WO2017170808A1 - 四員環ラクトンの製造方法及び不均一系触媒 - Google Patents

四員環ラクトンの製造方法及び不均一系触媒 Download PDF

Info

Publication number
WO2017170808A1
WO2017170808A1 PCT/JP2017/013130 JP2017013130W WO2017170808A1 WO 2017170808 A1 WO2017170808 A1 WO 2017170808A1 JP 2017013130 W JP2017013130 W JP 2017013130W WO 2017170808 A1 WO2017170808 A1 WO 2017170808A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal
catalyst
carrier
oxide
Prior art date
Application number
PCT/JP2017/013130
Other languages
English (en)
French (fr)
Inventor
信 徳永
美乃 村山
侑也 生武
優人 南
和久 大嶽
Original Assignee
国立大学法人九州大学
丸善石油化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 丸善石油化学株式会社 filed Critical 国立大学法人九州大学
Priority to JP2018509403A priority Critical patent/JPWO2017170808A1/ja
Publication of WO2017170808A1 publication Critical patent/WO2017170808A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/128Halogens; Compounds thereof with iron group metals or platinum group metals
    • B01J27/13Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/10Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having one or more double bonds between ring members or between ring members and non-ring members
    • C07D305/12Beta-lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing a four-membered ring lactone and a heterogeneous catalyst. More specifically, the present invention relates to a method for producing a four-membered lactone by an epoxide carbonylation reaction, and a heterogeneous catalyst for use in the epoxide carbonylation reaction.
  • Lactone is an industrially important compound as a raw material and intermediate for pharmaceuticals and fragrances.
  • four-membered ring lactones have high reactivity due to the distorted structure, and are very useful compounds as raw materials for biodegradable resins, acrylic acid, succinic anhydride, etc. as well as raw materials and intermediates for pharmaceuticals. is there.
  • five-membered and six-membered lactones can be easily obtained mainly by dehydration condensation of hydroxycarboxylic acid or the like, but four-membered lactones are difficult to synthesize by dehydration condensation, and other methods have been required.
  • Non-Patent Document 1 reports a method of carbonylating an epoxide under high-pressure carbon monoxide using a homogeneous cobalt carbonyl catalyst Co 2 (CO) 8 .
  • Non-Patent Document 2 reports a method of efficiently carbonylating an epoxide under high-pressure carbon monoxide using a homogeneous bimetallic catalyst such as a cobalt carbonyl / porphyrin aluminum complex.
  • Patent Document 1 reports a method of carbonylation in a high boiling point solvent such as sulfolane in the presence of a homogeneous bimetallic catalyst such as cobalt carbonyl / porphyrin aluminum complex, and the reaction solution is distilled under reduced pressure.
  • a method is disclosed in which a fraction containing a target four-membered ring lactone and a fraction containing a catalyst and a high-boiling solvent are separated, and the fraction containing the catalyst is recycled to the reaction system.
  • Patent Document 2 reports carbonylation of epoxides using a heterogeneous catalyst in which gold is supported on cobalt oxide.
  • a catalyst in which gold is supported on cobalt oxide is also known as a catalyst in an olefin hydroformylation reaction, and it is reported that the catalytic activity is improved by pretreating the catalyst with hydrogen gas. (Patent Document 3).
  • a cobalt oxide-supported gold catalyst is stable against air and water, has excellent handleability, and can easily separate the catalyst and the product by solid-liquid separation or the like.
  • the heterogeneous reaction has a low yield of the four-membered ring lactone and is difficult to apply to industrial production. According to the study by the present inventors, the target four-membered ring lactone was not obtained at all by using only the catalyst described in Patent Document 2.
  • the problem to be solved by the present invention is that the epoxide carbonylation reaction using a heterogeneous catalyst that can be easily separated from the product and can be handled in the air is more efficient at a higher yield.
  • Another object is to provide a method for producing a four-membered lactone.
  • Another problem to be solved by the present invention is to provide a heterogeneous catalyst that can be easily separated from the product, can be handled in the air, and exhibits high activity in the carbonylation reaction of epoxides. There is to do.
  • the present inventors have found that a specific Lewis acid and epoxide in a epoxide carbonylation reaction using a transition metal and / or a metal oxide catalyst supporting the oxide thereof.
  • a specific Lewis base By carrying out the reaction in the presence of a specific Lewis base, the inventors have found that the reactivity is dramatically improved as compared with the epoxide carbonylation reaction using a conventional heterogeneous catalyst, and the present invention has been completed.
  • the present inventors have found that a heterogeneous catalyst supporting a specific transition metal and / or its oxide exhibits very high activity in the carbonylation reaction of epoxide, leading to the completion of the present invention. It was.
  • the present invention provides the following ⁇ 1> to ⁇ 11>.
  • ⁇ 1> A method for producing a four-membered lactone by a carbonylation reaction of an epoxide, wherein the epoxide and carbon monoxide are (A) An oxide of one or more metals selected from Group 5 to Group 10 transition metals is used as a carrier, and Group 10 transition metal, Group 11 transition metal, and oxides thereof are used as the carrier.
  • this manufacturing method is also referred to as “the manufacturing method of the present invention”.
  • the metal Lewis acid (B) is one or more selected from an organometallic compound, a metal halide, and a metal triflate.
  • ⁇ 3> The production method according to ⁇ 1>, wherein the metal Lewis acid (B) is an organoaluminum compound.
  • the Lewis base (C) is one or more selected from a chain ether, a cyclic ether, a chain amine, a cyclic amine, and a nitrile, according to any one of ⁇ 1> to ⁇ 3> Production method.
  • ⁇ 5> The production method according to any one of ⁇ 1> to ⁇ 3>, wherein the Lewis base (C) is glycol dialkyl ether.
  • a pretreatment is performed in which hydrogen or a mixed gas containing hydrogen and carbon monoxide is brought into contact with the heterogeneous catalyst (A).
  • the manufacturing method of crab ⁇ 7>
  • the material to be supported by the heterogeneous catalyst (A) is one or more selected from palladium, platinum, gold, and oxides thereof. Manufacturing method.
  • An oxide of one or more metals selected from Group 5 to Group 10 transition metals is used as a carrier, and the carrier carries at least one selected from Group 10 transition metals and oxides thereof.
  • the heterogeneous catalyst used in the epoxide carbonylation reaction (however, the supported material is different from the metal oxide used as the carrier).
  • this catalyst is also referred to as “catalyst X of the present invention”.
  • the supported material is at least one selected from palladium and an oxide thereof.
  • the support is cobalt oxide.
  • a four-membered lactone can be efficiently obtained in a higher yield than the epoxide carbonylation reaction using a conventional heterogeneous catalyst.
  • the catalyst X of the present invention can be easily separated from the product, can be handled in air, and exhibits a very high catalytic activity for the epoxide carbonylation reaction.
  • the epoxide used as a raw material in the production method of the present invention is not particularly limited as long as it is a compound containing at least one three-membered ether structure in its chemical structure.
  • Examples of the epoxide include compounds represented by the following formula (1).
  • R 1 to R 4 each independently represent a hydrogen atom or a substituted or unsubstituted hydrocarbon group. However, any one of R 3 and R 4 may form a ring together with any one of R 1 and R 2 . ]
  • the hydrocarbon group represented by R 1 to R 4 is a concept including an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, and an aromatic hydrocarbon group, and is any of linear, branched, and cyclic. It may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the number of carbon atoms of the aliphatic hydrocarbon group is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 4.
  • an alkyl group is preferable.
  • Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group and the like.
  • the carbon number of the alicyclic hydrocarbon group is preferably 3 to 12, more preferably 3 to 7.
  • a cycloalkyl group is preferable.
  • Specific examples include a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the number of carbon atoms of the aromatic hydrocarbon group is preferably 6 to 20, and more preferably 6 to 12.
  • an aryl group and an aralkyl group are preferable.
  • the aryl group include a phenyl group.
  • the aralkyl group include a benzyl group and a phenethyl group.
  • the substituent in R 1 to R 4 include halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group; (meth) acryloyloxy group and the like.
  • Examples of the ring formed by any one of R 3 and R 4 together with any one of R 1 and R 2 include cycloalkane rings such as cyclohexane ring, methylcyclohexane ring, cycloheptane ring, and cyclooctane ring. .
  • the number of carbon atoms in the ring is preferably 3 to 10, and more preferably 5 to 7.
  • a combination of R 1 to R 4 includes a combination in which R 1 and R 2 are a hydrogen atom or a substituted or unsubstituted hydrocarbon group, and R 3 and R 4 are a hydrogen atom, and R 1 and R 3 are A combination that is a hydrogen atom and R 2 and R 4 form a ring is preferable.
  • the epoxide include ethylene oxide, propylene oxide, isobutene oxide, 1-butene oxide, 2-butene oxide, styrene oxide, 1-hexene oxide, 1-octene oxide, cyclohexene oxide, glycidyl methyl ether, glycidyl (meta ) Acrylate, epichlorohydrin and the like.
  • ethylene oxide, propylene oxide, and 1-octene oxide are more preferable, and ethylene oxide and propylene oxide are particularly preferable.
  • the four-membered ring lactone obtained by the production method of the present invention is a lactone obtained by carbonylation of the epoxide.
  • the lactone include ⁇ -propiolactone, ⁇ -butyrolactone, 4-hexyloxetane-2-one and the like.
  • Carbon monoxide gas is usually used as the other raw material, carbon monoxide.
  • the gas is not necessarily pure, and may contain a small amount of an inert gas such as carbon dioxide, nitrogen, or methane. Further, it may be a synthesis gas containing carbon monoxide and hydrogen as main components.
  • the heterogeneous catalyst used in the production method of the present invention uses, as a carrier, an oxide of one or more metals selected from Group 5 to Group 10 transition metals, and the carrier contains a Group 10 transition metal, Heterogeneous catalyst in which one or more selected from Group 11 transition metals and oxides thereof are supported (however, the supported material is different from the metal oxide used as the carrier) It is.
  • Group 5 to Group 10 transition metals in the support include Group 5 transition metals such as vanadium (V); Group 6 transition metals such as chromium (Cr), molybdenum (Mo), tungsten (W), etc. Group 7 transition metals such as manganese (Mn) and rhenium (Re); Group 8 transition metals such as iron (Fe), ruthenium (Ru) and osmium (Os); cobalt (Co) and rhodium (Rh) ), Group 9 transition metals such as iridium (Ir); Group 10 transition metals such as nickel (Ni).
  • Group 5 transition metals such as vanadium (V); Group 6 transition metals such as chromium (Cr), molybdenum (Mo), tungsten (W), etc.
  • Group 7 transition metals such as manganese (Mn) and rhenium (Re);
  • Group 8 transition metals such as iron (Fe), ruthenium (Ru) and osmium (Os
  • transition metals of Group 8 to Group 9 are preferable, iron (Fe) and cobalt (Co) are more preferable in terms of inexpensiveness, and cobalt (Co) is particularly preferable in terms of catalytic activity.
  • the support include iron oxide (eg, FeO, Fe 2 O 3 , Fe 3 O 4, etc.), cobalt oxide (eg, CoO, Co 2 O 3 , Co 3 O 4, etc.).
  • cobalt oxide is particularly preferable from the viewpoint of catalytic activity.
  • the transition metal oxide may be a single metal oxide or a composite oxide of two or more metals. Moreover, the mixture of the oxide from which the valences of the same metal differ may be sufficient.
  • the transition metals of Group 10 and Group 11 in the supported material include Group 10 transition metals such as palladium (Pd) and platinum (Pt); 11th metals such as gold (Au) and silver (Ag).
  • the transition metal of a group is mentioned, Among these, 1 type may be used or 2 or more types may be used. Among these, platinum (Pt), palladium (Pd), and gold (Au) are preferable in terms of catalytic activity, Group 10 transition metals are more preferable, platinum (Pt), and palladium (Pd) are more preferable. (Pd) is particularly preferred. Note that a metal species different from the metal oxide used as the carrier is used for the transition metal in the supported object.
  • the metal species in the carrier is palladium
  • the metal species in the supported material is not palladium
  • the metal species in the carrier is nickel
  • the metal species in the supported material is not nickel and the metal species in the carrier is platinum.
  • the metal species in the supported object is not platinum.
  • palladium oxide is preferred.
  • the transition metal oxide may be a mixture of oxides of different valences of the same metal.
  • catalytic activity is imparted by reducing part or all of the transition metal by pretreatment with hydrogen or a mixed gas containing hydrogen and carbon monoxide. be able to.
  • the amount of the supported material is not particularly limited, but is preferably 0.1 atomic% or more, more preferably 1 atomic% or more, and preferably 50 atoms, based on the total amount of metal in the heterogeneous catalyst. % Or less, more preferably 30 atomic% or less, still more preferably 20 atomic% or less, and particularly preferably 14 atomic% or less.
