ルテニウム(II)0.21gを順次加え、15~20℃で22.5時間撹拌した。反応混合物に酢酸エチル300mLおよび20%塩化ナトリウム水溶液200mLを加えた。有機層を分取し、20%塩化ナトリウム水溶液100mLで1回、5%炭酸水素ナトリウム水溶液100mLで2回および20%塩化ナトリウム水溶液100mLで1回洗浄した。得られた有機層に活性炭2.00gを加え、20~30℃で1時間撹拌した。不溶物を濾去し、減圧下で溶媒を留去し、((2S)-2-ヒドロキシ-2-(4-ヨードフェニル)エチル) アセタートを淡黄色油状物として得た。
 得られた((2S)-2-ヒドロキシ-2-(4-ヨードフェニル)エチル) アセタートおよびメタノール100mLの混合物に、窒素雰囲気下、炭酸カリウム13.64gを加え、20~30℃で1.5時間撹拌した。不溶物を濾去し、減圧下で溶媒を留去した。得られた残留物にメタノール100mLおよび水70mLを加えた。溶解を確認した後、種晶0.05gを加え、20~30℃で2時間撹拌した。反応混合物に水10mLおよび6mol/L塩酸11.3mLを加え、pH7~8に調整後、20~30℃で2時間撹拌し、終夜静置した。反応混合物に水100mLを1時間かけて加え、同温度で2.5時間撹拌した。反応混合物に水100mLを2時間かけて加え、同温度で1.5時間撹拌した。反応混合物に水220mLを1.5時間かけて加え、同温度で1時間撹拌した。反応混合物を0~10℃に冷却後、同温度で1時間撹拌した。固形物を濾取し、10%メタノール水溶液40mLで2回洗浄し、(1S)-1-(4-ヨードフェニル)エタン-1,2-ジオール15.4gを淡黄色固体として得た。
光学純度:96.2%ee
HPLC測定条件
 測定波長:230nm
 カラム:CHIRALPAK ID(株式会社ダイセル)、粒子径:5μm、内径4.6mm×長さ250mm
 カラム温度:40℃
 流量:1.0mL/分
 移動相:ヘキサン/エタノール=970/30
1H-NMR(600MHz,DMSO-d6)δ値:3.35-3.44(2H,m),4.48(1H,dd,J=11.4,5.4Hz),4.73(1H,t,J=6.6Hz),5.31(1H,d,J=4.2Hz),7.15(2H,d,J=7.8Hz),7.66(2H,d,J=8.4Hz).
Figure JPOXMLDOC01-appb-C000014
 (1S)-1-(4-ヨードフェニル)エタン-1,2-ジオール10.0g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.13g、ヨウ化銅(I)0.11g、トリエチルアミン9.96gおよびテトラヒドロフラン50mLの混合物に、窒素雰囲気下、トリメチルシリルアセチレン4.09gおよびテトラヒドロフラン20mLの混合物を1時間かけて加え、室温で1時間撹拌した。反応混合物に酢酸エチル100mLおよび5%硫酸アンモニウム水溶液50mLを加えた。有機層を分取し、40%硫酸アンモニウム水溶液50mL、10%N-アセチルシステイン水溶液50mL、5%炭酸水素ナトリウム水溶液50mLならびに5%炭酸水素ナトリウム水溶液および20%塩化ナトリウム水溶液の混合液50mLで順次洗浄した。得られた有機層に無水硫酸ナトリウム20gおよびSH SILICA1.0gを加え、室温で30分間撹拌した。得られた混合物に活性炭0.5gを加え、室温下で撹拌した。不溶物を濾去し、減圧下で溶媒を留去した。得られた残留物にヘプタンおよび酢酸イソプロピルを加え、固形物を濾取し、ヘプタンおよび酢酸イソプロピルの混合液で洗浄し、(1S)-1-(4-((トリメチルシリル)エチニル)フェニル)エタン-1,2-ジオール7.10gを白色固体として得た。
1H-NMR(600MHz,CDCl3)δ値:0.25(9H,s),2.42-2.49(1H,m),2.92-3.00(1H,m),3.54-3.63(1H,m),3.67-3.75(1H,m),4.74-4.81(1H,m),7.28(2H,d,J=8.4Hz),7.45(2H,d,J=8.4Hz).
Figure JPOXMLDOC01-appb-C000015
 (1S)-1-(4-((トリメチルシリル)エチニル)フェニル)エタン-1,2-ジオール0.36gおよびメタノール3mLの混合物に、窒素雰囲気下、炭酸カリウム0.24gを加え、室温で1.5時間撹拌した。反応混合物に水3mLを加え、室温で1時間撹拌した。不溶物を濾去し、塩化メチレンを加えた。有機層を分取し、水層を塩化メチレンで3回抽出した。有機層および抽出液を併せ、無水硫酸ナトリウムで乾燥後、減圧下で溶媒を留去した。得られた残留物にヘキサンおよび酢酸イソプロピルを加え、固形物を濾取し、(1S)-1-(4-エチニルフェニル)エタン-1,2-ジオール0.14gを淡黄色固体として得た。
