WO2017169867A1 - 送信装置、送信方法、受信装置、受信方法および送受信システム - Google Patents

送信装置、送信方法、受信装置、受信方法および送受信システム Download PDF

Info

Publication number
WO2017169867A1
WO2017169867A1 PCT/JP2017/010808 JP2017010808W WO2017169867A1 WO 2017169867 A1 WO2017169867 A1 WO 2017169867A1 JP 2017010808 W JP2017010808 W JP 2017010808W WO 2017169867 A1 WO2017169867 A1 WO 2017169867A1
Authority
WO
WIPO (PCT)
Prior art keywords
audio
clock
data
unit
receiving
Prior art date
Application number
PCT/JP2017/010808
Other languages
English (en)
French (fr)
Inventor
一彰 鳥羽
俊久 百代
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/067,747 priority Critical patent/US11245869B2/en
Priority to EP17774411.7A priority patent/EP3439224B1/en
Priority to KR1020187018788A priority patent/KR20180124836A/ko
Publication of WO2017169867A1 publication Critical patent/WO2017169867A1/ja
Priority to US17/560,775 priority patent/US20220116568A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • G09G5/008Clock recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/025Systems for the transmission of digital non-picture data, e.g. of text during the active part of a television frame
    • H04N7/035Circuits for the digital non-picture data signal, e.g. for slicing of the data signal, for regeneration of the data-clock signal, for error detection or correction of the data signal
    • H04N7/0352Circuits for the digital non-picture data signal, e.g. for slicing of the data signal, for regeneration of the data-clock signal, for error detection or correction of the data signal for regeneration of the clock signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION, OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/16Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop
    • H03L7/18Indirect frequency synthesis, i.e. generating a desired one of a number of predetermined frequencies using a frequency- or phase-locked loop using a frequency divider or counter in the loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0008Synchronisation information channels, e.g. clock distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/233Processing of audio elementary streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/242Synchronization processes, e.g. processing of PCR [Program Clock References]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • H04N21/43076Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen of the same content streams on multiple devices, e.g. when family members are watching the same movie on different devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/439Processing of audio elementary streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/22Adaptations for optical transmission
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication
    • G09G2370/18Use of optical transmission of display information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/88Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving rearrangement of data among different coding units, e.g. shuffling, interleaving, scrambling or permutation of pixel data or permutation of transform coefficient data among different blocks