  • the “atomic%” in the present invention can be determined from the mol% of the precursor of the supported substance in the total moles of the precursor of the support and the precursor of the supported substance used in the catalyst preparation stage.
  • the shape of the heterogeneous catalyst is not particularly limited, and any shape such as powder, crushed, particulate, and columnar can be used.
  • one type of heterogeneous catalyst may be used alone, or two or more types of catalysts having different types and supported amounts; specific surface areas or shapes of the catalysts may be used in combination.
  • the heterogeneous catalyst is preferably one in which a nanoparticle layer of a supported material is formed on the surface of the carrier.
  • the method for supporting these transition metals or the like (supported materials) on the carrier is not particularly limited, but, for example, a compound containing in the molecule a Group 5 to Group 10 transition metal capable of forming a metal oxide serving as a carrier. (Hereinafter also referred to as compound ⁇ ) and a compound containing a group 10 or group 11 transition metal (different from a transition metal serving as a carrier) in the molecule (hereinafter also referred to as compound ⁇ ), The method (coprecipitation method) which makes it react with a precipitant and precipitates is mentioned. By separating the precipitate deposited by the coprecipitation method and baking it, nanoparticles of the supported material can be formed on the surface of the carrier.
  • the type and form of compound ⁇ are not particularly limited, but it is preferably used as an aqueous solution using a water-soluble metal salt.
  • the metal salt include halides such as chloride, bromide and iodide; salts of inorganic acids such as nitrates and sulfates; salts of organic acids such as acetates and the like. These metal salts may be used alone or in combination of two or more.
  • the type and form of compound ⁇ are not particularly limited, but it is preferably used as an aqueous solution using a water-soluble metal salt or complex salt.
  • metal salt examples include halides such as chloride, bromide and iodide; salts of inorganic acids such as nitrates and sulfates; salts of organic acids such as acetates and the like.
  • complex salts include chloroauric acid, chloroplatinic acid, chloropalladic acid, and salts thereof.
  • these metal salts and metal complex salts may be used by 1 type, or may be used by 2 or more types.
  • the precipitating agent examples include alkalis such as sodium carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide. Concentration of aqueous solution used at the time of coprecipitation, temperature, addition rate of precipitating agent, etc. can be set as appropriate. By controlling these, physical properties such as the amount of supported metal and specific surface area can be adjusted to the desired range. can do.
  • the heterogeneous catalyst thus obtained can be activated by bringing it into contact with hydrogen or a mixed gas containing hydrogen and carbon monoxide to perform pretreatment.
  • This pretreatment is preferably performed under heating, more preferably in a temperature range of 60 to 200 ° C, and further preferably in a temperature range of 80 to 180 ° C.
  • the pressure of hydrogen or a mixed gas containing hydrogen and carbon monoxide is preferably in the range of 0.1 to 30 MPa, more preferably in the range of 1 to 10 MPa.
  • the partial pressure ratio between hydrogen and carbon monoxide is preferably in the range of 90/10 to 10/90, more preferably in the range of 80/20 to 20/80.
  • the contact time is usually in the range of 30 minutes to 48 hours, preferably 1 to 24 hours.
  • the amount of the catalyst used may be appropriately selected depending on the type of epoxide, the type and physical properties of the metal used in the catalyst, the reaction system, the reaction conditions, and the like.
  • the content is from 01 to 10 mol%, preferably from 0.05 to 5 mol%.
  • the metal Lewis acid means a Lewis acid containing a metal atom in the molecule.
  • metal Lewis acids include organometallic compounds, metal halides, metal triflates, and the like.
  • organometallic compound examples include trialkylaluminum (trimethylaluminum, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum, etc.), alkylaluminum hydride (diisobutylaluminum hydride, etc.) ), Organoaluminum compounds such as alkylaluminum halides (such as ethylaluminum sesquichloride, diethylaluminum chloride, ethylaluminum dichloride, isobutylaluminum dichloride), alkylaluminum alkoxides (such as diethylaluminum ethoxide); diethylzinc, diisobutylzinc, di- Organic zinc compounds such as n-hexyl zinc and ethyl zinc (t-butoxide) It is.
  • the metal halide examples include magnesium halides such as magnesium chloride and magnesium bromide; calcium halides such as calcium chloride and calcium bromide; titanium halides such as titanium chloride (IV) and titanium bromide (IV); Iron halides such as iron (II) chloride and iron (III) chloride; Cobalt halides such as cobalt (II) chloride and cobalt (III); Nickel halides such as nickel (II) chloride; Copper (II) chloride Copper halides such as copper (II) bromide; Zinc halides such as zinc chloride and zinc bromide; Aluminum halides such as aluminum chloride and aluminum bromide; Tin (II) chloride, tin (IV) chloride, odor And tin halides such as tin (II) halide and tin (IV) bromide.
  • magnesium halides such as magnesium chloride and magnesium bromide
  • calcium halides such as calcium chloride and calcium bromide
  • metal triflate examples include group 3 metal triflates such as scandium triflate, yttrium triflate, lanthanum triflate, and cerium triflate.
  • the triflate means trifluoromethane sulfonate.
  • metal Lewis acids may be used individually by 1 type, and may use 2 or more types together.
  • organometallic compounds are preferred, organoaluminum compounds are more preferred, and trialkylaluminums and alkylaluminum halides are particularly preferred from the viewpoint of improving catalytic activity.
  • the amount of the metal Lewis acid used is not particularly limited, but is usually in the range of 0.01 to 10 mol%, preferably in the range of 0.5 to 5 mol% with respect to the epoxide.
  • the Lewis base used in the production method of the present invention contains an atom selected from an oxygen atom and a nitrogen atom in the molecule.
  • the Lewis base may contain only one of oxygen atom and nitrogen atom in the molecule or may contain both in the molecule.
  • Specific examples of such a Lewis base include a chain ether, a cyclic ether, a chain amine, a cyclic amine, and a nitrile.
  • chain ether examples include dialkyl ethers such as dimethyl ether, diethyl ether, ethyl methyl ether, methyl propyl ether, methyl isopropyl ether, methyl butyl ether, methyl isobutyl ether, methyl ter-butyl ether, and amyl methyl ether; glycol dialkyl ether and the like. Can be mentioned. Among glycol dialkyl ethers, a compound represented by the following formula (2) is preferable.
  • R 5 and R 6 each independently represents an alkyl group having 1 to 10 carbon atoms
  • R 7 represents an alkanediyl group having 1 to 6 carbon atoms
  • n represents an integer of 1 or more.
  • the alkyl group represented by R 5 and R 6 has 1 to 10 carbon atoms, preferably 1 to 7 carbon atoms, more preferably 1 to 4 carbon atoms.
  • the alkyl group is preferably a linear or branched alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the alkanediyl group represented by R 7 has 1 to 6 carbon atoms, preferably 2 to 4, more preferably 2 or 3, particularly preferably 2.
  • the alkanediyl group is preferably a linear or branched alkanediyl group.
  • the alkanediyl group include ethane-1,2-diyl group, propane-1,1-diyl group, propane-1,2-diyl group, propane-1,3-diyl group and the like.
  • R 5 to R 7 a combination in which R 5 and R 6 are the same alkyl group and R 7 is an ethane-1,2-diyl group is preferable in terms of catalytic activity and cost. Take as an example.
  • n is preferably an integer of 1 to 100, more preferably an integer of 1 to 50, and even more preferably an integer of 2 to 30 in that it exhibits a remarkable effect in stabilizing the metal Lewis acid and improving the catalytic activity.
  • An integer of ⁇ 10 is particularly preferred.
  • glycol dialkyl ether examples include ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme, boiling point: about 162 ° C.), triethylene glycol dimethyl ether (triglyme), tetraethylene glycol dimethyl ether (tetraglyme), pentaethylene glycol dimethyl ether (penta).
  • ethylene glycol diethyl ether ethyl monoglyme
  • diethylene glycol diethyl ether ethyl diglyme
  • diethylene glycol dibutyl ether butyl diglyme
  • diethylene glycol ethyl methyl ether diethylene glycol isopropyl methyl ether
  • diethylene glycol butyl methyl ether triethylene glycol
  • cyclic ether examples include cyclic monoethers such as tetrahydrofuran (THF); crown ethers such as 12-crown-4, 15-crown-5, and 18-crown-6. Of the cyclic ethers, cyclic monoethers are preferred.
  • chain amines examples include trialkylamines such as triethylamine, tripropylamine, and tributylamine; N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, and the like. Tetraalkylated ethylenediamines; alkylated polyethyleneamines such as N, N, N ′, N ′′, N ′′ -pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetraamine, etc. Can be mentioned.
  • cyclic amine examples include bridged cyclic amines such as quinuclidine and 1,4-diazabicyclo- [2.2.2] octane (DABCO); 1,8-diazabicyclo [5.4.0] undec-7-ene.
  • DBU cyclic diamines having an amidine skeleton such as 1,5-diazabicyclo [4.3.0] non-5-ene (DBN); 1,5,7-triazabicyclo [4.4.0] deca Cyclic triamines having a guanidine skeleton such as -5-ene (TBD); pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 4- (N, N-dimethylamino) pyridine, pyrazine, pyrimidine, imidazole, N-methyl Contains nitrogen atoms such as imidazole, purine, 2,2′-bipyridine, 2,2 ′: 6 ′, 2 ′′ -terpyridine, 3,2 ′: 6 ′, 3 ′′ -terpyridine And heterocyclic aromatic compounds. Of the cyclic amines, heterocyclic aromatic compounds containing nitrogen atoms are preferred.
  • nitriles examples include acetonitrile, propionitrile, butyronitrile, and benzonitrile.
  • Lewis base a Lewis base containing two or more heteroatoms such as dimethyl sulfoxide, sulfolane, dimethylformamide, dimethylacetamide, N-methylpyrrolidone can also be used.
  • Lewis bases may be used individually by 1 type, and may use 2 or more types together.
  • glycol dialkyl ethers are preferable, glymes are more preferable, diglyme, triglyme, tetraglyme, pentag lime, ethyl digiger in view of remarkable effects in stabilizing metal Lewis acid and improving catalytic activity.
  • Glymes having 3 or more donor atoms (number of oxygen atoms) such as lime and butyl diglyme are particularly preferable.
  • the amount of Lewis base used may be equal to or more than the equivalent of metal Lewis acid, and usually 1 mol or more is used per 1 mol of the total amount of metal Lewis acid. Moreover, the upper limit of the usage-amount of a Lewis base is not specifically limited, A Lewis base can also be used as a solvent.
  • glycol dialkyl ether is preferable also in view of excellent solubility of epoxide, carbon monoxide and metal Lewis acid.
  • glymes are more preferred because of their simple structure and low cost, their boiling points are large in terms of boiling point difference from four-membered lactones and are easy to separate by distillation, in terms of thermal stability and catalytic activity. Is particularly preferable when it is 200 ° C. or higher. Examples of glymes having a boiling point of 200 ° C. or higher include triglyme, tetraglyme, pentag lime, and butyl diglyme.
  • the amount used is not particularly limited, but is usually in the range of 0.1 to 100 parts by weight, preferably 0.5 to 30 parts by weight with respect to 1 part by weight of the total amount of epoxide. And more preferably in the range of 1 to 10 parts by mass.
  • the carbonylation reaction may be performed in the presence of a solvent inert to the reaction in addition to the above (A) to (C).
  • Inert solvents include hydrocarbon solvents such as toluene, xylene, hexane, heptane, cyclohexane, and methylcyclohexane; chloroform, methylene chloride, tetrachloride from the standpoint of safety during handling and ease of recovery and purification.
  • a halogenated hydrocarbon solvent such as carbon is used.
  • These inert solvents may be used individually by 1 type, and may use 2 or more types together.
  • the amount of these inert solvents used is not particularly limited, but the total amount of the solvent (the total amount of Lewis base and inert solvent when Lewis base is used as a solvent) relative to 1 part by mass of the epoxide, Usually, it is in the range of 0.1 to 100 parts by mass, preferably in the range of 0.5 to 30 parts by mass, and more preferably in the range of 1 to 10 parts by mass.
  • the carbonylation reaction can be carried out under batch, semi-batch or continuous conditions.
  • a heterogeneous catalyst (A) is charged into a stirred tank reactor, pretreated under hydrogen or a hydrogen / carbon monoxide mixed gas, cooled to room temperature, depressurized, and epoxide is added thereto. Filling with metal Lewis acid (B), Lewis base (C), carbon monoxide and inert solvent (D) if necessary, heating to a predetermined reaction temperature and reacting for a required time, a four-membered ring Lactone can be obtained.
  • the reaction time is usually 30 minutes to 48 hours, preferably 1 to 24 hours.
  • a predetermined reaction temperature is obtained.
  • an epoxide, a metal Lewis acid (B), a Lewis base (C), carbon monoxide and, if necessary, an inert solvent (D) are supplied at a predetermined flow rate, and a heterogeneous catalyst (A ) To obtain a 4-membered ring lactone.
  • the reaction temperature is not particularly limited, but is preferably 0 to 250 ° C., more preferably 25 to 200 ° C., further preferably 50 to 150 ° C., and particularly preferably 75 to 120 ° C. By setting the reaction temperature in such a range, the reaction rate can be increased. In addition, the formation of by-products and the decomposition of the generated four-membered ring lactone can be suppressed.
  • the reaction pressure is preferably 0.1 to 70 MPa, more preferably 0.5 to 30 MPa, still more preferably 1 to 10 MPa, and particularly preferably 4 to 6 MPa as the carbon monoxide pressure.