 得られた固体を製造例7の種晶として使用した。
Figure JPOXMLDOC01-appb-C000016
 (1S)-1-(4-ヨードフェニル)エタン-1,2-ジオール5.00gを用い、製造例5と同様な方法で、(1S)-1-(4-((トリメチルシリル)エチニル)フェニル)エタン-1,2-ジオールを淡黄色固体として得た。
 得られた(1S)-1-(4-((トリメチルシリル)エチニル)フェニル)エタン-1,2-ジオールおよびメタノール25mLの混合物に、窒素雰囲気下、炭酸カリウム3.93gを加え、20~30℃で1.5時間撹拌した。反応混合物に活性炭0.50gを加え、20~30℃で1時間撹拌した。不溶物を濾去し、減圧下で溶媒を留去した。得られた残留物に20~30℃でメタノール6.2mLおよび水6.2mLを加えた。溶解を確認した後、6mol/L塩酸を加え、pH6~7に調整した。得られた混合物に同温度で水7.8mLおよび25%塩化ナトリウム水溶液6.2mLを加え、種晶を加えた後、同温度で1.5時間撹拌した。得られた混合物に25%塩化ナトリウム水溶液6.2mLを加えた後、20~30℃で1時間撹拌した。得られた混合物に25%塩化ナトリウム水溶液6.2mLを加え、同温度で4時間撹拌し、終夜静置した。得られた混合物を0~10℃で1.5時間撹拌した。固形物を濾取し、冷水6.2mLで2回洗浄し、(1S)-1-(4-エチニルフェニル)エタン-1,2-ジオール2.63gを淡黄色固体として得た。
光学純度:>99.9%ee
HPLC測定条件
 測定波長:230nm
 カラム:CHIRALPAK ID(株式会社ダイセル)、粒子径:5μm、内径4.6mm×長さ250mm
 カラム温度:40℃
 流量:1.0mL/分
 移動相:ヘキサン/エタノール=970/30
 得られた(1S)-1-(4-エチニルフェニル)エタン-1,2-ジオール2.00gおよび酢酸エチル40mLの混合物に、窒素雰囲気下、活性炭0.20gを加え、20~30℃で1時間撹拌した。不溶物を濾去し、減圧下で溶媒を留去した。得られた残留物に酢酸エチル10mLを加えた。溶解を確認した後、ヘプタン10mLを加え、種晶を加えた後、20~30℃で3時間撹拌し、終夜静置した。得られた混合物にヘプタン15mLを1時間かけて加え、20~30℃で1時間撹拌した。得られた混合物にヘプタン15mLを1時間かけて加え、同温度で1時間撹拌した。得られた混合物を0~10℃に冷却後、同温度で2時間撹拌した。固形物を濾取し、ヘプタンで洗浄し、(1S)-1-(4-エチニルフェニル)エタン-1,2-ジオール1.67gを白色固体として得た。
1H-NMR(400MHz,DMSO-d6)δ値:3.37-3.49(2H,m),4.11(1H,s),4.55(1H,dd,J=10.4,5.6Hz),4.74(1H,t,J=5.6Hz),5.33(1H,d,J=4.4Hz),7.35(2H,d,J=8.4Hz),7.42(2H,d,J=8.0Hz).
Figure JPOXMLDOC01-appb-C000017
(1)
 (1S)-1-(4-エチニルフェニル)エタン-1,2-ジオール6.96gおよびN-メチルピロリドン21mLの混合物に、窒素雰囲気下、2,2-ジメトキシプロパン13.4gおよびメタンスルホン酸279μLを加え、20~30℃で5.5時間撹拌し、溶液を得た。
(2)
 (2S)-2-((4-ヨードベンゾイル)(メチル)アミノ)-N,2-ジメチル-N’-(テトラヒドロ-2H-ピラン-2-イルオキシ)マロンアミド20.0g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.22g、ヨウ化銅(I)0.12g、トリエチルアミン10.3gおよびN-メチルピロリドン40mLの混合物を、窒素雰囲気下、30~40℃で1時間撹拌した。反応混合物に、同温度で(1)で得られた溶液を2.5時間かけて加え、同温度で3.5時間撹拌し、反応混合物を得た。
(3)
 上記(1)~(2)と同様の操作を3回実施した。得られたすべての反応混合物を併せた。この反応混合物に、2-メチルテトラヒドロフラン200mLおよび5%硫酸アンモニウム水溶液300mLを加えた後、6mol/L塩酸31mLを加え、pH6~8に調整し、有機層を分取した。
(4)
 上記(1)~(2)と同様の操作を実施した。得られた反応混合物に2-メチルテトラヒドロフラン200mLを加え、0~10℃に冷却した。得られた混合物に、5%硫酸アンモニウム水溶液100mLを加えた後、6mol/塩酸17.7mLを加え、pH6~7に調整し、有機層を分取した。
(5)
 (4)と同様の操作を実施した。
(6)