Definitions

  • the present technology relates to a transmission device, a transmission method, a reception device, a reception method, and a transmission / reception system, and more particularly to a transmission device that enables high-quality audio reproduction on the reception side.
  • Patent Document 1 a transmission clock is supplied from a reception side to a transmission side using a clock signal line, and audio is synchronized with an audio clock obtained by dividing the transmission clock from the transmission side to the reception side.
  • a technique has been proposed that enables high-quality audio reproduction on the receiving side by transmitting data.
  • An object of the present technology is to enable high-quality audio reproduction on the reception side without supplying a transmission clock using a clock signal line from the reception side to the transmission side.
  • An encoded data receiving unit for receiving encoded data capable of clock recovery from an external device;
  • An audio clock generator for generating an audio clock based on the carrier clock regenerated from the received encoded data;
  • the transmission device includes an audio data transmission unit that transmits audio data to the external device in synchronization with the generated audio clock.
  • the encoded data receiving unit receives encoded data from an external device.
  • This encoded data can be recovered from the clock.
  • the encoded data that can be reproduced by the clock may be encoded data of 8B10B coding.
  • the audio clock generation unit generates an audio clock based on the carrier clock (transmission clock) reproduced from the received encoded data.
  • the audio clock generation unit may generate the audio clock by dividing the carrier clock based on the division ratio information acquired from the received encoded data.
  • the frequency division is performed based on the frequency division ratio information sent from the external device, and the audio clock can be generated easily and appropriately.
  • Audio data transmission unit transmits audio data to an external device in synchronization with the generated audio clock.
  • the audio data transmitting unit transmits audio data to an external device through a first transmission path
  • the encoded data receiving unit receives encoded data from the external device through a second transmission path.
  • the first transmission path and the second transmission path may each be a transmission path using an optical cable.
  • audio data is transmitted to an external device in synchronization with an audio clock generated based on a carrier clock reproduced from received encoded data. Therefore, high-quality audio reproduction can be performed in the external device without supplying a transmission clock using the clock signal line from the external device.
  • the audio clock generator when a request to use an audio clock generated from a reproduced carrier clock is obtained, the audio clock generator generates an audio clock based on the carrier clock reproduced from encoded data.
  • the generating and audio data transmitting unit may be configured to transmit the audio data to an external device in synchronization with the generated audio clock. As described above, the transmission process of the audio data based on the audio clock generated from the reproduction carrier clock is performed in response to a request from the external device, whereby the transmission process can be effectively performed.
  • An audio clock generator for generating an audio clock
  • An encoded data transmission unit that transmits to the external device encoded data that can be regenerated in synchronization with the carrier clock generated based on the generated audio clock
  • An audio data receiving unit for receiving audio data from the external device
  • a receiving apparatus includes an audio data processing unit that processes the received audio data based on the generated audio clock.
  • an audio clock is generated by the audio clock generator.
  • the encoded data transmission unit transmits encoded data that can be reproduced by the clock in synchronization with the carrier clock generated based on the generated clock.
  • Audio data reception unit receives audio data from an external device.
  • the audio data processing unit processes the received audio data based on the audio clock generated by the audio clock generation unit.
  • the audio data receiving unit receives audio data from an external device through a first transmission path
  • the encoded data transmission unit transmits the encoded data to the external device through a second transmission path.
  • the first transmission path and the second transmission path may each be a transmission path using an optical cable.
  • the encoded data that can be reproduced in synchronization with the carrier clock generated based on the generated audio clock is transmitted to the external device, and the audio data received from the external device is transmitted to the external device. Processing is based on the audio clock. Therefore, high-quality audio reproduction can be performed without supplying a transmission clock using a clock signal line to an external device.
  • encoded data of division ratio information for obtaining an audio clock from a carrier clock may be included as encoded data.
  • an external device can obtain an audio clock by dividing the carrier clock reproduced from the encoded data based on the division ratio information, and generate an audio clock. Can be performed easily and appropriately.
  • encoded data that is a request for using an audio clock generated from a carrier clock may be included as encoded data.
  • the external device can effectively perform audio data transmission processing based on the audio clock generated by dividing the reproduced carrier clock.
  • high-quality audio reproduction can be performed on the reception side without supplying a transmission clock using a clock signal line from the reception side to the transmission side.
  • the effects described in this specification are merely examples and are not limited, and may have additional effects.
  • regeneration part It is a block diagram which shows the structural example of a carrier clock generation part. It is a block diagram which shows the structural example of the disc player as a specific example of a transmitter. It is a block diagram which shows the structural example of the television receiver as a specific example of a receiver.
  • FIG. 1 shows an outline of an AV (Audio and Visual) transmission system 10 as an embodiment.
  • the AV transmission system 10 includes a main stream link 60 and a sub stream link 70.
  • the main stream link 60 mainly transmits audio / video signals.
  • a plurality of video and audio to be transmitted, metadata associated therewith, and the like are packed for each stream by a data packing unit (Data Packing) 601.
  • the division ratios for reproducing the video and audio clocks from the carrier clock are the video clock recovery information (VCR) and the audio clock recovery information (ACR), respectively, and a VCR / ACR generation unit (VCR / ACR gen) 602. Is generated.
  • a lane frame (Lane frame) including the packed transmission data and the generated recovery information is generated by a frame generation unit (Frame generator) 603.
  • the lane frames obtained by a plurality of frame generation units 603 are combined into one by a multi-stream construction unit (Multi-stream Constructor) 604, and each channel (Physical Mapper) 605 further transmits individual transmission paths (Physical Channels) and transmitted.
  • Multi-stream Constructor Multi-stream Constructor
  • Physical Mapper Physical Mapper
  • a lane frame transmitted through each transmission path is demapped by a channel demapping unit (Channel-De-Mapper) 606, and further, a multi-stream decomposition unit (Multi-stream De-Constructor) 607 is used for a plurality of lane frames. Is broken down into In each system, a packet generator (Packet Generator) 608 extracts a packet including video, audio, metadata associated therewith, and the like from the lane frame.
  • a packet generator Packet Generator
  • a data depacking unit (Data De-Packing) 609 extracts video, audio, metadata associated therewith from a packet including video, audio, metadata associated therewith, and the like. Further, the video / audio clock unit (Vide0 / Audio) Clock) 610 extracts the recovery information from the packet including the recovery information (VCR, ACR), and uses it to reproduce the video or audio clock.
  • Data De-Packing data depacking unit 609 extracts video, audio, metadata associated therewith from a packet including video, audio, metadata associated therewith, and the like.
  • the video / audio clock unit (Vide0 / Audio) Clock) 610 extracts the recovery information from the packet including the recovery information (VCR, ACR), and uses it to reproduce the video or audio clock.
  • control information that is, control signals (Control), Ethernet data (IP data), plug-and-play data (PnP neg), etc. are transmitted bidirectionally.
  • Control information and the like are packed by data packing units (Data Packing) 701a and 701b.
  • Lane frames (LaneLFrame) including the packed control information are generated by the frame generators (Frame Generators) 702a and 702b and transmitted through the transmission channel (Physical Channels).
  • Packets including control signals (Control), Ethernet data (IP data), plug-and-play data (PnP neg), and the like are generated from the lane frame transmitted through the transmission path by packet generators 703a and 703b. It is taken out. Data depacking units (Data De-Packing) 704a and 704b extract control signals (Control), Ethernet data (IP data), plug and play data (PnP neg), and the like from the extracted packets.
  • Data De-Packing Data De-Packing units
  • the following normal mode operations are usually performed. That is, audio data is transmitted from the transmitter to the receiver in synchronization with the audio clock generated in the transmitter through the main stream link, and the frequency division for reproducing the audio clock from the carrier clock of the main stream link is performed. Ratio information (recovery information) is transmitted over the mainstream link. In the receiver, an audio clock is reproduced from the carrier clock of the main stream link using the frequency division ratio indicated by the frequency division ratio information, and audio data is processed using the audio clock.
  • the transmitter divides the carrier clock of the substream link of the receiver to generate an audio clock, and audio data is transmitted on the main stream link in synchronization with the audio clock.
  • the received audio data is processed based on the audio clock generated in the receiver.
  • FIG. 2 shows a sequence diagram when transitioning from the normal mode to the option mode with respect to transmission of audio data.
  • the receiver (Receiver) is an ACMSW packet unit (Audio Clock Master Switch) in which AMCLK (Audio Master Clock Switch Request) indicating a switch request to the option mode using the receiver's audio clock as a master is set in the substream link. Packet Unit) is sent to the transmitter.
  • ACMSW packet unit Audio Clock Master Switch
  • AMCLK Audio Master Clock Switch Request
  • the transmitter that has received the ACMSW packet unit can respond to the request, the audio based on the division ratio information (ACR information) stored in the ACMSW packet unit from the carrier clock of the substream link of the receiver as an audio clock.
  • a clock is generated, the state is switched to a state in which audio data is transmitted in synchronization with the audio clock, and an ACK command is returned to the receiver through a substream link.
  • the receiver that has received the ACK command switches the audio clock to the audio clock generated in the receiver and reproduces the audio.
  • FIG. 3 shows a configuration example of a portion related to audio data transmission of the transmitter (Transmitter) 300 and the receiver (Receiver) 400 in the above-described option mode.
  • the transmitter 300 includes an audio source 301, a FIFO memory unit 302, an ASPU (Audio Sample Packet Unit) generation unit 303, an AAPU (Ancillary Audio Data Packet Unit) generation unit 304, and a lane frame (Lane Frame). ) Generator 305 and main stream link transmitter 306.
  • the transmitter 300 also includes a substream link receiving unit 307, a lane frame decoding unit 309, an ACMSW decoding unit 310, and an audio clock reproduction unit (Re-gen Audio Clock) 311. .
  • the receiver 400 includes a main stream link receiving unit 401, a lane frame decoding unit 402, an ASPU decoding unit 403, an AAPU decoding unit 404, and an audio decoding unit 405.
  • the receiver 400 includes an audio clock source (Audio Clock Source) 406, a lane clock (Lane Clock) generation unit 407, an ACMSW generation unit 408, a lane frame (Lane Frame) generation unit 409, and a substream link.
  • a transmission unit 410 is included.
  • the audio source 301 outputs uncompressed or compressed audio data (audio sample data) as audio data to be transmitted, and outputs audio additional information.
  • the audio additional information includes information such as a sampling frequency, a sample size, and an encoding method (non-compression, compression method).
  • the FIFO memory unit 302 receives the audio data to be transmitted output from the audio source 301 and outputs the audio data in synchronization with the audio clock reproduced by the audio clock reproduction unit 311.
  • the ASPU generation unit 303 packs audio data input from the FIFO memory unit 302 in synchronization with the audio clock, and generates an AS packet unit (ASPU) in which the audio data is inserted into the payload.
  • the AAPU generating unit 304 packs the audio additional information output from the audio source 301 and generates an AA packet unit (AAPU) in which the audio additional information is inserted into the payload.
  • the lane frame generation unit 305 generates a lane frame including the AS packet unit generated by the ASPU generation unit 303 and the AA packet unit generated by the AAPU generation unit 304 as payload units.
  • FIG. 4 shows an example of the structure of the lane frame.
  • the structure of the lane frame is a collection of structures called units.
  • the lane frame is composed of, for example, 6000 units, and includes a header unit (Header Unit) including attributes of the lane frame and synchronization information, and a payload unit (Payload Unit) for storing the respective data.
  • Each unit has a fixed length and has a special code called delimiter in the first 2 bytes and the last byte.
  • the lane frame decoder (Lane Frame dec) on the receiving side can determine the contents of each payload unit by looking at the contents of the delimiter.
  • an SS packet unit for transmitting a control signal bidirectionally on the substream link is used.
  • Sub Stream Packet Unit Sub Stream Packet Unit
  • the transmission unit 306 optically or optically uses the main stream link lane frame generated by the lane frame generation unit 305 using the optical cable in the main stream link. To the receiver 400.
  • FIG. 5A shows a configuration example of the transmission unit 306.
  • the transmission unit 306 includes a scrambler 511, an 8B / 10B encoder (8b / 10b Encode) 512, a serializer 513, a laser diode driver (Laser Diode Driver) 514, and a laser diode (Laser Diode). ) 515.
  • the lane frame data output from the lane frame generation unit 305 is input to the scrambler 511.
  • the scrambler 511 scrambles the lane frame data. In this case, the data of the lane frames are rearranged randomly, and the continuity of the data is removed. Such scramble processing not only realizes data retention on the AC coupling transmission line, but also suppresses unnecessary radiation on the transmission line.
  • the scrambler 511 is composed of a linear feedback shift register having a feedback path based on a generator polynomial.
  • the scrambled data (scrambled data (scrambled data) obtained by taking exclusive OR (XOR) with the input data (data input). data).
  • FIG. 6 shows a configuration example of the scrambler 511.
  • the data output from the scrambler 511 is input to the 8B / 10B encoder 512.
  • the 8B / 10B encoder 512 performs 8B10B coding encoding processing on input data.
  • the 8-bit data is converted to 10-bit data in order to guarantee the frequency of data change so that the DC component of the transmitted data can be removed and the reception clock can be extracted from the reception data by the reception circuit.
  • FIG. 7A shows a circuit configuration example of the 8B / 10B encoder 512.
  • input data (Transmit) from the scrambler 511 is input to the encoder (8b-> 10b Encode) as 9-bit data together with the control bit (Z), and is output as 10-bit data.
  • control symbols fixed data for synchronization called control symbols may be inserted as appropriate.
  • the data output from the 8B / 10B encoder 512 is input to the serializer 513.
  • the serializer 513 converts input data from parallel data to serial data.
  • 8B10B coding encoding processing is performed so that the byte delimiter of each data can be easily recognized by the receiving circuit.
  • Data output from the serializer 513 is input to the laser diode driver 514.
  • the laser diode driver 514 drives the laser diode 515 based on the input data, and outputs an optical signal to be transmitted from the laser diode 515 through the main stream link.
  • the receiving unit 307 receives a lane frame of a substream link that is transmitted from the receiver 400 electrically or optically by a substream link, and optically using an optical cable in this embodiment.
  • FIG. 5B shows a configuration example of the receiving unit 307.
  • the receiving unit 307 includes a photo detector 521, an amplifier (Trans Impedance Amplifier) 522, a deserializer 523, an 8B / 10B decoder (8b / 10b Decode) 524, a descrambler (Descrambler). ) 525.
  • an amplifier Trans Impedance Amplifier
  • 8b / 10b Decode 8b / 10b Decode
  • Descrambler descrambler
  • the optical signal sent through the substream link is input to the photo detector 521 and converted into an electric signal. This electric signal is amplified by an amplifier 522. Data (electrical signal) output from the amplifier 522 is input to the deserializer 523. The deserializer 523 converts input data from serial data to parallel data.
  • the deserializer 523 includes a clock and data recovery circuit (CDR) 308 in the preceding stage, and regenerates a carrier clock (Lane clock) from input data from the amplifier 522, and this carrier. Data is reliably received based on the clock.
  • CDR clock and data recovery circuit
  • FIG. 8 shows a configuration example of the clock / data recovery circuit 308.
  • Serial data Serial Data Input
  • phase comparator 308a Phase Frequency Detector
  • the phase comparator 308a, the loop filter (Loop? Filter) 308b, and the voltage controlled oscillator (VCO: Voltage? Controlled? Oscillator) 308c constitute a phase locked loop (PLL: Phase? Locked? Loop).
  • the clock (Recovery clock) obtained by the voltage controlled oscillator 308c is phase-compared with serial data (Serial Data Input) which is input data from the amplifier 522 by the phase comparator 308a, and the comparison error signal is output from the loop filter 308b.
  • the control signal Vcon is supplied to the voltage controlled oscillator 308c.
  • the clock (Recovery clock) obtained by the voltage controlled oscillator 308 c is synchronized with the input data from the amplifier 522.
  • serial data Serial Data Input
  • data register 308d serial data (Serial Data Input) that is input data from the amplifier 522 is input to the data register 308d and latched by a clock (Recovery clock) obtained by the voltage controlled oscillator 308c.