  • the reaction pressure is preferably 0.1 to 70 MPa, more preferably 0.5 to 30 MPa, still more preferably 1 to 10 MPa, and particularly preferably 4 to 6 MPa as the carbon monoxide pressure.
  • the heterogeneous catalyst (A) can be easily separated from the reaction solution by a separation operation usually used for separation of liquid and solid such as filtration and centrifugation.
  • the separated catalyst can be reused in the epoxide carbonylation reaction. It is also possible to separate the target four-membered lactone from the reaction solution by an operation such as distillation, collect the distillation residue containing the catalyst and the solvent, and reuse it for the epoxide carbonylation reaction.
  • the four-membered ring lactone obtained by the production method of the present invention is dissolved in a solvent, or after isolation / purification, and then a raw material for polymerization of a biodegradable resin or a synthetic raw material such as acrylic acid or succinic anhydride Can be used as Isolation / purification of the four-membered ring lactone can be carried out according to conventional methods such as distillation, recrystallization, reprecipitation, solvent extraction, chromatography and the like.
  • the catalyst X of the present invention uses, as a carrier, an oxide of one or more metals selected from Group 5 to Group 10 transition metals, and the carrier includes at least one selected from Group 10 transition metals and oxides thereof. It is a heterogeneous catalyst used for epoxide carbonylation reaction, in which one kind is supported (however, the supported substance is different from the metal oxide used as a carrier). Among the heterogeneous catalysts used in the production method of the present invention, the catalyst X exhibits a particularly high catalytic activity in the epoxide carbonylation reaction and is particularly useful as a catalyst used in the above reaction.
  • transition metal in the support of the catalyst X of the present invention examples include a Group 5 transition metal such as vanadium (V); a Group 6 transition metal such as chromium (Cr), molybdenum (Mo), tungsten (W); Group 7 transition metals such as (Mn) and rhenium (Re); Group 8 transition metals such as iron (Fe), ruthenium (Ru) and osmium (Os); cobalt (Co), rhodium (Rh), Group 9 transition metals such as iridium (Ir); Group 10 transition metals such as nickel (Ni).
  • a Group 5 transition metal such as vanadium (V); a Group 6 transition metal such as chromium (Cr), molybdenum (Mo), tungsten (W); Group 7 transition metals such as (Mn) and rhenium (Re); Group 8 transition metals such as iron (Fe), ruthenium (Ru) and osmium (Os); cobalt (Co), r
  • transition metals of Group 8 to Group 9 are preferable, iron (Fe) and cobalt (Co) are more preferable in terms of inexpensiveness, and cobalt (Co) is particularly preferable in terms of catalytic activity.
  • the support for the catalyst X include iron oxide (eg, FeO, Fe 2 O 3 , Fe 3 O 4 ), cobalt oxide (eg, CoO, Co 2 O 3 , Co 3 O 4, etc.). Etc.), but cobalt oxide is particularly preferred from the viewpoint of catalytic activity.
  • the transition metal oxide may be a single metal oxide or a composite oxide of two or more metals. Moreover, the mixture of the oxide from which the valences of the same metal differ may be sufficient.
  • examples of the Group 10 transition metal in the supported material of the catalyst X include platinum (Pt), palladium (Pd), and the like, and one of these may be used, or two or more thereof may be used. Among these, palladium (Pd) is particularly preferable from the viewpoint of catalytic activity.
  • a metal species different from the metal oxide used as the carrier is used for the transition metal in the supported object. That is, when the metal species in the carrier is palladium, the metal species in the supported material is not palladium, and when the metal species in the carrier is nickel, the metal species in the supported material is not nickel and the metal species in the carrier is platinum. In this case, the metal species in the supported object is not platinum. Moreover, palladium oxide etc.
  • the transition metal oxide may be a mixture of oxides of different valences of the same metal.
  • catalytic activity can be imparted by reducing part or all of the transition metal by the pretreatment that is brought into contact with the hydrogen or the mixed gas containing hydrogen and carbon monoxide.
  • the supported amount of the supported material is not particularly limited, but is preferably 0.1 atomic% or more, more preferably 1 atomic% or more, and preferably 50 atomic% or less with respect to the total amount of metal in the catalyst X. More preferably, it is 30 atomic percent or less, more preferably 20 atomic percent or less, and particularly preferably 14 atomic percent or less. By setting the amount of the supported material in such a range, the catalytic activity is further improved.
  • the “atomic%” in the present invention can be determined from the mol% of the precursor of the supported substance in the total moles of the precursor of the support and the precursor of the supported substance used in the catalyst preparation stage.
  • the shape of the catalyst X is not particularly limited, and those having an arbitrary shape such as powder, crushed, particulate, and columnar can be used.
  • one type of catalyst may be used alone, or two or more types of catalysts having different types and supported amounts; different specific surface areas or shapes of the catalysts may be used in combination.
  • the catalyst X is preferably one in which a nanoparticle layer of a supported material is formed on the surface of the carrier.
  • the method for supporting these transition metals or the like (supported materials) on the carrier is not particularly limited, but, for example, a compound containing in the molecule a Group 5 to Group 10 transition metal capable of forming a metal oxide serving as a carrier.
  • a solution containing (compound ⁇ ) and a compound containing a Group 10 transition metal (different from a transition metal serving as a carrier) in the molecule (hereinafter also referred to as compound ⁇ ) is reacted with a precipitant to produce a precipitate.
  • a method of precipitating (coprecipitation method). By separating the precipitate deposited by the coprecipitation method and baking it, nanoparticles of the supported material can be formed on the surface of the carrier.
  • the type and form of compound ⁇ are not particularly limited, but it is preferably used as an aqueous solution using a water-soluble metal salt.
  • the metal salt include halides such as chloride, bromide and iodide; salts of inorganic acids such as nitrates and sulfates; salts of organic acids such as acetates and the like. These metal salts may be used alone or in combination of two or more.
  • the type and form of compound ⁇ are not particularly limited, but it is preferably used as an aqueous solution using a water-soluble metal salt or complex salt.
  • metal salt examples include halides such as chloride, bromide and iodide; salts of inorganic acids such as nitrates and sulfates; salts of organic acids such as acetates and the like.
  • complex salts include chloroplatinic acid, chloropalladic acid, and salts thereof.
  • these metal salts and metal complex salts may be used by 1 type, or may be used by 2 or more types.
  • the precipitating agent examples include alkalis such as sodium carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide. Concentration of aqueous solution used at the time of coprecipitation, temperature, addition rate of precipitating agent, etc. can be set as appropriate. By controlling these, physical properties such as the amount of supported metal and specific surface area can be adjusted to the desired range. can do.
  • the catalyst X includes a catalyst that has been subjected to a pretreatment that is brought into contact with the hydrogen or a mixed gas containing hydrogen and carbon monoxide.
  • the catalyst X thus obtained has a high catalytic activity as a catalyst for the epoxide carbonylation reaction, is easy to handle and separate from the product, can be used repeatedly, As described in the method for producing a ring lactone, it is very suitable for use in the production of a four-membered ring lactone.
  • Catalyst Preparation Example 2 Preparation of PdO-supported catalyst (Catalyst B) (Catalyst X of the present invention)) Similar to Catalyst Preparation Example 1 except that the amount of palladium nitrate aqueous solution used was changed to 2.5 mmol in terms of palladium nitrate and the amount of cobalt nitrate (II) hexahydrate was changed to 17.5 mmol.
  • a 12.5 atomic% PdO / Co 3 O 4 catalyst (Catalyst B) was prepared by the procedure.
  • Catalyst Preparation Example 3 Preparation of PdO-Supported Catalyst (Catalyst C) (Catalyst X of the Present Invention)
  • the amount of palladium nitrate aqueous solution was changed to 3 mmol in terms of palladium nitrate, and the amount of cobalt nitrate (II) hexahydrate was changed to 17 mmol by the same procedure as in Catalyst Preparation Example 1, 15 atoms.
  • A% PdO / Co 3 O 4 catalyst (Catalyst C) was prepared.
  • Catalyst Preparation Example 4 Preparation of Pt-Supported Catalyst (Catalyst D) (Catalyst X of the Present Invention)
  • Catalyst X Catalyst X of the Present Invention
  • K 2 PtCl 4 potassium platinum
  • cobalt nitrate (II) hexahydrate was changed to 19 mmol.
  • Catalyst Preparation Example 5 Preparation of Au-supported catalyst (catalyst E)
  • Catalyst E palladium nitrate aqueous solution
  • 0.164 g (0.4 mmol) of gold chloride (III) acid tetrahydrate (HAuCl 4 .4H 2 O) was used, and the amount of cobalt nitrate (II) hexahydrate used was changed to 19.6 mmol, and a 2 atom% Au / Co 3 O 4 catalyst (catalyst E) was prepared by the same procedure as in Catalyst Preparation Example 1.
  • the obtained catalysts A to E were pre-treated at 120 ° C. for 3 hours with a hydrogen / carbon monoxide mixed gas (1/3) (pressure 2 MPa) unless otherwise specified. .
  • a hydrogen / carbon monoxide mixed gas (1/3) pressure 2 MPa
  • the formation of Pd (0) was confirmed by X-ray absorption near edge structure (XANES) analysis.
  • Example 1 In a 50 mL stainless batch type pressure and heat resistant reaction vessel containing 200 mg of pretreated catalyst A, 10 mL of tetraglyme as Lewis base and solvent, 1.0 mL of 1.0 M diethylaluminum chloride hexane solution as Lewis acid, and as epoxide 2.9 g (66 mmol) of ethylene oxide was introduced in sequence. Next, the reaction vessel was attached to an oil bath, and while stirring the mixture, the temperature was raised to 100 ° C. and the temperature was maintained. Next, carbon monoxide gas was charged to 4.0 MPa in the reaction vessel, and the reaction was carried out for 7.5 hours while maintaining the pressure.
  • GC-MS gas chromatograph mass spectrometer
  • the GC-MS analysis was performed by mounting a GL-1 TC-1 column (length 60 m, diameter 0.25 mm) on a Shimadzu gas chromatograph mass spectrometer (model: GCMS-QP-2010), and using helium. It was performed using as a carrier gas.
  • GC-MS analysis formation of ⁇ -propiolactone was confirmed.
  • the yield of the obtained ⁇ -propiolactone is shown in Table 1.
  • Example 2 The carbonylation reaction of ethylene oxide was performed in the same procedure as in Example 1 except that triethylaluminum was used as the Lewis acid. The results are shown in Table 1.
  • Example 3 A carbonylation reaction of ethylene oxide was carried out by the same procedure as in Example 1 except that the reaction time was 5 hours. The results are shown in Table 1. (Examples 4 to 7) The carbonylation reaction of ethylene oxide was carried out by the same procedure as in Example 3 except that the Lewis acid shown in Table 1 was used as the Lewis acid. The results are shown in Table 1. (Example 8) The carbonylation reaction was performed in the same procedure as in Example 3 except that propylene oxide was used as the epoxide. The results are shown in Table 1.
  • Example 9 Carbonylation of ethylene oxide was carried out in the same manner as in Example 3 except that the reaction temperature was 75 ° C. and carbon monoxide was charged to a pressure of 4.0 MPa, and the reaction was performed without supplementing carbon monoxide during the reaction. Reaction was performed. The results are shown in Table 2. (Examples 10 to 12) A carbonylation reaction of ethylene oxide was performed by the same procedure as in Example 9 except that various glymes described in Table 2 were used as the Lewis base. The results are shown in Table 2.
  • Example 13 to 15 A carbonylation reaction of ethylene oxide was carried out by the same procedure as in Example 4 except that the Lewis base shown in Table 2 was used as the Lewis base. The results are shown in Table 2.
  • Comparative Example 2 A carbonylation reaction of ethylene oxide was carried out by the same procedure as in Example 4 except that Lewis base was not used and 10 mL of hexane was added as a solvent instead. The results are shown in Table 2.
  • Example 16 to 22 Propylene oxide carbonyls under the conditions shown in Table 3 using any of catalysts B, C, D, and E, and using a stainless steel 20 mL batch pressure- and heat-resistant reaction vessel with a glass tube inside. The reaction was carried out according to the procedure of Example 8. In Examples 17 and 18, catalyst B having different pretreatment conditions was used. In Example 20, trimethylaluminum was used as the Lewis acid, and diethylaluminum chloride was used in the other examples. Moreover, in the comparative example, it reacted without using a Lewis acid. The results are shown in Table 3.
  • Example 23 Using catalyst A, the carbonylation reaction of 1-octene oxide was carried out according to Example 16 under the conditions shown in Table 3. The results are shown in Table 3.
  • the present invention is directed to carbonylation of epoxides using a group 10 transition metal such as Pd and Pt, a group 11 transition metal such as Au, and a catalyst supporting these oxides. Applicable to reaction. In particular, it can be seen that the effect is remarkable when the supported material is a Group 10 transition metal or an oxide thereof (Examples 16 to 21), and among them, when the transition metal is Pd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Compounds (AREA)