 (3)、(4)および(5)で得られた有機層を併せ、40%硫酸アンモニウム水溶液500mLで1回、10%N-アセチルシステイン水溶液450mLで1回、2.5%炭酸水素ナトリウム水溶液500mLで2回および5%塩化ナトリウム水溶液500mLで1回洗浄し、減圧下で溶媒を留去した。得られた残留物に酢酸イソプロピル1200mLを加え、減圧下で溶媒を留去した。得られた残留物に酢酸イソプロピルを加え、50℃に昇温後、25℃まで5時間かけて冷却し、終夜静置した。固形物を濾取し、シクロペンチルメチルエーテルで2回洗浄し、(2S)-2-((4-((4-((4S)-2,2-ジメチル-1,3-ジオキソラン-4-イル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N,2-ジメチル-N’-(テトラヒドロ-2H-ピラン-2-イルオキシ)マロンアミド64.8gを淡黄色固体として得た。
 得られた固体を製造例9の種晶として使用した。
Figure JPOXMLDOC01-appb-C000018
(1)
 (1S)-1-(4-エチニルフェニル)エタン-1,2-ジオール6.96gおよびN-メチルピロリドン21mLの混合物に、窒素雰囲気下、2,2-ジメトキシプロパン13.4gおよびメタンスルホン酸279μLを加え、20~30℃で5時間撹拌し、溶液を得た。
(2)
 (2S)-2-((4-ヨードベンゾイル)(メチル)アミノ)-N,2-ジメチル-N’-(テトラヒドロ-2H-ピラン-2-イルオキシ)マロンアミド20.0g、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド0.22g、ヨウ化銅(I)0.12g、トリエチルアミン14.5gおよびN-メチルピロリドン40mLの混合物を、窒素雰囲気下、30~40℃で1時間撹拌した。反応混合物に、同温度で(1)で得られた溶液を3時間かけて加え、同温度で2時間撹拌した。反応混合物に酢酸エチル200mLを加え、0~10℃に冷却し、5%硫酸アンモニウム水溶液100mLを加えた後、6mol/L塩酸14.5mLおよび5%炭酸水素ナトリウム水溶液4.5mLを加え、pH6~7に調整した。有機層を分取し、40%硫酸アンモニウム水溶液100mLで1回、10%N-アセチルシステイン水溶液100mLで1回、5%炭酸水素ナトリウム水溶液100mLで2回および水100mLで1回洗浄し、減圧下で溶媒を留去した。得られた残留物に酢酸エチル160mLを加え、溶解を確認した後、30~35℃に昇温した。得られた混合物にヘプタン150mLを加えた後、種晶100mgを加え、同温度で1時間撹拌した。得られた混合物にヘプタン50mLを加え、30~35℃で1時間撹拌した。得られた混合物にヘプタン200mLを1時間かけて加え、同温度で1時間撹拌した。得られた混合物を20~30℃に冷却し、同温度で30分間撹拌した後、終夜静置した。得られた混合物を0~10℃に冷却し、同温度で1時間撹拌した後、固形物を濾取し、酢酸エチルおよびヘプタンの混合溶媒(酢酸エチル:ヘプタン=1:10)40mLで2回洗浄し、(2S)-2-((4-((4-((4S)-2,2-ジメチル-1,3-ジオキソラン-4-イル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N,2-ジメチル-N’-(テトラヒドロ-2H-ピラン-2-イルオキシ)マロンアミド20.5gを淡黄色固体として得た。
1H-NMR(600MHz,CDCl3)δ値:1.50(3H,s),1.52-1.74(3H,m),1.56(3H,s),1.75-1.90(3H,m),[1.81],1.82(3H,s),[2.84],2.85(3H,d,J=4.8Hz),[3.17],3.20(3H,s),[3.53-3.60],3.62-3.68(1H,m),3.70(1H,t,J=7.8Hz),[3.83-3.91],3.98-4.06(1H,m),4.33(1H,dd,J=8.4,6.0Hz),[4.92-4.98],4.98-5.03(1H,m),5.09(1H,t,J=6.0Hz),[6.98-7.05],7.61-7.67(1H,m),7.37(2H,d,J=8.4Hz),7.47-7.55(4H,m),7.58(2H,d,J=8.4Hz),[10.14],10.54(1H,s).
Figure JPOXMLDOC01-appb-C000019