  • a clock Recovery clock
  • output data Output Data
  • the data output from the deserializer 523 is input to the 8B / 10B decoder 524.
  • the 8B / 10B decoder 524 performs 8B10B coding decoding processing on the input data to obtain 8-bit data.
  • FIG. 7B shows a circuit configuration example of the 8B / 10B decoder 524.
  • the configuration is opposite to that of the 8B / 10B encoder 512 in FIG. 7A, and 10-bit data from the deserializer 523 is input to the decoder (10b-> 8b Decode) and includes the control bit (Z). It is output as 9-bit data.
  • the data output from the 8B / 10B decoder 524 is input to the descrambler 525.
  • the descrambler 525 performs descrambling processing reverse to that of the scrambler 511 of the transmission unit 306, and outputs lane frame data.
  • the lane frame decoding unit 309 takes out the payload unit included in the lane frame received by the receiving unit 307, here the ACMSW packet unit.
  • the ACMSW decoding unit 310 acquires frequency division ratio information (ACR information) stored in the ACMSW packet unit extracted by the lane frame decoding unit 309. This frequency division ratio information consists of two values, Maud and Naud.
  • the audio clock reproduction unit 311 reproduces an audio clock (Audio Clock) from the carrier clock (Lane Clock) reproduced by the CDR 308 of the receiving unit 307 and Maud and Naud.
  • a carrier clock Lithane (Clock) of 1.215 GHz is divided to generate a 270 MHz video clock (Link Video Clock), and an audio clock is generated from this video clock (Link Video Clock) and Maud and Naud. (Audio Clock) is played.
  • Naud is defined as the count interval of the audio clock (Audio Clock)
  • Maud is defined as the count value of the video clock (Link Video Clock) in that interval.
  • FIG. 9 shows a configuration example of the audio clock reproducing unit 311.
  • the carrier clock (Lane Clock) is divided by 1/10 by the frequency divider 311a, and the output clock is further divided by 2/9 by the frequency divider 311b to obtain the video clock (Link Video Clock).
  • the clock obtained by dividing the video clock (Link (Video Clock) by 1 / Maud by the frequency divider 311c and the output clock of the PLL circuit 311d by 1 / Naud by the frequency divider 311e are obtained.
  • An audio clock (AudioPLClock) is obtained as an output clock of the PLL circuit 311d by inputting the clock to the PLL circuit 311d and performing phase comparison.
  • the receiving unit 401 receives a lane frame transmitted from the transmitter 300 electrically or optically via a main frame link, and optically using an optical cable in this embodiment. Although detailed description is omitted, the receiving unit 401 is configured similarly to the receiving unit 307 in the transmitter 300 described above (see FIG. 5B).
  • the lane frame decoding unit 402 performs a decoding process on the lane frame received by the receiving unit 401, and extracts an AS packet unit (ASPU) and an AA packet unit (AAPU).
  • ASPU AS packet unit
  • AA packet unit AA packet unit in which audio additional information is inserted into the payload.
  • the ASPU decoding unit 403 performs decoding processing on the AS packet unit extracted by the lane frame decoder 402, and extracts audio data.
  • the AAPU decoding unit 404 performs a decoding process on the AA packet unit extracted by the lane frame decoder 402, and extracts audio additional information.
  • the audio clock source 406 generates an audio clock.
  • the audio decoding unit 405 synchronizes the audio data extracted by the ASPU decoding unit 403 with the audio clock (Audio Clock) generated by the audio clock source 406 based on the audio additional information extracted by the AAPU decoding unit 404. Processing is performed to obtain output audio data for voice output.
  • the audio decoding unit 405 outputs the output audio data in synchronization with the audio clock (Audio (Clock) generated by the audio clock source 406.
  • a carrier clock (Lane Clock) generator 407 generates a 1.215 GHz carrier clock (Lane Clock) based on an audio clock (Audio Clock) and a 270 MHz video clock (Link Video Clock), and a frequency division ratio.
  • Two values of Maud and Naud are output as information.
  • Naud is defined as the count interval of the audio clock
  • Maud is defined as the count value of the video clock (Link Video Clock) in that interval.
  • FIG. 10 shows a configuration example of the carrier clock generation unit 407.
  • the count unit 407b functions as a Naud advance counter based on the value of Naud generated by the Naud generation unit 407a, and performs a count operation using the audio clock (Audio Clock) as a count clock.
  • the carry output of the count unit 407b is supplied as a reset signal to the count unit 407c and also supplied as a latch (hold) signal to the latch unit 407d.
  • the count unit 407c is reset by the carry output of the count unit 407b and performs a count operation using a 270 MHz video clock (Link Video Clock) as a count clock.
  • the count output of the count unit 407c is input to the latch unit 407d.
  • the latch unit 407d holds the count output of the count unit 407c by the output of the count unit 407b, and obtains the value of Maud.
  • the multiplication unit 407e multiplies the 270 MHz video clock (Link Video Clock) by 9/2. Further, the multiplier 407f multiplies the output clock of the multiplier 407e by 10 to obtain a carrier clock (Lane Clock) of 1.215 GHz.
  • the carrier clock generation unit 407 outputs the 1.215 GHz carrier clock (Lane Clock) obtained by the multiplication unit 407f, and the Naud value generated by the Naud generation unit 407a and the Maud value held by the latch unit 407d. Output the value.
  • the carrier clock (Lane Clock) and the video clock (Link Video Clock) satisfy the relationship of the above formula (1).
  • the audio clock (Audio Clock), the video clock (Link Video Clock), and Maud and Naud satisfy the relationship of the above equation (2).
  • the ACMSW generation unit 408 generates an ACMSW packet unit (Audio ⁇ ⁇ ⁇ ⁇ Clock ⁇ ⁇ ⁇ Master Switch Packet Unit) as an SS packet unit.
  • This ACMSW packet unit includes AMCLK (Audio Master Clock Switch Request) indicating a switch request to the option mode using the audio clock on the receiver 400 side as a master, and the frequency division output from the carrier clock generation unit 407 Maud and Naud as ratio information are also included.
  • AMCLK Audio Master Clock Switch Request
  • the lane frame generation unit 409 generates a lane frame including an SS packet unit such as an ACMSW packet unit generated by the ACMSW generation unit 408 as a payload unit (Payload unit) (see FIG. 4).
  • an SS packet unit such as an ACMSW packet unit generated by the ACMSW generation unit 408 as a payload unit (Payload unit) (see FIG. 4).
  • the transmission unit 410 transmits the lane frame of the substream link generated by the lane frame generation unit 409 to the transmitter 300 electrically or optically using the substream link, or optically using an optical cable in this embodiment.
  • the transmission unit 410 is configured in the same manner as the transmission unit 306 in the transmitter 300 described above (see FIG. 5A). In this case, the output data from the 8B / 10B encoder 512 is converted from parallel data to serial data by the serializer 513, and the serial data is transmitted as an optical signal in synchronization with the carrier clock.
  • the audio clock (Audio Clock) generated by the audio clock source 406 of the receiver 400 is supplied to the carrier clock generation unit 407.
  • the carrier clock generation unit 407 is supplied with a 270 MHz video clock (Link (VideolockClock).
  • the carrier clock generation unit 407 generates a 1.215 GHz carrier clock (Lane Clock) based on the audio clock (Audio Clock) and the 270 MHz video clock (Link Video Clock), and as frequency division ratio information. Maud and Naud are obtained (see FIG. 10).
  • the ACMSW generation unit 408 generates an ACMSW packet unit as an SS packet unit.
  • the ACMSW packet unit includes AMCLK indicating a switch request to the option mode using the audio clock on the receiver 400 side as a master, and Maud and Naud as frequency division ratio information output from the carrier clock generation unit 407. Is also included.
  • the ACMSW packet unit generated by the ACMSW generation unit 408 is supplied to the lane frame generation unit 409.
  • the lane frame generation unit 409 generates a lane frame including an SS packet unit such as an ACMSW packet unit as a payload unit (see FIG. 4).
  • the lane frame of the substream link generated by the lane frame generation unit 409 is supplied to the transmission unit 410.
  • the lane frame of the substream link is optically transmitted to the transmitter 300 using an optical cable (see FIG. 5A).
  • transmission data is transmitted as an optical signal in synchronization with the carrier clock.
  • the receiving unit 307 of the transmitter 300 receives the lane frame of the substream link that is optically transmitted from the receiver 400 using the optical cable through the substream link (see FIG. 5B).
  • the clock / data recovery circuit 308 included in the preceding stage of the deserializer 613 reproduces the carrier clock (Lane Clock) from the input data from the amplifier 612, and the data is reliably generated based on this carrier clock. Is received.
  • the lane frame of the substream link received by the receiving unit 307 is supplied to the lane frame decoding unit 309.
  • the lane frame decoding unit 309 the lane frame of the substream link is decoded, and the SS packet unit included in the lane frame, here, the ACMSW packet unit is extracted.
  • the ACMSW packet unit extracted by the lane frame decoding unit 309 is supplied to the ACMSW decoding unit 310.
  • the ACMSW decoding unit 310 decodes the ACMSW packet unit and stores AMCLK indicating the switch request to the option mode using the audio clock on the receiver 400 side as a master stored in the ACMSW packet unit, and the frequency division ratio Maud and Naud are acquired as information.
  • the carrier clock (Lane Clock) regenerated by the clock / data regenerating circuit 308 and Maud as the frequency division ratio information acquired by the ACMSW decoding unit 310 are displayed.
  • the audio clock is reproduced based on Naud, and the audio data is transmitted in synchronization with the reproduced audio clock.
  • the carrier clock (Lane Clock) regenerated by the clock / data regenerating circuit 308 and the Maud and Naud as the division ratio information acquired by the ACMSW decoding unit 310 are supplied to the audio clock regenerating unit 311.
  • the audio clock reproduction unit 311 reproduces an audio clock (Audio Clock) from the carrier clock (Lane Clock) and Maud and Naud (see FIG. 9).
  • Uncompressed or compressed audio data (audio sample data) output from the audio source 301 is input to the FIFO memory unit 302.
  • the audio data input from the audio source 301 is sequentially output in synchronization with the audio clock reproduced by the audio clock reproduction unit 311.
  • the audio data output from the FIFO memory unit 302 is supplied to the ASPU generation unit 303.
  • the ASPU generation unit 303 performs packing of the audio data, and generates an AS packet unit (ASPU) in which the audio data is inserted into the payload. This AS packet unit is supplied to the lane frame generation unit 305.
  • ASPU AS packet unit
  • the audio additional information output from the audio source 301 is supplied to the AAPU generation unit 304.
  • the AAPU generation unit 304 performs packing of the audio additional information, and generates an AA packet unit in which the audio additional information is inserted into the payload.
  • the audio additional information includes information such as a sampling frequency, a sample size, and an encoding method (non-compression, compression method).
  • the AA packet unit is supplied to the lane frame generation unit 305.
  • the lane frame generation unit 305 generates a lane frame including an AS packet unit and an AA packet unit as a payload unit.
  • the lane frame of the substream link generated by the lane frame generation unit 305 is supplied to the transmission unit 306.
  • the lane frame of the main stream link is optically transmitted to the receiver 400 using an optical cable (see FIG. 5A).
  • the carrier clock (Lane Clock) regenerated by the clock / data regenerating circuit 308 and the frequency division acquired by the ACMSW decoding unit 310 are obtained.
  • An audio clock is reproduced based on Maud and Naud as ratio information, and audio data is transmitted in synchronization with the reproduced audio clock.
  • an ACK command is returned from the transmitter 300 side to the receiver 400 side via a substream link. Then, the receiver 400 is switched to a state where an audio clock (Audio ⁇ ⁇ Clock) generated from the audio clock source 406 is used as the audio clock.
  • an audio clock (Audio ⁇ ⁇ Clock) generated from the audio clock source 406 is used as the audio clock.
  • the reception unit 401 of the receiver 400 receives the lane frame of the main stream link that is optically transmitted from the transmitter 300 using the optical cable through the main stream link (see FIG. 5B).
  • the lane frame of the main stream link is supplied to the lane frame decoding unit 402.
  • the lane frame decoding unit 402 performs a decoding process on the lane frame of the main stream link, and extracts an AS packet unit (ASPU) and an AA packet unit (AAPU) included in the lane frame. As described above, audio data is inserted into the AS packet unit, and audio additional information is inserted into the AA packet unit.
  • ASPU AS packet unit
  • AAPU AA packet unit
  • the AS packet unit extracted by the lane frame decoding unit 402 is supplied to the ASPU decoding unit 403.
  • the AS packet unit is subjected to decoding processing, and audio data is extracted.
  • the AA packet unit extracted by the lane frame decoding unit 402 is supplied to the AAPU decoding unit 404.
  • the AA packet unit is decoded and audio additional information is extracted.
  • the audio data (audio sample data) extracted by the ASPU decoding unit 403 and the audio additional information extracted by the AAPU decoding unit 404 are supplied to the audio decoding unit 405.
  • the audio data is processed in synchronization with an audio clock (Audio Clock) generated by the audio clock source 406 based on the audio additional information, and output audio data for audio output is obtained.
  • the output audio data is output from the audio decoding unit 405 in synchronization with the audio clock (Audio (Clock) generated by the audio clock source 406.
  • FIG. 11 shows a configuration example of a disc player 11 as a specific example of the transmitter 300.
  • the disc player 11 includes a main stream link transmission unit 125, a sub stream link transmission unit 126, and a sub stream link reception unit 127.
  • the main stream link transmission unit 125 includes processing units corresponding to the FIFO memory unit 302, the ASPU generation unit 303, the AAPU generation unit 304, the lane frame generation unit 305, the transmission unit 306, and the like in the transmitter 300 of FIG. Yes.
  • the substream link reception unit 127 includes processing units corresponding to the reception unit 307, the lane frame decoding unit 309, the ACMSW decoding unit 310, the audio clock reproduction unit 311 and the like in the transmitter 300 of FIG.
  • the disc player 11 includes a CPU (Central Processing Unit) 104, an internal bus 105, a flash ROM (Read Only Memory) 106, an SDRAM (Synchronous Random Access Memory) 107, a remote control receiving unit 108, and remote control transmission.
  • a CPU Central Processing Unit
  • an internal bus 105 a flash ROM (Read Only Memory) 106
  • an SDRAM Synchronous Random Access Memory
  • remote control receiving unit 108 and remote control transmission.
  • Machine 109 Central Processing Unit
  • the disc player 11 has a SATA (Serial Advanced Technology Attachment) interface 110, a BD (Blu-Ray Disc) drive 111, an Ethernet interface (Ethernet I / F) 112, and a network terminal 113.
  • the disc player 11 has an MPEG (Moving Picture Picture Expert Group) decoder 115, a graphic generation circuit 116, a video output terminal 117, and an audio output terminal 118.
  • the disc player 11 may include a display control unit 121, a panel drive circuit 122, a display panel 123, and a power supply unit 124.
  • “Ethernet” and “Ethernet” are registered trademarks.
  • the CPU 104, flash ROM 106, SDRAM 107, SATA interface 110, Ethernet interface 112, MPEG decoder 115 and display control unit 121 are connected to the internal bus 105.
  • the CPU 104 controls the operation of each part of the disc player 11.
  • the flash ROM 106 stores control software and data.
  • the SDRAM 107 constitutes a work area for the CPU 104.
  • the CPU 104 develops software and data read from the flash ROM 106 on the SDRAM 107 and activates the software to control each unit of the disc player 11.
  • the remote control receiving unit 108 receives a remote control signal (remote control code) transmitted from the remote control transmitter 109 and supplies it to the CPU 104.
  • the CPU 104 controls each part of the disc player 11 according to the remote control code.
  • the remote control unit is shown as the user instruction input unit.
  • the user instruction input unit has other configurations, for example, a switch, a wheel, a touch panel unit for inputting an instruction by proximity / touch, a mouse It may be a keyboard, a gesture input unit for detecting an instruction input with a camera, a voice input unit for inputting an instruction by voice, or the like.
  • the BD drive 111 records content data on a BD disc (not shown) as a disc-shaped recording medium, or reproduces content data from this BD.
  • the BD drive 111 is connected to the internal bus 105 via the SATA interface 110.
  • the MPEG decoder 115 performs decoding processing on the MPEG2 stream reproduced by the BD drive 111 to obtain image and audio data.
  • the image and audio data is supplied from the MPEG decoder 115 to the main stream link transmission unit 125.
  • the image and audio data may be compressed data or non-compressed data.
  • the MPEG decoder 115 constitutes the audio source 301 in the portion related to audio data transmission in FIG.
  • the graphic generation circuit 116 performs graphics data superimposition processing on the image data obtained by the MPEG decoder 115 as necessary.
  • the video output terminal 117 outputs the image data output from the graphic generation circuit 116.
  • the audio output terminal 118 outputs the audio data obtained by the MPEG decoder 115.
  • the panel drive circuit 122 drives the display panel 123 based on the video (image) data output from the graphic generation circuit 260.
  • the display control unit 121 controls the display on the display panel 123 by controlling the graphics generation circuit 116 and the panel drive circuit 122.
  • the display panel 123 includes, for example, an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an organic EL (Organic Electro-Luminescence) panel, and the like.
  • the display control unit 121 may directly control the display on the display panel 123.
  • the CPU 104 and the display control unit 121 may be a single chip or a plurality of cores.
  • the power supply unit 124 supplies power to each unit of the disc player 11.
  • the power supply unit 124 may be an AC power supply or a battery (storage battery, dry battery).
  • content data to be recorded is acquired via a digital tuner (not shown) or from the network terminal 113 via the Ethernet interface 112.
  • This content data is input to the SATA interface 110 and recorded on the BD by the BD drive 111.
  • the content data may be recorded in an HDD (hard disk drive) (not shown) connected to the SATA interface 110.