Abstract

生成物からの分離が容易で、空気中での取扱いが可能な不均一系触媒を用いたエポキシドのカルボニル化反応において、より高い収率で効率的に四員環ラクトンを製造する手法を提供すること。 エポキシドのカルボニル化反応により四員環ラクトンを製造する方法であって、エポキシドと一酸化炭素とを、 (A)第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属、第11族の遷移金属及びこれらの酸化物から選ばれる1種又は2種以上を担持させた不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)と、 (B)金属ルイス酸と、 (C)酸素原子及び窒素原子から選ばれる原子を分子内に含むルイス塩基 の存在下で反応させる工程を含む、四員環ラクトンの製造方法。

Description

四員環ラクトンの製造方法及び不均一系触媒
 本発明は四員環ラクトンの製造方法及び不均一系触媒に関する。より詳細には、エポキシドのカルボニル化反応により四員環ラクトンを製造する方法、及びエポキシドのカルボニル化反応に用いるための不均一系触媒に関する。
 ラクトンは医薬品や香料の原料、中間体として工業的に重要な化合物である。特に四員環ラクトンは歪んだ構造に起因する高い反応性を持ち、医薬品の原料や中間体だけでなく、生分解性樹脂やアクリル酸、コハク酸無水物等の原料として非常に有用な化合物である。しかしながら、五員環及び六員環ラクトンは主にヒドロキシカルボン酸等の脱水縮合で容易に得られるが、四員環ラクトンは脱水縮合での合成は難しく別種の手法が求められていた。
 その様な別種の手法として、エポキシドのカルボニル化によって四員環ラクトンを得る手法が知られている。
 例えば、非特許文献1には、均一系コバルトカルボニル触媒Co2(CO)8を用い、高圧一酸化炭素下でエポキシドをカルボニル化させる方法が報告されている。
 また、非特許文献2では、コバルトカルボニル/ポルフィリンアルミニウム錯体などの均一系二種金属触媒を用い、高圧一酸化炭素下でエポキシドを効率よくカルボニル化させる方法が報告されている。さらに、特許文献1には、コバルトカルボニル/ポルフィリンアルミニウム錯体などの均一系二種金属触媒の存在下、スルホランなどの高沸点溶媒中でカルボニル化させる方法が報告されており、反応液を減圧蒸留することにより、目的とする四員環ラクトンを含む留分と、触媒及び高沸点溶媒を含む留分とに分離し、触媒を含む留分を反応系にリサイクルする方法が開示されている。
 また、特許文献2では、酸化コバルトに金を担持した不均一系触媒を用いたエポキシドのカルボニル化が報告されている。なお、酸化コバルトに金を担持した触媒は、オレフィンのヒドロホルミル化反応における触媒としても知られており、当該反応においては、触媒を水素ガスで前処理することにより触媒活性が向上することが報告されている(特許文献3)。
特表2012-523421号公報 特開2013-173089号公報 特開2009-241060号公報
J. Org. Chem. 2001, 66, 5424-5426. J. Am. Chem. Soc. 2007, 129, 4948-4960.
 しかしながら、前述の均一系触媒によるエポキシドのカルボニル化反応は高い反応性を示すものの、触媒と生成物の分離や触媒自体の再利用が困難である。また、特許文献1に記載のスルホランなどの高沸点溶媒を用いる方法では、THFなどを溶媒として用いた場合と比較すると触媒活性が低下し効率的に反応を行うことができない。また、コバルトカルボニル/ポルフィリンアルミニウム錯体は100℃以上に加熱されると容易に分解してしまうため、減圧蒸留温度を上げることができず、十分な分離ができないという問題がある。さらに、コバルトカルボニル触媒やコバルトカルボニル/ポルフィリンアルミニウム錯体は、空気や水分に対して非常に不安定であり、取扱いに特別な注意を必要とするという問題がある。
 一方、酸化コバルト担持金触媒は、空気や水に対して安定であり取扱い性に優れ、固液分離などにより容易に触媒と生成物を分離することができる。しかしながら、不均一系反応は四員環ラクトンの収率が低く、工業的な生産に適用することは困難であった。本発明者らの検討によれば、特許文献2に記載の触媒を用いるのみでは、目的とする四員環ラクトンが全く得られなかった。
 したがって、本発明が解決しようとする課題は、生成物からの分離が容易で、空気中での取扱いが可能な不均一系触媒を用いたエポキシドのカルボニル化反応において、より高い収率で効率的に四員環ラクトンを製造する手法を提供することにある。
 また、本発明が解決しようとするもう一つの課題は、生成物からの分離が容易で、空気中での取扱いが可能であり、エポキシドのカルボニル化反応に高い活性を示す不均一系触媒を提供することにある。
 そこで、本発明者らは、上記課題を解決すべく鋭意検討を行った結果、遷移金属及び/又はその酸化物を担持した金属酸化物触媒を用いるエポキシドのカルボニル化反応において、特定のルイス酸及び特定のルイス塩基の存在下で反応を行うことにより、従来の不均一系触媒によるエポキシドのカルボニル化反応に比して飛躍的に反応性が向上することを見出し、本発明を完成させるに至った。
 また、本発明者らは、特定の遷移金属及び/又はその酸化物を担持した不均一系触媒が、エポキシドのカルボニル化反応に非常に高い活性を示すことを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下の<1>~<11>を提供するものである。
 <1> エポキシドのカルボニル化反応により四員環ラクトンを製造する方法であって、エポキシドと一酸化炭素とを、
(A)第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属、第11族の遷移金属及びこれらの酸化物から選ばれる1種又は2種以上を担持させた不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)と、
(B)金属ルイス酸と、
(C)酸素原子及び窒素原子から選ばれる原子を分子内に含むルイス塩基
の存在下で反応させる工程を含む、四員環ラクトンの製造方法。以下、この製造方法を「本発明の製造方法」とも称する。
 <2> 前記金属ルイス酸(B)が、有機金属化合物、金属ハロゲン化物及び金属トリフラートから選ばれる1種又は2種以上である<1>に記載の製造方法。
 <3> 前記金属ルイス酸(B)が、有機アルミニウム化合物である<1>に記載の製造方法。
 <4> 前記ルイス塩基(C)が、鎖状エーテル、環状エーテル、鎖状アミン、環状アミン及びニトリルから選ばれる1種又は2種以上である<1>~<3>のいずれかに記載の製造方法。
 <5> 前記ルイス塩基(C)が、グリコールジアルキルエーテルである<1>~<3>のいずれかに記載の製造方法。
 <6> 前記カルボニル化反応を行う前に、水素又は水素及び一酸化炭素を含む混合ガスと、前記不均一系触媒(A)とを接触させる前処理を行う<1>~<5>のいずれかに記載の製造方法。
 <7> 前記不均一系触媒(A)の被担持物が、パラジウム、白金、金及びこれらの酸化物から選ばれる1種又は2種以上である<1>~<6>のいずれかに記載の製造方法。
 <8> 前記不均一系触媒(A)の担体が、酸化コバルトである<1>~<7>のいずれかに記載の製造方法。
 <9> 第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属及びその酸化物から選ばれる少なくとも1種を担持させてなる、エポキシドのカルボニル化反応に用いられる不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)。以下、この触媒を「本発明の触媒X」とも称する。
 <10> 被担持物が、パラジウム及びその酸化物から選ばれる少なくとも1種である<9>に記載の不均一系触媒。
 <11> 担体が、酸化コバルトである<9>又は<10>に記載の不均一系触媒。
 本発明の製造方法によれば、従来の不均一系触媒によるエポキシドのカルボニル化反応に比してより高収率で効率的に四員環ラクトンを得ることができる。
 また、本発明の触媒Xは、生成物からの分離が容易で、空気中での取扱いが可能であり、エポキシドのカルボニル化反応に非常に高い触媒活性を示す。
<四員環ラクトンの製造方法>
 本発明の製造方法で原料として用いられるエポキシドは、その化学構造中に三員環エーテル構造を少なくとも1個含有する化合物であれば、特に限定されない。エポキシドとしては、下記式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
〔式(1)中、
 R1~R4は、それぞれ独立して、水素原子、又は置換若しくは非置換の炭化水素基を示す。
 但し、R3及びR4のうちいずれか一方は、R1及びR2のうちいずれか一方とともに環を形成していてもよい。〕
 R1~R4で示される炭化水素基は、脂肪族炭化水素基、脂環式炭化水素基及び芳香族炭化水素基を包含する概念であり、直鎖状、分岐状及び環状のいずれであってもよく、また飽和炭化水素基でも不飽和炭化水素基でもよい。
 脂肪族炭化水素基の炭素数は、好ましくは1~12であり、より好ましくは1~6であり、特に好ましくは1~4である。脂肪族炭化水素基としては、アルキル基が好ましい。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 脂環式炭化水素基の炭素数は、好ましくは3~12であり、より好ましくは3~7である。脂環式炭化水素としては、シクロアルキル基が好ましい。具体的には、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 芳香族炭化水素基の炭素数は、好ましくは6~20であり、より好ましくは6~12である。芳香族炭化水素基としては、アリール基、アラルキル基が好ましい。アリール基としては、例えば、フェニル基等が挙げられる。アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。
 R1~R4における置換基としては、例えば、フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;(メタ)アクリロイルオキシ基等が挙げられる。
 R3及びR4のうちいずれか一方がR1及びR2のうちいずれか一方とともに形成する環としては、シクロヘキサン環、メチルシクロヘキサン環、シクロヘプタン環、シクロオクタン環等のシクロアルカン環が挙げられる。環の炭素数は、好ましくは3~10であり、より好ましくは5~7である。
 R1~R4の組み合わせとしては、R1及びR2が、水素原子、又は置換若しくは非置換の炭化水素基であり、R3及びR4が水素原子である組み合わせ、R1及びR3が水素原子であり、R2及びR4が環を形成している組み合わせが好ましい。
 エポキシドの好適な具体例としては、エチレンオキシド、プロピレンオキシド、イソブテンオキシド、1-ブテンオキシド、2-ブテンオキシド、スチレンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、シクロヘキセンオキシド、グリシジルメチルエーテル、グリシジル(メタ)アクリレート、エピクロロヒドリン等が挙げられる。これらの中でも、エチレンオキシド、プロピレンオキシド、1-オクテンオキシドがより好ましく、エチレンオキシド、プロピレンオキシドが特に好ましい。
 また、本発明の製造方法で得られる四員環ラクトンは、上記エポキシドをカルボニル化して得られるラクトンである。当該ラクトンとしては、例えば、β-プロピオラクトン、β-ブチロラクトン、4-ヘキシルオキセタン-2-オン等が挙げられる。