 (2S)-2-((4-((4-((4S)-2,2-ジメチル-1,3-ジオキソラン-4-イル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N,2-ジメチル-N’-(テトラヒドロ-2H-ピラン-2-イルオキシ)マロンアミド3.46g、アセトン3mLおよび2-プロパノール21mLの混合物に、窒素雰囲気下、0~10℃でメタンスルホン酸121μLを加え、同温度で48時間撹拌した。反応混合物に2-メチルテトラヒドロフラン60mL、20%塩化ナトリウム水溶液60mLおよび5%炭酸水素ナトリウム水溶液6mLを加えた。有機層を分取し、20%塩化ナトリウム水溶液60mLで洗浄後、活性炭0.30gを加え、20~30℃で2.5時間撹拌した。不溶物を濾去し、減圧下で溶媒を留去した。得られた残留物にアセトニトリル12mLおよび水3mLを加え、35~40℃に昇温し、溶解を確認した後、水12.7mLを加え、同温度で1時間撹拌した。得られた混合物を20~30℃に冷却後、同温度で1時間撹拌し、終夜静置した。得られた混合物に水47.9mLを1時間かけて加え、20~30℃で1時間撹拌後、0~10℃に冷却し、同温度で3.5時間撹拌した。固形物を濾取し、10%アセトニトリル水溶液6mLで2回洗浄し、(2S)-2-((4-((4-((4S)-2,2-ジメチル-1,3-ジオキソラン-4-イル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミド2.65gを白色固体として得た。
1H-NMR(600MHz,DMSO-d6)δ値:1.41(3H,s),1.47(3H,s),1.62(3H,s),2.65(3H,d,J=4.8Hz),3.01(3H,s),3.59(1H,t,J=8.4Hz),4.33(1H,dd,J=8.4,7.2Hz),5.11(1H,t,J=6.6Hz),7.44(2H,d,J=8.4Hz),7.59(4H,d,J=8.4Hz),7.65(2H,d,J=8.4Hz),8.47-8.57(1H,m),8.98(1H,s),10.97(1H,s).
参考例1 I型結晶
 特許文献1に記載の方法によって、I型結晶を得た。
 赤外吸収スペクトル(ATR法)を図1に示す。
 粉末X線回折パターンを図2および表8に示す。
水分:4.1%
Figure JPOXMLDOC01-appb-T000020
実施例1 II型結晶
 I型結晶0.20gの50%アセトニトリル水2mL懸濁液を20~30℃で21時間撹拌した。固形物をろ取し、白色固体のII型結晶0.13gを得た。
 赤外吸収スペクトル(ATR法)を図3に示す。
 粉末X線回折パターンを図4および表9に示す。
水分:3.9%
IR(ATR):1475,1606,1683,3134,3365cm-1
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-C000022
 (2S)-2-((4-((4-((4S)-2,2-ジメチル-1,3-ジオキソラン-4-イル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミド180gおよび2-プロパノール900mLの混合物に、18~20℃で1mol/L塩酸360mLを加え、20~26℃で10時間撹拌後、終夜静置した。反応混合物に24~25℃で水540mLを加え、25℃で45分間撹拌した。固形物を濾取し、50%2-プロパノール水溶液180mL,水540mLおよび80%2-プロパノール水溶液540mLで順次洗浄し、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物114gを白色固体として得た。
 得られた固体を実施例3の種晶として使用した。
Figure JPOXMLDOC01-appb-C000023
 (2S)-2-((4-((4-((4S)-2,2-ジメチル-1,3-ジオキソラン-4-イル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミド2.00gおよびアセトニトリル20mLの混合物に、5~10℃で1mol/L塩酸4mLを加え、同温度で18.5時間撹拌した。反応混合物に炭酸水素ナトリウム0.34gおよび水8.1mLの混合物を加え、50~60℃に昇温した。溶解を確認した後、5%炭酸水素ナトリウム水溶液および1mol/L塩酸を用いてpH5~6に調整した。得られた混合物を35~40℃に冷却し、種晶10mgを加え、同温度で1時間撹拌した。得られた混合物を30~35℃に冷却し、水47mLを2時間かけて加え、同温度で1時間撹拌した。得られた混合物を22.5~27.5℃に冷却し、同温度で1時間撹拌後、終夜静置した。得られた混合物を12.5~17.5℃に冷却し、同温度で1時間撹拌した。得られた混合物を0~5℃に冷却後、同温度で3時間撹拌した。固形物を濾取し、10%アセトニトリル水溶液2mLで2回洗浄し、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物1.62gを白色固体として得た。
 赤外吸収スペクトル(ATR法)を図5に示す。
 粉末X線回折パターンを図6および表10に示す。