  • content data (MPEG stream) reproduced from the BD by the BD drive 111 is supplied to the MPEG decoder 115 via the SATA interface 110.
  • the MPEG decoder 115 the reproduced content data is decoded, and uncompressed image and audio data is obtained.
  • the image data is output to the video output terminal 117 through the graphic generation circuit 116.
  • the audio data is output to the audio output terminal 118.
  • the image data obtained by the MPEG decoder 115 is supplied to the panel drive circuit 122 through the graphic generation circuit 116 in accordance with a user operation, and the reproduced image is displayed on the display panel 123. Also, audio data obtained by the MPEG decoder 115 is supplied to a speaker (not shown) according to a user operation, and audio corresponding to the reproduced image is output.
  • image and audio data when image and audio data are transmitted from the disc player 11 to an external device (receiver) during reproduction, image and audio data (uncompressed data or uncompressed data) is transmitted from the MPEG decoder 115 to the main stream link transmission unit 125. Data) is supplied and transmitted to the external device (receiver) via the main stream link.
  • the content data reproduced by the BD drive 111 is transmitted to the network during reproduction, the content data is output to the network terminal 113 via the Ethernet interface 112.
  • the image data may be transmitted (transmitted) after being encrypted using a copyright protection technique such as HDCP, DTCP, DTCP +, or the like.
  • the substream link receiver 127 reproduces based on the carrier clock (Lane Clock) and Maud and Naud as the division ratio information.
  • An audio clock (Audio Clock) is supplied to the main stream link transmission unit 125.
  • the main stream link transmission unit 125 performs transmission processing of audio data (audio sample data) based on the reproduced audio clock (Audio ⁇ ⁇ ⁇ ⁇ Clock).
  • FIG. 12 illustrates a configuration example of the television receiver 12 as a specific example of the receiver 400.
  • the television receiver 12 includes a main stream link receiver 233, a substream link receiver 234, a substream link transmitter 235, and an audio clock source 236.
  • the main stream link reception unit 233 includes processing units corresponding to the reception unit 401, the lane frame decoding unit 402, the ASPU decoding unit 403, the AAPU decoding unit 404, and the audio decoding unit 405 in the receiver 400 of FIG. .
  • the substream link transmission unit 235 includes a lane clock generation unit 407, an ACMSW generation unit 408, a lane frame generation unit 409, a substream link transmission unit 410, and the like in the receiver 400 of FIG.
  • the television receiver 12 includes an antenna terminal 205, a digital tuner 206, an MPEG decoder 207, a video signal processing circuit 208, a graphic generation circuit 209, a panel drive circuit 210, and a display panel 211. Yes.
  • the television receiver 12 includes an audio signal processing circuit 212, an audio amplification circuit 213, a speaker 214, an internal bus 220, a CPU 221, a flash ROM 222, and an SDRAM (Synchronous Random Access Memory) 223. Yes.
  • the television receiver 12 includes an Ethernet interface (Ethernet I / F) 224, a network terminal 225, a remote control receiving unit 226, and a remote control transmitter 227.
  • the television receiver 12 includes a display control unit 231 and a power supply unit 232. “Ethernet” and “Ethernet” are registered trademarks.
  • the CPU 221 controls the operation of each unit of the television receiver 12.
  • the flash ROM 222 stores control software and data.
  • the SDRAM 223 constitutes a work area for the CPU 221.
  • the CPU 221 develops software and data read from the flash ROM 222 on the SDRAM 223 to activate the software, and controls each unit of the television receiver 12.
  • the remote control receiving unit 226 receives the remote control signal (remote control code) transmitted from the remote control transmitter 227 and supplies it to the CPU 221.
  • the CPU 221 controls each part of the television receiver 12 based on this remote control code.
  • a remote control unit is shown as the user instruction input unit.
  • the user instruction input unit has other configurations, for example, a touch panel unit that inputs an instruction by proximity / touch, a mouse, a keyboard, a camera It may be a gesture input unit that detects an instruction input, a voice input unit that inputs an instruction by voice, and the like.
  • the network terminal 225 is a terminal connected to the network, and is connected to the Ethernet interface 224.
  • the CPU 221, flash ROM 222, SDRAM 223, Ethernet interface 224, MPEG decoder 207, and display control unit 231 are connected to the internal bus 220.
  • the antenna terminal 205 is a terminal for inputting a television broadcast signal received by a receiving antenna (not shown).
  • the digital tuner 206 processes a television broadcast signal input to the antenna terminal 205 and generates a partial TS (Transport Stream) (TS packet of video data, audio data) from a predetermined transport stream corresponding to the user's selected channel. TS packet) is extracted.
  • TS Transport Stream
  • the digital tuner 206 extracts PSI / SI (Program Specific Information / Service Information) from the obtained transport stream and outputs it to the CPU 221.
  • PSI / SI Program Specific Information / Service Information
  • the process of extracting a partial TS of an arbitrary channel from a plurality of transport streams obtained by the digital tuner 206 is performed by obtaining packet ID (PID) information of the arbitrary channel from PSI / SI (PAT / PMT). It becomes possible.
  • PID packet ID
  • the MPEG decoder 207 decodes a video PES (Packetized Elementary Stream) packet composed of TS packets of video data obtained by the digital tuner 206 to obtain image data. Also, the MPEG decoder 207 performs a decoding process on an audio PES packet configured by an audio data TS packet obtained by the digital tuner 206 to obtain audio data. Also, the MPEG decoder 207 performs decoding processing on content data (image data and audio data) supplied from the network terminal 225 via the Ethernet interface 224 to obtain image and audio data.
  • a video PES Packetized Elementary Stream
  • the video signal processing circuit 208 and the graphic generation circuit 209 perform scaling processing (resolution conversion processing) and graphics on the image data obtained by the MPEG decoder 207 or the image data received by the receiving unit 233 as necessary. Performs data superimposition processing.
  • the panel drive circuit 210 drives the display panel 211 based on the video (image) data output from the graphic generation circuit 209.
  • the display control unit 231 controls display on the display panel 211 by controlling the graphics generation circuit 209 and the panel drive circuit 210.
  • the display panel 211 includes, for example, an LCD (Liquid Crystal Display), a PDP (Plasma Display Panel), an organic EL (Organic Electro-Luminescence) panel, and the like.
  • the power supply unit 232 supplies power to each unit of the television receiver 12.
  • the power supply unit 232 may be an AC power supply or a battery (storage battery, dry battery).
  • the audio signal processing circuit 212 performs necessary processing such as D / A conversion on the audio data obtained by the MPEG decoder 207 or the audio data received by the receiving unit 233.
  • the audio amplifier circuit 213 amplifies the audio signal output from the audio signal processing circuit 212 and supplies the amplified audio signal to the speaker 214.
  • the speaker 214 may be monaural or stereo. Further, the number of speakers 214 may be one, or two or more.
  • the speaker 214 may be an earphone or a headphone.
  • the speaker 214 may be compatible with 2.1 channel, 5.1 channel, or the like.
  • the speaker 214 may be connected to the television receiver 12 wirelessly.
  • the speaker 214 may be another device.
  • the received content data when the received content data is sent to the network, the content data is output to the network terminal 225 via the Ethernet interface 224.
  • the image data before outputting the image data, it may be transmitted after being encrypted using a copyright protection technology such as HDCP, DTCP, DTCP +, or the like.
  • a television broadcast signal input to the antenna terminal 205 is supplied to the digital tuner 206.
  • the digital tuner 206 processes a television broadcast signal and outputs a predetermined transport stream corresponding to a user's selected channel. From the transport stream, a partial TS (TS packet of video data, TS packet of audio data) is output. Are extracted, and the partial TS is supplied to the MPEG decoder 207.
  • video data is obtained by performing a decoding process on a video PES packet composed of TS packets of video data.
  • This video data is supplied to the panel drive circuit 210 after being subjected to scaling processing (resolution conversion processing), graphics data superimposition processing, and the like in the video signal processing circuit 208 and the graphic generation circuit 209 as necessary.
  • scaling processing resolution conversion processing
  • graphics data superimposition processing and the like in the video signal processing circuit 208 and the graphic generation circuit 209 as necessary.
  • the display panel 211 displays an image corresponding to the user's selected channel.
  • audio data is obtained by performing a decoding process on the audio PES packet configured by the TS packet of the audio data.
  • the audio data is subjected to necessary processing such as D / A conversion in the audio signal processing circuit 212, further amplified by the audio amplification circuit 213, and then supplied to the speaker 214. Therefore, sound corresponding to the user's selected channel is output from the speaker 214.
  • content data (image data, audio data) supplied from the network terminal 225 to the Ethernet interface 224 is supplied to the MPEG decoder 207. Thereafter, the operation is the same as when the above-described television broadcast signal is received, an image is displayed on the display panel 211, and sound is output from the speaker 214.
  • the image and audio data received by the main stream link receiving unit 233 are the video signal processing circuit 212 and the audio signal, respectively. It is supplied to the processing circuit 212. Thereafter, the operation is the same as when the above-described television broadcast signal is received, an image is displayed on the display panel 211, and sound is output from the speaker 214.
  • the audio clock (Audio (Clock) generated by the audio clock source 236 is used as shown by the broken line.
  • the substream link transmission unit 235 generates a carrier clock (Lane Clock) based on the audio clock (Audio Clock) and the video clock (Link Video Clock) generated by the audio clock source 236 and divides the frequency.
  • the values of Maud and Naud as ratio information are obtained.
  • the substream link transmission unit 235 then transmits the transmission data (serial data) of the lane frame of the substream link including the SS packet unit such as the ACMSW packet unit having values of Maud and Naud, and the generated carrier clock (LaneLClock). ) In synchronization with the transmission.
  • the main stream link receiving unit 233 processes the received audio data (audio sample data) in synchronization with the audio clock (Audio Clock) generated by the audio clock source 406, and outputs audio data for audio output. Is obtained.
  • the transmitter 300 (see FIG. 3) synchronizes with the audio clock obtained by dividing the carrier clock reproduced from the received encoded data. Audio data is transmitted to the receiver 400 (see FIG. 3). Therefore, high-quality audio reproduction can be performed in the receiver 400 without supplying a transmission clock from the receiver 400 using the clock signal line.
  • the transmitter 300 sends audio data to the receiver 400 in synchronization with the audio clock generated from the carrier clock reproduced from the received encoded data.
  • the transmission is performed in response to a request from the receiver 400. Therefore, the transmitter 300 can perform transmission processing effectively, that is, according to the processing capability of the receiver 400.
  • the transmitter 300 divides the carrier clock based on the division ratio information acquired from the received encoded data to generate an audio clock. .
  • the frequency division is performed based on the frequency division ratio information sent from the external device, and the audio clock can be generated easily and appropriately.
  • the receiver 400 transmits encoded data that can be clock-reproduced in synchronization with a carrier clock generated based on the generated audio clock.
  • the audio data transmitted to (see FIG. 3) and received from the transmitter 300 is processed based on the audio clock. Therefore, high-quality audio reproduction can be performed without supplying a transmission clock using the clock signal line to the transmitter 300.
  • the receiver 400 uses the division ratio information for obtaining the audio clock from the carrier clock as encoded data that can be reproduced by the clock transmitted to the transmitter 300. Include encoded data. Therefore, the transmitter 300 can divide the carrier clock reproduced from the encoded data based on the division ratio information to obtain an audio clock, and can easily and appropriately generate the audio clock. It becomes.
  • the receiver 400 uses an audio clock generated from the reproduced carrier clock as encoded data that can be reproduced by the clock transmitted to the transmitter 300. Include the encoded data of the request. Therefore, the transmitter 300 can effectively perform audio data transmission processing based on the audio clock generated from the reproduced carrier clock.
  • the disc player 11 (see FIG. 11) is shown as a specific example of the transmitter 300
  • the television receiver 12 (see FIG. 12) is shown as a specific example of the receiver 400.
  • the transmitter 300 and the receiver 400 are not limited to these.
  • this technique can also take the following structures.
  • an encoded data receiving unit that receives encoded data that can be recovered from a clock from an external device;
  • An audio clock generator for generating an audio clock based on the carrier clock regenerated from the received encoded data;
  • a transmission apparatus comprising: an audio data transmission unit configured to transmit audio data to the external device in synchronization with the generated audio clock.
  • the audio clock generation unit The transmission apparatus according to (1), wherein the audio clock is generated by dividing the carrier clock based on the division ratio information acquired from the received encoded data.
  • the audio clock generation unit When a request to use an audio clock generated based on the reproduced carrier clock is obtained, The audio clock generation unit generates an audio clock based on the carrier clock reproduced from the encoded data, The transmission apparatus according to (1) or (2), wherein the audio data transmission unit transmits audio data to the external device in synchronization with the generated audio clock. (4) The audio data transmitting unit transmits the audio data to the external device through a first transmission path, The transmission apparatus according to any one of (1) to (3), wherein the encoded data receiving unit receives the encoded data from the external device through a second transmission path. (5) The transmission device according to (4), wherein each of the first transmission path and the second transmission path is a transmission path using an optical cable.
  • a receiving apparatus comprising: an audio data processing unit that processes the received audio data based on the generated audio clock.
  • the reception apparatus includes encoded data of frequency division ratio information for obtaining the audio clock from the carrier clock.
  • the reception device includes encoded data that is requested to use an audio clock generated based on the carrier clock.
  • the audio data receiving unit receives the audio data from the external device through the first transmission path, The reception apparatus according to any one of (7) to (9), wherein the encoded data transmission unit transmits the encoded data to the external device through a second transmission path.
  • each of the first transmission path and the second transmission path is a transmission path using an optical cable.
  • an audio clock generation step for generating an audio clock
  • An encoded data transmission step of transmitting, to an external device, encoded data that can be regenerated in synchronization with a carrier clock generated based on the generated audio clock
  • An audio data receiving step for receiving audio data from the external device by an audio data receiving unit
  • a receiving method comprising: an audio data processing step for processing the received audio data based on the generated audio clock.
  • a transmission / reception system in which a transmission device and a reception device are connected via a transmission line,
  • the transmitter is An encoded data receiving unit for receiving encoded data capable of clock recovery from the receiving device;
  • An audio clock generator for generating an audio clock based on the carrier clock regenerated from the received encoded data;
  • An audio data transmitting unit that transmits audio data to the receiving device in synchronization with the generated audio clock;
  • the receiving device is An audio clock generator for generating an audio clock;
  • An encoded data transmission unit that transmits encoded data that can be recovered in synchronization with a carrier clock generated based on the generated audio clock to the transmission device;
  • An audio data receiver for receiving audio data from the transmitter;
  • a transmission / reception system comprising: an audio data processing unit that processes the received audio data based on the generated audio clock.
  • MPEG decoder 208 .. video signal processing circuit 209. ... Panel drive circuit 11 ... display panel 212 ... audio signal processing circuit 213 ... audio amplifier circuit 214 ... speaker 220 ... internal bus 221 ... CPU 222 ... Flash ROM 223 SDRAM 224 ... Ethernet interface 225 ... Network terminal 226 ... Remote control receiver 227 ... Remote control transmitter 231 ... Display control unit 232 ... Power supply unit 233 ... Main stream link receiver 234 ..Substream link receiving unit 235... Substream link transmitting unit 236... Audio clock source 300... Transmitter 301... Audio source 302... FIFO memory unit 303. ... AAPU generator 305 ... lane frame generator 306 ... main stream link transmitter 307 ...
  • substream link receiver 308 ... CDR unit 308a ... phase comparator 308b ⁇ Loop filter 308c ⁇ ⁇ ⁇ Voltage controlled oscillator 3 08d: Data register 309 ... Lane frame decoding unit 310 ... ACMSW decoding unit 311 ... Audio clock reproduction unit 311a, 311b, 311c, 311e ... Frequency divider 311d ... PLL circuit 400 .. Receiver 401... Main stream link receiver 402. Lane frame decoding unit 403... ASPU decoding unit 404... AAPU decoding unit 405 .. Audio decoding unit 406. 407 ... Lane clock generator 407a ... Naud generator 407b, 407c ... Count unit 407d ...
  • Multi-stream configuration unit 605 ⁇ Channel mapping unit 606 ⁇ Channel demapping unit 607 ⁇ Multi-stream decomposition unit 608 ⁇ Packet generating unit 609 ⁇ Data depacking unit 610 ⁇ Video / audio clock unit 701a, 701b ⁇ Data packing part 02a, 702b ⁇ frame generation unit 703a, 703b ⁇ packet generation unit 704a, 704b ⁇ data de-packing unit