 もう一方の原料である一酸化炭素として、一酸化炭素ガスが通常使用される。当該ガスは必ずしも純粋である必要はなく、少量の不活性ガス、例えば二酸化炭素や窒素、メタンなどが含まれていてもよい。また、一酸化炭素と水素を主成分として含む合成ガスであってもよい。
 ((A)不均一系触媒(固体触媒))
 本発明の製造方法に用いられる不均一系触媒は、第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属、第11族の遷移金属及びこれらの酸化物から選ばれる1種又は2種以上を担持させた不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)である。
 (担体)
 担体における第5族~第10族の遷移金属としては、バナジウム(V)等の第5族の遷移金属;クロム(Cr)、モリブデン(Mo)、タングステン(W)等の第6族の遷移金属;マンガン(Mn)、レニウム(Re)等の第7族の遷移金属;鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)等の第8族の遷移金属;コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)等の第9族の遷移金属;ニッケル(Ni)等の第10族の遷移金属が挙げられる。これらの中でも、第8族~第9族の遷移金属が好ましく、安価な点で、鉄(Fe)、コバルト(Co)がより好ましく、触媒活性の点で、コバルト(Co)が特に好ましい。
 また、担体としては、具体的には、酸化鉄(例えば、FeO、Fe23、Fe34など)、酸化コバルト(例えば、CoO、Co23、Co34など)等が挙げられるが、触媒活性の点で、酸化コバルトが特に好ましい。
 また、上記遷移金属の酸化物は、1種の金属の酸化物であってもよいし、2種以上の金属の複合酸化物であってもよい。また、同一金属の価数の異なる酸化物の混合物であってもよい。
 (被担持物)
 また、被担持物における第10族、第11族の遷移金属としては、パラジウム(Pd)、白金(Pt)等の第10族の遷移金属;金(Au)、銀(Ag)等の第11族の遷移金属が挙げられ、これらのうち1種を用いても2種以上を用いてもよい。
 この中でも、触媒活性の点で、白金(Pt)、パラジウム(Pd)、金(Au)が好ましく、第10族の遷移金属がより好ましく、白金(Pt)、パラジウム(Pd)が更に好ましく、パラジウム(Pd)が特に好ましい。
 なお、被担持物における遷移金属には、担体とした金属酸化物とは異なる金属種が用いられる。すなわち、担体における金属種がパラジウムの場合は、被担持物における金属種はパラジウムでなく、担体における金属種がニッケルの場合は、被担持物における金属種はニッケルでなく、担体における金属種が白金の場合は、被担持物における金属種は白金でない。
 また、被担持物における遷移金属の酸化物の中では、酸化パラジウムが好ましい。なお、当該遷移金属の酸化物は、同一金属の価数の異なる酸化物の混合物であってもよい。当該遷移金属の酸化物においては、後述するように、水素又は水素及び一酸化炭素を含む混合ガスと接触させる前処理により、遷移金属の一部または全部を還元することで、触媒活性を付与することができる。
 被担持物の担持量は特に限定されないが、不均一系触媒における全金属量に対して、好ましくは0.1原子%以上、より好ましくは1原子%以上であって、また、好ましくは50原子%以下、より好ましくは30原子%以下、さらに好ましくは20原子%以下、特に好ましくは14原子%以下である。被担持物の担持量をこのような範囲とすることにより、触媒活性が更に向上する。
 なお、本発明における「原子%」は、触媒調製の段階で使用する担体の前駆体及び被担持物の前駆体の総モルに占める被担持物の前駆体のモル%から把握できる。
 また、不均一系触媒の形状は特に限定されるものではなく、粉末状、破砕状、粒子状、柱状等の任意の形状のものを用いることができる。また、本発明においては、不均一系触媒は1種を単独で用いてもよく、被担持物の種類や担持量;触媒の比表面積や形状などが異なる触媒を2種以上組み合わせて用いてもよい。
 また、不均一系触媒は、上記担体の表面に被担持物のナノ粒子層が形成されたものが好ましい。
 これらの遷移金属等(被担持物)を担体に担持する方法は特に限定されないが、例えば、担体となる金属酸化物を形成可能な第5族~第10族の遷移金属を分子内に含む化合物(以下、化合物αとも称する)と、第10族又は第11族の遷移金属(担体となる遷移金属とは異なる)を分子内に含む化合物(以下、化合物βとも称する)とを含む溶液を、沈殿剤と反応させて沈殿物を析出させる方法(共沈法)が挙げられる。共沈法により析出した沈殿物を分離し、焼成することにより、上記担体の表面に、上記被担持物のナノ粒子を形成させることができる。
 化合物αの種類及びその形態は特に限定されないが、水溶性の金属塩を用いて、水溶液として用いることが好ましい。金属塩としては、塩化物、臭化物、ヨウ化物などのハロゲン化物;硝酸塩、硫酸塩などの無機酸の塩;酢酸塩などの有機酸の塩などが挙げられる。また、これらの金属塩は、1種類で用いても、2種類以上で用いてもよい。
 また、化合物βの種類及びその形態は特に限定されないが、水溶性の金属塩又は錯塩を用いて、水溶液として用いることが好ましい。金属塩としては、塩化物、臭化物、ヨウ化物などのハロゲン化物;硝酸塩、硫酸塩などの無機酸の塩;酢酸塩などの有機酸の塩などが挙げられる。錯塩としては、塩化金酸、塩化白金酸、塩化パラジウム酸及びこれらの塩などが挙げられる。また、これらの金属塩及び金属錯塩は、1種類で用いても、2種類以上で用いてもよい。
 また、沈殿剤としては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどのアルカリが挙げられる。
 共沈時に用いる水溶液の濃度、温度、沈殿剤の添加速度などは適宜設定することができ、これらを制御することにより、担持される金属の量や、比表面積などの物性を所望の範囲に調整することができる。
 このようにして得られた不均一系触媒は、水素又は水素及び一酸化炭素を含む混合ガスと接触させて前処理を行うことにより、触媒を活性化することができる。この前処理は加熱下で行うことが好ましく、60~200℃の温度範囲で行うことがより好ましく、80~180℃の温度範囲で行うことがさらに好ましい。水素又は水素及び一酸化炭素を含む混合ガスの圧力は0.1~30MPaの範囲が好ましく、1~10MPaの範囲がより好ましい。また、上記混合ガスを用いる場合、水素と一酸化炭素の分圧比は、90/10~10/90の範囲が好ましく、80/20~20/80の範囲がより好ましい。また、接触時間は、通常30分~48時間の範囲であり、好ましくは1~24時間である。
 また、触媒の使用量は、エポキシドの種類、触媒に用いられた金属の種類や諸物性、反応方式、反応条件などにより適宜選定すればよいが、エポキシドに対して、担持金属換算で通常0.01~10モル%であり、好ましくは0.05~5モル%である。
 ((B)金属ルイス酸)
 本発明において、金属ルイス酸とは、金属原子を分子内に含むルイス酸を意味する。
 金属ルイス酸としては、有機金属化合物、金属ハロゲン化物、金属トリフラートなどが挙げられる。
 有機金属化合物としては、具体的には、トリアルキルアルミニウム(トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリ-n-オクチルアルミニウムなど)、水素化アルキルアルミニウム(ジイソブチルアルミニウムハイドライドなど)、ハロゲン化アルキルアルミニウム(エチルアルミニウムセスキクロライド、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライド、イソブチルアルミニウムジクロライドなど)、アルキルアルミニウムアルコキシド(ジエチルアルミニウムエトキシドなど)などの有機アルミニウム化合物;ジエチル亜鉛、ジイソブチル亜鉛、ジ-n-ヘキシル亜鉛、エチル亜鉛(t-ブトキシド)などの有機亜鉛化合物などが挙げられる。なお、上記各有機アルミニウム化合物におけるアルキル基、アルコキシ基は直鎖状でも分岐状でもよく、その炭素数は、好ましくは1~9であり、より好ましくは1~6である。
 金属ハロゲン化物としては、例えば、塩化マグネシウム、臭化マグネシウム等のハロゲン化マグネシウム;塩化カルシウム、臭化カルシウム等のハロゲン化カルシウム;塩化チタン(IV)、臭化チタン(IV)等のハロゲン化チタン;塩化鉄(II)、塩化鉄(III)等のハロゲン化鉄;塩化コバルト(II)、塩化コバルト(III)等のハロゲン化コバルト;塩化ニッケル(II)等のハロゲン化ニッケル;塩化銅(II)、臭化銅(II)等のハロゲン化銅;塩化亜鉛、臭化亜鉛等のハロゲン化亜鉛;塩化アルミニウム、臭化アルミニウム等のハロゲン化アルミニウム;塩化スズ(II)、塩化スズ(IV)、臭化スズ(II)、臭化スズ(IV)等のハロゲン化スズなどが挙げられる。
 金属トリフラートとしては、例えば、スカンジウムトリフラート、イットリウムトリフラート、ランタントリフラート、セリウムトリフラートなどの第3族金属のトリフラートが挙げられる。なお、トリフラートとは、トリフルオロメタンスルホン酸塩を意味する。
 これらの金属ルイス酸は1種を単独で用いてもよいし、2種以上を併用してもよい。
 これらの金属ルイス酸の中でも、触媒活性向上効果の点で、有機金属化合物が好ましく、有機アルミニウム化合物がより好ましく、トリアルキルアルミニウム、ハロゲン化アルキルアルミニウムが特に好ましい。
 金属ルイス酸の使用量は特に限定されないが、エポキシドに対して、通常0.01~10モル%の範囲であり、好ましくは0.5~5モル%の範囲である。
 ((C)ルイス塩基)
 本発明の製造方法に用いられるルイス塩基は、酸素原子及び窒素原子から選ばれる原子を分子内に含むものである。ルイス塩基は、酸素原子及び窒素原子のうち一方のみを分子内に含むものでも両方を分子内に含むものでもよい。このようなルイス塩基としては、具体的には、鎖状エーテル、環状エーテル、鎖状アミン、環状アミン、ニトリルなどが挙げられる。
 鎖状エーテルとしては、例えば、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチルブチルエーテル、メチルイソブチルエーテル、メチルter-ブチルエーテル、アミルメチルエーテルなどのジアルキルエーテル;グリコールジアルキルエーテルなどが挙げられる。グリコールジアルキルエーテルの中では、下記式(2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000002
〔式(2)中、
 R5及びR6は、それぞれ独立して、炭素数1~10のアルキル基を示し、
 R7は、炭素数1~6のアルカンジイル基を示し、
 nは、1以上の整数を示す。〕
 R5及びR6で示されるアルキル基の炭素数は1~10であるが、好ましくは1~7であり、より好ましくは1~4である。またアルキル基は、好ましくは直鎖状又は分岐状のアルキル基である。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基などが挙げられる。
 R7で示されるアルカンジイル基の炭素数は1~6であるが、好ましくは2~4であり、より好ましくは2又は3であり、特に好ましくは2である。またアルカンジイル基は、好ましくは直鎖状又は分岐状のアルカンジイル基である。アルカンジイル基としては、例えば、エタン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基などが挙げられる。