水分:4.1%
IR(ATR):1474,1605,1682,3132,3363cm-1
光学純度:>99%ee(>99%de)
HPLC測定条件
 測定波長:290nm
 カラム:CHIRALCEL OZ-H(株式会社ダイセル)、粒子径:5μm、内径4.6mm×長さ250mm
 カラム温度:40℃
 流量:0.7mL/分
 移動相:ヘキサン/エタノール/酢酸=650/350/5
1H-NMR(600MHz,DMSO-d6)δ値:1.62(3H,s),2.65(3H,d,J=3.6Hz),3.01(3H,s),3.40-3.51(2H,m),4.53-4.62(1H,m),4.77(1H,t,J=5.4Hz),5.36(1H,d,J=4.2Hz),7.41(2H,d,J=7.8Hz),7.53(2H,d,J=7.8Hz),7.58(2H,d,J=7.8Hz),7.64(2H,d,J=8.4Hz),8.52(1H,d,J=4.2Hz),8.98(1H,s),10.97(1H,s).
Figure JPOXMLDOC01-appb-T000024
実施例4 III型結晶
 II型結晶150gのメタノール450mL懸濁液を20~25℃で3時間20分間攪拌した後、氷冷下で15分間攪拌した。固形物をろ取し、白色固体のIII型結晶108gを得た。
 赤外吸収スペクトル(ATR法)を図7に示す。
 粉末X線回折パターンを図8および表11に示す。
水分:0.2%
IR(ATR):1484,1608,1688,3288,3475cm-1
Figure JPOXMLDOC01-appb-T000025
実施例5 III型結晶
 II型結晶16.5gのメタノール49.5mL懸濁液を20~30℃で3時間攪拌した。固形物を濾取し、メタノール33mLで2回洗浄し、白色固体のIII型結晶12.0gを得た。
 赤外吸収スペクトル(ATR法)を図9に示す。
 粉末X線回折パターンを図10および表12に示す。
 得られた固体を実施例11の種晶として使用した。
水分:0.3%
IR(ATR):1481,1607,1688,3286,3475cm-1
1H-NMR(400MHz,DMSO-d6)δ値:1.63(3H,s),2.65(3H,d,J=4.8Hz),3.02(3H,s),3.40-3.51(2H,m),4.53-4.62(1H,m),4.77(1H,t,J=5.8Hz),5.37(1H,d,J=4.4Hz),7.41(2H,d,J=8.0Hz),7.53(2H,d,J=8.4Hz),7.59(2H,d,J=8.0Hz),7.64(2H,d,J=8.4Hz),8.46-8.58(1H,m),8.99(1H,d,J=1.2Hz),10.98(1H,s).
Figure JPOXMLDOC01-appb-T000026
実施例6 III型結晶
 メタノールの代わりにエタノールを用い、実施例4と同様にして、III型結晶を得た。
実施例7 III型結晶
 メタノールの代わりに酢酸エチルを用い、実施例4と同様にして、III型結晶を得た。
実施例8 III型結晶
 メタノールの代わりにテトラヒドロフランを用い、実施例4と同様にして、III型結晶を得た。
実施例9 III型結晶
 メタノールの代わりにアセトニトリルを用い、実施例4と同様にして、III型結晶を得た。
実施例10 III型結晶
 II型結晶の代わりにI型結晶を用い、実施例4と同様にして、III型結晶を得た。
実施例11 III型結晶
 メタノール2mLおよびジメチルスルホキシド0.5mLの混液に、窒素雰囲気下、0~10℃でII型結晶1.00gを加え、同温度で4分間撹拌した。溶解確認後、20~25℃に昇温し、メタノール2mLおよび酢酸エチル2mLを加え、III型結晶の種結晶を加え、同温度で2時間撹拌した。反応混合物に20~25℃で酢酸エチル8mLを30分間かけて加え、同温度で1時間撹拌した。反応混合物に20~25℃でヘプタン10mLを30分間かけて加え、同温度で1時間撹拌した。反応混合物を0~10℃まで冷却し、同温度で1時間撹拌した。固形物を濾取し、酢酸エチル2mLで2回洗浄し、白色固体のIII型結晶0.90gを得た。
 赤外吸収スペクトル(ATR法)および粉末X線回折パターンは、実施例5と一致した。
水分:0.1%
光学純度:>99%ee(>99%de)
HPLC測定条件
 測定波長:290nm
 カラム:CHIRALCEL OZ-H(株式会社ダイセル)、粒子径:5μm、内径4.6mm×長さ250mm
 カラム温度:40℃
 流量:0.7mL/分
 移動相:ヘキサン/エタノール/酢酸=650/350/5
 本発明の結晶は、安定性に優れ、取り扱い易く、医薬品の原薬として有用であり、本発明の製造方法は、II型結晶およびIII型結晶の工業的製造方法として有用である。