Abstract

受信側から送信側にクロック信号ラインを用いた伝送クロックの供給を行うことなく、受信側において高品質なオーディオ再生を可能とする。 送信装置は、受信装置(外部機器)からクロック再生が可能な符号化データを受信し、この符号化データから再生された搬送クロックに基づいてオーディオクロックを生成し、このオーディオクロックに同期してオーディオデータを受信装置に送信する。受信装置は、自身が発生するオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信し、送信装置(外部機器)からオーディオデータを受信し、このオーディオデータを自身が発生するオーディオクロックに基づいて処理する。

Description

送信装置、送信方法、受信装置、受信方法および送受信システム
 本技術は、送信装置、送信方法、受信装置、受信方法および送受信システムに関し、特に、受信側において高品質なオーディオ再生を可能とする送信装置等に関する。
 例えば、特許文献1には、受信側から送信側にクロック信号ラインを用いて伝送クロックを供給し、送信側から受信側に当該伝送クロックを分周して得られたオーディオクロックに同期してオーディオデータを送信することで、受信側において高品質なオーディオ再生を可能とする技術が提案されている。
特開2013-074547号公報
 本技術の目的は、受信側から送信側にクロック信号ラインを用いた伝送クロックの供給を行うことなく、受信側において高品質なオーディオ再生を可能とすることにある。
 本技術の概念は、
 外部機器から、クロック再生が可能な符号化データを受信する符号化データ受信部と、
 上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成部と、
 上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信するオーディオデータ送信部を備える
 送信装置にある。
 本技術において、符号化データ受信部により、外部機器から、符号化データが受信される。この符号化データは、クロック再生が可能なものである。例えば、クロック再生が可能な符号化データは、8B10Bコーディングの符号化データである、ようにされてもよい。
 オーディオクロック生成部により、受信された符号化データから再生された搬送クロック(伝送クロック)に基づいてオーディオクロックが生成される。例えば、オーディオクロック生成部は、受信された符号化データから取得された分周比情報に基づいて搬送クロックを分周してオーディオクロックを生成する、ようにされてもよい。この場合、外部機器から送られてくる分周比情報に基づいて分周が行われるものであり、オーディオクロックの生成を容易かつ適切に行うことが可能となる。
 オーディオデータ送信部により、生成されたオーディオクロックに同期してオーディオデータが外部機器に送信される。例えば、オーディオデータ送信部は、オーディオデータを外部機器に第1の伝送路を通じて送信し、符号化データ受信部は、符号化データを外部機器から第2の伝送路を通じて受信する、ようにされてもよい。この場合、例えば、第1の伝送路および第2の伝送路はそれぞれ光ケーブルを用いた伝送路である、ようにされてもよい。
 このように本技術においては、受信された符号化データから再生された搬送クロックに基づいて生成されたオーディオクロックに同期してオーディオデータを外部機器に送信するものである。そのため、外部機器からクロック信号ラインを用いた伝送クロックの供給を行うことなく、外部機器において高品質なオーディオ再生が可能となる。
 なお、本技術において、例えば、再生された搬送クロックから生成されたオーディオクロックを用いることの要求が得られるとき、オーディオクロック生成部は、符号化データから再生された搬送クロックに基づいてオーディオクロックを生成し、オーディオデータ送信部は、生成されたオーディオクロックに同期してオーディオデータを外部機器に送信する、ようにされてもよい。このように再生搬送クロックから生成されたオーディオクロックに基づいたオーディオデータの送信処理を外部機器からの要求に応じて行うことで、この送信処理を効果的に行うことが可能となる。
 また、本技術の他の概念は、
 オーディオクロックを発生するオーディオクロック発生部と、
 上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信する符号化データ送信部と、
 上記外部機器からオーディオデータを受信するオーディオデータ受信部と、
 上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理部を備える
 受信装置にある。
 本技術において、オーディオクロック発生部により、オーディオクロックが発生される。符号化データ送信部により、発生されたクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データが外部機器に送信される。
 オーディオデータ受信部により、外部機器からオーディオデータが受信される。オーディオデータ処理部により、受信されたオーディオデータが、オーディオクロック発生部で発生されたオーディオクロックに基づいて処理される。例えば、オーディオデータ受信部は、オーディオデータを外部機器から第1の伝送路を通じて受信し、符号化データ送信部は、符号化データを外部機器に第2の伝送路を通じて送信する、ようにされてもよい。この場合、例えば、第1の伝送路および第2の伝送路はそれぞれ光ケーブルを用いた伝送路である、ようにされてもよい。
 このように本技術においては、発生されたオーディオオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信し、外部機器から受信されるオーディオデータをそのオーディオクロックに基づいて処理するものである。そのため、外部機器にクロック信号ラインを用いた伝送クロックの供給を行うことなく、高品質なオーディオ再生が可能となる。
 なお、本技術において、例えば、符号化データとして、搬送クロックからオーディオクロックを得るための分周比情報の符号化データが含まれる、ようにされてもよい。このような符号化データが含まれることで、外部機器では、符号化データから再生された搬送クロックに分周比情報に基づいて分周を行ってオーディオクロックを得ることができ、オーディオクロックの生成を容易かつ適切に行うことが可能となる。
 また、本技術において、例えば、符号化データとして、搬送クロックから生成されたオーディオクロックを用いることの要求の符号化データが含まれる、ようにされてもよい。このような符号化データが含まれることで、外部機器では、再生された搬送クロックを分周して生成されたオーディオクロックに基づいたオーディオデータの送信処理を効果的に行うことが可能となる。
 本技術によれば、受信側から送信側にクロック信号ラインを用いた伝送クロックの供給を行うことなく、受信側において高品質なオーディオ再生が可能となる。本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
実施の形態としてのAV伝送システムの概要を示すブロック図である。 オーディオデータの伝送に関して通常モードからオプションモードに遷移する際のシーケンスを示す図である。 オプションモードにおける送信機および受信機のオーディオデータ伝送に係る部分の構成例を示すブロック図である。 レーンフレームの構造例を示す図である。 送信部および受信部の構成例を示すブロック図である。 スクランブラの構成例を示すブロック図である。 8B/10Bエンコーダおよび8B/10Bデコーダの回路構成例を示すブロック図である。 クロック・データ再生回路の構成例を示すブロック図である。 オーディオクロック再生部の構成例を示すブロック図である。 搬送クロック生成部の構成例を示すブロック図である。 送信機の具体例としてのディスクプレーヤの構成例を示すブロック図である。 受信機の具体例としてのテレビ受信機の構成例を示すブロック図である。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 [AV伝送システムの構成]
 図1は、実施の形態としてのAV(Audio and Visual)伝送システム10の概要を示している。このAV伝送システム10は、メインストリームリンク(Main Stream Link)60と、サブストリームリンク(Sub Stream Link)70により構成されている。
 メインストリームリンク60では、主にオーディオ/ビデオ信号が伝送される。伝送される複数のビデオやオーディオ、それに付随するメタデータなどは、データパッキング部(Data Packing)601で、それぞれのストリームごとにパッキングされる。また、ビデオやオーディオのクロックを搬送クロックから再生するための分周比は、それぞれビデオクロックリカバリー情報(VCR)、オーディオクロックリカバリー情報(ACR)として、VCR/ACR生成部(VCR/ACR gen)602で生成される。
 パッキングされた伝送データと生成されたリカバリー情報を含むレーンフレーム(Lane Frame)が、フレーム生成部(Frame Generator)603で生成される。複数の系のフレーム生成部603で得られたレーンフレームがマルチストリーム構成部(Multi-stream Constructor)604で一つにまとめられ、さらに、チャネルマッピング部(Channel Mapper)605で個々の伝送路(Physical Channels)にマッピングされて伝送される。
 個々の伝送路で伝送されたレーンフレームは、チャネルデマッピング部(Channel De-Mapper)606でデマッピングされ、さらにマルチストリーム分解部(Multi-stream De-Constructor)607で、複数の系のレーンフレームに分解される。そして、それぞれの系において、パケット発生部(Packet Generator)608で、レーンフレームからビデオやオーディオ、それに付随するメタデータなどを含むパケットが取り出される。
 データデパッキング部(Data De-Packing)609で、ビデオやオーディオ、それに付随するメタデータなどを含むパケットからビデオやオーディオ、それに付随するメタデータ等が抽出される。また、ビデオ/オーディオクロック部(Vide0/Audio Clock)610で、リカバリー情報(VCR,ACR)を含むパケットから当該リカバリー情報が抽出され、それが使用されてビデオやオーディオのクロックが再生される。
 一方、サブストリームリンク70では、双方向で、制御情報など、すなわち制御信号(Control)、イーサーネットデータ(IP data)、プラグアンドプレイ用データ(PnP neg)などが伝送される。制御情報などはデータパッキング部(Data Packing)701a,701bでパッキングされる。パッキングされた制御情報を含むレーンフレーム(Lane Frame)がフレーム生成部(Frame Generator)702a,702bで生成され、伝送路(Physical Channels)で伝送される。
 伝送路で伝送されたレーンフレームから、パケット発生部(Packet Generator)703a,703bで、制御信号(Control)、イーサーネットデータ(IP data)、プラグアンドプレイ用データ(PnP neg)などを含むパケットが取り出される。そして、データデパッキング部(Data De-Packing)704a,704bで、取り出されたパケットから、制御信号(Control)、イーサーネットデータ(IP data)、プラグアンドプレイ用データ(PnP neg)などが抽出される。
 このAV伝送システム10におけるオーディオデータの伝送に関して、通常は、以下のような通常モードの動作が行われる。すなわち、送信機から受信機に、送信機内で発生されたオーディオクロックに同期してオーディオデータがメインストリームリンクで送信されると共に、このメインストリームリンクの搬送クロックからオーディクロックを再生するための分周比の情報(リカバリー情報)がメインストリームリンクで送信される。受信機では、この分周比情報で示される分周比が用いられてメインストリームリンクの搬送クロックからオーディオクロックが再生され、このオーディオクロックが用いられてオーディオデータが処理される。
 この実施の形態において、受信機から送信機への要求があった場合、AV伝送システム10におけるオーディオデータの伝送に関して、以下のようなオプションモードの動作が行われる。すなわち、送信機では、受信機のサブストリームリンクの搬送クロックが分周されてオーディオクロックが生成され、このオーディオクロックに同期してオーディオデータがメインストリームリンクで送信される。受信機では、受信機内で発生されたオーディオクロックに基づいて受信されたオーディオデータが処理される。このようなオプションモードの動作が行われることで、受信機では高品質なオーディオ再生が可能となる。
 図2は、オーディオデータの伝送に関して、通常モードからオプションモードに遷移する際のシーケンス図を示している。受信機(Receiver)は、サブストリームリンクで、受信機側のオーディオクロックをマスターとするオプションモードへのスイッチ要求を示すAMCLK(Audio Master Clock Switch Request)がセットされたACMSWパケットユニット(Audio Clock Master Switch Packet Unit)を、送信機(Transmitter)に送る。
 ACMSWパケットユニットを受信した送信機は、その要求に応えられる場合はオーディオクロックとして受信機のサブストリームリンクの搬送クロックからACMSWパケットユニットに格納されている分周比情報(ACR情報)に基づいてオーディオクロックを生成し、このオーディオクロックに同期してオーディオデータを送信する状態に切り替え、受信機に、サブストリームリンクで、ACKコマンドを返信する。ACKコマンドを受信した受信機は、オーディオクロックを受信機内で発生されたオーディオクロックに切り替え、オーディオの再生を実施する。
 図3は、上述のオプションモードにおける、送信機(Transmitter)300および受信機(Receiver)400のオーディオデータ伝送に係る部分の構成例を示している。送信機300は、オーディオソース(Audio Source)301と、FIFOメモリ部302と、ASPU(Audio Sample Packet Unit)生成部303と、AAPU(Ancillary Audio Data Packet Unit)生成部304と、レーンフレーム(Lane Frame)生成部305と、メインストリームリンクの送信部306を有している。また、送信機300は、サブストリームリンクの受信部307と、レーンフレーム(Lane Frame)デコード部309と、ACMSWデコード部310と、オーディオクロック再生部(Re-gen Audio Clock)311を有している。
 受信機400は、メインストリームリンクの受信部401と、レーンフレーム(Lane Frame)デコード部402と、ASPUデコード部403と、AAPUデコード部404と、オーディオデコード部405を有している。また、受信機400は、オーディオクロックソース(Audio Clock Source)406と、レーンクロック(Lane Clock)生成部407と、ACMSW生成部408と、レーンフレーム(Lane Frame)生成部409と、サブストリームリンクの送信部410を有している。
 オーディオソース301は、伝送すべきオーディオデータとして、非圧縮あるいは圧縮されたオーディオデータ(オーディオサンプルデータ)を出力すると共に、オーディオ付加情報を出力する。オーディオ付加情報には、サンプリング周波数、サンプルサイズ、符号化方法(非圧縮、圧縮方式)などの情報が含まれる。FIFOメモリ部302は、オーディオソース301から出力される伝送すべきオーディオデータを入力し、このオーディオデータをオーディオクロック再生部311で再生されたオーディオクロックに同期して出力する。
 ASPU生成部303は、FIFOメモリ部302からオーディオクロックに同期して入力されるオーディオデータをパッキングし、ペイロードにオーディオデータが挿入されたASパケットユニット(ASPU)を生成する。AAPU生成部304は、オーディオソース301から出力されるオーディオ付加情報をパッキングし、ペイロードにオーディオ付加情報が挿入されたAAパケットユニット(AAPU)を生成する。
 レーンフレーム生成部305は、ASPU生成部303で生成されるASパケットユニットおよびAAPU生成部304で生成されるAAパケットユニットなどをペイロードユニット(Payload Unit)として含むレーンフレームを生成する。
 図4は、レーンフレームの構造例を示している。レーンフレームの構造体は、ユニット(Unit)という構造体の集合体である。レーンフレームは、例えば6000のユニットで構成され、レーンフレームの属性と同期情報を含むヘッダユニット(Header Unit)と、それぞれのデータを格納するペイロードユニット(Payload Unit)からなっている。個々のユニットは、固定長で先頭の2バイトと最終バイトにデリミッタという特殊コードを持っている。受信側のレーンフレームデコーダ(Lane Frame dec)では、そのデリミッタの内容を見て、各ペイロードユニットの内容を判断できる。
 ペイロードユニットとしては、上述のメインストリームリンクで伝送されるASパケットユニット(ASPU)やAAパケットユニット(AAPU)の他に、サブストリームリンクで双方向に制御信号を伝送するためのSSパケットユニット(SSPU:Sub Stream Packet Unit)などもある。
 図3に戻って、送信部306は、レーンフレーム生成部305で生成されたメインストリームリンクのレーンフレームを、メインストリームリンクで電気的あるいは光学的に、この実施の形態では光ケーブルを用いて光学的に、受信機400に送信する。
 図5(a)は、送信部306の構成例を示している。この送信部306は、スクランブラ(Scrambler)511と、8B/10Bエンコーダ(8b/10b Encode)512と、シリアライザ(Serializer)513と、レーザダイオードドライバ(Laser Diode Driver)514と、レーザダイオード(Laser Diode)515を有している。
 レーンフレーム生成部305から出力されるレーンフレームのデータはスクランブラ511に入力される。スクランブラ511は、レーンフレームのデータにスクランブル処理をする。この場合、レーンフレームのデータが無秩序に並べ替えられ、データの連続性が除去される。このようなスクランブル処理により、交流結合伝送路でのデータの保持が実現されるだけでなく、伝送路での不要輻射が抑制される。
 スクランブラ511は、ある生成多項式に基づいた帰還経路をもつリニアフィードバックシフトレジスタで構成され、入力データ(data input)と排他的論理和(XOR)を取ることにより、変換されたスクランブルドデータ(scrambled data)を出力する。図6は、スクランブラ511の構成例を示している。図示の例は、生成他行式が「G(x)= x^16+x^5+ x^4+ x^3+ 1」であって、リニアフィードバックシフトレジスタが16ビットとされている。
 図5(a)に戻って、スクランブラ511から出力されるデータは8B/10Bエンコーダ512に入力される。8B/10Bエンコーダ512は、入力データに8B10Bコーディングのエンコード処理をする。この場合、伝送されるデータの直流成分を除去し、また受信回路にて受信データから受信クロックを抽出できるよう、データの変化頻度を保証するために8ビットデータを10ビットデータに変換する。
 図7(a)は、8B/10Bエンコーダ512の回路構成例を示している。この場合、スクランブラ511からの入力データ(Transmit)はコントロールビット(Z)と合わせて9ビットのデータとしてエンコーダ(8b -> 10b Encode)に入力され、10ビットのデータとして出力される。ここでは、適宜コントロールシンボルという同期用固定データが挿入されてもよい。
 図5(a)に戻って、8B/10Bエンコーダ512から出力されるデータはシリアライザ513に入力される。シリアライザ513は、入力データをパラレルデータからシリアルデータに変換する。なお、上述の8B/10Bエンコーダ512では、各データのバイト区切りを受信回路で容易に認識可能に、8B10Bコーディングのエンコード処理が施されている。
 シリアライザ513から出力されるデータはレーザダイオードドライバ514に入力される。レーザダイオードドライバ514は、入力データに基づいてレーザダイオード515を駆動し、レーザダイオード515からメインストリームリンクで送信すべき光信号を出力させる。
 受信部307は、受信機400からサブストリームリンクで電気的あるいは光学的に、この実施の形態では光ケーブルを用いて光学的に送られてくるサブストリームリンクのレーンフレームを受信する。
 図5(b)は、受信部307の構成例を示している。この受信部307は、フォトデテクタ(Photo Detector)521と、アンプ(Trans Impedance Amplifier)522と、デシリアライザ(De-Serializer)523と、8B/10Bデコーダ(8b/10b Decode)524と、デスクランブラ(Descrambler)525を有している。
 サブストリームリンクで送られてくる光信号はフォトデテクタ521に入力され、電気信号に変換される。この電気信号はアンプ522で増幅される。アンプ522から出力されるデータ(電気信号)はデシリアライザ523に入力される。デシリアライザ523は、入力データをシリアルデータからパラレルデータに変換する。
 なお、このデシリアライザ523は、その前段にクロック・データ再生回路(CDR:Clock and Data Recovery circuit)308を含んでおり、アンプ522からの入力データから搬送クロック(Lane Clock)を再生すると共に、この搬送クロックに基づいて確実にデータを受信する。
 図8は、クロック・データ再生回路308の構成例を示している。アンプ522からの入力データであるシリアルデータ(Serial Data Input)が位相比較器(Phase Frequency Detector)308aに供給される。位相比較器308a、ループフィルタ(Loop Filter)308bおよび電圧制御発振子(VCO:Voltage Controlled Oscillator)308cにより位相同期回路(PLL:Phase Locked Loop)が構成されている。
 電圧制御発振子308cで得られるクロック(Recovery clock)は、アンプ522からの入力データであるシリアルデータ(Serial Data Input)と位相比較器308aで位相比較され、その比較誤差信号がループフィルタ308bから電圧制御信号Vconとして電圧制御発振子308cに与えられる。これにより、電圧制御発振子308cで得られるクロック(Recovery clock)はアンプ522からの入力データに同期したものとなる。
 また、アンプ522からの入力データであるシリアルデータ(Serial Data Input)がデータレジスタ308dに入力され、電圧制御発振子308cで得られるクロック(Recovery clock)でラッチされる。これにより、データレジスタ308dの出力データ(Output Data)として、電圧制御発振子308cで得られるクロック(Recovery clock)に同期したデータが得られる。