 また、R5~R7の組み合わせとしては、触媒活性やコストの点で、R5及びR6が同一のアルキル基であり、R7がエタン-1,2-ジイル基である組み合わせが好適な例として挙げられる。
 nとしては、金属ルイス酸の安定化及び触媒活性の向上において著しい効果を示す点で、1~100の整数が好ましく、1~50の整数がより好ましく、2~30の整数がさらに好ましく、2~10の整数が特に好ましい。
 グリコールジアルキルエーテルとしては、例えば、エチレングリコールジメチルエーテル(モノグライム)、ジエチレングリコールジメチルエーテル(ジグライム、沸点:約162℃)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラエチレングリコールジメチルエーテル(テトラグライム)、ペンタエチレングリコールジメチルエーテル(ペンタグライム)、エチレングリコールジエチルエーテル(エチルモノグライム)、ジエチレングリコールジエチルエーテル(エチルジグライム)、ジエチレングリコールジブチルエーテル(ブチルジグライム)、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールブチルメチルエーテルなどが挙げられる。
 環状エーテルとしては、例えば、テトラヒドロフラン(THF)などの環状モノエーテル;12-クラウン-4、15-クラウン-5、18-クラウン-6などのクラウンエーテルなどが挙げられる。環状エーテルの中では、環状モノエーテルが好ましい。
 鎖状アミンとしては、例えば、トリエチルアミン、トリプロピルアミン、トリブチルアミンなどのトリアルキルアミン;N,N,N',N'-テトラメチルエチレンジアミン、N,N,N',N'-テトラエチルエチレンジアミンなどのテトラアルキル化エチレンジアミン;N,N,N',N'',N''-ペンタメチルジエチレントリアミン、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラアミンなどのアルキル化ポリエチレンアミンなどが挙げられる。
 環状アミンとしては、例えば、キヌクリジン、1,4-ジアザビシクロ-[2.2.2]オクタン(DABCO)などの橋かけ環状アミン;1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBU)、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン(DBN)などのアミジン骨格を有する環状ジアミン;1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)などグアニジン骨格を有する環状トリアミン;ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、4-(N,N-ジメチルアミノ)ピリジン、ピラジン、ピリミジン、イミダゾール、N-メチルイミダゾール、プリン、2,2'-ビピリジン、2,2':6',2''-ターピリジン、3,2':6',3''-ターピリジンなどの窒素原子を含有する複素環式芳香族化合物などが挙げられる。環状アミンの中では、窒素原子を含有する複素環式芳香族化合物が好ましい。
 ニトリルとしては、例えば、アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリルなどが挙げられる。
 また、ルイス塩基として、ジメチルスルホキシド、スルホラン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドンなど、2種以上のヘテロ原子を含むルイス塩基を使用することもできる。
 これらのルイス塩基は1種を単独で用いてもよいし、2種以上を併用してもよい。
 これらのルイス塩基の中でも、金属ルイス酸の安定化及び触媒活性の向上において著しい効果を示す点で、グリコールジアルキルエーテルが好ましく、グライム類がより好ましく、ジグライム、トリグライム、テトラグライム、ペンタグライム、エチルジグライム、ブチルジグライムなど、ドナー原子数(酸素原子数)が3以上のグライム類が特に好ましい。
 ルイス塩基の使用量は金属ルイス酸に対し当量以上であればよく、金属ルイス酸の総量1モルに対して通常1モル以上が使用される。また、ルイス塩基の使用量の上限は特に限定されるものではなく、ルイス塩基を溶媒として使用することもできる。
 ルイス塩基を溶媒として使用する場合、エポキシド、一酸化炭素および金属ルイス酸の溶解性に優れる点においても、グリコールジアルキルエーテルが好ましい。さらに、構造が単純でコストも安い点で、グライム類がより好ましく、四員環ラクトンとの沸点差が大きく蒸留による分離が容易である点、熱安定性の点及び触媒活性の点で、沸点が200℃以上のグライム類が特に好ましい。沸点が200℃以上のグライム類としては、例えば、トリグライム、テトラグライム、ペンタグライム、ブチルジグライムなどが挙げられる。
 ルイス塩基を溶媒として使用する場合、その使用量は特に限定されないが、エポキシドの総量1質量部に対して、通常0.1~100質量部の範囲であり、好ましくは0.5~30質量部の範囲であり、さらに好ましくは1~10質量部の範囲である。
 ((D)不活性溶媒)
 また、カルボニル化反応は、上記(A)~(C)に加えて、その反応に不活性な溶媒の存在下で行ってもよい。
 不活性溶媒としては、取り扱い時の安全性及び回収・精製の容易性などの点から、トルエン、キシレン、ヘキサン、へプタン、シクロヘキサン、メチルシクロヘキサン等の炭化水素系溶媒;クロロホルム、塩化メチレン、四塩化炭素等のハロゲン化炭化水素系溶媒などが使用される。また、目的とする四員環ラクトンを溶媒として用いてもよい。
 これらの不活性溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。
 これらの不活性溶媒の使用量は特に限定されないが、エポキシドの総量1質量部に対して、溶媒の総量(ルイス塩基を溶媒として併用する場合は、ルイス塩基と不活性溶媒の合計量)として、通常0.1~100質量部の範囲であり、好ましくは0.5~30質量部の範囲であり、より好ましくは1~10質量部の範囲である。
 カルボニル化反応は、バッチ、半バッチ又は連続条件下で実施することができる。
 例えば、バッチ反応の場合、不均一系触媒(A)を撹拌タンク反応器に充填し、水素又は水素・一酸化炭素混合ガス下で前処理を行い、室温まで冷却後に脱圧し、そこへエポキシド、金属ルイス酸(B)、ルイス塩基(C)、一酸化炭素及び必要に応じて不活性溶媒(D)を充填し、所定の反応温度に加温し、必要時間反応させることで、四員環ラクトンを得ることができる。バッチ反応の場合、反応時間は、通常30分間~48時間であり、好ましくは1~24時間である。
 また、連続反応の場合、不均一系触媒(A)を含む固定床又は流動床反応器に、予め水素又は水素・一酸化炭素混合ガスを流通させて前処理を行った後、所定の反応温度に加温し、そこへエポキシド、金属ルイス酸(B)、ルイス塩基(C)、一酸化炭素及び必要に応じて不活性溶媒(D)を所定の流速で供給し、不均一系触媒(A)と接触させて反応させることにより、四員環ラクトンを得ることができる。
 反応温度は特に限定されないが、0~250℃が好ましく、25~200℃がより好ましく、50~150℃がさらに好ましく、75~120℃が特に好ましい。反応温度をこのような範囲とすることにより反応速度を速めることができる。また、副生物の生成や生成した四員環ラクトンの分解を抑えることもできる。
 反応圧は、一酸化炭素圧として0.1~70MPaが好ましく、0.5~30MPaがより好ましく、1~10MPaが更に好ましく、4~6MPaが特に好ましい。反応圧をこのような範囲とすることにより反応速度を速めることができる。また、反応器などの機器の設計圧力を高くする必要がなくなり設備負担を抑えることができる。
 反応後は、ろ過や遠心分離などの液体と固体の分離に通常用いられる分離操作により、反応液から不均一系触媒(A)を容易に分離することができる。分離された触媒は、エポキシドのカルボニル化反応に再使用することが可能である。また、蒸留等の操作により反応液から目的とする四員環ラクトンを分離し、触媒と溶媒を含む蒸留残液を回収して、エポキシドのカルボニル化反応に再使用することも可能である。
 そして、本発明の製造方法で得られた四員環ラクトンは、溶媒に溶解したまま、あるいは単離・精製した後、生分解性樹脂の重合原料やアクリル酸、コハク酸無水物等の合成原料として用いることができる。四員環ラクトンの単離・精製は、蒸留、再結晶、再沈殿、溶媒抽出、クロマトグラフィーなどの常法に従って行うことができる。
<触媒X>
 本発明の触媒Xは、第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属及びその酸化物から選ばれる少なくとも1種を担持させてなる、エポキシドのカルボニル化反応に用いられる不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)である。触媒Xは、上記本発明の製造方法に用いる不均一系触媒の中でも、エポキシドのカルボニル化反応に特に高い触媒活性を示し、上記反応に用いる触媒として特に有用である。
 (担体)
 本発明の触媒Xの担体における遷移金属としては、バナジウム(V)等の第5族の遷移金属;クロム(Cr)、モリブデン(Mo)、タングステン(W)等の第6族の遷移金属;マンガン(Mn)、レニウム(Re)等の第7族の遷移金属;鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)等の第8族の遷移金属;コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)等の第9族の遷移金属;ニッケル(Ni)等の第10族の遷移金属が挙げられる。これらの中でも、第8族~第9族の遷移金属が好ましく、安価な点で、鉄(Fe)、コバルト(Co)がより好ましく、触媒活性の点で、コバルト(Co)が特に好ましい。
 また、触媒Xの担体としては、具体的には、酸化鉄(例えば、FeO、Fe23、Fe34など)、酸化コバルト(例えば、CoO、Co23、Co34など)等が挙げられるが、触媒活性の点で、酸化コバルトが特に好ましい。
 また、上記遷移金属の酸化物は、1種の金属の酸化物であってもよいし、2種以上の金属の複合酸化物であってもよい。また、同一金属の価数の異なる酸化物の混合物であってもよい。
 (被担持物)
 また、触媒Xの被担持物における第10族の遷移金属としては、白金(Pt)、パラジウム(Pd)などが挙げられ、これらのうち1種を用いても2種以上を用いてもよい。この中でも、触媒活性の点で、パラジウム(Pd)が特に好ましい。
 なお、被担持物における遷移金属には、担体とした金属酸化物とは異なる金属種が用いられる。すなわち、担体における金属種がパラジウムの場合は、被担持物における金属種はパラジウムでなく、担体における金属種がニッケルの場合は、被担持物における金属種はニッケルでなく、担体における金属種が白金の場合は、被担持物における金属種は白金でない。
 また、第10族の遷移金属の酸化物としては、酸化パラジウム等が挙げられる。なお、当該遷移金属の酸化物は、同一金属の価数の異なる酸化物の混合物であってもよい。当該遷移金属の酸化物においては、上記水素又は水素及び一酸化炭素を含む混合ガスと接触させる前処理により、遷移金属の一部または全部を還元することで、触媒活性を付与することができる。