Claims (11)

  1.  粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°、10.8±0.2°、12.0±0.2°および14.4±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物の結晶。
  2.  粉末X線回折において、回折角度(2θ)3.8±0.2°、7.7±0.2°、10.8±0.2°、12.0±0.2°、14.4±0.2°、16.3±0.2°、17.0±0.2°および21.8±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物の結晶。
  3.  粉末X線回折において、回折角度(2θ)8.2±0.2°、12.4±0.2°、13.3±0.2°、15.2±0.2°および16.2±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの結晶。
  4.  粉末X線回折において、回折角度(2θ)8.2±0.2°、12.4±0.2°、13.3±0.2°、15.2±0.2°、16.2±0.2°、19.0±0.2°、20.2±0.2°および22.8±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの結晶。
  5.  請求項1~4のいずれか一項に記載の結晶を含む、医薬用組成物。
  6.  (1)(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミド、
    (2)水、および、
    (3)有機溶媒、
    を含む混合物を攪拌する工程、
    を含む、請求項1または2に記載の結晶の製造方法であって、
    有機溶媒が、アルコール類、エーテル類、ケトン類およびニトリル類から選ばれる一種または二種以上である、製造方法。
  7.  アルコール類が、メタノール、エタノールおよび2-プロパノールであり、
    エーテル類が、テトラヒドロフランであり、
    ケトン類が、アセトンであり、
    ニトリル類が、アセトニトリルである、請求項6に記載の製造方法。
  8.  (2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドが、粉末X線回折において、回折角度(2θ)3.5±0.2°、16.2±0.2°、16.5±0.2°、22.4±0.2°および22.7±0.2°に回折ピークを有する、(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドの水和物の結晶である、請求項6または7に記載の製造方法。
  9.  水の不存在下、
    (1)(2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミド、および、
    (2)有機溶媒、
    を含む混合物を攪拌する工程、を含む、請求項3または4に記載の結晶の製造方法であって、
    有機溶媒が、脂肪族炭化水素類、アルコール類、エーテル類、ケトン類、エステル類、スルホキシド類、ニトリル類およびアミド類から選ばれる一種または二種以上である、製造方法。
  10.  脂肪族炭化水素類が、ヘプタンであり、
    アルコール類が、メタノール、エタノールおよび2-プロパノールであり、
    エーテル類が、テトラヒドロフランであり、
    ケトン類が、アセトンであり、
    エステル類が酢酸エチルであり、
    スルホキシド類が、ジメチルスルホキシドであり、
    ニトリル類が、アセトニトリルであり、
    アミド類が、ジメチルアセトアミドである、請求項9に記載の製造方法。
  11.  (2S)-2-((4-((4-((1S)-1,2-ジヒドロキシエチル)フェニル)エチニル)ベンゾイル)(メチル)アミノ)-N-ヒドロキシ-N’,2-ジメチルマロンアミドが、請求項1または2に記載の結晶である、請求項9または10に記載の製造方法。
PCT/JP2017/013290 2016-03-31 2017-03-30 新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物 WO2017170885A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780021137.7A CN109415302A (zh) 2016-03-31 2017-03-30 新的异羟肟酸衍生物的晶体、其制造方法及医药用组合物
US16/089,667 US20200308103A1 (en) 2016-03-31 2017-03-30 Novel crystals of hydroxamic acid derivative, production method thereof, and pharmaceutical composition
JP2018509446A JPWO2017170885A1 (ja) 2016-03-31 2017-03-30 新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物
EP17775419.9A EP3438088A4 (en) 2016-03-31 2017-03-30 CRYSTALS OF A NEW HYDROXAMIC ACID DERIVATIVE, PROCESS FOR PRODUCTION THEREOF AND PHARMACEUTICAL COMPOSITION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070504 2016-03-31
JP2016-070504 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170885A1 true WO2017170885A1 (ja) 2017-10-05