 図5(b)に戻って、デシリアライザ523から出力されるデータは8B/10Bデコーダ524に入力される。8B/10Bデコーダ524は、入力データに8B10Bコーディングのデコード処理をして、8ビットデータを得る。
 図7(b)は、8B/10Bデコーダ524の回路構成例を示している。この場合、図7(a)の8B/10Bエンコーダ512とは逆の構成であり、デシリアライザ523からの10ビットのデータはデコーダ(10b -> 8b Decode)に入力され、コントロールビット(Z)を含む9ビットのデータとして出力される。
 図5(b)に戻って、8B/10Bデコーダ524から出力されるデータはデスクランブラ525に入力される。デスクランブラ525は、送信部306のスクランブラ511とは逆のデスクランブル処理を行って、レーンフレームのデータを出力する。
 図3に戻って、レーンフレームデコード部309は、受信部307で受信されたレーンフレームに含まれるペイロードユニット、ここではACMSWパケットユニットを取り出す。ACMSWデコード部310は、レーンフレームデコード部309で取り出されたACMSWパケットユニットに格納されている分周比情報(ACR情報)を取得する。この分周比情報は、Maud、Naudの2つの値からなっている。
 オーディオクロック再生部311は、受信部307のCDR308で再生された搬送クロック(Lane Clock)と、Maud、Naudとから、オーディオクロック(Audio Clock)を再生する。この場合、例えば、1.215GHzの搬送クロック(Lane Clock)が分周されて270MHzのビデオクロック(Link Video Clock)が生成され、このビデオクロック(Link Video Clock)と、Maud、Naudとからオーディオクロック(Audio Clock)が再生される。詳細は後述するが、Naudはオーディオクロック(Audio Clock)のカウント間隔として定義され、Maudはその間隔におけるビデオクロック(Link Video Clock)のカウント値として定義される。
 ここで、搬送クロック(Lane Clock)と、ビデオクロック(Link Video Clock)との間には、以下の数式(1)の関係がある。また、オーディオクロック(Audio Clock)と、ビデオクロック(Link Video Clock)と、Maud、Naudとの間には、以下の数式(2)の関係がある。
  Link Video Clock × 9/2 × 10 = Lane Clock   ・・・(1)
  Audio Clock × Maud = Link Video Clock × Naud   ・・・(2)
 Maud、Naud としては例えば以下のような組み合わせがある。すなわち、Audio Clock =24.5760MHz(サンプリング周波数=192kHz)の場合、Maud=61875、Naud=5632である。
 図9は、オーディオクロック再生部311の構成例を示している。搬送クロック(Lane Clock)が分周器311aで1/10分周され、さらに、その出力クロックが分周器311bで2/9分周されて、ビデオクロック(Link Video Clock)が得られる。そして、ビデオクロック(Link Video Clock)が分周器311cで1/Maud分周されて得られたクロックと、PLL回路311dの出力クロックが分周器311eで1/Naud分周されて得られたクロックとがPLL回路311dに入力されて位相比較されることで、PLL回路311dの出力クロックとして、オーディオクロック(Audio Clock)が得られる。
 図3に戻って、受信部401は、送信機300からメインフレームリンクで電気的あるいは光学的に、この実施の形態では光ケーブルを用いて光学的に送られてくるレーンフレームを受信する。詳細説明は省略するが、この受信部401は、上述した送信機300における受信部307と同様に構成されている(図5(b)参照)。
 レーンフレームデコード部402は、受信部401で受信されたレーンフレームにデコード処理を施し、ASパケットユニット(ASPU)およびAAパケットユニット(AAPU)を抽出する。上述したように、ASパケットユニットはペイロードにオーディオデータが挿入されたユニットパケットであり、AAパケットユニットはペイロードにオーディオ付加情報が挿入されたパケットユニットである。
 ASPUデコード部403は、レーンフレームデコーダ402で抽出されたASパケットユニットにデコード処理を施し、オーディオデータを取り出す。AAPUデコード部404は、レーンフレームデコーダ402で抽出されたAAパケットユニットにデコード処理を施し、オーディオ付加情報を取り出す。
 オーディオクロックソース406は、オーディオクロックを発生する。オーディデコード部405は、ASPUデコード部403で取り出されたオーディオデータを、AAPUデコード部404で取り出されたオーディオ付加情報に基づき、オーディオクロックソース406で発生されるオーディオクロック(Audio Clock)に同期して処理して音声出力用の出力オーディオデータを得る。そして、オーディデコード部405は、この出力オーディオデータを、オーディオクロックソース406で発生されるオーディオクロック(Audio Clock)に同期して出力する。
 搬送クロック(Lane Clock)生成部407は、オーディオクロック(Audio Clock)と、270MHzのビデオクロック(Link Video Clock)に基づいて、1.215GHzの搬送クロック(Lane Clock)を生成すると共に、分周比情報としてのMaud、Naudの2つの値を出力する。ここで、Naudはオーディオクロックのカウント間隔として定義され、Maudはその間隔におけるビデオクロック(Link Video Clock)のカウント値として定義される。
 図10は、搬送クロック生成部407の構成例を示している。カウント部407bは、Naud発生部407aで発生されるNaudの値によりNaud進カウンタとして機能し、オーディオクロック(Audio Clock)をカウントクロックとしてカウント動作をする。このカウント部407bの桁上がり出力は、カウント部407cにリセット信号として供給されると共に、ラッチ部407dにラッチ(ホールド)信号として供給される。
 カウント部407cは、カウント部407bの桁上がり出力によりリセットされると共に、270MHzのビデオクロック(Link Video Clock)をカウントクロックとしてカウント動作をする。このカウント部407cのカウント出力はラッチ部407dに入力される。ラッチ部407dは、カウント部407cのカウント出力をカウント部407bの桁上が出力によりホールドしてMaudの値を得る。
 逓倍部407eは、270MHzのビデオクロック(Link Video Clock)を9/2逓倍する。また、逓倍部407fは、逓倍部407eの出力クロックを10逓倍して、1.215GHzの搬送クロック(Lane Clock)を得る。
 搬送クロック生成部407は、逓倍部407fで得られる1.215GHzの搬送クロック(Lane Clock)を出力すると共に、Naud発生部407aで発生されたNaudの値と、ラッチ部407dでホールドされたMaudの値を出力する。この場合、搬送クロック(Lane Clock)と、ビデオクロック(Link Video Clock)とは、上述の数式(1)の関係を満たすものとなる。また、オーディオクロック(Audio Clock)と、ビデオクロック(Link Video Clock)と、Maud、Naudとは、上述の数式(2)の関係を満たすものとなる。
 図3に戻って、ACMSW生成部408は、SSパケットユニットとしてのACMSWパケットユニット(Audio Clock Master Switch Packet Unit)を生成する。このACMSWパケットユニットには、受信機400側のオーディオクロックをマスターとするオプションモードへのスイッチ要求を示すAMCLK(Audio Master Clock Switch Request)が含まれる他、搬送クロック生成部407から出力される分周比情報としてのMaud、Naudも含まれる。
 レーンフレーム生成部409は、ACMSW生成部408で生成されたACMSWパケットユニットなどのSSパケットユニットをペイロードユニット(Payload Unit)として含むレーンフレームを生成する(図4参照)。
 送信部410は、レーンフレーム生成部409で生成されたサブストリームリンクのレーンフレームを、サブストリームリンクで電気的あるいは光学的に、この実施の形態では光ケーブルを用いて光学的に、送信機300に送信する。この送信部410は、上述した送信機300における送信部306と同様に構成されている(図5(a)参照)。この場合、8B/10Bエンコーダ512から出力データがシリアライザ513でパラレルデータからシリアルデータに変換され、そのシリアルデータが搬送クロックに同期して、光信号として送信される構成となる。
 図3に示す送信機(Transmitter)300および受信機(Receiver)400のオーディオデータ伝送に係る部分の動作を簡単に説明する。受信機400のオーディオクロックソース406で発生されるオーディオクロック(Audio Clock)は、搬送クロック生成部407に供給される。また、搬送クロック生成部407には、270MHzのビデオクロック(Link Video Clock)が供給される。搬送クロック生成部407では、オーディオクロック(Audio Clock)と、270MHzのビデオクロック(Link Video Clock)に基づいて、1.215GHzの搬送クロック(Lane Clock)が生成されると共に、分周比情報としてのMaud、Naudが得られる(図10参照)。
 搬送クロック生成部407で得られた分周比情報としてのMaud、Naudは、ACMSW生成部408に供給される。ACMSW生成部408では、SSパケットユニットとしてのACMSWパケットユニットが生成される。このACMSWパケットユニットには、受信機400側のオーディオクロックをマスターとするオプションモードへのスイッチ要求を示すAMCLKが含まれる他、搬送クロック生成部407から出力される分周比情報としてのMaud、Naudも含まれる。
 ACMSW生成部408で生成されたACMSWパケットユニットは、レーンフレーム生成部409に供給される。レーンフレーム生成部409では、ACMSWパケットユニットなどのSSパケットユニットがペイロードユニットとして含まれたレーンフレームが生成される(図4参照)。
 レーンフレーム生成部409で生成されたサブストリームリンクのレーンフレームは、送信部410に供給される。送信部410では、サブストリームリンクのレーンフレームを、光ケーブルを用いて光学的に送信機300に送信することが行われる(図5(a)参照)。この場合、送信データが搬送クロックに同期して光信号として送信される。
 送信機300の受信部307では、受信機400からサブストリームリンクで光ケーブルを用いて光学的に送られてくるサブストリームリンクのレーンフレームが受信される(図5(b)参照)。受信部307では、デシリアライザ613の前段に含まれているクロック・データ再生回路308により、アンプ612からの入力データから搬送クロック(Lane Clock)が再生されると共に、この搬送クロックに基づいて確実にデータが受信される。
 受信部307で受信されたサブストリームリンクのレーンフレームは、レーンフレームデコード部309に供給される。レーンフレームデコード部309では、サブストリームリンクのレーンフレームにデコード処理が施され、レーンフレームに含まれるSSパケットユニット、ここではACMSWパケットユニットが取り出される。
 レーンフレームデコード部309で取り出されたACMSWパケットユニットは、ACMSWデコード部310に供給される。ACMSWデコード部310では、ACMSWパケットユニットにデコード処理が施され、ACMSWパケットユニットに格納されている、受信機400側のオーディオクロックをマスターとするオプションモードへのスイッチ要求を示すAMCLKと、分周比情報としてのMaud、Naudが取得される。
 送信機300側では、AMCLKで示されるスイッチ要求に応えられる場合、クロック・データ再生回路308で再生された搬送クロック(Lane Clock)と、ACMSWデコード部310で取得された分周比情報としてのMaud、Naudに基づいてオーディオクロックを再生し、この再生されたオーディオクロックに同期してオーディオデータを送信する状態とされる。
 この場合、クロック・データ再生回路308で再生された搬送クロック(Lane Clock)と、ACMSWデコード部310で取得された分周比情報としてのMaud、Naudは、オーディオクロック再生部311に供給される。オーディオクロック再生部311では、搬送クロック(Lane Clock)と、Maud、Naudとから、オーディオクロック(Audio Clock)が再生される(図9参照)。
 オーディオソース301から出力される非圧縮あるいは圧縮されたオーディオデータ(オーディオサンプルデータ)は、FIFOメモリ部302に入力される。FIFOメモリ部302では、オーディオソース301から入力されるオーディオデータが、オーディオクロック再生部311で再生されたオーディオクロックに同期して順次出力される。
 FIFOメモリ部302から出力されるオーディオデータは、ASPU生成部303に供給される。ASPU生成部303では、このオーディオデータのパッキングが行われ、ペイロードにオーディオデータが挿入されたASパケットユニット(ASPU)が生成される。このASパケットユニットは、レーンフレーム生成部305に供給される。
 また、オーディオソース301から出力されるオーディオ付加情報は、AAPU生成部304に供給される。AAPU生成部304では、このオーディオ付加情報のパッキングが行われ、ペイロードにオーディオ付加情報が挿入されたAAパケットユニットが生成される。オーディオ付加情報には、サンプリング周波数、サンプルサイズ、符号化方法(非圧縮、圧縮方式)などの情報が含まれる。このAAパケットユニットは、レーンフレーム生成部305に供給される。
 レーンフレーム生成部305では、ASパケットユニットおよびAAパケットユニットなどをペイロードユニットとして含むレーンフレームが生成される。レーンフレーム生成部305で生成されたサブストリームリンクのレーンフレームは、送信部306に供給される。送信部306では、メインストリームリンクのレーンフレームを、光ケーブルを用いて光学的に受信機400に送信することが行われる(図5(a)参照)。
 上述したように、送信機300側では、AMCLKで示されるスイッチ要求に応えられる場合、クロック・データ再生回路308で再生された搬送クロック(Lane Clock)と、ACMSWデコード部310で取得された分周比情報としてのMaud、Naudに基づいてオーディオクロックが再生され、この再生されたオーディオクロックに同期してオーディオデータが送信される状態となる。
 この場合、送信機300側から受信機400側にサブストリームリンクで、ACKコマンドが返信される。そして、受信機400側では、オーディオクロックとして、オーディオクロックソース406から発生されるオーディオクロック(Audio Clock)を用いる状態に切り替えられる。
 受信機400の受信部401では、送信機300からメインストリームリンクで光ケーブルを用いて光学的に送られてくるメインストリームリンクのレーンフレームが受信される(図5(b)参照)。このメインストリームリンクのレーンフレームは、レーンフレームデコード部402に供給される。
 レーンフレームデコード部402では、メインストリームリンクのレーンフレームにデコード処理が施され、レーンフレームに含まれるASパケットユニット(ASPU)およびAAパケットユニット(AAPU)が抽出される。上述したように、ASパケットユニットにはオーディオデータが挿入されており、AAパケットユニットにはオーディオ付加情報が挿入されている。
 レーンフレームデコード部402で抽出されたASパケットユニットは、ASPUデコード部403に供給される。このASPUデコード部403では、ASパケットユニットにデコード処理が施され、オーディオデータが取り出される。また、レーンフレームデコード部402で抽出されたAAパケットユニットは、AAPUデコード部404に供給される。このAAPUデコード部404では、AAパケットユニットにデコード処理が施され、オーディオ付加情報が取り出される。
 ASPUデコード部403で取り出されたオーディオデータ(オーディオサンプルデータ)およびAAPUデコード部404で取り出されたオーディオ付加情報は、オーディデコード部405に供給される。オーディデコード部405では、オーディオデータがオーディオ付加情報に基づきオーディオクロックソース406で発生されるオーディオクロック(Audio Clock)に同期して処理されて音声出力用の出力オーディオデータが得られる。そして、オーディデコード部405から、この出力オーディオデータがオーディオクロックソース406で発生されるオーディオクロック(Audio Clock)に同期して出力される。
 [ディスクプレーヤの構成例]
 図11は、送信機300の具体例としてのディスクプレーヤ11の構成例を示している。このディスクプレーヤ11は、メインストリームリンク送信部125と、サブストリームリンク送信部126と、サブストリームリンク受信部127を有している。
 メインストリームリンク送信部125には、図3の送信機300におけるFIFOメモリ部302、ASPU生成部303、AAPU生成部304、レーンフレーム生成部305、送信部306などに対応する処理部が含まれている。サブストリームリンク受信部127には、図3の送信機300における受信部307、レーンフレームデコード部309、ACMSWデコード部310、オーディオクロック再生部311などに対応する処理部が含まれている。
 また、このディスクプレーヤ11は、CPU(Central Processing Unit)104と、内部バス105と、フラッシュROM(Read Only Memory)106と、SDRAM(Synchronous Random Access Memory)107と、リモコン受信部108と、リモコン送信機109を有している。
 また、ディスクプレーヤ11は、SATA(Serial Advanced Technology Attachment)インタフェース110と、BD(Blu-Ray Disc)ドライブ111と、イーサネットインタフェース(Ethernet I/F)112と、ネットワーク端子113を有している。また、ディスクプレーヤ11は、MPEG(Moving Picture Expert Group)デコーダ115と、グラフィック生成回路116と、映像出力端子117と、音声出力端子118を有している。
 また、ディスクプレーヤ11は、表示制御部121と、パネル駆動回路122と、表示パネル123と、電源部124を有していてもよい。なお、「イーサネット」および「Ethernet」は登録商標である。CPU104、フラッシュROM106、SDRAM107、SATAインタフェース110、イーサネットインタフェース112、MPEGデコーダ115および表示制御部121は、内部バス105に接続されている。
 CPU104は、ディスクプレーヤ11の各部の動作を制御する。フラッシュROM106は、制御ソフトウェアの格納およびデータの保管を行う。SDRAM107は、CPU104のワークエリアを構成する。CPU104は、フラッシュROM106から読み出したソフトウェアやデータをSDRAM107上に展開してソフトウェアを起動させ、ディスクプレーヤ11の各部を制御する。
 リモコン受信部108は、リモコン送信機109から送信されたリモーコントロール信号(リモコンコード)を受信し、CPU104に供給する。CPU104は、リモコンコードに従ってディスクプレーヤ11の各部を制御する。なお、この実施の形態では、ユーザ指示入力部としてリモートコントロール部を示しているが、ユーザ指示入力部は、その他の構成、例えば、スイッチ、ホイール、近接/タッチにより指示入力を行うタッチパネル部、マウス、キーボード、カメラで指示入力を検出するジェスチャ入力部、音声により指示入力を行う音声入力部などであってもよい。
 BDドライブ111は、ディスク状記録メディアとしてのBDディスク(図示せず)に対して、コンテンツデータを記録し、あるいは、このBDからコンテンツデータを再生する。このBDドライブ111は、SATAインタフェース110を介して内部バス105に接続されている。MPEGデコーダ115は、BDドライブ111で再生されたMPEG2ストリームに対してデコード処理を行って画像および音声のデータを得る。
 ディスクプレーヤ11から外部機器(受信機)に画像および音声のデータを送信する場合、MPEGデコーダ115からメインストリームリンク送信部125に画像および音声のデータが供給される。この場合、画像および音声のデータは圧縮データ、非圧縮データのいずれであってもよい。この場合、MPEGデコーダ115は、図3のオーディオデータ伝送に係る部分におけるオーディオソース301を構成する。
 グラフィック生成回路116は、MPEGデコーダ115で得られた画像データに対して、必要に応じてグラフィックスデータの重畳処理等を行う。映像出力端子117は、グラフィック生成回路116から出力される画像データを出力する。音声出力端子118は、MPEGデコーダ115で得られた音声データを出力する。
 パネル駆動回路122は、グラフィック生成回路260から出力される映像(画像)データに基づいて、表示パネル123を駆動する。表示制御部121は、グラフィクス生成回路116やパネル駆動回路122を制御して、表示パネル123における表示を制御する。表示パネル123は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、有機EL(Organic Electro-Luminescence)パネル等で構成されている。
 なお、この実施の形態では、CPU104の他に表示制御部121を有する例を示しているが、表示パネル123における表示をCPU104が直接制御するようにしてもよい。また、CPU104と表示制御部121は、1つのチップになっていても、複数コアであってもよい。電源部124は、ディスクプレーヤ11の各部に電源を供給する。この電源部124は、AC電源であっても、電池(蓄電池、乾電池)であってもよい。
 図11に示すディスクプレーヤ11の動作を簡単に説明する。記録時には、図示されないデジタルチューナを介して、あるいはネットワーク端子113からイーサネットインタフェース112を介して、記録すべきコンテンツデータが取得される。このコンテンツデータは、SATAインタフェース110に入力され、BDドライブ111によりBDに記録される。場合によっては、このコンテンツデータは、SATAインタフェース110に接続された、図示されないHDD(ハードディスクドライブ)に記録されてもよい。
 再生時には、BDドライブ111によりBDから再生されたコンテンツデータ(MPEGストリーム)は、SATAインタフェース110を介してMPEGデコーダ115に供給される。MPEGデコーダ115では、再生されたコンテンツデータに対してデコード処理が行われ、非圧縮の画像および音声のデータが得られる。画像データは、グラフィック生成回路116を通じて映像出力端子117に出力される。また、音声データは、音声出力端子118に出力される。