 被担持物の担持量は特に限定されないが、触媒Xにおける全金属量に対して、好ましくは0.1原子%以上、より好ましくは1原子%以上であって、また、好ましくは50原子%以下、より好ましくは30原子%以下、さらに好ましくは20原子%以下、特に好ましくは14原子%以下である。被担持物の担持量をこのような範囲とすることにより、触媒活性が更に向上する。
 なお、本発明における「原子%」は、触媒調製の段階で使用する担体の前駆体及び被担持物の前駆体の総モルに占める被担持物の前駆体のモル%から把握できる。
 また、触媒Xの形状は特に限定されるものではなく、粉末状、破砕状、粒子状、柱状等の任意の形状のものを用いることができる。また、本発明においては、触媒は1種を単独で用いてもよく、被担持物の種類や担持量;触媒の比表面積や形状などが異なる触媒を2種以上組み合わせて用いてもよい。
 また、触媒Xは、上記担体の表面に被担持物のナノ粒子層が形成されたものが好ましい。
 これらの遷移金属等(被担持物)を担体に担持する方法は特に限定されないが、例えば、担体となる金属酸化物を形成可能な第5族~第10族の遷移金属を分子内に含む化合物(化合物α)と、第10族の遷移金属(担体となる遷移金属とは異なる)を分子内に含む化合物(以下、化合物γとも称する)とを含む溶液を、沈殿剤と反応させて沈殿物を析出させる方法(共沈法)が挙げられる。共沈法により析出した沈殿物を分離し、焼成することにより、上記担体の表面に、上記被担持物のナノ粒子を形成させることができる。
 化合物αの種類及びその形態は特に限定されないが、水溶性の金属塩を用いて、水溶液として用いることが好ましい。金属塩としては、塩化物、臭化物、ヨウ化物などのハロゲン化物;硝酸塩、硫酸塩などの無機酸の塩;酢酸塩などの有機酸の塩などが挙げられる。また、これらの金属塩は、1種類で用いても、2種類以上で用いてもよい。
 また、化合物γの種類及びその形態は特に限定されないが、水溶性の金属塩又は錯塩を用いて、水溶液として用いることが好ましい。金属塩としては、塩化物、臭化物、ヨウ化物などのハロゲン化物;硝酸塩、硫酸塩などの無機酸の塩;酢酸塩などの有機酸の塩などが挙げられる。錯塩としては、塩化白金酸、塩化パラジウム酸及びこれらの塩などが挙げられる。また、これらの金属塩及び金属錯塩は、1種類で用いても、2種類以上で用いてもよい。
 また、沈殿剤としては、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどのアルカリが挙げられる。
 共沈時に用いる水溶液の濃度、温度、沈殿剤の添加速度などは適宜設定することができ、これらを制御することにより、担持される金属の量や、比表面積などの物性を所望の範囲に調整することができる。
 なお、触媒Xには、上記水素又は水素及び一酸化炭素を含む混合ガスと接触させる前処理を行ったものも包含される。
 このようにして得られた触媒Xは、エポキシドのカルボニル化反応用触媒として高い触媒活性を有し、取扱い及び生成物からの分離が容易であり、繰り返し使用が可能であって、前記<四員環ラクトンの製造方法>に記載したとおり、四員環ラクトンの製造に用いるのに非常に適する。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
<不均一系触媒の調製>
 (触媒調製例1:PdO担持触媒(触媒A)の調製(本発明の触媒X))
 10原子%PdO/Co34触媒(触媒A)を以下の手順(共沈法)で調製した。
 1.0M硝酸パラジウム水溶液(Pd(NO32)2.3mL(2mmol)及び硝酸コバルト(II)六水和物(Co(NO32・6H2O)5.24g(18mmol)を蒸留水200mLに溶かし、10分間攪拌した。別のビーカーで、炭酸ナトリウム(Na2CO3)2.66g(26mmol)を蒸留水200mLに溶かし、10分間攪拌した。上記で調製しておいた硝酸パラジウムと硝酸コバルトの溶液を、炭酸ナトリウムの溶液に全て滴下し、その後、8時間室温にて攪拌した。攪拌を止めると褐色の固形物が沈殿したので、ろ過を行い、褐色の固形物を蒸留水100mLで2回洗浄した。洗浄後に残った固形物を80℃で10時間乾燥させたのち、電気炉を用いて焼成した。焼成は、1時間かけて室温から300℃に昇温し、300℃で2時間行った。その後、室温まで放冷したのち電気炉から取り出し、目的とする触媒Aを得た。
 (触媒調製例2:PdO担持触媒(触媒B)の調製(本発明の触媒X))
 硝酸パラジウム水溶液の使用量を、硝酸パラジウム換算で2.5mmolに変更し、且つ硝酸コバルト(II)六水和物の使用量を、17.5mmolに変更した以外は、触媒調製例1と同様の手順により12.5原子%PdO/Co34触媒(触媒B)を調製した。
 (触媒調製例3:PdO担持触媒(触媒C)の調製(本発明の触媒X))
 硝酸パラジウム水溶液の使用量を、硝酸パラジウム換算で3mmolに変更し、且つ硝酸コバルト(II)六水和物の使用量を、17mmolに変更した以外は、触媒調製例1と同様の手順により15原子%PdO/Co34触媒(触媒C)を調製した。
 (触媒調製例4:Pt担持触媒(触媒D)の調製(本発明の触媒X))
 硝酸パラジウム水溶液のかわりに、塩化白金(II)酸カリウム(K2PtCl4)0.415g(1mmol)を使用し、且つ硝酸コバルト(II)六水和物の使用量を、19mmolに変更した以外は、触媒調製例1と同様の手順により5原子%Pt/Co34触媒(触媒D)を調製した。
 (触媒調製例5:Au担持触媒(触媒E)の調製)
 硝酸パラジウム水溶液のかわりに、塩化金(III)酸四水和物(HAuCl4・4H2O)0.164g(0.4mmol)を使用し、且つ硝酸コバルト(II)六水和物の使用量を、19.6mmolに変更した以外は、触媒調製例1と同様の手順により2原子%Au/Co34触媒(触媒E)を調製した。
 なお、得られた触媒A~Eは、特に断りのない限り、水素/一酸化炭素混合ガス(1/3)(圧力2MPa)により、120℃で3時間前処理を行ってから反応に使用した。前処理後のPdO担持触媒(触媒A、B、C)においては、エックス線吸収端近傍構造 (XANES)分析によりPd(0)の生成が確認された。
<カルボニル化反応>
 (実施例1)
 前処理済みの触媒A200mgが入った容量50mLのステンレス製バッチ式耐圧・耐熱反応容器に、ルイス塩基兼溶媒としてテトラグライム10mL、ルイス酸として1.0Mのジエチル塩化アルミニウムヘキサン溶液1.0mL、エポキシドとしてエチレンオキシド2.9g(66mmol)を順番に導入した。
 次に、反応容器をオイルバスにつけて、混合物を攪拌しながら、温度を100℃まで上昇させ、その温度を保った。次いで、反応容器内に4.0MPaまで一酸化炭素ガスを充填し、その圧力を保持したまま7.5時間反応を実施した。所定の時間が過ぎたところで冷却し、ガスを抜いて蓋を開け、生成物を得た。カルボニル化反応の生成物は、ガスクロマトグラフ質量分析計(GC-MS)によって同定した。ここで、GC-MS分析は、島津製作所製ガスクロマトグラフ質量分析機(型式:GCMS-QP-2010)にジーエルサイエンス製TC-1カラム(長さ60m、直径0.25mm)を装着し、ヘリウムをキャリアガスとして用いて行った。
 GC-MS分析の結果、β-プロピオラクトンの生成が確認された。得られたβ-プロピオラクトンの収率を表1に示す。
 (実施例2)
 ルイス酸として、トリエチルアルミニウムを用いた以外は実施例1と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表1に示す。
 (実施例3)
 反応時間を5時間とした以外は実施例1と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表1に示す。
 (実施例4~7)
 ルイス酸として、表1に記載のルイス酸を用いた以外は実施例3と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表1に示す。
 (実施例8)
 エポキシドとしてプロピレンオキシドを用いた以外は実施例3と同様の手順により、カルボニル化反応を行った。結果を表1に示す。
 (比較例1)
 ルイス酸を使用せずに反応を行った以外は実施例3と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表1中の下記式は以下のルイス酸を意味する。
 ・Y(OTf)3:イットリウムトリフラート
 ・La(OTf)3:ランタントリフラート
 表1に示されるように、不均一系触媒(A)(触媒A)を用いて、金属ハロゲン化物や金属トリフラート等の金属ルイス酸(B)及びルイス塩基(C)の存在下でエポキシドのカルボニル化反応を行うことにより、金属ルイス酸(B)を用いない場合(比較例1)と比較して飛躍的に触媒活性が向上した。特にその効果は、金属ルイス酸(B)として有機アルミニウム化合物を用いた場合に顕著であることがわかる。
 (実施例9)
 反応温度を75℃とし、且つ圧力4.0MPaまで一酸化炭素を充填し、反応中は一酸化炭素を補充せずに反応を行った以外は実施例3と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表2に示す。
 (実施例10~12)
 ルイス塩基として、表2に記載の各種グライム類を用いた以外は実施例9と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表2に示す。
 (実施例13~15)
 ルイス塩基として、表2に記載のルイス塩基を用いた以外は実施例4と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表2に示す。
 (比較例2)
 ルイス塩基を使用せず、そのかわりに溶媒としてヘキサン10mLを加えて反応を行った以外は実施例4と同様の手順により、エチレンオキシドのカルボニル化反応を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2に示されるように、不均一系触媒(A)(触媒A)を用いて、金属ルイス酸(B)と、グリコールジアルキルエーテルやTHF等の酸素原子を分子内に含むルイス塩基や、ピリジンやアセトニトリル等の窒素原子を分子内に含むルイス塩基(ルイス塩基(C))の存在下でエポキシドのカルボニル化反応を行うことにより、ルイス塩基(C)を用いない場合(比較例2)と比較して飛躍的に触媒活性が向上した。特にその効果は、ルイス塩基(C)としてグリコールジアルキルエーテルを用いた場合に顕著であることがわかる。
 (実施例16~22、比較例3~5)
 触媒B、C、D、Eのいずれかを使用し、内部にガラス製チューブを備えたステンレス製の20mLバッチ式耐圧・耐熱反応容器を用いて、表3に示した条件で、プロピレンオキシドのカルボニル化反応を実施例8の手順に準じて行った。なお、実施例17、18では前処理条件の異なる触媒Bを用いた。また、実施例20ではルイス酸としてトリメチルアルミニウムを、他の実施例ではジエチル塩化アルミニウムを使用した。また、比較例では、ルイス酸を使用せずに反応を行った。結果を表3に示す。
 (実施例23)
 触媒Aを使用して、表3に示した条件で、1-オクテンオキシドのカルボニル化反応を実施例16に準じて行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000005
 表3に示されるように、本発明は、Pd、Pt等の第10族の遷移金属や、Au等の第11族の遷移金属、これらの酸化物を担持させた触媒を用いるエポキシドのカルボニル化反応に適用できる。特にその効果は、被担持物が第10族の遷移金属やその酸化物である場合(実施例16~21)、その中でもその遷移金属がPdである場合に顕著であることがわかる。

Claims (11)

  1.  エポキシドのカルボニル化反応により四員環ラクトンを製造する方法であって、エポキシドと一酸化炭素とを、
    (A)第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属、第11族の遷移金属及びこれらの酸化物から選ばれる1種又は2種以上を担持させた不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)と、
    (B)金属ルイス酸と、
    (C)酸素原子及び窒素原子から選ばれる原子を分子内に含むルイス塩基
    の存在下で反応させる工程を含む、四員環ラクトンの製造方法。
  2.  前記金属ルイス酸(B)が、有機金属化合物、金属ハロゲン化物及び金属トリフラートから選ばれる1種又は2種以上である請求項1に記載の製造方法。
  3.  前記金属ルイス酸(B)が、有機アルミニウム化合物である請求項1に記載の製造方法。
  4.  前記ルイス塩基(C)が、鎖状エーテル、環状エーテル、鎖状アミン、環状アミン及びニトリルから選ばれる1種又は2種以上である請求項1~3のいずれか1項に記載の製造方法。
  5.  前記ルイス塩基(C)が、グリコールジアルキルエーテルである請求項1~3のいずれか1項に記載の製造方法。
  6.  前記カルボニル化反応を行う前に、水素又は水素及び一酸化炭素を含む混合ガスと、前記不均一系触媒(A)とを接触させる前処理を行う請求項1~5のいずれか1項に記載の製造方法。
  7.  前記不均一系触媒(A)の被担持物が、パラジウム、白金、金及びこれらの酸化物から選ばれる1種又は2種以上である請求項1~6のいずれか1項に記載の製造方法。
  8.  前記不均一系触媒(A)の担体が、酸化コバルトである請求項1~7のいずれか1項に記載の製造方法。
  9.  第5族~第10族の遷移金属から選ばれる1種以上の金属の酸化物を担体とし、当該担体に、第10族の遷移金属及びその酸化物から選ばれる少なくとも1種を担持させてなる、エポキシドのカルボニル化反応に用いられる不均一系触媒(ただし、被担持物は、担体とした金属酸化物とは金属の種類が異なる)。
  10.  被担持物が、パラジウム及びその酸化物から選ばれる少なくとも1種である請求項9に記載の不均一系触媒。
  11.  担体が、酸化コバルトである請求項9又は10に記載の不均一系触媒。
PCT/JP2017/013130 2016-03-31 2017-03-30 四員環ラクトンの製造方法及び不均一系触媒 WO2017170808A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018509403A JPWO2017170808A1 (ja) 2016-03-31 2017-03-30 四員環ラクトンの製造方法及び不均一系触媒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070582 2016-03-31
JP2016070582 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017170808A1 true WO2017170808A1 (ja) 2017-10-05

Family

ID=59965852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013130 WO2017170808A1 (ja) 2016-03-31 2017-03-30 四員環ラクトンの製造方法及び不均一系触媒

Country Status (3)

Country Link
JP (1) JPWO2017170808A1 (ja)
TW (1) TW201805065A (ja)
WO (1) WO2017170808A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183347A (ja) * 2019-04-26 2020-11-12 国立大学法人九州大学 ラクトン化合物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038836A1 (en) * 1998-01-29 1999-08-05 Union Carbide Chemicals & Plastics Technology Corporation Processes for preparing oxygenates and catalysts therefor
WO2004089923A1 (en) * 2003-04-09 2004-10-21 Shell Internationale Research Maatschappij B.V. Carbonylation of epoxides
JP2009241060A (ja) * 2008-03-11 2009-10-22 Mitsubishi Chemicals Corp オレフィン系不飽和化合物の変換反応に用いられる不均一系触媒、及び、オレフィン系不飽和化合物の誘導体の製造方法、並びに、アルデヒド又はアミンの製造方法
WO2010118128A1 (en) * 2009-04-08 2010-10-14 Novomer, Inc. Process for beta-lactone production
JP2013173089A (ja) * 2012-02-24 2013-09-05 Nippon Shokubai Co Ltd エポキシドのラクトン化方法
JP2013173090A (ja) * 2012-02-24 2013-09-05 Nippon Shokubai Co Ltd エポキシドのラクトン化用触媒及びそれを用いたラクトン化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038836A1 (en) * 1998-01-29 1999-08-05 Union Carbide Chemicals & Plastics Technology Corporation Processes for preparing oxygenates and catalysts therefor
WO2004089923A1 (en) * 2003-04-09 2004-10-21 Shell Internationale Research Maatschappij B.V. Carbonylation of epoxides
JP2009241060A (ja) * 2008-03-11 2009-10-22 Mitsubishi Chemicals Corp オレフィン系不飽和化合物の変換反応に用いられる不均一系触媒、及び、オレフィン系不飽和化合物の誘導体の製造方法、並びに、アルデヒド又はアミンの製造方法
WO2010118128A1 (en) * 2009-04-08 2010-10-14 Novomer, Inc. Process for beta-lactone production
JP2013173089A (ja) * 2012-02-24 2013-09-05 Nippon Shokubai Co Ltd エポキシドのラクトン化方法
JP2013173090A (ja) * 2012-02-24 2013-09-05 Nippon Shokubai Co Ltd エポキシドのラクトン化用触媒及びそれを用いたラクトン化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BALAKIER, T. ET AL.: "An effective protocol for the synthesis enantiomerically pure 4- substituted oxetane-2-ones", TETRAHEDRON, vol. 69, no. 24, 19 April 2013 (2013-04-19), pages 4990 - 4993, XP028533913 *
HAMASAKI, A. ET AL.: "Cobalt oxide supported gold nanoparticles as a stable and readily- prepared precursor for the in situ generation of cobalt carbonyl like species", TETRAHEDRON LETTERS, vol. 52, 15 September 2011 (2011-09-15), pages 6869 - 6872, XP028113731 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020183347A (ja) * 2019-04-26 2020-11-12 国立大学法人九州大学 ラクトン化合物の製造方法
JP7298839B2 (ja) 2019-04-26 2023-06-27 国立大学法人九州大学 ラクトン化合物の製造方法

Also Published As

Publication number Publication date
TW201805065A (zh) 2018-02-16
JPWO2017170808A1 (ja) 2019-02-14

Similar Documents

Publication Publication Date Title
Kindermann et al. Synthesis of carbonates from alcohols and CO 2
Jiang et al. Cycloaddition of epoxides and CO 2 catalyzed by bisimidazole-functionalized porphyrin cobalt (III) complexes
Dai et al. Ni (ii)–N′ NN′ pincer complexes catalyzed dehydrogenation of primary alcohols to carboxylic acids and H 2 accompanied by alcohol etherification
Xu et al. Aluminum complexes derived from a hexadentate salen-type Schiff base: synthesis, structure, and catalysis for cyclic carbonate synthesis
US10421702B2 (en) Method for producing fluorine-containing olefin
CN113563370B (zh) 一种壳聚糖负载铜材料催化制备α位有取代基的β-硼基酮的制备方法
JP2018515535A5 (ja)
KR101912840B1 (ko) 공유결합 트리아진 구조체 기반 비균질계 카보닐화 반응 촉매 및 이를 이용한 락톤의 제조방법
Hazra et al. A tetranuclear diphenyltin (IV) complex and its catalytic activity in the aerobic Baeyer-Villiger oxidation of cyclohexanone
US20210017108A1 (en) Integrated capture and conversion of co2 to methanol or methanol and glycol
Oklu et al. Highly selective and efficient solvent-free transformation of bio-derived levulinic acid to γ-valerolactone by Ru (II) arene catalyst precursors
CN109843846B (zh) 双环[2.2.2]辛烷的合成
CN113061122A (zh) 一种2,5-二羟甲基四氢呋喃的制备方法
WO2013018573A1 (ja) α-フルオロアルデヒド類の製造方法
KR20140041711A (ko) 팔라듐 착체 및 그의 제조 방법, 비닐에테르 화합물의 제조 방법, 및 팔라듐 착체의 회수 방법
WO2017170808A1 (ja) 四員環ラクトンの製造方法及び不均一系触媒
CN107721858B (zh) 相转移催化β-酮酸酯不对称α-苯甲酰化的方法
JP5806532B2 (ja) ビニルエーテルの製造方法
CN113072517B (zh) 一种五元含氧杂环化合物的合成方法
Li et al. Heterometal clusters Ln2Na8 (OCH2CH2NMe2) 12 (OH) 2 as homogeneous catalysts for the tishchenko reaction
Yaman et al. A copper (ii) metal–organic framework with 2, 2-dimethylglutarate and imidazole ligands: synthesis, characterization and catalytic performance for cycloaddition of CO 2 to epoxides
US8378147B2 (en) Process for producing a 2-alkyl-2-cycloalkene-1-one
JP2017001972A (ja) アルコール化合物の製造方法
KR102418587B1 (ko) 이산화탄소 고정화 반응용 촉매 조성물
JP2010270278A (ja) コバルト錯体、当該錯体を含む触媒システム、及び当該錯体を用いたエポキシド化合物と二酸化炭素の共重合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018509403

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775342

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17775342

Country of ref document: EP

Kind code of ref document: A1