Family

ID=59965817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013290 WO2017170885A1 (ja) 2016-03-31 2017-03-30 新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物

Country Status (5)

Country Link
US (1) US20200308103A1 (ja)
EP (1) EP3438088A4 (ja)
JP (1) JPWO2017170885A1 (ja)
CN (1) CN109415302A (ja)
WO (1) WO2017170885A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200308105A1 (en) * 2016-03-31 2020-10-01 Fujifilm Toyama Chemical Co., Ltd. Novel method for producing hydroxamic acid derivative, and intermediate therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142298A1 (ja) * 2013-03-15 2014-09-18 富山化学工業株式会社 新規なヒドロキサム酸誘導体またはその塩
WO2016039433A1 (ja) * 2014-09-12 2016-03-17 富山化学工業株式会社 新規なヒドロキサム酸誘導体またはその塩を含有する医薬組成物
WO2016039432A1 (ja) * 2014-09-12 2016-03-17 富山化学工業株式会社 新規なヒドロキサム酸誘導体および抗菌性物質を組み合わせて使用する方法
JP2017014199A (ja) * 2015-06-30 2017-01-19 富山化学工業株式会社 新規なヒドロキサム酸誘導体の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562155B8 (en) * 2010-04-20 2019-07-17 Taisho Pharmaceutical Co., Ltd. Hydroxamic acid derivative
WO2013170165A1 (en) * 2012-05-10 2013-11-14 Achaogen, Inc. Antibacterial agents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142298A1 (ja) * 2013-03-15 2014-09-18 富山化学工業株式会社 新規なヒドロキサム酸誘導体またはその塩
WO2016039433A1 (ja) * 2014-09-12 2016-03-17 富山化学工業株式会社 新規なヒドロキサム酸誘導体またはその塩を含有する医薬組成物
WO2016039432A1 (ja) * 2014-09-12 2016-03-17 富山化学工業株式会社 新規なヒドロキサム酸誘導体および抗菌性物質を組み合わせて使用する方法
JP2017014199A (ja) * 2015-06-30 2017-01-19 富山化学工業株式会社 新規なヒドロキサム酸誘導体の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438088A4 *
SHOZO ASAHARA, YOZAI HANDBOOK, 1985, pages 47 - 51, XP009500162 *
YUKI KAGOBUTSU KESSHO SAKUSEI HANDBOOK -GENRI TO KNOW-HOW, 25 July 2008 (2008-07-25), pages 57 - 84, XP 008183996 *
YUSAKU SHIOJI, KOKEI SEIZAI NO SEIZO GIJUTSU, 27 January 2003 (2003-01-27), pages 12 - 13, XP 009507058 *

Also Published As

Publication number Publication date
US20200308103A1 (en) 2020-10-01
EP3438088A4 (en) 2019-04-17
JPWO2017170885A1 (ja) 2019-01-31
CN109415302A (zh) 2019-03-01
EP3438088A1 (en) 2019-02-06

Similar Documents

Publication Publication Date Title
EP1861389B1 (fr) Sel besylate de la 7-(2-(4-(3-trifluoromethyl-phenyl)-1,2,3,6-tetrahydro-pyrid-1-yl)ethyl) isoquinoleine, sa preparation et son utilisation en therapeutique
JP2007302658A (ja) イマチニブメシレートの多形フォーム及び新規結晶フォーム及び非晶フォーム並びにフォームαの調製方法
US8501960B2 (en) Saxagliptin intermediates, saxagliptin polymorphs, and processes for preparation thereof
EP3162801B1 (en) Salt of halogen-substituted heterocyclic compound
WO2006057397A1 (ja) (s)-(-)-1-(4-フルオロイソキノリン-5-イル)スルホニル-2-メチル-1,4-ホモピペラジン塩酸塩・二水和物
US10519117B2 (en) Crystal forms of 6-bromo-3-hydroxy-2-pyrazinecarboxamide
JP5344942B2 (ja) 多形性形態
WO2014051056A1 (ja) グリシン誘導体の結晶及びその医薬用途
EP2455368B1 (en) 2-[[[2-[(hydroxyacetyl)amino]-4-pyridinyl]methyl]thio]-n-[4-(trifluoromethoxy)phenyl]-3-pyridinecarboxamide benzene- sulfonate, crystals of same, polymorphs thereof, and processes for production thereof
JP6980779B2 (ja) 肝臓送達に基づく抗ウイルス性プロドラッグであるヌクレオシド環状リン酸エステル化合物およびその使用
WO2017170885A1 (ja) 新規なヒドロキサム酸誘導体の結晶、それらの製造方法および医薬用組成物
JP5642766B2 (ja) アデフォビルジピボキシルの新規結晶形及びその製造方法
TW200900392A (en) Novel crystalline bepotastine metal salt hydrate, method for preparing same, and pharmaceutical composition comprising same
KR20170033684A (ko) 리나글립틴 결정형 및 이의 제조방법
JP2014521729A (ja) ピラゾロピリミジノン化合物の塩、多形体およびその薬物組成物、製造方法および応用
JP2023506025A (ja) レンボレキサントの固体形態
WO2017038815A1 (ja) 5-シクロプロピル-2-((1-(3-フルオロベンジル)-1h-インドール-5-イル)アミノ)ニコチン酸の結晶
JP2019529410A (ja) 純粋で安定な結晶のラルテグラビルカリウム3型の製造方法
WO2018159734A1 (ja) 5-シクロプロピル-2-((1-(3-フルオロベンジル)-1h-インドール-5-イル)アミノ)ニコチン酸の結晶の製造方法
KR20120084790A (ko) 치환 페닐알칸산의 신규 결정 및 제조 방법
EP3438090A1 (en) Novel method for producing hydroxamic acid derivative, and intermediate thereof
FR2932480A1 (fr) Phenyl-alkyl-piperazines ayant une activite modulatrice du tnf
JP2019116445A (ja) スルホンアミド化合物の結晶形
KR20130033243A (ko) 아데포비어 디피복실의 공결정
JPH05239014A (ja) 置換フェニルスルホニルアミノアルカン酸誘導体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509446

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775419

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775419

Country of ref document: EP

Effective date: 20181031

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775419

Country of ref document: EP

Kind code of ref document: A1