 また、再生時には、MPEGデコーダ115で得られた画像データが、ユーザ操作に応じて、グラフィック生成回路116を通じてパネル駆動回路122に供給され、表示パネル123に再生画像が表示される。また、MPEGデコーダ115で得られた音声データが、ユーザ操作に応じて、図示しないスピーカに供給され、再生画像に対応した音声が出力される。
 また、この再生時に、ディスクプレーヤ11から外部機器(受信機)に画像および音声のデータを送信する場合、MPEGデコーダ115からメインストリームリンク送信部125に画像および音声のデータ(非圧縮データあるいは非圧縮データ)が供給され、メインストリームリンクで外部機器(受信機)に送信される。
 なお、再生時に、BDドライブ111で再生されたコンテンツデータをネットワークに送出する際には、このコンテンツデータは、イーサネットインタフェース112を介して、ネットワーク端子113に出力される。ここで、画像データを出力する前に、著作権保護技術、例えばHDCP、DTCP、DTCP+などを用いて暗号化してから伝送(送信)してもよい。
 受信機側のオーディオクロックをマスターとするオプションモードの場合、破線図示するように、サブストリームリンク受信部127で搬送クロック(Lane Clock)と分周比情報としてのMaud、Naudに基づいて再生されたオーディオクロック(Audio Clock)がメインストリームリンク送信部125に供給される。そして、メインストリームリンク送信部125では、オーディオデータ(オーディオサンプルデータ)の送信処理が当該再生されたオーディオクロック(Audio Clock)に基づいて行われる。
 [テレビ受信機の構成例]
 図12は、受信機400の具体例としてのテレビ受信機12の構成例を示している。このテレビ受信機12は、メインストリームリンク受信部233と、サブストリームリンク受信部234と、サブストリームリンク送信部235と、オーディオクロックソース236を有している。
 メインストリームリンク受信部233には、図3の受信機400における受信部401、レーンフレームデコード部402、ASPUデコード部403、AAPUデコード部404、オーディオデコード部405に対応する処理部が含まれている。サブストリームリンク送信部235には、図3の受信機400におけるレーンクロック生成部407、ACMSW生成部408、レーンフレーム生成部409、サブストリームリンクの送信部410などが含まれている。
 また、テレビ受信機12は、アンテナ端子205と、デジタルチューナ206と、MPEGデコーダ207と、映像信号処理回路208と、グラフィック生成回路209と、パネル駆動回路210と、表示パネル211とを有している。
 また、テレビ受信機12は、音声信号処理回路212と、音声増幅回路213と、スピーカ214と、内部バス220と、CPU221と、フラッシュROM222と、SDRAM(Synchronous Random Access Memory)223とを有している。また、テレビ受信機12は、イーサネットインタフェース(Ethernet I/F)224と、ネットワーク端子225と、リモコン受信部226と、リモコン送信機227とを有している。また、テレビ受信機12は、表示制御部231と、電源部232を有している。なお、「イーサネット」および「Ethernet」は登録商標である。
 CPU221は、テレビ受信機12の各部の動作を制御する。フラッシュROM222は、制御ソフトウェアの格納およびデータの保管を行う。SDRAM223は、CPU221のワークエリアを構成する。CPU221は、フラッシュROM222から読み出したソフトウェアやデータをSDRAM223上に展開してソフトウェアを起動させ、テレビ受信機12の各部を制御する。
 リモコン受信部226は、リモコン送信機227から送信されたリモーコントロール信号(リモコンコード)を受信し、CPU221に供給する。CPU221は、このリモコンコードに基づいて、テレビ受信機12の各部を制御する。なお、この実施の形態では、ユーザ指示入力部としてリモートコントロール部を示しているが、ユーザ指示入力部は、その他の構成、例えば、近接/タッチにより指示入力を行うタッチパネル部、マウス、キーボード、カメラで指示入力を検出するジェスチャ入力部、音声により指示入力を行う音声入力部などであってもよい。
 ネットワーク端子225は、ネットワークに接続する端子であり、イーサネットインタフェース224に接続される。CPU221、フラッシュROM222、SDRAM223、イーサネットインタフェース224、MPEGデコーダ207および表示制御部231は、内部バス220に接続されている。
 アンテナ端子205は、受信アンテナ(図示せず)で受信されたテレビ放送信号を入力する端子である。デジタルチューナ206は、アンテナ端子205に入力されたテレビ放送信号を処理して、ユーザの選択チャネルに対応した所定のトランスポートストリームから、パーシャルTS(Transport Stream)(映像データのTSパケット、音声データのTSパケット)を抽出する。
 また、デジタルチューナ206は、得られたトランスポートストリームから、PSI/SI(Program Specific Information/Service Information)を取り出し、CPU221に出力する。デジタルチューナ206で得られた複数のトランスポートストリームから任意のチャネルのパーシャルTSを抽出する処理は、PSI/SI(PAT/PMT)から当該任意のチャネルのパケットID(PID)の情報を得ることで可能となる。
 MPEGデコーダ207は、デジタルチューナ206で得られる映像データのTSパケットにより構成される映像PES(Packetized Elementary Stream)パケットに対してデコード処理を行って画像データを得る。また、MPEGデコーダ207は、デジタルチューナ206で得られる音声データのTSパケットにより構成される音声PESパケットに対してデコード処理を行って音声データを得る。また、MPEGデコーダ207は、ネットワーク端子225からイーサネットインタフェース224を介して供給されるコンテンツデータ(画像データ、音声データ)に対してデコード処理を行って画像および音声のデータを得る。
 映像信号処理回路208およびグラフィック生成回路209は、MPEGデコーダ207で得られた画像データ、あるいは受信部233で受信された画像データに対して、必要に応じてスケーリング処理(解像度変換処理)、グラフィックスデータの重畳処理等を行う。
 パネル駆動回路210は、グラフィック生成回路209から出力される映像(画像)データに基づいて、表示パネル211を駆動する。表示制御部231は、グラフィクス生成回路209やパネル駆動回路210を制御して、表示パネル211における表示を制御する。表示パネル211は、例えば、LCD(Liquid Crystal Display)、PDP(Plasma Display Panel)、有機EL(Organic Electro-Luminescence)パネル等で構成されている。
 なお、この実施の形態では、CPU221の他に表示制御部231を有する例を示しているが、表示パネル211における表示をCPU221が直接制御するようにしてもよい。また、CPU221と表示制御部231は、1つのチップになっていても、複数コアであってもよい。電源部232は、テレビ受信機12の各部に電源を供給する。この電源部232は、AC電源であっても、電池(蓄電池、乾電池)であってもよい。
 音声信号処理回路212はMPEGデコーダ207で得られた音声データ、あるいは受信部233で受信された音声データに対してD/A変換等の必要な処理を行う。音声増幅回路213は、音声信号処理回路212から出力される音声信号を増幅してスピーカ214に供給する。
 なお、スピーカ214は、モノラルでもステレオでもよい。また、スピーカ214は、1つでもよく、2つ以上でもよい。また、スピーカ214は、イヤホン、ヘッドホンでもよい。また、スピーカ214は、2.1チャネルや、5.1チャネルなどに対応するものであってもよい。また、スピーカ214は、テレビ受信機12と無線で接続してもよい。また、スピーカ214は、他機器であってもよい。
 なお、例えば、受信されたコンテンツデータをネットワークに送出する際には、このコンテンツデータは、イーサネットインタフェース224を介して、ネットワーク端子225に出力される。ここで、画像データを出力する前に、著作権保護技術、例えばHDCP、DTCP、DTCP+などを用いて暗号化してから伝送してもよい。
 図12に示すテレビ受信機12の動作を簡単に説明する。アンテナ端子205に入力されたテレビ放送信号はデジタルチューナ206に供給される。このデジタルチューナ206では、テレビ放送信号を処理して、ユーザの選択チャネルに対応した所定のトランスポートストリームが出力され、トランスポートストリームから、パーシャルTS(映像データのTSパケット、音声データのTSパケット)が抽出され、当該パーシャルTSはMPEGデコーダ207に供給される。
 MPEGデコーダ207では、映像データのTSパケットにより構成される映像PESパケットに対してデコード処理が行われて映像データが得られる。この映像データは、映像信号処理回路208およびグラフィック生成回路209において、必要に応じて、スケーリング処理(解像度変換処理)、グラフィックスデータの重畳処理等が行われた後に、パネル駆動回路210に供給される。そのため、表示パネル211には、ユーザの選択チャネルに対応した画像が表示される。
 また、MPEGデコーダ207では、音声データのTSパケットにより構成される音声PESパケットに対してデコード処理が行われて音声データが得られる。この音声データは、音声信号処理回路212でD/A変換等の必要な処理が行われ、さらに、音声増幅回路213で増幅された後に、スピーカ214に供給される。そのため、スピーカ214から、ユーザの選択チャネルに対応した音声が出力される。
 また、ネットワーク端子225からイーサネットインタフェース224に供給されるコンテンツデータ(画像データ、音声データ)は、MPEGデコーダ207に供給される。以降は、上述したテレビ放送信号の受信時と同様の動作となり、表示パネル211に画像が表示され、スピーカ214から音声が出力される。
 また、テレビ受信機12が外部機器(送信機)から画像および音声のデータを受信する場合、メインストリームリンク受信部233で受信された画像および音声のデータは、それぞれ映像信号処理回路212および音声信号処理回路212に供給される。以降は、上述したテレビ放送信号の受信時と同様の動作となり、表示パネル211に画像が表示され、スピーカ214から音声が出力される。
 また、受信機側のオーディオクロックをマスターとするオプションモードの場合、破線図示するように、オーディオクロックソース236で発生されるオーディオクロック(Audio Clock)が用いられる状態となる。
 すなわち、サブストリームリンク送信部235では、オーディオクロックソース236で発生されるオーディオクロック(Audio Clock)とビデオクロック(Link Video Clock)に基づいて、搬送クロック(Lane Clock)が生成されると共に、分周比情報としてのMaud、Naudの値が得られる。そして、サブストリームリンク送信部235では、Maud、Naudの値を持つACMSWパケットユニットなどのSSパケットユニット含むサブストリームリンクのレーンフレームの送信データ(シリアルデータ)を、その生成された搬送クロック(Lane Clock)に同期して送信することが行われる。
 また、メインストリームリンク受信部233では、受信されたオーディオデータ(オーディオサンプルデータ)がオーディオクロックソース406で発生されるオーディオクロック(Audio Clock)に同期して処理されて、音声出力用の出力オーディオデータが得られる。
 上述したように、図1に示すAVシステム10において、送信機300(図3参照)は、受信された符号化データから再生された搬送クロックを分周して得られたオーディオクロックに同期してオーディオデータを受信機400(図3参照)に送信する。そのため、受信機400からクロック信号ラインを用いた伝送クロックの供給を行うことなく、受信機400において高品質なオーディオ再生が可能となる。
 また、図1に示すAVシステム10において、送信機300(図3参照)は、受信された符号化データから再生された搬送クロックから生成されたオーディオクロックに同期してオーディオデータを受信機400に送信することを、受信機400からの要求に応じて行う。そのため、送信機300は送信処理を効果的に、つまり受信機400の処理能力に合わせて行うことが可能となる。
 また、図1に示すAVシステム10において、送信機300(図3参照)は、受信された符号化データから取得された分周比情報に基づいて搬送クロックを分周してオーディオクロックを生成する。この場合、外部機器から送られてくる分周比情報に基づいて分周が行われるものであり、オーディオクロックの生成を容易かつ適切に行うことが可能となる。
 また、図1に示すAVシステム10において、受信機400(図3参照)は、発生されたオーディオオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを送信機300(図3参照)に送信し、この送信機300から受信されるオーディオデータをそのオーディオクロックに基づいて処理する。そのため、送信機300にクロック信号ラインを用いた伝送クロックの供給を行うことなく、高品質なオーディオ再生が可能となる。
 また、図1に示すAVシステム10において、受信機400(図3参照)は、送信機300に送信するクロック再生が可能な符号化データとして、搬送クロックからオーディオクロックを得るための分周比情報の符号化データを含める。そのため、送信機300では、符号化データから再生された搬送クロックに分周比情報に基づいて分周を行ってオーディオクロックを得ることができ、オーディオクロックの生成を容易かつ適切に行うことが可能となる。
 また、図1に示すAVシステム10において、受信機400(図3参照)は、送信機300に送信するクロック再生が可能な符号化データとして、再生された搬送クロックから生成されたオーディオクロックを用いることの要求の符号化データを含める。そのため、送信機300では、再生された搬送クロックから生成されたオーディオクロックに基づいたオーディオデータの送信処理を効果的に行うことが可能となる。
 <2.変形例>
 なお、上述実施の形態において、送信機300の具体例としてディスクプレーヤ11(図11参照)を示し、また、受信機400の具体例としてテレビ受信機12(図12参照)を示した。しかし、送信機300および受信機400は、これらに限定されないことは勿論である。
 また、本技術は、以下のような構成をとることもできる。
 (1)外部機器から、クロック再生が可能な符号化データを受信する符号化データ受信部と、
 上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成部と、
 上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信するオーディオデータ送信部を備える
 送信装置。
 (2)上記オーディオクロック生成部は、
 上記受信された符号化データから取得された分周比情報に基づいて上記搬送クロックを分周して上記オーディオクロックを生成する
 前記(1)に記載の送信装置。
 (3)上記再生された搬送クロックに基づいて生成されたオーディオクロックを用いることの要求が得られるとき、
 上記オーディオクロック生成部は、上記符号化データから再生された上記搬送クロックに基づいてオーディオクロックを生成し、
 上記オーディオデータ送信部は、上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信する
 前記(1)または(2)に記載の送信装置。
 (4)上記オーディオデータ送信部は、上記オーディオデータを上記外部機器に第1の伝送路を通じて送信し、
 上記符号化データ受信部は、上記符号化データを上記外部機器から第2の伝送路を通じて受信する
 前記(1)から(3)のいずれかに記載の送信装置。
 (5)上記第1の伝送路および上記第2の伝送路はそれぞれ光ケーブルを用いた伝送路である
 前記(4)に記載の送信装置。
 (6)外部機器から、クロック再生が可能な符号化データを受信する符号化データ受信ステップと、
 上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成ステップと、
 オーディオデータ送信部により、上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信するオーディオデータ送信ステップを有する
 送信方法。
 (7)オーディオクロックを発生するオーディオクロック発生部と、
 上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信する符号化データ送信部と、
 上記外部機器からオーディオデータを受信するオーディオデータ受信部と、
 上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理部を備える
 受信装置。
 (8)上記符号化データとして、上記搬送クロックから上記オーディオクロックを得るための分周比情報の符号化データが含まれる
 前記(7)に記載の受信装置。
 (9)上記符号化データとして、上記搬送クロックに基づいて生成されたオーディオクロックを用いることの要求の符号化データが含まれる
 前記(7)または(8)に記載の受信装置。
 (10)上記オーディオデータ受信部は、上記オーディオデータを上記外部機器から第1の伝送路を通じて受信し、
 上記符号化データ送信部は、上記符号化データを上記外部機器に第2の伝送路を通じて送信する
 前記(7)から(9)のいずれかに記載の受信装置。
 (11)上記第1の伝送路および上記第2の伝送路はそれぞれ光ケーブルを用いた伝送路である
 前記(10)に記載の受信装置。
 (12)オーディオクロックを発生するオーディオクロック発生ステップと、
 上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信する符号化データ送信ステップと、
 オーディオデータ受信部により、上記外部機器からオーディオデータを受信するオーディオデータ受信ステップと、
 上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理ステップを有する
 受信方法。
 (13)送信装置および受信装置が伝送路を介して接続されてなる送受信システムであって、
 上記送信装置は、
 上記受信装置から、クロック再生が可能な符号化データを受信する符号化データ受信部と、
 上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成部と、
 上記生成されたオーディオクロックに同期してオーディオデータを上記受信装置に送信するオーディオデータ送信部を備え、
 上記受信装置は、
 オーディオクロックを発生するオーディオクロック発生部と、
 上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを上記送信装置に送信する符号化データ送信部と、
 上記送信装置からオーディオデータを受信するオーディオデータ受信部と、
 上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理部を備える
 送受信システム。
 10・・・AV伝送システム
 60・・・メインストリームリンク
 70・・・サブストリームリンク
 104・・・CPU
 105・・・内部バス
 106・・・フラッシュROM
 107・・・SDRAM
 108・・・リモコン受信部
 109・・・リモコン送信機
 110・・・SATAインタフェース
 111・・・BDドライブ
 112・・イーサネットインタフェース
 113・・・ネットワーク端子
 115・・・MPEGデコーダ
 116・・・グラフィック生成回路
 117・・・映像出力端子
 118・・音声出力端子
 121・・・表示制御部
 122・・・パネル駆動回路
 123・・・表示パネル
 124・・・電源部
 125・・・メインストリームリンク送信部
 126・・・サブストリームリンク送信部
 127・・・サブストリームリンク受信部
 205・・・アンテナ端子
 206・・・デジタルチューナ
 207・・・MPEGデコーダ
 208・・・映像信号処理回路
 209・・・グラフィック生成回路
 210・・・パネル駆動回路
 211・・・表示パネル
 212・・・音声信号処理回路
 213・・・音声増幅回路
 214・・・スピーカ
 220・・・内部バス
 221・・・CPU
 222・・・フラッシュROM
 223・・・SDRAM
 224・・・イーサネットインタフェース
 225・・・ネットワーク端子
 226・・・リモコン受信部
 227・・・リモコン送信機
 231・・・表示制御部
 232・・・電源部
 233・・・メインストリームリンク受信部
 234・・・サブストリームリンク受信部
 235・・・サブストリームリンク送信部
 236・・・オーディオクロックソース
 300・・・送信機
 301・・・オーディオソース
 302・・・FIFOメモリ部
 303・・・ASPU生成部
 304・・・AAPU生成部
 305・・・レーンフレーム生成部
 306・・・メインストリームリンクの送信部
 307・・・サブストリームリンクの受信部
 308・・・CDR部
 308a・・・位相比較器
 308b・・・ループフィルタ
 308c・・・電圧制御発振子
 308d・・・データレジスタ
 309・・・レーンフレームデコード部
 310・・・ACMSWデコード部
 311・・・オーディオクロック再生部
 311a,311b,311c,311e・・・分周器
 311d・・・PLL回路
 400・・・受信機
 401・・・メインストリームリンクの受信部
 402・・・レーンフレームデコード部
 403・・・ASPUデコード部
 404・・・AAPUデコード部
 405・・・オーディオデコード部
 406・・・オーディオクロックソース
 407・・・レーンクロック生成部
 407a・・・Naud発生部
 407b,407c・・・カウント部
 407d・・・ラッチ部
 407e,407f・・・逓倍部
 408・・・ACMSW生成部
 409・・・レーンフレーム生成部
 410・・・サブストリームリンクの送信部
 511・・・スクランブラ
 512・・・8B/10Bエンコーダ
 513・・・シリアライザ
 514・・・レーザダイオードドライバ
 515・・・レーザダイオード
 521・・・フォトデディテクタ
 522・・・アンプ
 523・・・デシリアライザ
 524・・・8B/10Bデコーダ
 525・・・デスクランブラ
 601・・・データパッキング部
 602・・・VCR/ACR生成部
 603・・・フレーム生成部
 604・・・マルチストリーム構成部
 605・・・チャネルマッピング部
 606・・・チャネルデマッピング部
 607・・・マルチストリーム分解部
 608・・・パケット発生部
 609・・・データデパッキング部
 610・・・ビデオ/オーディオクロック部
 701a,701b・・・データパッキング部
 702a,702b・・・フレーム生成部
 703a,703b・・・パケット発生部
 704a,704b・・・データデパッキング部

Claims (13)

  1.  外部機器から、クロック再生が可能な符号化データを受信する符号化データ受信部と、
     上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成部と、
     上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信するオーディオデータ送信部を備える
     送信装置。
  2.  上記オーディオクロック生成部は、
     上記受信された符号化データから取得された分周比情報に基づいて上記搬送クロックを分周して上記オーディオクロックを生成する
     請求項1に記載の送信装置。
  3.  上記再生された搬送クロックに基づいて生成されたオーディオクロックを用いることの要求が得られるとき、
     上記オーディオクロック生成部は、上記符号化データから再生された上記搬送クロックに基づいてオーディオクロックを生成し、
     上記オーディオデータ送信部は、上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信する
     請求項1に記載の送信装置。
  4.  上記オーディオデータ送信部は、上記オーディオデータを上記外部機器に第1の伝送路を通じて送信し、
     上記符号化データ受信部は、上記符号化データを上記外部機器から第2の伝送路を通じて受信する
     請求項1に記載の送信装置。
  5.  上記第1の伝送路および上記第2の伝送路はそれぞれ光ケーブルを用いた伝送路である
     請求項4に記載の送信装置。
  6.  外部機器から、クロック再生が可能な符号化データを受信する符号化データ受信ステップと、
     上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成ステップと、
     オーディオデータ送信部により、上記生成されたオーディオクロックに同期してオーディオデータを上記外部機器に送信するオーディオデータ送信ステップを有する
     送信方法。
  7.  オーディオクロックを発生するオーディオクロック発生部と、
     上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信する符号化データ送信部と、
     上記外部機器からオーディオデータを受信するオーディオデータ受信部と、
     上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理部を備える
     受信装置。
  8.  上記符号化データとして、上記搬送クロックから上記オーディオクロックを得るための分周比情報の符号化データが含まれる
     請求項7に記載の受信装置。
  9.  上記符号化データとして、上記搬送クロックに基づいて生成されたオーディオクロックを用いることの要求の符号化データが含まれる
     請求項7に記載の受信装置。
  10.  上記オーディオデータ受信部は、上記オーディオデータを上記外部機器から第1の伝送路を通じて受信し、
     上記符号化データ送信部は、上記符号化データを上記外部機器に第2の伝送路を通じて送信する
     請求項7に記載の受信装置。
  11.  上記第1の伝送路および上記第2の伝送路はそれぞれ光ケーブルを用いた伝送路である
     請求項10に記載の受信装置。
  12.  オーディオクロックを発生するオーディオクロック発生ステップと、
     上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを外部機器に送信する符号化データ送信ステップと、
     オーディオデータ受信部により、上記外部機器からオーディオデータを受信するオーディオデータ受信ステップと、
     上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理ステップを有する
     受信方法。
  13.  送信装置および受信装置が伝送路を介して接続されてなる送受信システムであって、
     上記送信装置は、
     上記受信装置から、クロック再生が可能な符号化データを受信する符号化データ受信部と、
     上記受信された符号化データから再生された搬送クロックに基づいてオーディオクロックを生成するオーディオクロック生成部と、
     上記生成されたオーディオクロックに同期してオーディオデータを上記受信装置に送信するオーディオデータ送信部を備え、
     上記受信装置は、
     オーディオクロックを発生するオーディオクロック発生部と、
     上記発生されたオーディオクロックに基づいて生成された搬送クロックに同期してクロック再生が可能な符号化データを上記送信装置に送信する符号化データ送信部と、
     上記送信装置からオーディオデータを受信するオーディオデータ受信部と、
     上記受信されたオーディオデータを上記発生されたオーディオクロックに基づいて処理するオーディオデータ処理部を備える
     送受信システム。
PCT/JP2017/010808 2016-03-29 2017-03-16 送信装置、送信方法、受信装置、受信方法および送受信システム WO2017169867A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/067,747 US11245869B2 (en) 2016-03-29 2017-03-16 Transmission apparatus, transmission method, reception apparatus, reception method, and transmission/reception system
EP17774411.7A EP3439224B1 (en) 2016-03-29 2017-03-16 Transmitting device, transmitting method, receiving device, receiving method, and transmitting and receiving system
KR1020187018788A KR20180124836A (ko) 2016-03-29 2017-03-16 송신 장치, 송신 방법, 수신 장치, 수신 방법 및 송수신 시스템
US17/560,775 US20220116568A1 (en) 2016-03-29 2021-12-23 Transmission apparatus, transmission method, reception apparatus, reception method, and transmission/reception system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016066923 2016-03-29
JP2016-066923 2016-03-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/067,747 A-371-Of-International US11245869B2 (en) 2016-03-29 2017-03-16 Transmission apparatus, transmission method, reception apparatus, reception method, and transmission/reception system
US17/560,775 Continuation US20220116568A1 (en) 2016-03-29 2021-12-23 Transmission apparatus, transmission method, reception apparatus, reception method, and transmission/reception system

Publications (1)

Publication Number Publication Date
WO2017169867A1 true WO2017169867A1 (ja) 2017-10-05

Family

ID=59964466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010808 WO2017169867A1 (ja) 2016-03-29 2017-03-16 送信装置、送信方法、受信装置、受信方法および送受信システム

Country Status (5)

Country Link
US (2) US11245869B2 (ja)
EP (1) EP3439224B1 (ja)
KR (1) KR20180124836A (ja)
TW (1) TWI720153B (ja)
WO (1) WO2017169867A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220006927A (ko) * 2020-07-09 2022-01-18 삼성전자주식회사 메모리 컨트롤러, 및 이를 포함하는 스토리지 장치, 및 메모리 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200171A (ja) * 1996-01-16 1997-07-31 Hitachi Ltd クロック同期方法とその回路、並びにデータ伝送装置
JP2003527034A (ja) * 2000-03-14 2003-09-09 アルテラ・コーポレーション プログラマブルロジックデバイス回路に結合されるクロックデータリカバリ回路
JP2005341250A (ja) * 2004-05-27 2005-12-08 Yamaha Corp ディジタルオーディオデータ受信回路
JP2009038596A (ja) * 2007-08-01 2009-02-19 Sony Corp データ送受信システム、データ送信装置、データ受信装置、クロック生成方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6381236B1 (en) * 1998-01-28 2002-04-30 Hitachi Denshi Kabushiki Kaisha Bi-directional digital transmission system and bi-directional digital transmission method
US6642966B1 (en) * 2000-11-06 2003-11-04 Tektronix, Inc. Subliminally embedded keys in video for synchronization
US7023817B2 (en) * 2003-03-11 2006-04-04 Motorola, Inc. Method and apparatus for source device synchronization in a communication system
GB2407006A (en) * 2003-10-08 2005-04-13 Sony Uk Ltd Communicating streamed payload data and packet based auxiliary data
US7839965B2 (en) * 2006-11-21 2010-11-23 Agere Systems Inc. High-speed serial data link with single precision clock source
JP4962024B2 (ja) * 2007-01-31 2012-06-27 パナソニック株式会社 データ送信・受信システム
US8063986B2 (en) * 2007-06-04 2011-11-22 Himax Technologies Limited Audio clock regenerator with precisely tracking mechanism
JP5167714B2 (ja) * 2007-07-30 2013-03-21 ソニー株式会社 データ送受信システム、データ中継装置、データ受信装置、データ中継方法、データ受信方法
US20090109840A1 (en) * 2007-10-31 2009-04-30 Hallse Brian L Fault-resistant digital-content-stream AV packet switch
JP2011507416A (ja) * 2007-12-20 2011-03-03 エーティーアイ・テクノロジーズ・ユーエルシー ビデオ処理を記述するための方法、装置および機械可読記録媒体
US7948975B2 (en) * 2008-03-03 2011-05-24 IPLight Ltd. Transparent switching fabric for multi-gigabit transport
WO2009125573A1 (ja) * 2008-04-11 2009-10-15 パナソニック株式会社 送信装置および受信装置
TWI386002B (zh) * 2009-09-07 2013-02-11 Realtek Semiconductor Corp 重建取樣頻率並據以快速鎖定訊號的方法與裝置
US8861669B2 (en) * 2009-09-30 2014-10-14 Synaptics Incorporated Stream clock recovery in high definition multimedia digital system
US8977884B2 (en) * 2010-12-09 2015-03-10 Texas Instruments Incorporated Shared-PLL audio clock recovery in multimedia interfaces
JP2013085224A (ja) * 2011-07-29 2013-05-09 D & M Holdings Inc コンテンツデータ伝送システム及びコンテンツデータ伝送方法
KR101733273B1 (ko) * 2012-06-01 2017-05-24 블랙베리 리미티드 다중 포맷 오디오 시스템들에서의 확률적 로크 보장 방법에 기초한 범용 동기화 엔진
US9559651B2 (en) * 2013-03-29 2017-01-31 Apple Inc. Metadata for loudness and dynamic range control
JP5407087B1 (ja) * 2013-07-12 2014-02-05 邦彦 公山 分数分周回路
US10097874B2 (en) * 2014-06-27 2018-10-09 Qualcomm Incorporated System and method for monitoring media stream buffers of media output devices in order to synchronize media content output
US9841940B2 (en) * 2015-06-05 2017-12-12 Qualcomm Incorporated Power reduction through clock management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09200171A (ja) * 1996-01-16 1997-07-31 Hitachi Ltd クロック同期方法とその回路、並びにデータ伝送装置
JP2003527034A (ja) * 2000-03-14 2003-09-09 アルテラ・コーポレーション プログラマブルロジックデバイス回路に結合されるクロックデータリカバリ回路
JP2005341250A (ja) * 2004-05-27 2005-12-08 Yamaha Corp ディジタルオーディオデータ受信回路
JP2009038596A (ja) * 2007-08-01 2009-02-19 Sony Corp データ送受信システム、データ送信装置、データ受信装置、クロック生成方法

Also Published As

Publication number Publication date
EP3439224A1 (en) 2019-02-06
EP3439224A4 (en) 2019-09-18
TWI720153B (zh) 2021-03-01
TW201735598A (zh) 2017-10-01
US20190014285A1 (en) 2019-01-10
US20220116568A1 (en) 2022-04-14
KR20180124836A (ko) 2018-11-21
EP3439224B1 (en) 2022-05-04
US11245869B2 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
TWI444045B (zh) 對媒體內容串流進行解密之方法、裝置及系統
US9628868B2 (en) Transmission of digital audio signals using an internet protocol
EP2211545B1 (en) Reproduction apparatus, display apparatus, reproduction method, and display method
US20110206355A1 (en) Content reproduction system, content receiving apparatus, sound reproduction apparatus, content reproduction method and program
JP6863282B2 (ja) 受信装置および受信方法
RU2677265C2 (ru) Схема интерфейса и система обработки информации
JP4581685B2 (ja) 暗号化装置及び復号化装置
JP6589875B2 (ja) 送信装置、送信方法、受信装置および受信方法
US20220116568A1 (en) Transmission apparatus, transmission method, reception apparatus, reception method, and transmission/reception system
JP6809470B2 (ja) 送信装置、送信方法、受信装置および受信方法
WO2017179600A1 (ja) コネクタ、電子機器および電子機器の制御方法
JP2005006166A (ja) 撮像装置
JP6904250B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP6669071B2 (ja) 送信装置、送信方法、受信装置および受信方法
JP2001094552A (ja) データ処理装置およびデータ処理方法、並びに記録媒体
JP7352611B2 (ja) 映像信号処理装置
JP2016226036A (ja) 表示装置及び表示方法
JP6249311B2 (ja) 出力装置
WO2018061809A1 (ja) 送信装置、送信方法、受信装置および受信方法
JP2022103437A (ja) 表示装置
JP2011066548A (ja) 電子機器およびデータ伝送方法
JPWO2019135353A1 (ja) コネクタ、電子機器および電子機器の制御方法
JP2018046572A (ja) 表示装置
JP2010063186A (ja) ディジタル情報記録再生装置、ディジタル情報記録再生方法
JP2008312257A (ja) ディジタル情報入出力装置、受信装置、記録装置、および再生装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187018788

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017774411

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017774411

Country of ref document: EP

Effective date: 20181029

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17774411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP